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Abstract

Function structures are used during conceptual engineering design to transform the customer requirements into specific
functional tasks. Although they are usually constructed from a well-understood black-box description of an artifact,
there is no clear approach or formal set of rules that guide the creation of function structures. To remedy the unclear
formation of such structures and to provide the potential for automated reasoning of such structures, a graph grammar
is developed and implemented. The grammar can be used by a designer to explore various solutions to a conceptual
design problem. Furthermore, the grammar aids in disseminating engineering functional information and in teaching
the function structure concept to untrained engineers. Thirty products are examined as a basis for developing the
grammar rules, and the rules are implemented in an interactive user environment. Experiments with student engineers
and with the automated creation of function structures validate the effectiveness of the grammar rules.
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1. INTRODUCTION

The function structure concept developed by Pahl and Beitz
~1984! is a structured approach to managing complex con-
ceptual design problems. There is no evidence that a design
process taking advantage of this structured approach yields
less creative solutions. In fact, applying function structures
may provide a design team with more avenues for creative
solutions than designing without such a technique. Func-
tion structures are significant because of their ability to
help the designer tackle a design problem in a functional
way rather than becoming overwhelmed by physical con-
straints early in the design process. In addition, function
structures can remove the psychological bias that ties a design
problem to previous solutions, and can be used to divide
tasks among designers. The concept of separating form and
function has been a useful heuristic for many complex engi-
neering problems. Figure 1 shows an example of an artifact

and its accompanying function structure. The Arrow Staple
and Nail Gun has several key energy and material flows
that flow through this product. By drawing a function struc-
ture, as in Figure 1b, a designer can approach the problem
in smaller solvable pieces.

Typically, when designers use function structures, they
end up making only one function structure. During this gen-
eration process, there are many instances where the designer
makes unconscious and conscious decisions, thereby limit-
ing himself or herself from the theoretically infinite solu-
tions that are possible. Ultimately, the result is a single
function structure that suggests an operating procedure of
the product according to the satisfaction of the designer.

However, this is arguably not the best way of designing
because these decisions prematurely narrow down the final
solution and may miss out on other potential solutions that
might give the designer new or better ideas to solve the
problem. Consider Figure 2, where a tree search is shown in
the context of function structures. As the designer makes
decisions, various paths are traversed that finally takes us
to a solution. However, in the infinite solution space, there
are numerous feasible solutions, and generating all these
feasible solutions is a tedious job for the designer. Compu-
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Fig. 1. A Black & Decker electric knife and its function structure.
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tationally generating the set of “feasible” function struc-
tures would allow the user to identify new conceptual designs
or build from various concepts to create a completely dif-
ferent, yet novel solution.

This paper presents an approach to representing this tree
by a formal language for functions. Based on the common
basis of function names developed by Stone and Wood
~2000!, 69 grammar rules are created to capture the feasible
set of interactions between these functions. As an analogy
to written language, the common basis provided in Stone
and Wood ~2000! represents the lexicon of valid terms, while
our approach provides the grammar for combining these
terms. The main reason for developing these grammar rules
is to provide a framework that can be used to generate
function structures. Once the framework is established, it
can be used to generate multiple function structures.

Although function structures are flexible and powerful to
use, they are still not widely utilized in industry. This can
be attributed to the fact that there are inherent difficulties
associated with teaching function structures and conveying
their meaning between designers. This is a consequence of
the degree of variability in what exactly constitutes a valid
function structure. Creating function structures tends to be

an “internal” activity where either an individual designer or
a group of designers create the structure as the basis for
brainstorming or to divide the design problem into subsys-
tems. Most of the variability comes from how much detail
one strives to include in the function structure. A lack of a
fixed granularity can make two function structures for the
same artifact appear completely different. If formal guide-
lines can be provided for creating function structures, they
can overcome the problems of correctness and granularity,
and thus will be easier to share among different groups of
designers and easier to teach to new designers.

The set of developed grammar rules lends itself well to
computer implementation. A computer implementation
makes possible the generation of numerous function struc-
tures for a single product that can then be combined or
modified by the designer based on his0her own experience.
Because recent grammar research has been implemented at
various levels, Chase ~1998! developed a model to charac-
terize different implementation scenarios. In Figure 3, six
scenarios are presented that are ordered by the amount of
human interaction versus computer interaction. The current
function structure grammar is most useful under Sce-
nario 4, in which the computer is able to recognize which

Fig. 2. A designer committing to different decisions about each function is analogous to a search through a decision tree where the
goal is a conceptual design.
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rules are applicable and apply rules to update the design.
The designer can use this tool for creating function struc-
tures quickly and accurately. The user interacts with the
system to choose the rules to apply in order to build a com-
plete design. By having a computational search strategy
traverse the tree, we achieve a Scenario 5 grammar under
Chase’s model. The automatic creation of function struc-
tures provides the user with a brainstorming tool to develop
new ways to solve the basic functions of a design. For exam-
ple, a random choice of valid grammar rules might create
alternatives to the staple gun function structure in Figure 1.
Alternative energy sources other than electrical energy could
be used to punch nails and staples. Having a computer choose
rules also breaks new ground in that the automated approach
would reason with and establish functional conceptual
designs independent of a user.

