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Abstract. Given an ample groupoid, we construct a spectral sequence with groupoid
homology with integer coefficients on the second sheet, converging to the K-groups of
the (reduced) groupoid C∗-algebra, provided the groupoid has torsion-free stabilizers and
satisfies a strong form of the Baum–Connes conjecture. The construction is based on the
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Nest. We also present a few applications to topological dynamics and discuss the HK
conjecture of Matui.
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1. Introduction
In this paper, we look at the K-theory of ample Hausdorff groupoids, that is, étale
groupoids on totally disconnected spaces, and its relation to groupoid homology. Such
groupoids are closely related to dynamical systems on Cantor sets, such as (sub)shifts
of finite type (also called topological Markov shifts) in symbolic dynamics. While
this remains a fundamental example, the second half of the last century saw a rapid
development of the theory, which resulted in several generalizations involving various
geometric, combinatorial, and functional analytic structures.

One important class of Cantor systems comes from minimal homeomorphisms of
the Cantor set. This study was initiated by Giordano, Putnam, and Skau [GPS95],
who classified minimal homeomorphisms up to orbit equivalence. Actions of Z

k on
the Cantor set, which are higher rank analogues, also naturally appear from tiling
spaces. More generally, essentially free ample groupoids appear in the study of actions
of N

k by local homeomorphisms on zero-dimensional spaces, where they are known
as Deaconu–Renault groupoids [Dea95, ER07]. This is a convenient framework to
understand higher-rank graph C∗-algebras. The étale groupoids, and related invariants
such as topological full groups, of such systems proved to be a rich source of interesting
examples in the structure theory of discrete groups and operator algebras; see, for example
[JM13, Mat13, Phi05].

Beyond the theory of dynamical systems, these groupoids also have an important
role in the theory of operator algebras, where they provide an invaluable source of
examples of C∗-algebras. These are obtained by considering the (reduced) groupoid
C∗-algebras [Ren80], generalizing the crossed product algebras for group actions
on the Cantor set. The resulting C∗-algebras capture interesting aspects of the
homoclinic and heteroclinic structures of expansive dynamics [Mat19, Put96, Tho10],
extending the correspondence between topological Markov shifts and the Cuntz–Krieger
algebras.

The K-groups of groupoid C∗-algebras and groupoid cohomology with integer coeffi-
cients are known to have close parallels, for example, in various cohomological invariants
of tiling spaces. In fact, groupoid homology [CM00] has even closer properties to
K-groups, and the comparison of these invariants (for topologically free, minimal, and
ample Hausdorff groupoids) was recently popularized by Matui [Mat12]. While his
conjectural isomorphism in its original form (‘HK conjecture’) has counterexamples
[Sca20], in situations where one expects low homological dimension, we do have an
isomorphism; see, for example [FKPS19, Ort20].

Our main result gives a correspondence between groupoid homology and K-groups
for reduced crossed products by torsion-free ample groupoids satisfying the strong
Baum–Connes conjecture as in [Tu99a], as follows.

THEOREM A. (See Theorem 4.3) Let G be an ample groupoid with torsion-free stabilizers
satisfying the strong Baum–Connes conjecture, and let A be a separable G-C∗-algebra.
Then there is a convergent spectral sequence

E2
pq = Hp(G, Kq(A))⇒ Kp+q(G � A).
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In particular, for A = C0(X) we obtain a spectral sequence with E2
pq = E3

pq =
Hp(G, Kq(C)) converging to Kp+q(C∗r G). Similar to discrete groups, amenable
groupoids satisfy the (strong) Baum–Connes conjecture, and cover most of our concrete
examples in this paper.

Note that for groupoids with low homological dimension, this spectral sequence
degenerates for degree reasons. Moreover the top-degree group in groupoid homology
tends to be torsion-free, so that there are no extension problems, thus leading to the positive
cases where the HK conjecture holds.

Our proof of Theorem A is based on the triangulated category approach to the
Baum–Connes conjecture by Meyer and Nest [Mey08, MN06, MN10]. Building on
their theory of projective resolutions and complementary subcategories from homological
ideals, we show that an explicit projective resolution can be obtained from adjoint
functors and associated simplicial objects. Applying this to the restriction functor KKG→
KKX and induction functor KKX → KKG for X = G(0) gives the standard bar complex
computing the groupoid homology. Then, the spectral sequence in Theorem A appears as
a particular case of the ‘ABC spectral sequence’ of [Mey08].

This paper is organized as follows. In §2 we lay out the basic notation and definitions
for all the background objects of the paper. In §3, we look at a simplicial object arising
from adjoint functors and relate it to the categorical approach to the Baum–Connes
conjecture. In a triangulated category, a homological ideal with enough projectives and a
pair of complementary subcategories appear from an adjunction of functors [Mey08]. Our
observation is that the canonical comonad construction from homological algebra gives a
concrete model of projective resolution. We then use this to show that when G is an étale
groupoid satisfying the strong Baum–Connes conjecture, any G-C∗-algebra A belongs to
the triangulated (localizing) subcategory of KKG generated by the image of the induction
functor KKX → KKG for X = G(0).

We then combine these results in §4 to obtain our main results mentioned above.
Now, let us summarize the ingredients which go into the correspondence between
groupoid homology and K-theory. By the adjunction of the functors IndG

X : KKX →
KKG and ResG

X : KKG→ KKX, for any G-C∗-algebra A we have an exact triangle
in KKG,

P → A→ N → �P ,

with ResG
X N � 0 and P being orthogonal to all such N . From results of §3, for any

homological functor F , we have a spectral sequence from the Moore complex of the
simplicial object (F (Ln+1A))∞n=0 with L = IndG

X ResG
X , converging to F(P ).

In addition, if G has torsion-free stabilizers and satisfies the strong Baum–Connes
conjecture, we actually have P � A in KKG, hence we obtain a homological computation
of F(A). For an ample groupoid G, with the functor F = K•(G � -), this complex is
isomorphic to the bar complex computing the groupoid homology of G with coefficient in
K•(A).

Finally, in §5 we discuss some examples. We also compare our construction with the
counterexample to the HK conjecture from [Sca20].
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2. Preliminaries
In this section we recall the most important objects and notions that form the basis of this
work. We will deal with C∗-algebras endowed with a groupoid action and consider these
as objects of the equivariant Kasparov category.

2.1. Groupoids and Morita equivalence. Let G be a groupoid with base space X =
G(0). We let s, r : G→ X denote the source and range maps, respectively. In addition,
we let Gx = s−1(x), Gx = r−1(x), and for a subset A ⊂ X, we write GA =⋃

x∈A Gx ,
GA =⋃

x∈A Gx , and G|A = GA ∩GA.

Definition 2.1. A topological groupoid G is étale if s and r are local homeomorphisms,
and ample if it is étale and G(0) is totally disconnected.

If G is étale and g ∈ G then, by definition, for small enough neighborhoods U of s(g)

there is a neighborhood U ′ of g such that s(U ′) = U , and the restriction of s and r to U ′
are homeomorphisms onto the images. When this is the case, we write g(U) = r(U ′) and
use g as a label for the map U → g(U) induced by the identification of U ∼ U ′ ∼ g(U).

Throughout the paper we assume that a topological groupoid is second countable,
locally compact Hausdorff, and admits a continuous Haar system λ = (λx)x∈X, an
invariant continuous distribution of Radon measures on the spaces (Gx)x∈X. In particular,
G and X are σ -compact and paracompact. Under this setting we have full and reduced
groupoid C∗-algebras C∗(G, λ), C∗r (G, λ) that make sense (we mostly focus on the latter).
In general these might depend on the choice of λ, but different choices lead to strongly
Morita equivalent C∗-algebras, respectively [MW08, SW12]. Recall that the condition
on Haar system is automatic for étale groupoids, as we can take the counting measure
on Gx . In this case we suppress the notation λ and simply write C∗r (G) instead of
C∗r (G, λ).

A locally compact groupoid is amenable if there is a net of probability measures on
Gx for x ∈ G(0) which is approximately invariant; see [ADR00]. In this case, the full and
reduced C∗-norms are equal, and the completion of the compactly supported functions in
the regular representation is ∗-isomorphic to the full groupoid C∗-algebra.

2.2. Groupoid equivariant C∗-algebras. Let us fix our conventions for G-C∗-algebras.

Definition 2.2. A C0(X)-algebra is a C∗-algebra A endowed with a non-degenerate
∗-homomorphism from C0(X) to the center of the multiplier algebra M(A).

Thus, if a ∈ A, we have a = f b = bf for some f ∈ C0(X) and b ∈ A, and the second
equality holds for all f and b. For an open set U ⊂ X, we put AU = AC0(U). For a
locally closed subset Y ⊂ X, that is, if Y = U \ V for some open sets U , V ⊂ X, we put
AY = AU/AU∩V , and we put Ax = A{x} = A/AC0(X \ {x}) for x ∈ X.

A C0(X)-algebra is C0(X)-nuclear if it is a continuous field of C∗-algebras over X such
that every fiber Ax is nuclear. There is another way to define this in terms of completely
positive maps factoring through Mn(C0(X)); see [Bau98].

https://doi.org/10.1017/etds.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.50


2634 V. Proietti and M. Yamashita

Definition 2.3. Let A and B be C0(X)-algebras which admit faithful C0(X)-equivariant
non-degenerate representations on Hilbert C∗-C0(X)-modules E and E ′. Then their
C∗-algebraic relative tensor product A⊗C0(X) B is defined as the closure of the image
of A⊗alg

C0(X) B in the adjointable operators L(E ⊗C0(X) E ′).

