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Abstract. The basic equations for a layer of an electrically conducting fluid are
considered in the magnetohydrodynamic approximation. An electric field is applied
parallel to the layer. Because of various instabilities, turbulent fluid motions will
be generated in general. The goal of the analysis presented in this paper is the
derivation of upper bounds for the average turbulent resistivity of the layer. In
order to demonstrate the concept of the upper bound theory, only the simplest
case will be treated and the boundary conditions will be assumed in such a way
that the analogy with the problem of bounds on the momentum transport in a
turbulent Couette layer can be utilized.

1. Introduction
Upper bounds on the properties of turbulent fluid systems provide rigorous results
when direct computations are not possible and theoretical estimates must rely on
uncertain assumptions. Following an earlier proposal by Malkus (1954), Howard
(1963) derived a rigorous bound for the heat transport by turbulent convection in a
layer heated from below. The bound was later improved by Busse (1969a) through
the use of the extremalizing multi-α-vector-fields in the case when the equation of
continuity is imposed. The bounding method was also applied to turbulent shear
flows (Busse 1969b, 1970) and to magnetohydrodynamic problems (Soward 1980;
Krommes and Smith 1987; Kim and Krommes 1990; Wang et al. 1991).
More recently, the background-field-approach was introduced by Doering and

Constantin (1992) and bounds similar to those found by Howard and Busse have
been derived. In fact, Kerswell (1998) has been able to demonstrate the comple-
mentary nature of the bounds derived by the two methods when optimized in
appropriate ways. Little progress has been achieved so far towards the goal of
improving bounds through the imposition of additional constraints derived from
the basic equations of motion. Computational solutions of the Euler–Lagrange
equations of the variational problems can help us to reach this goal (Vitanov and
Busse 2001).
In this brief report, we intend to demonstrate the close relationship between

bounds on shear flow turbulence and on magnetohydrodynamic turbulence. It is
expected that through similar analogies a wide spectrum of magnetohydrodynamic
bounding problems can be solved.
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2. Mathematical formulation of the problem
We consider a layer of thickness d of an electrically conducting incompressible fluid
with kinetic viscosity ν and magnetic diffusivity λ, where the latter is defined as
the inverse of the product of electrical conductivity σ and magnetic permeability µ.
Using d as the length scale, d2/λ as the time scale and (µ�)1/2λ/d as the scale of the
magnetic field, we can write the equation of motion and the equation of magnetic
induction in dimensionless form,(

∂

∂t
+ V · ∇

)
V = B · ∇B − ∇π + Pm∇2V (1a)

(
∂

∂t
+ V · ∇

)
B = B · ∇V + ∇2B (1b)

∇ · B = 0 (1c)

∇ · V = 0 (1d)

where Pm = ν/κ and all the terms that can be written as gradients in the equation
of motion have been combined into ∇π. We introduce Cartesian coordinates with
the z-axis normal to the layer and with the y-axis in the direction of the electric
field applied to the layer. Indicating the average over the x, y-plane by a bar, we
separate the velocity field and the magnetic field into averaged and fluctuating
parts,

V = U + v, B = B̄ + b with v̄ = b̄ = 0. (2a)

We further separate the fluctuating fields into components parallel and perpendic-
ular to the layer,

v = u + kw, b = b̂ + kbz with u · k = b̂ · k = 0 (2b)

where k is the unit vector in the direction of the z-axis.
We are interested in the turbulent fluid state under stationary conditions and

we define this state by requiring that the time derivative of an average quantity
vanishes. After taking the x, y-average of (1a) and (1b) we thus obtain

d2

dz2
B̄ =

d

dz
(wb̂ − bzu) (3a)

d2

dz2
Ū =

d

dz
(wu − bz b̂) (3b)

where the property has been used that the fields B̄ and Ū possess only components
parallel to the boundaries of the layer. Integration of (3a) and (3b) with respect to
z yields

d

dz
B̄ = wb̂ − bzu − 〈wb̂ − bzu〉 − k × Jj (4a)

d

dz
Ū = wu − bz b̂ − 〈wu − bzb〉 (4b)

where the angular brackets indicate the average over the entire layer. Here the
boundary conditions

U = 0 at z = ± 1
2 , k ×

[
B̄

(
1
2

)
− B̄

(
− 1

2

)]
= Jj (5)
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have been used where Jj is the average current density of the layer, which like the
applied electric field Ej is directed in the y-direction indicated by the unit vector j.
Ohm’s law for the current density averaged over the layer yields the relationship

J = j · 〈v × b〉 + E = 〈bxw − uxbz〉 + E. (6)

We define the dimensionless resistivity S (per unit length) by S = E/J or

S =
J + 〈bzux − wbz〉

J
≡ J + µ̌(J)

J
. (7)