In this paper, we present our approach for developing the
graph grammar for function structures. This includes the
study of past function structure methods, past graph gram-
mar approaches ~Section 2!, and an empirical study of exist-
ing artifacts ~Section 3!. Our resulting set of 69 rules is then
summarized ~Section 4! and their operations are shown
through an illustrative example ~Section 5!. Results from a
human-based study ~Section 7.1! and a computational study
~Section 7.2! are also discussed.

2. RELATED WORK

Function structure research has found its way into a number
of educational texts ~Ulrich & Eppinger, 1995; Otto & Wood,
2001! because of the presentation provided by Pahl and
Beitz ~1984!. Furthermore, research building upon the con-

cept of function structures has flourished in the past 15
years. Numerous publications have extended the applica-
tion of function structures ~Collins et al., 1976; IEEE, 1998;
Chen et al., 2002! and formalized the use of such structures
~Hubka et al., 1988; Kirschman & Fadel, 1998; Szykman
et al., 2000!. Computational approaches have also been
explored that further expand the value of function struc-
tures ~Gietka et al., 2002; Wang & Yan, 2002!. In a way,
this detailed research into how to represent function is a
subset in a larger design process where solutions to func-
tion precede those of an artifact’s structure. The function–
behavior–structure approach presented in Gero and
Kannengiesser ~2003! has provided a theoretical approach
to managing design knowledge as it is created by a team of
engineering designers. Although the function structure
approach discussed here has often been developed “top-
down” from how engineers divide a larger design problem
into manageable elements, continuing efforts ~including
those discussed here! are closing the gap with the related
work of functional representation in artificial intelligence
research ~Chandrasekaran et al., 1993!.

In recent years, engineering researchers have discovered
that shape grammars, originally used in architectural research
~Stiny, 1980!, provide a flexible yet ideally structured
approach for various aspects of engineering design ~Cagan,
2001!. A shape grammar is a set of shape rules that are
applied in a step by step way to generate a set, or language,
of designs. Grammar-based design systems offer the option
of exploring design alternatives as well as automating the
design generation process. An experienced designer can con-
struct a set of rules to capture his0her knowledge about a
certain type of artifact. The grammar can then be con-

Fig. 3. Chase’s six scenarios for classifying grammars ~adapted from Chase, 1998!.
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structed such that any execution of the rules creates a fea-
sible solution ~Longenecker & Fitzhorn, 1991! or captures
the style of a specific period ~Cagdas, 1996! or of a specific
designer ~Koning & Eizenberg, 1981!.

An important offshoot of the shape grammar research is
graph grammar research. Similar to production systems in
cognitive psychology ~Klahr et al., 1987!, graph grammars
are comprised of rules for transforming nodes and arcs within
a graph. These techniques create a formal language for gen-
erating and updating complex designs from a simple initial
specification or seed. Graph grammars are an emerging con-
cept in design synthesis ~Pinilla et al., 1989; Fu et al., 1993;
Schmidt, 1995; Li et al., 2001!. The development of these
rules encapsulate a set a valid operations that can occur in
the development of a design. Such representations can pro-
duce a wider variety of candidates because solutions need
not have common characteristics, but merely a common
starting point.

According to Kurfman et al. ~2001!, “the problem with
many of these function-based design methodologies is their
inability to produce repeatable functional models of a par-
ticular product. Two engineers can be given the same prod-
uct, customer needs, and the process choices, but the
likelihood of them producing similar function structures is
low.” This is a major issue in using function structures. To
develop a formalism for function structures, there needs to
be a common language in which the formalism can be devel-
oped. The basis that was developed by Stone and Wood
~2000! is used for this purpose. The development of the
functional basis helps to foster our understanding of func-
tion structures and aids in developing repeatable function
structures. Hirtz et al. ~2001! developed the reconciled func-
tional basis, which covers most of the functions being used
in engineering artifacts. This basis consists of eight pri-
mary function classes and three flow classes that are further
subdivided into secondary and tertiary functions and flows,
respectively. This basis has been adapted to suit our formal-
ism and requirements.

3. APPROACH

The typical functional structure methodology starts with a
black-box model representation of a product where the iden-
tified inputs and outputs to the system are shown on the left
and right side of the boxes, respectively, and the primary
function of the product is shown within the box as a verb–
object pair. Our approach begins by developing a chain of
subfunctions that operate on each of the input flows. Con-
sider the example of an Electric Staple0Nail Gun. On observ-
ing the product, we notice that the staples and nails are
guided into the product and are secured using a spring. We
see that the primary function of the gun is to shoot the
staples or nails, which have been previously inputted and
secured. To shoot, we need to impart some form of energy
in the device. It is seen that the energy that is used here is
mechanical energy, which is obtained by converting the

incoming electrical energy. Hence, we need to import elec-
trical energy and convert it into mechanical energy. In addi-
tion, we need human energy to direct when to actuate the
electrical energy. Human energy enters the system and gets
converted to mechanical energy due to the movement of the
hand and this energy actuates the system. We also need to
model the staples and the electrical energy as these interact
with each other. Following this systematic dissection, we
can create all the functional chains for all of the flows enter-
ing and leaving the black-box model. This analysis reduces
the final product to its original functional specifications.
Our goal, however, is to be able to aid the engineer before
the design is complete; therefore, we seek a method to auto-
matically generate multiple function structures given the
black box as a seed or starting point.