Although we do not need it, the above definition can be extended to arbitrary
C0(X)-algebras [Kas88, Definition 1.6].

Remark 2.4. If A or B is C0(X)-nuclear, we have

A⊗C0(X) B � (A⊗max B)�(X) � (A⊗min B)�(X),

where �(X) = {(x, x) | x ∈ X} ⊂ X ×X; see [Bla96, §3.2].

If f : Y → X is a continuous map, C0(Y ) is a C0(X)-algebra. It is a continuous field
(hence C0(X)-nuclear) if and only if f is open [BK04]. The map f induces a functor
f ∗A = C0(Y )⊗C0(X) A from the category of C0(X)-algebras to that of C0(Y )-algebras.
For Y = G and f = s, we write s∗A = C0(G) ⊗s C0(X) A, and similarly for f = r .

Definition 2.5. Let G be a second countable locally compact Hausdorff groupoid, and put
G(0) = X. A continuous action of G on a C0(X)-algebra A is given by an isomorphism of
C0(G)-algebras

α : C0(G) ⊗s C0(X) A→ C0(G) ⊗r C0(X) A

such that the induced homomorphisms αg : As(g)→ Ar(g) for g ∈ G satisfy αgh = αgαh.
In this case, we say that A is a G-C∗-algebra.

For an étale groupoid G, the above amounts to giving αg as isomorphisms AU →
Ag(U) for small enough neighborhoods U of s(g), compatible with the natural actions
of C0(U) � C0(g(U)) and multiplicative in g.

In [LG99], Le Gall constructed the equivariant KK-category of separable and trivially
graded G-C∗-algebras with morphism sets KKG(A, B), generalizing Kasparov’s construc-
tion for transformation groupoids. This will be our main framework to work in.

Remark 2.6. Le Gall uses a different convention for A⊗C0(X) B, namely (A⊗max B)�(X),
which is different from ours in general. However, these definitions agree in all the relevant
cases, such as B = C0(Y ) for a locally compact space Y endowed with an open map Y →
X; then, B would be C0(X)-nuclear (see Remark 2.4). For example, the range map G→ X

is open because there exists a Haar system [Ren80, Proposition 2.4].

Suppose moreover that G admits a Haar system λ. The algebraic balanced tensor
product Cc(G) ⊗s C0(X) A admits an A-valued inner product induced by the measures
on the sets Gx from λ, and we denote its closure as a right Hilbert A-module by
EG

A = L2(G, A). (This can be interpreted as L2(G)⊗C0(X) A, where the canonical right
C0(X)-Hilbert module L2(G) = L2(G, C0(X)).) The reduced crossed product G �α A =
C∗r (A, G, α, λ) is the C∗-algebra generated by the ‘convolution product’ representation of
Cc(G) ⊗s C0(X) A on EG

A ; see [KS04, MW08] for details. In this paper we always take
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reduced crossed products, although they will be isomorphic to the full ones in most of our
concrete examples as we mostly consider amenable groupoids.

Remark 2.7. Different choices of λ give Morita-equivalent reduced crossed products.
More generally, let H be another topological groupoid, and let (A, G, α) and (B, H , β)

be equivalent actions of G and H in the sense of [MW08]. As part of the data
there is a bibundle Z over G and H as above, and we get a linking groupoid L =
G

∐
Z

∐
Zop ∐

H with base G(0)
∐

H(0). On the one hand, we have a continuous
action γ of L on A⊕ B induced by the equivalence data. On the other hand, a choice
of Haar systems λ on G and μ on H gives a Haar system κ on L [SW12]. Then the
reduced crossed product C∗r (A⊕ B, L, γ , κ) is a linking algebra between C∗r (A, G, α, λ)

and C∗r (B, H , β, μ).

2.3. Equivariant sheaves over ample groupoids. Let G be an étale groupoid. The nerve
(G(n))∞n=0 of G forms a simplicial space, with face maps given by

dn
i : G(n)→ G(n−1), (g1, . . . , gn) �→

⎧⎪⎪⎨⎪⎪⎩
(g2, . . . , gn) if i = 0,

(g1, . . . , gigi+1, . . . , gn) if 1 ≤ i ≤ n− 1,

(g1, . . . , gn−1) if i = n,

with d1
1 = r and d1

0 = s as maps from G to X, while the degeneracy maps are given by
insertion of units. These structure maps are étale maps.

Suppose further that G is an ample groupoid and C a commutative group. For a
topological space Y , we denote the group of compactly supported continuous functions
from Y to C by Cc(Y , C). The groupoid homology of G with coefficients in C, denoted by
H•(G, C), is the homology of the chain complex (Cc(G

(n), C))∞n=0 with differential

∂n =
n∑

i=0

(−1)i(dn
i )∗ : Cc(G

(n), C)→ Cc(G
(n−1), C), (dn

i )∗(f )(x) =
∑

dn
i (y)=x

f (y).

(This is well defined as dn
i is étale.)

This is a special case of groupoid homology with coefficients in equivariant sheaves
[CM00]. Let us quickly review this more general setting. When G is a topological groupoid
with base space X, a G-equivariant sheaf (of commutative groups) over X is a sheaf (of
commutative groups) F over X, together with a morphism s∗F → r∗F of sheaves over G,
with analogous multiplicativity conditions to the case of G-C∗-algebras.

In fact, when G is ample, such G-sheaves are represented by unitary Cc(G, Z)-modules
[Ste14]. Here, we consider the convolution product on Cc(G, Z), and a module M over
Cc(G, Z) is said to be unitary if it has the factorization property Cc(G, Z)M = M . The
correspondence is given by 
c(U , F) = Cc(U , Z)M for compact open sets U ⊂ X if F is
the sheaf corresponding to such a module M .

A sheaf F on a topological space Y is called soft if, for any closed subspace K ⊂ Y and
s ∈ 
(K , F), there is a global section s′ ∈ 
(Y , F) such that s′|K = s. When Y is second
countable, locally compact, and Hausdorff, this is equivalent to c-softness, where in the
above K is moreover assumed to be compact.
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PROPOSITION 2.8. Let Y be a totally disconnected, second countable, locally compact
Hausdorff space. Then any sheaf of commutative groups on Y is soft.

This seems to be folklore but can be obtained as follows. As Y is locally compact,
Hausdorff, and totally disconnected, each point has a base of neighborhoods consisting
of compact open sets. Thus, fixing a point y and its compact open neighborhood U , any
closed subset of U , being compact, also has a base of neighborhoods consisting of compact
open subsets of Y . This, combined with the paracompactness of Y , implies the (c-)softness
of sheaves [God73, §§II.3.3 and II.3.4].

Back to equivariant sheaves over (second countable) ample groupoids, with G, F ,
and M as above, the homology of G with coefficient in F , denoted by H•(G, F), is the
homology of the chain complex (Cc(G

(n), Z)⊗Cc(X,Z) M)∞n=0 with differentials coming
from the simplicial structure as above. Concretely, the differential is given by

∂n : Cc(G
(n), Z)⊗Cc(X,Z) M → Cc(G

(n−1), Z)⊗Cc(X,Z) M ,

∂n(f ⊗m) =
n−1∑
i=0

(−1)i(dn
i )∗f ⊗m+ (−1)nαn(f ⊗m),

where αn is the concatenation of the last leg of Cc(G
(n), Z), with M induced by the module

structure map Cc(G, Z)⊗M → M . This definition agrees with the one given in [CM00]
as there is no need to take c-soft resolutions of equivariant sheaves by Proposition 2.8.

More generally, if F• is a chain complex of G-sheaves modeled by a chain complex of
unitary Cc(G, Z)-modules M•, we define H•(G, F•), the hyperhomology with coefficient
F•, as the homology of the double complex (Cc(G

(p), Z)⊗Cc(X,Z) Mq)p,q .
As usual, a chain map of complexes of G-sheaves f : F• → F ′• is a quasi-isomorphism

if it induces quasi-isomorphisms on the stalks. When F• and F ′• are bounded from below,
such maps induce an isomorphism of the hyperhomology [CM00, Lemma 3.2].

2.4. Triangulated categorical structures. The framework of triangulated categories is
ideal for extending basic constructions from homotopy theory to categories of C∗-algebras.
Much work in this direction has been carried out by Meyer and Nest in [Mey08, MN06,
MN10].

We follow their convention, which we quickly recall here. The fundamental axiom
requires that there is an autoequivalence �, and any morphism f : A→ B should be part
of an exact triangle:

A→ B → C → �A.

An additive functor F between triangulated categories is said to be exact when it
intertwines suspensions and preserves exact triangles.

We say that T has countable direct sums if, given a sequence of objects (An)
∞
n=1 in T ,

there is an object
⊕∞

n=1 An such that

T
( ∞⊕

n=1

An, B

)
�
∞∏

n=1

T (An, B)
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naturally in the An and B. An exact functor F is compatible with direct sums if it commutes
with countable direct sums (see [Mey08, Proposition 3.14]).

As before, let G be a second countable locally compact Hausdorff groupoid with a
Haar system. Note that triangulated categories involving KK-theory have no more than
countable direct sums, because separability assumptions are needed for certain analytical
results in the background.