Since the expression µ̌(J) is expected to be positive (see (10) below), our goal is to
find an upper bound µ for µ̌ at a given value of J subject to certain constraints
derived from the basic equations (1).
After subtracting (3a) and (3b) from (1a) and (1b), multiplying the equation by

v and b, respectively, and averaging the result over the fluid layer, we obtain the
following two equations,

〈|∇b|2〉 = 〈b · (b + B̄) · ∇v〉 +
〈

b̂ · bz
d

dz
U

〉
−

〈
b̂w

d

dz
B̄

〉
(8a)

Pm〈|∇u|2〉 = 〈v · (b + B̄) · ∇b〉 −
〈

u ·
(

w
d

dz
U

)〉
+

〈
u ·

(
bz

d

dz
B̄

)〉
. (8b)

The partial integrations used in the derivation of these equations are possible for
very general boundary conditions. In the following, we consider two special kinds
of boundary conditions which apply to the fluctuating parts of the velocity field
and of the magnetic field in analogous ways,

v = b = 0 at z = ± 1
2 (9a)

or

v · n = b · n = k × ∂

∂z
v = k × ∂

∂z
b = 0 at z = ±1

2
. (9b)

Boundary conditions (9a) are applicable at a solid wall of infinite electrical conduct-
ivity, but also covered with an insulating coating which prevents any electric current
from entering. This boundary condition is also known as the line tied boundary
condition (Morrison 2002; see also Wang et al. 1991). Boundary condition (9b) has
a similar character for the magnetic field except that the highly conducting surface
is in direct contact with the fluid. The property that no viscous stresses are exerted
on the fluid may be more difficult to realize. We refer to the extensive discussion
of Seehafer et al. (1996) for this case. After (8a) and (8b) have been added, the first
terms on the right-hand sides cancel. Using relationship (4) we obtain

〈|∇b|2〉 + Pm〈|∇v|2〉 + 〈(bzu − wb̂ − 〈bzu − wb̂〉)2〉

+ 〈(wu − 〈wu〉 − b̂bz + 〈b̂bz〉)2〉 = J〈bzux − wbx〉 (10)

where we have used the identity 〈f(f − 〈f〉)〉 = 〈(f − 〈f〉)2〉.
Anticipating that the upper bound µ for µ̂(J) is a monotonously increasing

function of J , we prefer to determine the lower bound J for the current density
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J at a given value µ of 〈bzux − wbx〉. We are thus led to the formulation of the
following variational problem.

Variational problem. For a given value of µ determine the minimum J of the
functional

J ≡ 〈|∇b|2〉 + Pm〈|∇v|2〉
〈bzux − wbx〉 + µ

〈(bzu − wb̂ − 〈bzu − wb̂〉)2〉
〈wbx − bzux〉2 (11)

among all the vector fields v and bwhich satisfy (1c), (1d) and boundary conditions (9)
and for which 〈bzux − wbx〉 is positive.

The formulation of the functional (11) has the advantage of homogeneity, i.e. for
any solution v, b the fields Av, Ab also solve the variational problem. By fixing the
amplitude A in such a way that

µ = 〈bzux − wbx〉

is satisfied, we recover relationship (10) except for the term

µ
〈(wu − 〈wu〉 − b̂bz − 〈̂bbz〉)2〉

〈wbx − bzux〉2 (12)

which vanishes, however, for the extremalizing solution of the variational prob-
lem (11) as will be demonstrated below. We thus could have included the positive
definite term (12) in the formulation of the functional (11) without changing the
result. Similarly, it can be seen that the y-component of the vector in the numerator
of the second term on the right-hand side of (11) only makes a positive contribu-
tion to the functional. Anticipating that bzuy − wby vanishes identically for the
extremalizing solution, we neglect this term in the following.

3. Solutions for the variational problem
Before starting with the analysis of the variational problem (11), we find it con-
venient to eliminate the dependence of the functional on Pm. By introducing the
transformation

v∗ = P 1/4
m v, b∗ = P −1/4

m b, µ∗ = P −1/2
m µ, J∗ = P −1/2

m J (13)

we have eliminated the parameter Pm. The constraint of (1c) and (1d) can easily
be accommodated by the introduction of the general representation

v∗ = ∇ × (∇ × kϕ) + ∇ × kψ, b∗ = ∇ × (∇ × kh) + ∇ × ky. (14)