This paper presents the preliminary findings toward this
goal. The hypothesis of this work is as follows: a formal set
of rules can be created that will describe function structures
for a range of products, based on a common basis, and
which, when executed, will help in the automatic genera-
tion of function structures. Derived from this hypothesis
are certain objectives that need to be satisfied. It needs to
be shown that a set of rules can be developed that can
effectively describe function structures. This set of rules
then can be programmed as an algorithm that can be used to
generate function structures. Thirty consumer products are
chosen to provide an empirical basis for creating our rules.
These products offer simple technologies, yet the range of
technologies that each of these products uses varies enough
to present a challenging problem. The products that were
examined are shown in the Table 1.

One of the first challenges we faced in comparing the
functions structures created for these products is the unpre-
dictability of signal flows. Signal flow depends to a large
extent on the environment in which a product is used. We

Table 1. The 30 products used as an empirical
basis for the development of the grammar rules

Products Chosen

Rice cooker Electric iron
Boston Hunt sharpener B&D electric knife
Room heater Krups coffee maker
Coffee grinder Electric cordless kettle
Electric toaster Leaf blower
Electric wok Popcorn popper
Dustbuster Skil screwdriver
Water pump Hair dryer
Kenmore dryer Floor jack
Spatula mixer Coleman quick pump
Stapler Jigsaw
Dremel engraver Fruit and veggie peeler
Presto Salad Shooter Ball shooter
Palm sander Cordless drill
Hand blender Juicer
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believe that trying to model signal flows is cumbersome
and leads to rules that are too vague and general. Hence,
signal flows have not been considered at this time.

Another challenge in our study was determining the level
of granularity to use in systematically making function struc-
tures. In the functional basis ~Stone & Wood, 2000! three
levels are developed: primary, secondary, and tertiary. Using
different levels of granularity leads to different function
chains. This poses a problem for formalizing the grammar
for function structures. The problem becomes a lot more
complex if the developed system of rules must differentiate
and understand the three levels. This necessitates the for-
mation of a new reduced basis that incorporates the ele-
ments of the previous functional basis. For example, the
secondary level of Guide has four different words at the
tertiary level: Guide, Translate, Rotate, and Allow DOF. To
create a grammar that is consistent, we have to create a rule
that would apply to secondary class Guide, that would be
applicable to the tertiary class as well. At the same time,
because these bases have their own intricate differences,
rules have to be created to maintain those differences at the
tertiary level. This creates a complexity that becomes mag-
nified when all the primary, secondary, and tertiary classes
are taken into account. It is a much better approach to cre-
ate the rules considering just one level, as this will result in
a more robust set of rules. The reduced functional basis is
shown in Table 2.

An empirical study is conducted to extract rules from
function structures of different products. This study culmi-
nated in the design knowledge that is captured in the de-
veloped rules, which are implemented to generate new
functional models. We observed similar rules or patterns
from the function structures created for products shown in
Table 1. By using the reduced basis, we are able to more
readily develop generic rules that are valid across all prod-
ucts. Because the same rules were seen in successive prod-
ucts that were examined, the number of newly created rules
diminished throughout the process. Figure 4 shows the graph
between products examined and the rules obtained from
them. The number of rules appears to asymptote toward a
finite number. This validates our assumption that a finite set
of rules can describe all function structures in our current
product domain. We recognize that the rules that have been
developed do not fully represent the entire set of engineer-
ing artifacts, but the current set provides a basic framework
on which future rules can be developed.

Grammar-based design systems offer the options of explor-
ing the design alternatives as well as automating the design
generation process. It may be argued that using grammars
can hinder the creativity of the user as the generated solu-
tions are based on a predefined set of rules, which makes
the generated design repetitive and clichéd. However, the
use of a design grammar helps to generate a wide range of
solutions by altering the way the rules are applied and chang-
ing the rules themselves with little or no input from the
user. This can give the designer the potential to evaluate a

large number of alternative designs without tedious work.
This set of designs generally includes many alternatives
that might have been overlooked by a designer who is work-
ing without the aid of a grammar, thus paving the way for
possible innovative designs. The shape grammar rules can
be used to represent the transitions between states in a search
tree as shown in Figure 2. Thus, such a representation of a
design space requires navigation techniques to enable search
for a desired or optimal solution. The issue in implementing
the grammar now becomes one of controlled searches
through the space of solutions. In our case, we start with the
black-box model as the initial seed. Each rule that is recog-
nized as feasible opens up different avenues that can be
explored. We have the option of applying any of those rules
and then once again evaluating the design to see where,
which, and how many rules can be applied. This process is
repeated until there are no more rules that can be applied.
The logic that is followed for recognizing, applying, and
reevaluating the design at each stage is explained in the
next section of this paper.