PROPOSITION 2.9. [Pro18, §A.3] The equivariant Kasparov category KKG is
triangulated.

Here, the suspension functor � is given by �A = C0(R, A). Note that Bott periodicity
implies �2 � id, so that � is also a model of �−1. The exact triangles are defined as the
triangles isomorphic to mapping cone triangles for equivariant ∗-homomorphisms. See
§A.4 for some details.

We also note that functors such as A �→ G � A and A �→ D ⊗ A preserve
mapping cones and hence define triangulated functors into appropriated (equivariant)
KK-categories. These are also compatible with countable direct sums.

We call a subcategory thick when it is closed under direct summands.

Definition 2.10. We call a pair (L, N ) of thick triangulated subcategories of T comple-
mentary if T (P , N) = 0 for all P ∈ L, N ∈ N , and for any A ∈ T , there is an exact
triangle

PA→ A→ NA→ �PA

where PA ∈ L and NA ∈ N .

Let us list some of the basic properties of a pair of complementary subcategories (see
[MN06, Proposition 2.9]).
• We have N ∈ N if and only if T (P , N) = 0 for all P ∈ L. Analogously, we have

P ∈ L if and only if T (P , N) = 0 for all N ∈ N .
• The exact triangle as above, with PA ∈ L and NA ∈ N , is uniquely determined up to

isomorphism and depends functorially on A. In particular, its entries define functors

P : T → L, A �→ PA, N : T → N , A �→ NA.

The functors P and N are respectively left adjoint to the embedding functor P → T
and right adjoint to the embedding functor N → T .

• The localizations T /N and T /L exist and the compositions

L −→ T −→ T /N , N −→ T −→ T /L

are equivalences of triangulated categories.
Most concrete examples come from homological ideals with enough projectives, as we

quickly recall here. Let T and S be triangulated categories with countable direct sums, and
let F : T → S be an exact functor compatible with direct sums. The system of morphisms

I(A, B) = ker(F : T (A, B)→ S(FA, FB))

is an example of a homological ideal compatible with countable direct sums.

https://doi.org/10.1017/etds.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.50


2638 V. Proietti and M. Yamashita

Remark 2.11. We do not lose generality by assuming that S is a stable abelian category and
that F is a stable functor; see [MN10, Remark 19]. More concretely, we can always replace
the target triangulated category S by the category of representable contravariant functors
S → Ab, which are cokernels of the natural transforms S(-, A)→ S(-, B) induced by
some f : A→ B.

An object P ∈ T is called I-projective if I(P , A) = 0 for all objects A ∈ T . An object
N ∈ T is called I-contractible if idN belongs to I(N , N). Let PI , NI ⊆ T be the full
subcategories of projective and contractible objects, respectively. We say that I has enough
projectives if for any A ∈ T , there is an I-projective object P and a morphism P → A

such that, in the associated exact triangle

P → A→ C → �P ,

the morphism A→ C belongs to I. With I = ker F as above, the latter condition is
equivalent to FP → FA being a split surjection for all A.

We denote by 〈PI〉 the (ℵ0-)localizing subcategory generated by the projective objects,
that is, the smallest triangulated subcategory that is closed under countable direct sums
and contains PI . In particular, 〈PI〉 is closed under isomorphisms and suspensions, and if

A→ B → C → �A

is an exact triangle in T where any two of the objects A, B, C are in 〈PI〉, so is the third.
Note that NI is localizing, and any localizing subcategory is thick.

THEOREM 2.12. [Mey08, Theorem 3.16] Let T be a triangulated category with countable
direct sums, and let I be a homological ideal with enough projective objects. Suppose
that I is compatible with countable direct sums. Then the pair of localizing subcategories
(〈PI〉, NI) in T is complementary.

Remark 2.13. Note that if (L, N ) is a complementary pair, then ker P has enough pro-
jectives and we have L = Pker P , N = Nker P . Thus, the above construction is universal,
although I is not uniquely determined from (〈PI〉, NI).

Definition 2.14. Let F : T → S be an exact functor compatible with countable direct
sums. Given an object A ∈ T and a chain complex

· · · Pn · · · P0 A,
δn+1 δn δ1 δ0 (1)

we say that (1) is an (even) I-projective resolution of A if each Pn is I-projective and the
chain complex

· · · F(P1) F (P0) F (A) 0
F(δ2) F (δ1) F (δ0)

is split exact, that is, is contractible by chain homotopy in S.

There is also an intrinsic formulation of I-exactness for chain complexes corresponding
to the second condition above, and the above definition does not depend on the choice
of F with I = ker F . Moreover, if I has enough projectives, any A has an I-projective
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resolution. In particular, two I-projective resolutions of A are chain homotopy equivalent,
and we obtain functor T → Ho(T ). Moreover, if P• is an I-projective resolution of A, the
object PA in Definition 2.10 (an I-simplicial approximation of A) belongs to the localizing
subcategory generated by the objects Pk .

Definition 2.15. An odd I-projective resolution is an I-projective resolution where the
boundary maps of positive index have degree one, that is, the morphism δn : Pn→ Pn−1

is replaced, for n ≥ 1, by a morphism δn : Pn→ �Pn−1.

Evidently, if (Pn, δn) is an odd projective resolution, then (P ′n, δ′n) is an even resolution,
where P ′n = �−nPn and δ′n = �−nδn.

Let K : T → C be a covariant homological functor into a stable abelian category.
We put Kn(A) = K(�−nA). Let us recall a few extra constructions on K motivated by
homological algebra.

Definition 2.16. Let (L, N ) be a complementary pair, with P : T → L. The localization
of K with respect to N is defined by L

NK = K ◦ P .

The defining morphisms P(A)→ A induce a natural transformation L
NK ⇒ K .

Definition 2.17. Let I be a homological ideal with countable direct sums and enough
projectives. The pth derived functor of K with respect to I is defined as

L
I
pK(A) = Hp(K(P•)),

where P• is any I-projective resolution of A.

This is well defined because projective resolutions are unique up to chain homotopy.
Note that unless K is compatible with I-exact sequences, one cannot expect LI

0 K � K .
When (L, N ) is a complementary pair, we can think of the localization L

NK as the
derived functor Lker P

0 K for P : T → L up to the embedding of Remark 2.11.
Building on the idea of Christensen [Chr98] to understand the Adams spectral

sequence, Meyer constructed the following spectral sequence.

THEOREM 2.18. [Mey08, Theorems 4.3 and 5.1] Let I be a homological ideal with
countable direct sums and enough projectives, and let K : T → Ab be a homological
functor to the category of commutative groups. Then there is a convergent spectral
sequence

Er
pq ⇒ L

NIKp+q(A),

with the E2-sheet E2
pq = L

I
pKq(A).

The Er -differentials dr : Er
pq → Er

p−r ,q+r−1 come from a choice of phantom tower for
A and the associated exact couple, but their precise form will not be important for us.

2.5. The Baum–Connes conjecture for groupoids. Because we are particularly
interested in spectral sequences which approximate the K-groups of groupoid
C∗-algebras, the Baum–Connes conjecture naturally plays a fundamental part. The
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notion of a pair of complementary subcategories introduced earlier allows for a general
formulation of this conjecture in terms of localization at the subcategory contractible
objects.

However, as our main focus is on torsion-free amenable groupoids, we will not need
the full machinery for our applications; hence we limit ourselves to simply recalling the
main positive result concerning the conjecture for groupoids with the Haagerup property.
Namely, G is said to have the Haagerup property if it acts properly and isometrically by
affine maps on a continuous field of (real) Hilbert spaces, or, equivalently, if there is a
proper conditionally negative type function on G [BCV95]. Analogous to the case of
groups, amenable groupoids have this property.

Suppose G is a second countable, locally compact, Hausdorff groupoid with a Haar
system. In the following, the crossed product is understood to be reduced.

Definition 2.19. A G-algebra A is said to be proper if there is a locally compact Hausdorff
proper G-space Z such that A is a G � Z-algebra.

Evidently, a commutative G-C∗-algebra is proper if and only if its spectrum is a proper
G-space.

Remark 2.20. If G is locally compact, σ -compact, and Hausdorff, then there is a
locally compact, σ -compact, and Hausdorff model of EG, the classifying space for
proper actions of G; in our case G is second countable and hence EG is too [Tu99b,
Proposition 6.15]. In Definition 2.19 for a proper G-algebra, we can always assume
Z to be a model of EG. Indeed, if φ : Z→ EG is a G-equivariant continuous map,
then φ∗ : C0(EG)→M(C0(Z)) = Cb(Z) can be precomposed with the structure map

 : C0(Z)→ Z(M(A)), making A into an G � EG-algebra.

We will need the following result proved by J.-L. Tu.

THEOREM 2.21. [Tu99a] Suppose that G has the Haagerup property. Then there exists
a proper G-space Z with an open surjective structure morphism Z→ X, and a G �

Z-C∗-algebra P which is a continuous field of nuclear C∗-algebras over Z, such that
P � C0(X) in KKG.

As a consequence, if A is a separable G-C∗-algebra, then we have that A⊗C0(X) P is a
proper G-C∗-algebra that is KKG-equivalent to A.