We thus rewrite the functional (11) in the form

J∗ =
〈|∇2∇2h|2〉 + 〈g∇2∆2g〉 + 〈|∇2∇2ϕ|2〉 + 〈ψ∇2∆2ψ〉

〈+∆2ϕ∂yg − ∆2h∂yψ〉

+ µ∗ 〈(∆2h∂yψ − ∆2ϕ∂yg − 〈∆2h∂yψ〉 + 〈∆2ϕ∂yy〉)2〉
〈+∆2ϕ∂yy − ∆2h∂yψ〉2 (15)

where the symbols ∇2 and ∆2 are defined by ∇2 = ∇ − kk · ∇, ∆2 = ∇2 − (k · ∇)2

and where additional terms of the form ∆2ϕ∂2
xzϕ, ∆2h∂2

xzh have been neglected
since we shall use the assumption that the minimizing solution of the variational
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functional is independent of x. This assumption has been justified to some extent
by Busse (1970). It should be added that a rigorous proof for the x-independence of
the extremalizing solution of the functional (11) can be obtained in the limit µ → 0
by the same method as used by Busse (1972).
From the form of the functional (15), it is obvious that extremalizing solutions

can be found in the form

ϕ = ϕ0(y, z), g = g0(y, z) ψ ≡ h ≡ 0 (16a)

or

h = h0(y, z), ψ = ψ0(y, z) ϕ ≡ g ≡ 0. (16b)

Since the boundary conditions (9) correspond to either

ϕ =
∂

∂z
ϕ = h =

∂

∂z
h = ψ = g = 0 at z = ±1

2
(17a)

or

ϕ =
∂2

∂z2
ϕ = h =

∂2

∂z2
h =

∂ψ

∂z
=

∂g

∂z
= 0 at z = ±1

2
(17b)

the minimum J∗(µ∗) of the functional (15) is the same in both cases (16a) and (16b).
The sum of the minimizing solutions (16a) and (16b) with arbitrary amplitudes also
yields the minimum J∗(µ) because of the homogeneity of the functional (15). In
this case, it must be ensured through appropriate phase shifts that terms such as
∆2ϕ∂yψ and ∆2h∂yg vanish identically such that no contribution arises from the
neglected term (12). We thus restrict attention to either of the cases (16a) and (16b).
Fortunately, there is no need to solve the variational problem because in the cases
(16a) and (16b) the functional (15) becomes identical to the functional derived in
Busse (1971) for the case of turbulent plane Couette flow. The asymptotic solution
for large values of µ∗ can thus be written in the form

J∗(µ∗) = 47/3(σ3β)1/4µ∗ 1/2 (18a)

J(µ) = P 1/4
m 47/3(σ3β)1/4µ1/2 (18b)

where σ and β are numerical constants of the order unity which assume the values

σ = 0.337, β = 0.624 (19a)

in the case of boundary conditions (16a) (see Busse 1978) and

σ = 0.207, β = 0.51 (19b)

in the case of boundary conditions (16b) (Straus 1973; β has been determined as in
Busse 1969). From this result, we conclude that the turbulent resistivity S for the
electrically conducting fluid is bounded from above by

S ≤ 1 + P −1/2
m (σ3β)−1/24−4/3J. (20)

4. Concluding remarks
The goal of this paper has been to demonstrate that upper bounds on properties of
turbulent magnetohydrodynamic systems can be derived rather simply if analogies
to hydrodynamic systems can be used. It will be of interest to see how the bounds
on the turbulent resistivity compare with experimental measurements. Since the
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bounds obtained for two different conditions do not differ very much, it is expected
that the exact nature of the boundaries is not important as long as their electrical
conductivity is much larger than that of the fluid.
In their analysis of the configuration considered in this paper, Seehafer et al.

(1996) find that the basic motionless state is stable and other asymptotic solutions
corresponding to turbulent states do not seem to exist. This unexpected result is
highly surprising since this seems to be the first nonlinear system in which the
excitation of a continuum of degrees of freedom does not occur even though it is
energetically possible. The bound derived in this paper outlines the region in the
parameter space where it might still be possible to eventually find time-asymptotic
states different from the static state.
The functional (11) includes the energy stability limit obtained in the particular

case µ = 0. A comparison with the earlier work cited in Sec. 3 indicates that the
static state is absolutely stable, i.e. all finite amplitude disturbances must decay for

E < P −1/2
m J∗

E (21)

where J∗
E assumes the values 2

√
1708 and

√
27π2 in the cases of boundary condi-

tions (9a) and (9b), respectively.
The actual bounds may not be the most important results of analyses such as that

presented in this paper. The identity of extremalizing vector fields of variational
problems for different physical situations suggests similarities between the corres-
ponding physical fields. Such a similarity between streamwise fluctuating velocity
components in shear flow turbulence and the fluctuating temperature in turbulent
convection has been pointed out by Busse (1970) and has been introduced in a model
of turbulent boundary layers by Deardorff (1970). The extremalizing vector fields
of the variational problem (1) suggest analogous similarities between problems of
magnetohydrodynamic turbulence, shear flow turbulence and problems of turbulent
convection, which could be helpful in the interpretation of the measured profiles of
root-mean-square values of turbulent fields.
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