Table 2. The three levels of granularity in the functional basis
and our reduced single level used in our function structures

Primary Secondary Tertiary
Modified Functional

Basis

Branch Separate Separate
Divide Divide
Extract Extract
Remove Remove

Distribute Distribute
Channel Import Import

Export Export
Transfer Transport Transport0transmit

Transmit
Guide Translate Guide

Rotate
Allow DOF

Connect Couple Join Couple
Link

Mix Mix
Control Actuate Actuate
Magnitude Regulate Increase Regulate

Decrease
Change Increment Increase0decrease

Decrement
Shape Shape
Condition Condition

Stop Stop
Prevent Prevent
Inhibit Inhibit

Convert Convert Convert
Provision Store Contain Store

Collect
Supply Supply

Support Stabilize Secure
Secure
Position Position
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4. RULE SET

In this section, we shall discuss the rule set that is devel-
oped and the methods that we use to generate the rules. A
function structure is composed of two basic units: functions
and flows. A function can be defined as “a description of an
operation to be performed by a device or artifact, expressed
as the action verb of a function block.” A flow can be defined
as “a change in material, energy or signal with respect to
time that is expressed as the object of a function block, a
flow is the recipient of the function’s operation” ~Stone &
Wood, 2000!. The main types of flows are shown in Table 3.

A major issue in the implementation of these rules is the
recognition as to where and when these rules can be applied.
To this end, we have borrowed the concept of active centers
from the phenomenon of polymerization. In polymeriza-
tion, chemical agents operate on distinct locations on a poly-
mer chain ~Progelhof, 1993!. These locations are called
active centers because they are potential areas of attach-
ment by incoming molecules. Similarly, during the creation

of a function structure, there are many “active centers” where
incoming flows and functions can attach themselves. These
active centers are the points where grammar rules can be
applied and where new functions and0or flows are added if
certain criteria are met at a specific open connection. In
addition to borrowing the active center concept, the cre-
ation of a function structure follows a similar initiation,
propagation, and termination process as that of polymeriza-
tion. Rules are thus divided into three groups based on
whether they create, maintain, or consume active centers:
initiation rules, propagation rules, and termination rules.
The initiation rules are first recognized and applied until no
more rules from this group are recognized. This stage of the
process includes rules that tend to create more active cen-
ters than they consume. The propagation rule set is then
used to check for active centers and these rules are simi-
larly applied until no more grammar rules are recognized
from this group. As in polymerization, propagation tends to
maintain a constant number of active centers. The termina-
tion set completes the function structure generation process
by invoking rules that eliminate the remaining active centers.

The current development of rules has been modeled after
the basic grammar conventions where rules contain both a
left-hand side and a right-hand side. The left-hand side con-
tains the state that must be recognized in the current con-
figuration and the right-hand side shows how the design is
updated to a new configuration. As long as there are “active”
centers, then the function structure is not complete. At any
instant there are a number of rules that can be applied, and
the implementation of the grammar recognizes all of these
possibilities and the associated active centers to which they
apply. The rule that is actually applied can be a choice of
the user or an automated process. The choices determine
which branch of the tree to follow in reaching the final state
of the generated function structure.

Some of the basic rules are shown in Figure 5. The gray
circles with the black dots inside them that are present in
these figures represent active centers, or the potential areas
where flows and functions can be added. In Figure 5a, we

Fig. 4. A graph of the Number of Products examined versus the Rules obtained from each of them. The products are listed in random
order.

Table 3. Common basis of energy
and material flows

Energy Material

Human Human
Acoustic Gas
Biological Liquid
Chemical Solid
Electrical Mixtures
Electromagnetic Container
Hydraulic Tool
Magnetic Battery
Mechanical Air
Pneumatic Water
Radioactive0nuclear Ice
Thermal Steam
Reaction forces
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see an active center being created. This rule recognizes
any flow that is coming into the black box. If such a
flow is recognized, it adds the function “Import” to the
head of the flow and adds another open flow of the same

type in front of the function. This is an example of an
initiation rule.

Consider the rule shown in Figure 5b. This is an example
of a rule where the active center is on a function rather than

Fig. 5. Five of the 69 grammar rules developed for creating feasible function structures.
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on a flow. It recognizes a function named “Remove” and
adds a mechanical energy flow as the secondary flow to its
back and a reaction force flow to the front of the function. It
also replaces the solid coming out of the flow with two
solids. This rule captures the principle that whenever we
cut or grind a solid, we need to supply some mechanical
energy and this results in two or more pieces of that solid. It
should also be noted that this rule results in the creation of
many active centers. This rule cannot be applied again
because the active center necessary for rule recognition has
been eliminated. Care must be taken to define rules that
prevent the same rule from being applied over and over
again.