In this paper, for a general topological groupoid G we say that it satisfies the strong
Baum–Connes conjecture if the conclusions of the previous theorem hold. This definition
implies the standard version of the conjecture. More precisely, if D : P → C0(X) is the
isomorphism from Theorem 2.21, there is a commutative diagram

lim−→Y⊆EG
KKG• (C0(Y ), A) K•(G � A)

K•(G � (A⊗C0(X) P ))

μG
A

jG(D ⊗̂ idA)

https://doi.org/10.1017/etds.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.50


Homology and K-theory of dynamical systems 2641

where all arrows are isomorphisms and Y runs over G-compact invariant subsets of EG

([EM10, Theorem 6.12], see also [MN06]). The functor jG above is the descent morphism
of Kasparov [Kas88] which has been generalized to this context in [LG99, Laf07].

3. Approximation in the equivariant KK-category
3.1. Simplicial approximation from adjoint functors. One powerful way to check that
a homological ideal has enough projectives is to relate it to adjoint functors between
triangulated categories. More precisely, let S and T be triangulated categories with
countable direct sums, and let E : S → T and F : T → S be exact functors compatible
with countable direct sums, with natural isomorphisms

S(A, FB) � T (EA, B), A ∈ S, B ∈ T . (2)

Then I = ker F has enough projectives and the I-projective objects are retracts of EA for
some A ∈ S [MN10, §3.6].

Our next goal is to give an explicit projective resolution in this setting. In fact, this
situation is quite standard in homological algebra: such adjoint functors give a comonad
L = EF on T , from which we obtain a simplicial object (Ln+1A)∞n=0 giving a ‘resolution’
of A [Wei94, §8.6].

PROPOSITION 3.1. In the above setting, any A ∈ T admits an I-projective resolution P•
consisting of Pn = Ln+1A. The pair of subcategories (〈ES〉, NI) is complementary.

Proof. Let us denote the structure morphisms of the adjunction as

εB ∈ T (LB, B), ηA ∈ S(A, FEA),

so that the isomorphism (2) is given by

S(A, FB)→ T (EA, B) T (EA, B)→ S(A, FB)

f �→ εBE(f ) g �→ F(g)ηA.

As already observed in [MN10], the objects of the form EA are I-projective. Indeed, if
g ∈ T (EA, B) is in the kernel of F , the corresponding morphism in S(A, FB) is zero by
the above presentation.

Next, let us recall the comonad structure on L. There are natural transformations L→
idT and L→ L2 defining a coalgebra structure on L. The counit is simply given by the
morphisms εB , while the comultiplication is given by δB = E(ηFB) ∈ T (LB, L2B). The
compatibility condition between these reduces to consistency between ε and η.

Now we are ready to define a structure of simplicial object on (Pn)
∞
n=0 as in the

assertion. The face morphisms dn
i : Pn→ Pn−1 (0 ≤ i ≤ n) are

dn
i = Li(εLn−iA) : Ln+1A→ LnA,

while the degeneracy morphisms sn
i : Pn→ Pn+1 (0 ≤ i ≤ n) are

sn
i = Li(δLn−iA) : Ln+1A→ Ln+2A;
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see [Wei94, Paragraph 8.6.4]. The associated Moore complex on (Pn)
∞
n=0 is given by

δn =
n∑

i=0

(−1)idn
i : Pn→ Pn−1, (3)

together with the augmentation morphism δ0 = ε : P0 = LA→ A.
Let us check the I-exactness of the augmented complex, or, as in Definition 2.14, the

split exactness of

· · · → FL2A→ FLA→ FA→ 0

for all A in a natural way. We claim that the the complex

· · · → FL2A→ FLA→ FA→ 0

in S is contractible. Again this is a consequence of a standard argument: the con-
tracting homotopy is given by hn = ηFLnA : FLnA→ FLn+1A for n ≥ 0; see [Wei94,
Proposition 8.6.10].

Finally, the assertion that 〈ES〉 and NI are complementary follows from
Theorem 2.12.

We will apply the previous proposition in the setting T = KKG, S = KKX, F = ResG
X .

As the functor E, we take

EA = IndG
X A = C0(G) ⊗s C0(X) A

for C0(X)-algebras A, endowed with the left translation action of G. This is indeed left
adjoint to F by [Bön20].

3.2. The Baum–Connes conjecture for torsion-free groupoids. Hereafter it is assumed
that G is étale and that it satisfies the conclusion of Theorem 2.21. Our next goal is the
following result.

THEOREM 3.2. Suppose that G is an étale groupoid with torsion-free stabilizers satisfying
the conclusion of Theorem 2.21. Then any G-C∗-algebra A belongs to the localizing
subcategory generated by the G-C∗-algebras (IndG

X ResG
X)nA for n ≥ 1.

The following lemma clarifies the local picture of proper actions.

LEMMA 3.3. Let G be an étale groupoid with torsion-free stabilizers, and let G � Z be
a proper action on a locally compact Hausdorff space with the anchor map ρ : Z→ X.
Then each z ∈ Z has an open neighborhood U satisfying the following conditions:
• U has a compact closure in Z;
• the saturation GU can be identified as G×X U as a G-space.

Proof. This is essentially contained in Proposition 2.42 of the extended version of [Tu04],
but let us give a proof. First, observe that any w ∈ Z has trivial stabilizer. Indeed, on
the one hand it can be identified with the inverse image of (w, w) for the action map
φ : G � Z→ Z ×X Z and hence is a compact set by the properness of the action. On the
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other hand, it is a subgroup of the stabilizer of ρ(w), which is a torsion-free group; hence
it must be trivial.

Next, fix an open neighborhood V of z and put C = (G � Z) \ V , where V is identified
with an open subset of G � Z by taking the identity morphisms of v ∈ V . Since Z is
locally compact Hausdorff, φ is closed (with compact fibers) and in particular φ(C) is
closed in Z ×X Z and does not contain (z, z) by the above observation.

Take an open neighborhood U of z such that U ×X U does not meet φ(C). Then the
restriction of the action map to G×X U is a bijection onto GU . Indeed, if (g, u) and
(g′, u′) had the same image in GU , we would have

(u, u′) ∈ U ×X U ∩ φ(G � Z) ⊂ φ(V ),

which implies u = u′ and then g = g′.
Finally, as G � Z is an étale groupoid, the action map G×X U → Z is an open map.

Then we obtain that the bijective continuous map G×X U → GU is a homeomorphism.

For the next proof we use the equivariant E-theory of C0(Y )-algebras [PT00]. The
equivariant E-groups EY (A, B) (denoted by RE(Y ; A, B) in [PT00]) define a triangulated
category with countable direct sums and a triangulated functor KKY → EY compatible
with countable direct sums.

We are going to use the notion of RKK(X)-nuclearity as defined by Bauval
[Bau98, Definition 5.1] (see also [Ska88]). Here, we call it KKX-nuclearity. Namely,
a C0(X)-algebra A is KKX-nuclear if idA ∈ KKX(A, A) is represented by an
X-A-A-Kasparov cycle (π , E , T ) such that the left action π : A→ L(E) is strictly
C0(X)-nuclear with respect to the identification L(E) =M(K(E)).

LEMMA 3.4. Let Y be a second countable locally compact space, and let (Vk)
∞
k=0 be a

countable and locally finite open covering of Y . If A is a KKY -nuclear C0(Y )-algebra,
and if N is a C0(Y )-algebra such that NVk

is KKVk -equivalent to 0 for all k, then we have
KKY (A, N) = 0.

Proof. By assumption on A, we have KKY (A, N) � EY (A, N) [PT00, Theorem 4.7]. In
order to show that the latter group vanishes, it is enough to show that EY (N , N) = 0.

Put Nk = NV0∪···∪Vk
. We first claim that EY (Nk , N) = 0 for all k. By induction, it is

enough to prove this for k = 1. We have an extension of C0(Y )-algebras

0→ N0 → N1 → NV1∪V0\V0 → 0.

By assumption, N0 is contractible in KKY (hence in EY ). We also have the contractibility
of NV1∪V0\V0 , as it is a reduction of the KKV1 -contractible object NV1 to V1 ∪ V0 \ V0 =
V1 \ V0. Now, the functor B �→ EY (B, N) satisfies excision [PT00, Theorem 4.17], which
gives an exact sequence of the form

0 = EY (NV1∪V0\V0 , N)→ EY (N1, N)→ EY (N0, N) = 0,

and we obtain EY (N1, N) = 0.
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The inclusion maps make (Nk)
∞
k=0 an inductive system, and N is its inductive limit as

a C0(Y )-algebra. This inductive system is admissible in the sense of [MN06, §2.4] (this
condition is automatic for inductive systems in EY , but this example is already admissible
in KKY ). In particular, there is an exact triangle of the form

�N →
⊕

k

Nk →
⊕

k

Nk → N .

Since we already have EY (
⊕

k Nk , N) �∏
k EY (Nk , N) = 0, we obtain EY (N , N) = 0.

Proof of Theorem 3.2. Let A be a separable G-C∗algebra. The endofunctor A⊗C0(X) −
on KKG is triangulated and sends C0(X) to A. More generally, we have an isomorphism
of G-C∗-algebras between

A⊗C0(X) ((IndG
X ResG

X)nC0(X)) � A⊗r
C0(X) C0(G

(n))

and C0(G
(n)) ⊗s C0(X) A � (IndG

X ResG
X)nA by inductively applying the structure map of

the G-C∗-algebra. Therefore it is sufficient to prove the statement for A = C0(X).
Let us first show a slightly weaker statement, namely that C0(X) belongs to the

(localizing) triangulated subcategory of KKG generated by objects of the form IndG
X B

for C0(X)-algebras B.
By Theorem 2.21, we may replace C0(X) by a C0(Z)-nuclear G � Z-C∗-algebra C for

some proper G-space Z. Let U ⊂ Z be an open set satisfying the conditions of Lemma 3.3,
and put V = GU . Then the G-algebra CV = C0(V )C is isomorphic to IndG

X CU . Indeed,
the latter is C0(G)⊗C0(X) CU , and the G-equivariant isomorphism V � GU induces
CV � C0(G)⊗C0(X) CU .