The rule shown in Figure 5c captures another common
principle. Usually, when mechanical energy is being sup-
plied, the energy is amplified using gears and this is repre-
sented by the function “Change ME.” This rule looks for a
flow of type mechanical energy that is open at the tail and is
pointing to the function, “Remove Solid.” If applied, this
rule adds the function Change ME to the tail and adds another
flow open at its tail to the back of the Change ME function.
Figure 5d shows a rule where an electric energy flow that is
pointing from Import is recognized and the functions “Trans-
mit EE” and “Actuate EE” are added to it. This rule is
observed in many products that use electrical energy, because
electrical energy is always transmitted and actuated before
being converted to the required form. The above two rules
each remove an active center but end up creating a new one.
The rules shown in Figure 5b–d are propagation rules as
they use and replace active centers.

The final rule shown in Figure 5e is a termination rule
where active centers are removed. Whenever two flows are
recognized such that we have an open electrical energy flow

and energy of any other kind ~represented as XE! that needs
to be supplied, we convert the electrical energy to the
required form and transmit it. Termination rules are vital in
obtaining a valid function structure. In the next section, we
will illustrate and discuss how these rules are used to create
an example function structure.

5. ILLUSTRATIVE EXAMPLE

The Black & Decker electric knife is used to illustrate how
rules are recognized and applied to construct a valid func-
tion structure. As seen from the black box in Figure 6a, the
primary function of this product is “Cut Food.” The black
box is then rephrased into the language of the common
basis, which in this case is Remove Solid. Traditionally, the
black-box model contains a single verb–noun description
of the intended function of the product and the input and
output energy, material, and signal flows. Figure 6b shows
the black box in the common basis language that we use in
the grammar.

Figures 7, 8, and 9 present snapshots of the generation
process of the three stages of initiation, propagation, and
termination. Four snapshots between start to finish of each
stage has been provided. The active centers overlaid with
colored squares show the active center that has been selected
for rule application. The ovals show the result of rules applied
at a particular active center. In between the snapshots, we
list the grammar rules that are applied ~for a complete
description of all 69 grammar rules, see www.me.utexas.edu0
;adl0fs_grammar.htm!.

Consider Figure 7. The algorithm first reads the black
box and creates an empty function structure that simply has
the inputs, outputs, and the primary function. At this stage,

Fig. 6. ~a! Electric knife black box and ~b! black box in reduced basis.
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Fig. 7. A pictorial representation of the generation of the function struc-
ture in the initiation stage.

Fig. 8. A pictorial representation of the generation of the function struc-
ture in the propagation stage.

148 P. Sridharan and M.I. Campbell

https://doi.org/10.1017/S0890060405050110 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050110


only the initiation rules are active, and hence, the function
structure is scanned for possible initiation rules that can be
applied. It is seen that at any instant a number of rules can
be applied at different active centers. Rule 1 recognizes a
flow whose head is “outside” and whose tail is “inside” of
the black box and adds a function Import; to that flow.
Furthermore, it creates a new flow whose tail is linked to
Import and head has the value “NULL” ~to indicate it as an
active center!. Rule 2 also works in a similar way for out-
puts. Figure 7 shows the application of rules 1 and 2 that
transforms the black box into an intermediate state with as
many as nine active centers.

These nine active centers then become the input for the
propagation stage ~Fig. 8!. Rule 26 recognizes the function
Remove Solid and adds some flows in front of and at the
back of that function. The application of rule 26 adds a new
flow “ME,” which is open at its tail. This becomes the place
where the next rule, rule 29, is applied. Rule 29 adds a
function Change ME to the back of the ME flow and cre-
ates another open flow at its back. Thus, we see that in the
propagation stage, active centers are recognized, rules are
applied, and most active centers that are removed are
replaced by new ones. In the termination stage shown in
Figure 9, rules act on the open and dangling flows and
complete the function structure by carefully finding func-
tions that connect between the remaining active centers.
The result is the completed function structure shown at the
end of Figure 9.

6. IMPLEMENTATION

Function structures can be compared to a typical graph where
the vertices are represented by functions and the edges are
represented by flows. It is obvious that they are directional
graphs as the direction of flows is important in ensuring the
validity of function structures. The data structure for a graph
needs to store the vertices and edges such that each edge
references to the two vertices that it connects to. Typically,
graphs store information only in the vertex and the edges
are used just to point from one vertex to another. In the case
of function structures, we need to store information in both
the vertices ~functions! and edges ~flows! as is discussed in
Section 4. The method that we follow stores both the func-
tions and flows in a sequential list. Each function refer-
ences all edges it is associated with, and each flow stores
information about the function that it is pointing from and
pointing to.

Flows and functions are represented as data structures.
Some of the information that is stored in a flow includes its
unique number, its name, the unique numbers of the func-
tions connected to the front and back of the flow, whether
the flow is a material or an energy, and the specific type of
material or energy. Similarly, functions also store relevant
information like unique number, the unique number of flows
connected to its front and back, information about the flow
that is being processed by the function.

Fig. 9. A pictorial representation of the generation of the function struc-
ture in the termination stage.
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Before explaining how the program works, it is neces-
sary to elucidate the different classes that are a part of the
program. There are three main classes that help in modu-
larizing the program so that it is easy to understand.