Now, take countably many open sets (Ui)i∈I satisfying the conditions of Lemma 3.3,
such that the sets Vi = GUi cover Z and (Vi/G)i is a countable and locally finite open
cover of Z/G (this is possible by second countability). We want to say that the (unreduced)
‘Čech complex’ of objects CVi1∩···∩Vik

gives a resolution of C in KKG�Z . Then, combined
with the ‘induction functor’ KKG�Z → KKG (which is really given by the restriction
of C0(Z)-algebras to C0(X)-algebras), we get that C is indeed in 〈IndG

X KKX〉. Suppose
that U and U ′ are open sets of Z satisfying the conditions of Lemma 3.3, and put V =
GU and V ′ = GU ′. Then there is an open set W satisfying the conditions of Lemma 3.3
with V ∩ V ′ = GW ; indeed, we can take W = U ∩ V ′. This implies that the G-algebras
CVi1∩···∩Vik

are all of the form IndG
X B.

Now, set Z̃ =∐
i Vi and regard it as a G � Z-space by the canonical equivariant map

Z̃→ Z. The functors IndZ

Z̃
: KKG�Z̃ → KKG�Z and ResZ

Z̃
: KKG�Z → KKG�Z̃ make

sense. Concretely, if B is a G-equivariant C0(Z)-algebra, we have

ResZ

Z̃
B =

⊕
i

BVi

endowed with an obvious action of G, while for a G-equivariant C0(Z̃)-algebra B, we set
IndZ

Z̃
B to be the same C∗-algebra as B regarded as a C0(Z)-algebra. Then we have the
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standard adjunction

KKG�Z(IndZ

Z̃
B, B ′) �

∏
i

KKG�Vi (BVi
, B ′Vi

) � KKG�Z̃(B, ResZ

Z̃
B ′).

From this, we see that L = IndZ

Z̃
ResZ

Z̃
satisfies

LkC =
⊕

i1,...,ik

CVi1∩···∩Vik
.

By Proposition 3.1, we obtain an exact triangle

P → C → N → �P

in KKG�Z , such that P is in the localizing subcategory generated by objects of the form
IndG�Z

Ui
B, and N ∈ ker ResG�Z

G�Z̃
.

It remains to prove that N = 0 in KKG�Z . For this it is enough to show that the
morphism C → N in the above triangle is zero. Indeed, P will then be a direct sum
of C and �N , but there is no non-zero morphism from P to �N . Since the action
of G on Z is free and proper, there is an equivalence of categories between KKG�Z

and KKZ/G, and similar statements hold for the G-invariant open sets Vi . Under this
correspondence, C corresponds to a KKZ/G-nuclear algebra. Now, Lemma 3.4 implies
that KKG�Z(C, N) = 0. We thus know that C0(X) �KKG C belongs to the localizing
subcategory generated by objects of the form IndG

X B.
Now, take a distinguished triangle

P ′ → C0(X)→ N ′ → �P ′

in KKG corresponding to the complementary pair (〈IndG
X KKX〉, Nker ResGX

). On the one

hand, since C0(X) belongs to 〈IndG
X KKX〉, the morphism C0(X)→ N ′ is trivial and we

have P ′ � C0(X). On the other hand, since the objects (IndG
X ResG

X)n+1(C0(X)) form
a (ker ResG

X)-projective resolution of C0(X), the object P ′ belongs to the triangulated
subcategory generated by them. This proves the assertion.

COROLLARY 3.5. Let G and A be as in Theorem 3.2. Let PX(A) ∈ 〈IndG
X KKX〉 be the

algebra appearing in the exact triangle

PX(A)→ A→ N → �PX(A)

that we get by applying Proposition 3.1. Then we have PX(A) � A in KKG. Equivalently,
we have Nker ResGX

= 0.

COROLLARY 3.6. Let G and A be as in Theorem 3.2. Then we have a convergent spectral
sequence

E2
pq = Hp(Kq(G � L•+1A))⇒ Kp+q(G � A), (4)

where LnA = (IndG
X ResG

X)n(A).

Proof. The reduced crossed product functor

KKG→ KK, A �→ G � A
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is exact and compatible with direct sums, while

KK→ Ab, B �→ K0(B)

is a homological functor. Thus, their composition

K0(G � -) : KKG→ Ab

is a homological functor, cf. [MN10, Examples 13 and 15]. Now we can apply Theorem
2.18 to get a spectral sequence

Hp(Kq(G � P•))⇒ Kp+q(G � PX(A)),

where P• is a (ker ResG
X)-projective resolution of A. The (ker ResG

X)-projective resolution
from Proposition 3.1 gives the left-hand side of (4). Now the claim follows from
Corollary 3.5.

4. Homology and K-theory
Let us assume that G is ample. We are going to relate the results of the previous section
to the complex of groupoid homology which was described in §2.3. First observe that
LnA = C0(G

(n))⊗ A.
As for the coefficients of homology, for the algebra C0(X) we have K0(C0(X)) �

Cc(X, Z), which corresponds to the constant sheaf Z on X. More generally, any
G-C∗-algebra gives a G-sheaf on X.

PROPOSITION 4.1. Let A be a G-C∗-algebra. Then Ki(A) is a unitary Cc(G, Z)-module.

Proof. We show that Ki(A) is a unitary Cc(X, Z)-module, and the associated sheaf is a
G-sheaf.

The structure map of C0(X)-algebra induces a ∗-homomorphism C0(X)⊗ A→ A.
Combined with the canonical map K0(C0(X))⊗Ki(A)→ Ki(C0(X)⊗ A), we obtain
a map K0(C0(X))⊗Ki(A)→ Ki(A) and hence a Cc(X, Z)-module structure on Ki(A).

Next let us check the unitarity of this module. By total disconnectedness and second
countability of X, we can take an increasing sequence of compact open sets (Uk)

∞
k=1 in X

such that φk = χUk
forms an approximate unit of C0(X). Replacing A by its suspension if

necessary, it is enough to check that for any class c ∈ K0(A), there is k such that [φk] ∈
K0(C0(X)) satisfies [φk]c = c.

By definition, c is represented by a formal difference [e]− [f ] of projections e, f ∈
Mn(A

+) such that π([e]) = π([f ]) in K0(C), where n is some integer, A+ is the
unitization of A, and π : A+ → C is the canonical quotient map. By conjugating by a
unitary in Mn(C), we can arrange π(e) = π(f ). Then we can write the components of e

as eij = αij + e′ij for αij ∈ C and e′ij ∈ A, and those of f as fij = αij + f ′ij .

Now, put x
(k)
ij = (1− φk)αij , y

(k)
ij = φkeij , and z

(k)
ij = φkfij . These form projections

x(k) ∈ Mn(A
+), y(k), z(k) ∈ Mn(A) such that x(k) + y(k) and x(k) + z(k) are still projec-

tions. If φke
′
ij is close enough to e′ij in norm, e is close to x(k) + y(k) in norm, and we obtain

[e] = [x(k) + y(k)] in K0(A
+) for large enough k. Similarly, we obtain [f ] = [x(k) + z(k)]
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for large enough k. Then we have c = [y(k)]− [z(k)], and for this k we indeed have
[φk]c = c.

It remains to give an action of G on the associated sheaf F . Take g ∈ G, and choose
its open compact neighborhood U such that s and r restrict to homeomorphisms on
U . Then the action of G induces an isomorphism As(U)→ Ar(U). In turn this induces
χs(U)Ki(A)→ χr(U)Ki(A), which can be interpreted as the action of g from 
(s(U), F)

to 
(r(U), F). A routine bookkeeping shows that these maps patch up to give an action
morphism s∗F → r∗F on G.

PROPOSITION 4.2. When A is a G-C∗-algebra, there is an isomorphism of chain
complexes

(Ki(G � L•+1A), δ•) � (Cc(G
(•), Z)⊗Cc(X,Z) Ki(A), ∂•)

for L = IndG
X ResG

X .

Proof. From the equivalence of groupoids between G � G(n+1) and G(n) (where we
consider G(k) as spaces), we have Ki(G � Ln+1A) � Ki(C0(G

(n)) ⊗s C0(X) A).
Since G(n) is totally disconnected, we have

K0(C0(G
(n))) � Cc(G

(n), Z), K1(C0(G
(n))) = 0.

Thus, we have an isomorphism of unitary Cc(G, Z)-modules

Ki(C0(G
(n)) ⊗s C0(X) A) � Cc(G

(n), Z)⊗Cc(X,Z) Ki(A).

The comparison of simplicial structures is a routine calculation.

Thus, we obtain an isomorphism of homology groups

Hp(Kq(G � L•+1A), δ•) � Hp(G, Kq(A)).

THEOREM 4.3. Let G be a second countable Hausdorff ample groupoid with torsion-free
stabilizers satisfying the strong Baum–Connes conjecture, and let A be a separable
G-C∗-algebra. Then there is a convergent spectral sequence

Er
pq ⇒ Kp+q(G � A) (5)

with E2
pq = Hp(G, Kq(A)).

Proof. We obtain the convergent spectral sequence by Corollary 3.6, and Proposition 4.2
gives the description of the E2-sheet.

Specializing to the case A = C0(X), we obtain our main result.

COROLLARY 4.4. Let G be as above. Then there is a convergent spectral sequence

Er
pq ⇒ Kp+q(C∗r (G))

with E2
pq = E3

pq = Hp(G, Kq(C)).
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Proof. As Kq(C) = 0 for odd q, for degree reasons the E2-differential is trivial. This
implies E2

pq = E3
pq .

Remark 4.5. Looking at the bidegree of differentials at the E3-sheet, we see that the above
spectral sequence collapses at the E2-sheet if Hk(G, Z) vanishes for k ≥ 3. If, in addition,
H2(G, Z) is torsion-free, one has

K0(C
∗
r G) � H0(G, Z)⊕H2(G, Z), K1(C

∗
r G) � H1(G, Z). (6)

This covers the transformation groupoids of minimal Z-actions on the Cantor space
considered in [Mat12] and the Deaconu–Renault groupoids of rank 1 and 2 (in particular
k-graph groupoids for k = 1, 2) in [FKPS19], and groupoids of one-dimensional gener-
alized solenoids [Yi20]. The Exel–Pardo groupoid model [EP17] for Katsura’s realization
[Kat08] of Kirchberg algebras also belongs to this class [Ort20]. For the groupoid of
tiling spaces (see §5.2) one can do slightly better; if G is a groupoid associated with some
tiling in R

d , one has the vanishing of Hk(G, Z) for k > d and Hd(G, Z) is torsion-free.
Comparing the rank of H•(G, Z) and K•(C∗G), we see that the higher differentials are
always zero on Hd(G, Z), and the spectral sequence collapses if d ≤ 3.

Remark 4.6. For the transformation groupoids 
 � X where X = E
 is a ‘nice’ manifold
(such as carrying an invariant Riemannian metric with non-positive sectional curvature),
[Kas88] gives a spectral sequence analogous to (5).

Remark 4.7. In Theorem 4.3, without assuming that G has torsion-free stabilizers or that it
satisfies the strong Baum–Connes conjecture, we still have a convergent spectral sequence

E2
pq = Hp(G, Kq(A))⇒ Kp+q(G � PA),

where PA is a (ker ResG
X)-simplicial approximation of A; see §5.3 for an example.

4.1. Semidirect product by torsion-free groups. Suppose that a group 
 acts on a (second
countable locally compact Hausdorff) groupoid G. Then we can form a semidirect product

 � G: its object set is the same as that of G, its arrow set is the direct product 
 ×G, with
structure maps s(γ , g) = s(g), r(γ , g) = γ r(g), and composition rule (γ , g)(γ ′, g′) =
(γ γ ′, γ ′−1(g)g′). We then have the following analogue of the permanence property of the
strong Baum–Connes conjecture for extension of torsion-free discrete groups [OO01].

PROPOSITION 4.8. Suppose that 
 is torsion-free and satisfies the strong Baum–Connes
conjecture, and that G is an ample groupoid with torsion-free stabilizers satisfying the
strong Baum–Connes conjecture. Then any separable 
 � G-C∗-algebra A belongs to the
localizing subcategory generated by the image of Ind
�G

X : KKX → KK
�G.

Proof. Let us fix A as in the assertion. First consider the functor

F : KK
 → KK
�G, B �→ B ⊗ A,

where 
 acts on B ⊗ A diagonally and G acts on the leg of A. This is a triangulated functor
compatible with countable direct sums.
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By assumption on 
, the trivial 
-C∗-algebra C belongs to the localizing subcategory
generated by objects of the form C0(
)⊗ B ′ for separable C∗-algebras B ′. Thus, A =
F(C) belongs to the localizing subcategory generated by C0(
)⊗ B ′ ⊗ A.

Now, we claim that the 
 � G-C∗-algebra C0(
)⊗ A is isomorphic to Ind
�G
G

Res
�G
G A, by an analogue of Fell’s absorption principle. Both algebras can be interpreted

as the direct sum of copies of A indexed by the elements of 
. For C0(
)⊗ A, the action
of G becomes component-wise action on this direct sum, while the action of 
 is the
combination of translation on indices and component-wise action. For Ind
�G

G Res
�G
G A,

the action of G preserves direct summands but twisted by the effect of γ on G on the γ th
component. The action of 
 simply becomes translation of indices. We can move from one
presentation to another by applying γ or γ−1 on the γ th component.

We thus have A in the localizing subcategory generated by Ind
�G
G Res
�G

G A⊗ B ′ for
separable C∗-algebras B ′. By Theorem 3.2, Res
�G

G A ∈ KKG belongs to the localizing
subcategory generated by the image of IndG

X : KKX → KKG. Combined with natural
isomorphism Ind
�G

G IndG
X � Ind
�G

X , we obtain the assertion (note that the C∗-algebras
B ′ above receive trivial action).

Consequently, if G is moreover ample, the conclusion of Theorem 4.3 holds for 
 � G.

5. Examples
5.1. Deaconu–Renault groupoids. Let us sketch what one gets for the Deaconu–Renault
groupoids [Dea95, ER07], which reduces to the Kasparov spectral sequence for a
Z

n-action; see [FKPS19].
Let X be a second countable totally disconnected locally compact Hausdorff space, and

let σ be an action of the semigroup N
k on X by surjective local homeomorphisms. The

associated Deaconu–Renault groupoid G = G(X, σ) is defined by

G = {(x, a − b, y) ∈ X × Z
k ×X | a, b ∈ N

k , σa(x) = σb(y)},
with base G(0) = X, and range and source maps given by projection onto the first and third
factors.

There is a natural cocycle c : G→ Z
k given by c(x, n, y) = n, and the resulting

skew-product groupoid G×c Z
k , with base X × Z

k , and range map and source maps

r((x, m, y), n) = (x, n), s((x, m, y), n) = (y, m+ n).

This groupoid has trivial stabilizers and is approximately finite dimensional (AF) in
the sense of [FKPS19], and in particular is a union of subgroupoids which are Morita
equivalent to the space X. This gives

H0(G×c Z
k , Z) = lim−→

a∈Nk

Cc(X, Z), Hn(G×c Z
k , Z) = 0 (n > 0),

where the inductive limit is taken with respect to the iteration of the induced map by σ .
Moreover, by considering the automorphisms αa : ((x, m, y), n) �→ ((x, m, y), n+ a) for
a ∈ Z

k , we obtain a semidirect product groupoid G̃ = Z
k
�α (G×c Z

k), which is Morita
equivalent to G.
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Then the Leray–Hochschild–Serre spectral sequence [CM00, Theorem 4.4] applied to
the canonical groupoid homomorphism G̃→ Z degenerates at the E2-sheet and gives an
isomorphism

Hn(G̃, Z) � Hn(Z
k , H0(G×c Z

k , Z)),

with Z
k acting on the inductive limit lim−→a∈Nk

Cc(X, Z) by shifting the index a. In
particular, we get a convergent spectral sequence of the form in Corollary 4.4 with

Er
pq ⇒ Kp+q(C∗r G), E2

p,2s = E3
p,2s = Hp

(
Z

k , lim−→
a∈Nk

Cc(X, Z)
)
⊗Kq(C),

E2
p,2s+1 = E3

p,2s = 0

as in [FKPS19].

5.2. Substitution tiling. We follow the convention of [KP00] and consider substitution
tilings of finite local complexity. Thus, we are given a finite set P of prototiles in R

d and
a substitution rule ω for P . Under reasonable assumptions on ω, the translation action τ

of Rd on the associated hull space � is free and minimal. Then, analogous to the case of
solenoids, the groupoid of the unstable equivalence relation is the transformation groupoid
G = R

d
�τ �. Moreover, by [SW03], there is a transversal X ⊂ � that is homeomorphic

to a Cantor set, such that (Rd
�τ �)|X is the transformation groupoid Z

d
�α X for some

action α : Zd
� X; see also [KP03, §5].

Let us quickly explain how a spectral sequence of a more classical nature arises in this
setting. By Connes’s Thom isomorphism, one has

Kn(C
∗G) � Kn+d(�).

Now, � can be identified with a projective limit of a self-map of branched
d-dimensional manifold obtained by gluing (collared) prototiles [AP98]. This leads to
the Atiyah–Hirzebruch spectral sequence

E
p,q
2 = Ȟ p(�, Kq(C))⇒ Kp+q(�), (7)

that is, E
p,q
2 is the pth Čech cohomology of � with constant sheaf Z when q is even, and

E
p,q
2 = 0 otherwise (for dimension reasons we also have E

p,q
2 = 0 if p > d). Since � is

a compact Hausdorff space, this is also equal to the sheaf cohomology as derived functor.
Since the action τ is free and R

d is contractible, � is a model of the classifying space
BG and the universal principal bundle EG for the groupoid G (up to non-equivariant
homotopy). In particular, we can interpret the sheaf cohomology on � as groupoid
cohomology of G; see [Moe98, Tu06].