6.1. Active center class

The active center class has methods inside it that help in
creating active centers. These methods update the active
centers at each stage of the process. We already saw how
the generation is divided into initiation, propagation, and
termination. These methods read the function structure at
its current state and update the active centers in the active
list. The first method update_activelist_ for_i() updates active
lists for the initiation stage, update_activelist_ for_ p()
updates active centers for the propagation stage, while
update_activelist_ for_t() and update_activelist_ for_t1()
update active lists for the termination stage. The reason for
having two methods for the termination stage is because
termination stage occurs in two distinct steps: one where
the active centers are closed, and another where the open
flows are just linked to one another.

6.2. Globals class

This class has many methods that deal with the trivial, but
often repeated actions of the program. The methods can be
divided into four categories: one where data are processed,
one where data are displayed, one where flows and func-
tions are created, and one where the final function structure
is written into a file. These methods are called from various
parts of the program.

6.3. Rule application class

As the name suggests, this class contains methods wherein
the rules are recognized and applied. Further, the recogni-
tion of the rules is divided into stages, and hence at each
stage, only the rules that belong to that stage are recognized.

The main method in this class is the rule_recognize()
method, which calls all the other methods. Each active cen-
ter from the active list is passed to the rules of the current
stage one by one. If a particular rule is recognized, then it is
added onto the list of rules that can be applied. Once the
active list is completely traversed, the program waits for
the user to choose a rule and active center and the corre-
sponding rule is then applied.

6.4. Description of process

The sequence of the program is as follows: scan the func-
tion structure for active centers, recognize applicable rules,
create an active list, if the size of the active list is zero, then
move to the next stage; if the size of the list is greater than
zero, return the list of applicable rules, choose one rule
~done through user interaction!, and apply it. The process is

repeated for the three stages because the basic framework
remains the same, the only thing that differs is the set of
rules that are recognized and applied.

The black box is input as a text file that has the inputs,
outputs, and the primary function~s!. Flows are specified
starting with the kind of flow, M or E, for Material or Energy,
followed by the domain of the flow ~i.e., Human, Electrical,
Hydraulic, etc.!. A sample black box for a coffee grinder is
shown in Figure 10. Currently, the terms in this text file
must match the accepted set of terms used thus far. Although
any translation to the reduced common basis must be per-
formed as in the example of Figure 6, this is the only
preparation needed for the implemented system to begin
constructing a function structure.

6.5. Computational interface

Snapshots of the user interface at various points during
program execution are shown in Figures 11, 12, and 13.
Figure 11 shows a screenshot of the user interface as soon
as the program is executed. There are four output text boxes
in the window that display ~from left to right! the applica-
ble rule set, the active centers, the flows, and the functions
of the function structure at that instant. There is also a rule
set reference window at the bottom that the user can access
information about any of the 69 rules. Currently, there is no
graphic showing the function structure as it is being cre-
ated. Although drawing such a structure is a fairly straight-

Fig. 10. A black box of a coffee grinder as it is input into the program.
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Fig. 11. A screenshot of the user interface at the onset of the process of building a function structure from a black box.
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Fig. 12. A screenshot during the running of the program.
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Fig. 13. A screenshot after the program is complete.
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forward human activity, the heuristics followed are difficult
to implement. In fact, the automatic presentation of graphs
is a research area in itself. As a result, the user currently
must draft the structure from the information presented in
the flow and function text boxes. The user is first presented
with an option to choose the kind of generation that he0she
wants to pursue. If the “automate” option is chosen, then
the computer will repeatedly choose rules and active cen-
ters until no more rules are applicable.

Figure 12 shows the program being executed. The “Appli-
cable Rules” text box displays the list of active centers and
the applicable rules at those active centers. The “Active
Center” text box displays more information about each active
center. The “Flow” and “Function” text boxes display all
the flows and functions of the function structure. The user
enters the number of the active center and the rule that he
wants to apply at that active center. Figure 12 shows an
example where there is only one rule applicable at the active
centers; however, there may be a case where more than one
rule is applicable at one active center. If the user has chosen
the “guide” option, he0she can choose the rule that needs to
be applied. This way, the user has control over the final
function structure.

Figure 13 shows the program once the function structure
is generated. Once the program is complete, a text file that
has the function structure in a textual easy to follow format
is written. The function structure of a coffee grinder is shown
in Figure 14.

7. EXPERIMENTS

In this section we discuss two experiments that have been
developed to test the effectiveness of the function structure
grammar. First, we look at a comparison of function struc-
tures created by engineering designers using the grammar
rules to function structures created by designers not using
the rules ~Section 7.1!. Next, we look at the resulting func-
tion structures created independently by a computational
process ~Section 7.2!.

7.1. Effectiveness of grammar rules
applied by hand

To check whether these rules provide a framework to design-
ers that actually helps create better function structures, an
experiment is conducted. A set of seven graduate students
was divided into two groups of three and four. These stu-
dents had recently studied in a design methodology course
that taught how to create high-quality function structures.
Each of the groups of students was given a product for
which they had to draw the function structure. The products
were then exchanged in the groups and function structures
were again created, this time using the grammar rules as a
guideline.

These function structures were then graded for quality
using a double-blind system. The grader ~another graduate
student who had been a teaching assistant for a design meth-

Fig. 14. A completed function structure of a coffee grinder returned at the end of the process.
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odology class! was given a shuffled stack of function struc-
tures and was not aware of the experimental details, or the
existence of the grammar. The strategy that the grader used
to determine a quantitative score for the quality of a func-
tion structure was done by averaging separate scores for
consistency, level of detail, completeness, and creativity. It
is not clear how the grader defined such terms, but when
questioned, the grader indicated that he initially determined
what he thought the best function structure for a given prod-
uct should be and then compared each specimen to his ideal.

He said he was looking at how well the students understood
the basic physics of the product and how thorough they
were at identifying all functions that would represent sig-
nificant and subsequent design efforts.

The results are shown in Figure 15. It is easily observed
that the function structures that were created using the rules
score better than the ones done without the function struc-
ture grammar. As the figures indicate, nearly all of the high-
est scoring function structures were done with the aid of the
grammar. In fact, students who scored poorly when the gram-

Fig. 15. A graph between grades and students. ~a! The grades obtained using the rules are the dark bars ~average � 8.48! and the
grades obtained without rules are the light bars ~average � 4.8!. ~b!A graph showing the performance of the students using rules and
not using rules.
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mar was not used improved greatly when aided by the gram-
mar ~see Fig. 15b!. A t test was conducted comparing
students’ scores when the grammar is used to scores when
the grammar is not used. The mean score for structures
made with the rules is 8.63, with a standard deviation of
0.85. This is shown to be significantly higher ~a t test of
seven samples yields a value of 3.41 or a probability of less
than 0.05 that the null hypothesis is true! than the mean
score for those created without the rules ~mean � 5.38,
standard deviation � 2.21!.

After the grading, we questioned the grader for his gen-
eral thoughts about the function structures. He mentioned
that there seemed to be two sets of students: those that put
the time into creating quality function structures, and those
who did not understand all of the concepts. When we showed
the grader the two function structures created by student #2
~one with a score of 3.5 and one with a score of 9.375!, the
grader was surprised, and conjectured that the student must
have run out of time in creating the electric knife example.
In fact, student #2 had created the knife function structure
first on his own and the air pump structure using the gram-
mar rules. When asked to order the function structures that
would most aid in the design of one of these products, the
grader ranked three of the function structures created by
the grammar as the best. Of the poorest function structures,
the grader said that these students did not spend enough
time to capture the subtleties of the products and that per-
forming the exercise would not help subsequent design activ-
ities. He hoped that such students were using an alternate
method ~to creating function structures! to properly explore
the conceptual design phase.

7.2. Automated development of function structures

As described in Section 6, the user can choose to have the
computer automate the search for a complete function struc-
ture. Because the grammar rules encapsulate the feasible addi-
tions that can be made, the automation is based simply on
choosing a series of applicable rules. In this example, we use
the black box for the palm sander as shown in Figure 16. Cur-
rently, we are not able to systematically search the entire tree.
Instead, we simply run through 20 controlled searches through
the tree to compare whether the created solutions are valid.
Interestingly enough, of the 20 searches only three unique
solutions were created ~see Fig. 17!. Fifteen of the 20 were
identical ~solution A!, and only 2 more were found in the
remaining 5 searches ~see Table 4!.All three solutions appear
to follow the rules of creating a logical function structure and
provide a clear basis of the functional requirements needed
in designing a palm sander.

As is described in Table 4, the three solutions are similar
in many aspects; however, there are a few small differ-
ences. Solution B is the same as A with the exception of one
function, “guide air.” In the black box, air is specified as an
input and output along with pneumatic energy to charge the
air on output. This forces the design to connect the air flow

through a series of functions so that it can be expelled
to blow away sawdust. In solution B, the air is simply
“exported” after it is “transported” ~where the transport
function requires the participation of an energy flow, such
as rotational mechanical energy, i.e., a fan!. One can imag-
ine that if embodied designs were created for solutions A
and B, they would differ only in the fact that A would have
some channel to “guide” the air from the fan to the outlet on
the product housing where it is exported, whereas B would
lack this channel and simple have the fan placed at the exit
of the air on the housing. Solution C is interesting in that it
divides the electrical energy into two flows once it is
“imported” and uses these flows to drive the sander and
transport the air separately. This may be desirable so that
the fan can be turned on and off separately from the sander.