Let us relate our construction to this. Using the transversal X, we have

H •(G|X, Z) � H •(Zd , C(X, Z)), H•(G|X, Z) � H•(Zd , C(X, Z)),

where we consider C(X, Z) as a module over Zd by the action induced by α. Moreover
we have Hk(Z

d , M) � Hd−k(Zd , M) for any Z
d -module M; see for example [Bro94,

§VIII.10]. This shows that

Hk(G|X, Z) � Hd−k(G|X, Z) � Hd−k(G, Z)
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for the étale groupoid G|X, and the spectral sequence of Corollary 4.4 is
comparable to (7).

Remark 5.1. A similar spectral sequence is given in [SB09], as an analogue of the Serre
spectral sequence for the Anderson–Putnam fibration structure �→ 
k over the k-collared
prototile space. It would be interesting to compare these.

5.3. A non-example. Scarparo has found a counterexample to the HK conjecture
[Sca20]. In his example, G is the transformation groupoid of an action α of the infinite
dihedral group 
 = Z2 � Z on the Cantor set X. Thus, it is amenable and in particular
satisfies the strong Baum–Connes conjecture. However, the simplicial approximation
P(C(X)) arising from restriction to the unit space is indeed not KKG-equivalent to C(X).
Let us explain the ingredients in more detail.

Let (ni)
∞
i=0 be a strictly increasing sequence of integers such that, for i ≥ 1, ni+1/ni ∈

N for all i. We take the model X = lim←− Zni
. Then Z acts by the odometer action, that is,

1 ∈ Z acts by the +1 map on each factor Zni
. There is a consistent action of Z2, where

the non-trivial element g = [1] ∈ Z2 acts by multiplication by −1, giving rise to an action
α of 
 on X. Note that α is topologically free but not free, nor does it have torsion-free
stabilizers.

Put G = 
 �α X, and

M =
{

m

ni

| m ∈ Z, i ≥ 1
}

.

The C∗-algebra C∗G = 
 �α C(X) is an AF algebra, with

K0(C
∗G) �

{
M ⊕ Z if ni+1/ni is even for infinitely many i,

M ⊕ Z
2 otherwise;

see [BEK93]. On the other hand, the groupoid homology is

H0(G, Z) � M ,

H2k(G, Z) � 0,

H2k−1(G, Z) �
{
Z2 if ni+1/ni is even for infinitely many i,

Z
2
2 otherwise,

for k > 1; see [Sca20]. This shows that groupoid homology cannot form a spectral
sequence converging to K•(C∗G), much less be isomorphic to it.

Fortunately, there is a somewhat concrete description of P(C(X)) in this case. Consider
the antipodal action of Z2 on Sn, that is, g acts by the restriction of the multiplication by
−1 on R

n+1. Then the contractible space S∞ = lim−→ Sn is a model of the universal bundle
EZ2. We want to make sense of an analogue of the Poincaré dual for this.

Let Yn = C0(T
∗Sn) denote the function algebra of the total space of the cotangent

bundle of Sn, and let Y ′n denote the Z2-graded C∗-algebra of continuous sections of the
C∗-algebra bundle ClC(T ∗Sn) over Sn with complex Clifford algebras ClC(T ∗x Sn) as
fibers. These admit naturally induced actions of Z2, and Yn is KKZ2 -equivalent to Y ′n
[Kas16, Theorem 2.7].
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Let us recall the (equivariant) Poincaré duality between C(Sn) and Y ′n [Kas88, §4].
The natural Clifford module structure on the differential forms of Sn, together with D′n =
d + d∗, give an unbounded model of a K-homology class [D′n] ∈ K0

Z2
(Y ′n). Composed

with the product map m : Y ′n ⊗ C(Sn)→ Y ′n, we obtain the class [Dn] = m⊗Y ′n [D′n] ∈
K0

Z2
(Y ′n ⊗ C(Sn)). The dual class [�n] ∈ K

Z2
0 (C(Sn)⊗ Y ′n) is defined as a certain class

localized around the diagonal.
Let j : Sn→ Sn+1 be the embedding at the equator (which is a Z2-equivariant

continuous map), and let j ′ : Y ′n→ Y ′n+1 be the KKZ2 -morphism dual to the restriction
map j∗ : C(Sn+1)→ C(Sn). Thus, we have

j ′ = [�n+1]⊗C(Sn+1)⊗Yn+1
(idY ′n ⊗ j∗ ⊗ idY ′n)⊗Yn⊗ C(Sn) [Dn];

see [Kas88, Theorem 4.10].

LEMMA 5.2. We have j ′ ⊗Y ′
n+1

[D′n+1] = [D′n] in K0
Z2

(Y ′n).

Proof. As a KKZ2 -morphism, [D′n] is the dual of the embedding ηn : C→ C(Sn); hence,
the claim reduces to ηn+1 = jηn.

Take the homotopy colimit Y ′∞ = lim−→ Y ′n in KKZ2 (to be precise, we are working in the
enlarged category of Z2-graded C∗-algebras). By the above lemma, the morphisms [D′n]
induce a morphism [D′∞] ∈ KKZ2(Y ′∞, C). Transporting this by the KKZ2 -equivalence,
we obtain Y∞ = lim−→ Yn and [D∞] ∈ KKZ2(Y∞, C).

LEMMA 5.3. The image of [D∞] in KK(Y∞, C) is a KK-equivalence.

Proof. In the non-equivariant KK-category, Yn is equivalent to C
2 or C⊕�C depending

on the parity of n, and there is a distinguished summand which is equivalent to C (at
the even degree) spanned by the K-theoretic fundamental class of T ∗Sn. Moreover, the
morphism corresponding to [D′n] is a projection onto this summand.

The KK-morphisms corresponding to j ′ preserve the fundamental class while killing
the other direct summand. Thus, the limit is equivalent to C, spanned by the image of the
fundamental classes, and [D∞] gives the equivalence.

Since Z2 acts freely on T ∗Sn, each Yn is orthogonal to the kernel of the restriction
functor KKZ2 → KK. The discussion so far can be readily adjusted to the groupoid G, as
follows. Here, Yn ⊗ C(X) is a G-C∗-algebra for which Yn only sees the action of Z2.

PROPOSITION 5.4. The G-C∗-algebra Yn ⊗ C(X) belongs to the localizing subcategory
generated by the image of IndG

X : KKX → KKG.

Proof. First, G � (T ∗Sn ×X) is a free groupoid. Indeed, it is the transformation groupoid
of the action 
 � T ∗Sn ×X, but any element γ ∈ 
 that has a fixed point in X is
conjugate to either (g, 0) or (g, 1). (Here, g is the non-trivial element of Z2 and we identify

 with Z2 × Z as a set.) By the freeness of Z2 � T ∗Sn, these elements cannot have fixed
points in T ∗Sn ×X.
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We thus obtain that Yn ⊗ C(X) belongs to the localizing subcategory generated by the
image of IndG�(T ∗Sn×X)

T ∗Sn×X ; see the proof of Theorem 3.2. Using the triangulated functor
KKG�(T ∗Sn×X)→ KKG given by restricting the scalars of C0(T

∗Sn ×X)-algebras to
C(X), we obtain the assertion.

COROLLARY 5.5. We have PIC(X) � Y∞ ⊗ C(X) for I = ker ResG
X , with the corre-

sponding KKG-morphism Y∞ ⊗ C(X)→ C(X) given by [D∞]⊗ idC(X).

Consequently, the spectral sequence of groupoid homology converges to the K-theory
groups of the algebra G � (Y∞ ⊗ C(X)).
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A. Appendix. Structure of groupoid equivariant KK-theory
As in the other parts of the paper, G denotes a locally compact Hausdorff groupoid with a
Haar system, and we write X = G(0). We denote the category of separable G-C∗-algebras
by C∗G. We regard Cc(G) as a C0(X)-module via pullback by s, and denote its completion
a right Hilbert C0(X)-module with respect to the inner product by the Haar system by
L2(G).

A.1. Invariant ideals. Let us check that continuous actions of G restrict to kernels of
equivariant homomorphisms.

PROPOSITION A.1. Let f : A→ B be an equivariant homomorphism of G-C∗-algebras.
Then I = ker f is a G-C∗-algebra.

Proof. Since I is an ideal of A, it inherits a structure of C0(X)-algebra. We need to show
that there is an isomorphism of C0(G)-algebras

s∗I = C0(G) ⊗s C0(X) I → r∗I = C0(G) ⊗r C0(X) I

defining a continuous action of G. By the nuclearity of C0(G) as a C∗-algebra,

0→ C0(G)⊗ I → C0(G)⊗ A→ C0(G)⊗ B → 0

is exact.
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We first claim that s∗I is the kernel of s∗A→ s∗B induced by f . By the
C0(X)-nuclearity of C0(G), we can write

s∗I = (C0(G)⊗ I )�(X),

etc. Then we have a commutative diagram

0 0 0

0 I ′ A′ B ′ 0

0 C0(G)⊗ I C0(G)⊗ A C0(G)⊗ B 0

0 s∗I s∗A s∗B 0

0 0 0

with I ′ = C0((G×X) \ (G×X X))(C0(G)⊗ I ), etc., and we know the exactness of the
vertical sequences and top and middle horizontal sequences. Then the bottom sequence is
also exact, which establishes the claim.

Then, looking at the action map

s∗A→ r∗A,

we see that s∗I is mapped onto r∗I = ker(r∗A→ r∗B) bijectively.

A.2. Stabilization. When E is a Hilbert A-module, we denote the Hilbert A-module
direct sum of countable copies of E by E∞. From now on, let us assume that G admits a
Haar system λ, so that L2(G) makes sense as a Hilbert C0(X)-module.