8. DISCUSSION

With an average of 20 functions per function structure and
10 rules applicable at any stage, there would appear to be
1020 possible solutions. However, after 20 different searches
through the tree, only 3 unique solutions are found. We
believe there are many repeated states and the tree is much
smaller than this. This is most likely due to the fact that
many rules do not negate the application of another, because
many of the rules look at single active centers indepen-
dently of other active centers. For example in initiation, we
simply apply rules which introduce “importing” and “export-
ing” of the various flows crossing the black-box boundary.
Once these are completed, we predict that only a single
state is possible at the beginning of the propagation stage,
as is shown in Figure 18. We believe that the propagation
and termination stages also contract before completion, thus

Table 4. The summary of the three function structures created
in the automated search (A, B, and C)

Unique
Function
Structure

Found Form
Search # Defining Characteristic Valid

A 1, 2, 3, 4, 5, 6,
7, 10, 11, 12, 13,
14, 15, 18, 20

Output air is guided
before being exported,
and fan and sander
are driven by same
electrical energy path.

Yes

B 8, 9, 16 Same as A but air is
simply exported

Yes

C 17, 19 Same as A but electrical
energy is divided
immediately after
importing into two
circuits: one to spin
the fan, and one to

Yes

actuate the sander
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resulting in only a small number of solutions from a poten-
tially large search tree.

One may be dubious as to why so few valid function
structures exist. This results from the fact that the black
boxes in our examples are very detailed due to the formu-
lation of the grammar rules. For example, air flow and pneu-
matic energy is prescribed in the palm sander problem,
although it is not crucial to the primary function of the palm
sander. Because rules are constructed to connect all input
and output flows we are, in a way, constrained mostly by
this initial black box. If one were to create a set of grammar
rules for a different domain of artifacts, or for a different
formulation of function structures, it is not clear that the
search tree will reduce as dramatically. In general, the search
through the tree of possible function structures may need to
be tackled by a more comprehensive search strategy where,
for example, intermediate solutions are evaluated and a com-
putational decision maker chooses rules based on past per-
formance or through some stochastic search mechanism.

In the products that were examined, it was observed that,
where heat energy was not wanted, the thermal energy was
inhibited before being exported. However, in the case of an
electric iron, thermal energy is a desired output. Hence, a
new parameter is added to flows that classified the flows as
wanted or unwanted. In the case of a flow being unwanted
~e.g., thermal energy in many cases and dirt in a vacuum
cleaner! then it is specified in the black-box model. For
example, in Figure 16b, we see that although sawdust is not
distinctly used to characterize the output material, this mate-
rial is specifically listed as “unwanted.” Different grammar
rules are valid for wanted and unwanted flows. Addition-
ally, the concept of boundary flows is also developed. It is
observed in many products that there are flows, usually the
flow going into the primary function, which interacts with
the physical boundary of the products. Examples are leaves
in leaf blower and hair in a hair dryer. These flows always
follow specific rules that are different from other typical
flows. Other classifications like the above were made for

Fig. 16. ~a! A black box for a palm sander and ~b! the reduced textual representation of the black-box input into the program.
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Fig. 17. Of the 20 searches through the tree, only three unique function structures were created for the palm sander.

Fig. 18. Despite the many possible paths that can be followed in the tree, it is believed that only one or a few states exist at the end
of each stage ~initiation, propagation, and termination!.
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specific flows such as water and steam. Although the flow
“liquid” encompasses water, and “gas” encompasses steam,
classifications like this make the rule recognition more com-
pact and efficient. Furthermore, flow classifications like
“Tool,” “Battery,” and “Container” were also added because
of their specific behavior.

Making the rules depend on the initial flows crossing
into and out of the black box and further qualifying flows
as wanted, unwanted, and0or boundary has lead to a struc-
tured set of required functions and thus only a few valid
function structures. Although the original motivation of the
research is to enable the generation of multiple solutions,
this result is perhaps more informative and useful. Perhaps
a future implementation could suggest new flows to the
black box or ignore prescribed flows in hopes of deriving
new solutions.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a graph grammar, where a
set of rules has been developed based on the function struc-
tures of 30 products. The rules that were formed by observ-
ing trends in the function structures initially created by hand
and by general principles like using gears and hydraulics
common to so many products. Experiments were conducted
on the grammar by comparing a set of function structures
generated by students applying the grammar to a set devel-
oped by students who were not given the grammar. The
experiment shows that more consistent results are created
by students using the grammar, and it does not seem to
hinder the creativity of subsequent generated concepts thus
proving that the rule set is useful.

One challenge that is prevalent with many grammars is
that they are difficult to implement. However, our approach
to examining many products and adopting the active center
concept from polymerization has helped us to create a fully
implemented Scenario 5 grammar ~see Fig. 3!. The rules
are based on adding new functions and flows to active cen-
ters in the function structure until there are no more active
centers.

Our main focus is to create a formalism that would help
in realizing the full potential of function structures. This
contribution could make function structures better accepted
and widely used. The desire to automate the generation of
function structures can in no way be considered as a replace-
ment for the thought process that one undergoes while cre-
ating function structures. It is our belief that these rules
would help people associated with design methodologies to
accept and teach function structures more efficiently as well
as to brainstorm new functional strategies that have not
been considered by the user.

Future work is aimed at computationally searching the
entire tree of solutions to determine how much variability
exists in creating a function structure from a black box, and
in expanding the grammar to include more rules by exam-

ining more products outside the scope of those shown in
Table 1.
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