LEMMA A.2. Let A be a separable G-C∗-algebra, and let E be a countably generated
Hilbert G-A-module. If E is full as a right Hilbert A-module, we have

L2(G)∞ ⊗C0(X) E � L2(G)∞ ⊗C0(X) A

as Hilbert G-A-modules.

Proof. By fullness, we have E∞ � A∞ as Hilbert A-modules [Lan95, Proposition 7.4].
Then the assertion follows from [Pop04, Lemma 3.6].

PROPOSITION A.3. Let F be a functor from C∗G to an additive category. Then the
following conditions are equivalent:
(1) if E is a Hilbert G-A-module which is full over A, the natural maps

F(A)→ F(K(A⊕ E)), F(K(E))→ F(K(A⊕ E))

are isomorphisms;
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(2) as above, but just for E = E ′ ⊗C0(X) A, where E ′ is a Hilbert G-C0(X)-module which
is full over C0(X);

(3) as above, but just for E ′ = L2(G)∞.

Proof. The only non-trivial implication is from (3) to (1). Since K(L2(G)∞ ⊗C0(X) A) is
isomorphic to K(L2(G)∞)⊗C0(X) A, (3) implies that F(A) � F(K(L2(G)∞)⊗C0(X) A).
Suppose E is as in (1). Then K(L2(G)∞)⊗C0(X) K(E) is isomorphic to
K(L2(G)∞ ⊗C0(X) A) by this observation and Lemma A.2. We thus obtain F(A) �
F(K(E)), and a routine bookkeeping shows that indeed this can be induced by maps
as in (1).

If the conditions in the above proposition are satisfied, we say that F is stable.

A.3. Universal property. Again, suppose F is a functor from C∗G to an additive category.
As usual, F is homotopy invariant if the evaluation maps A⊗ C([0, 1])→ A at 0 ≤
t ≤ 1 induce isomorphisms F(A⊗ C([0, 1])) � F(A) and is split exact if an extension
I → A→ B with splitting B → A by an equivariant ∗-homomorphism induces an
isomorphism F(A) � F(I)⊕ F(B).

PROPOSITION A.4. The canonical functor C∗G→ KKG is a universal functor satisfying
stability, homotopy invariance, and split exactness.

Before getting into the proof, recall that an element in KKG(A, B) is by definition
represented by a G-A-B-Kasparov cycle (π , E , T ), where E is a Z2-graded right Hilbert
B-module, π is a ∗-homomorphism from A to L(E), and T is a certain odd endomorphism
of E . Note that T is only assumed to be G-equivariant up to compact errors. A key
ingredient is the following result of Oyono-Oyono, which allows us to replace such cycles
by strictly equivariant ones. (To be precise, his result is for odd cycles, but his construction
is compatible with grading on the underlying Hilbert module; otherwise, we can work with
suspensions.)

PROPOSITION A.5. [Laf07, §A.4] Under the above setting, there is an odd G-equivariant
endomorphism T ′ on Ẽ = L2(G)∞ ⊗C0(X) E such that (ι⊗ π , Ẽ , T ′) is a
G-(K(L2(G)∞)⊗C0(X) A)-B-Kasparov cycle, and such that (S ⊗ π(a))(1⊗ T − T ′)
is a compact endomorphism for all S ∈ K(L2(G)∞) and a ∈ A.

Another important ingredient is the ‘Cuntz picture’ of KKG(A, B). To simplify the
notation, put Ã = K(L2(G)∞)⊗C0(X) A. A G-equivariant quasi-homomorphism from Ã

to B̃ is given by a pair of G-equivariant ∗-homomorphisms φ+, φ− from Ã to M(B̃) such
that φ+(a)− φ−(a) ∈ B̃ for all a ∈ Ã. This induces a Kasparov G-Ã-B-cycle

(
φ+ ⊕ φ−, (L2(G)∞ ⊗C0(X) B)⊕2, T =

[
0 1
1 0

])
. (A.1)

Proof of Proposition A.4. Let us explain how to present KKG(A, B) in terms of equiv-
ariant quasi-homomorphisms using Proposition A.5. Let us start with a G-A-B-Kasparov
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cycle (π , E , T ). Adding a degenerate direct summand, we may assume that E is full as
a Hilbert B-module. Take a G-equivariant endomorphism T ′ on Ẽ as above; 1⊗ T and
T ′ define homotopic Kasparov cycles, so any class in KKG(A, B) has a G-equivariant
representative by replacing A with Ã.

Doing the same for G-A-(B ⊗ C([0, 1]))-Kasparov cycles, we see that if (π0, E0, T0)

and (π1, E1, T1) are homotopic cycles, then T ′0 are T ′1 are homotopic through a
G-equivariant path. Consequently, KKG(A, B) is the quotient set of the G-Ã-B-Kasparov
cycles (π , E , T ), with G-equivariant T , up to the equivalence relation generated
by G-equivalent homotopy and G-equivariant unitary equivalence, and ignoring the
difference of direct sums with degenerate cycles.

Moreover, we can replace T by a G-equivariant endomorphism satisfying T = T ∗ =
T −1 without breaking the equivalence relation; see [Bla86, Ch. 17]. By Lemma A.2, we
may assume that T is represented on L2(G)∞ ⊗C0(X) B. Then we can write T in the form
of (A.1), and the left action of Ã is given by a G-equivariant ∗-homomorphism π : Ã→
M(B̃). Finally, the commutation relation with T implies that π is of the form φ+ ⊕ φ− for
an equivariant quasi-homomorphism (φ+, φ−) from Ã to B̃. Consequently, KKG(A, B)

is isomorphic to the set of equivalence classes of equivariant quasi-homomorphisms
(φ+, φ−) : Ã→ B̃ up to equivariant homotopy, equivariant unitary equivalence, and
ignoring the difference of direct sum with degenerate ones.

Next let us relate quasi-homomorphisms to split extensions, cf. [Bla86, PT00]. Let
(φ+, φ−) be an equivariant quasi-homomorphism from Ã to B̃. Put

D = {(a, φ+(a)+ b) | a ∈ Ã, b ∈ B̃} ⊂ Ã⊕M(B̃),

which is a G-C∗-algebra by Lemma A.6. Moreover, this fits into a split extension

B̃ D Ã,
j q

s

with j (b) = (0, b), q(a, φ+(a)+ b) = a, and s(a) = (a, φ−(a)).
Suppose that F : C∗G→ C is a functor into an additive category satisfying stability,

homotopy invariance, and split exactness. We want to show that there is a uniquely
determined functor F̃ : KKG→ C factoring F up to natural isomorphisms. Given an
equivariant quasi-homomorphism (φ+, φ−) from Ã to B̃, construct D as above. Then we
have an identification F(D) � F(B̃)⊕ F(Ã), so the projection onto the first summand
combined with stability gives a morphism φ∗ : F(D)→ F(B). Moreover, there is another
equivariant ∗-homomorphism f : Ã→ D defined by f (a) = (a, φ+(a)). We then obtain
F̃ (φ+, φ−) : F(A)→ F(B) by combining φ∗ ◦ F(f ) with stability for A. This construc-
tion is compatible with the equivalence relation on quasi-homomorphisms, and we obtain
a well-defined functor F̃ : KKG→ C extending F .

Uniqueness follows from functoriality and the following observation: if B → D→ A

is a split extension, D is a model for the direct sum B ⊕ A in KKG. More concretely, the
ideal inclusion j : B → D defines a homomorphism j̃ : D→M(B), and (j̃ , j̃ sq) in the
above notation defines a quasi-homomorphism from D to B. This is a projection of D to
B in KKG, and together with the other maps in the extension these KKG-morphisms give
the structure morphisms of the direct sum.
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LEMMA A.6. The algebra D in the above proof is a G-C∗-algebra.

Proof. First let us check that D is a C0(X)-algebra. If f ∈ C0(X), a ∈ Ã, and b ∈
B̃, we obviously put f .(a, φ+(a)+ b) = (f a, φ+(f a)+ f b). Since f a and f b can
approximate a and b, we see that this defines a non-degenerate homomorphism C0(X)→
M(D).

Next, the maps

D→ Ã, (a, φ+(a)+ b) �→ a, D→ B̃, (a, φ+(a)+ b) �→ b

are C0(X)-linear and completely bounded. From this we see that C0(G) ⊗s C0(X) D is a
direct sum of C0(G) ⊗s C0(X) Ã and C0(G) ⊗s C0(X) B̃ as an operator space, and a similar
decomposition holds for C0(G) ⊗r C0(X) D. Then we obtain an action map on D as a
combination of the action maps on Ã and B̃.

A.4. Triangulated structure. Let f : A→ B be an equivariant ∗-homomorphism of
G-C∗-algebras. As usual, its mapping cone is given by

Con(f ) = {(a, b∗) ∈ A⊕ C0((0, 1], B) | f (a) = b1},
which inherits a G-C∗-algebra structure from A and B.

An exact triangle in KKG is a diagram of the form

A→ B → C → �A

such that there exists a homomorphism f : A′ → B ′ of G-C∗-algebras and a commutative
diagram

A B C �A

�B ′ Con(f ) A′ B ′

in KKG, where vertical arrows are equivalences and the rightmost downward arrow is
equal to the leftmost downward arrow up to applying � and Bott periodicity �2B ′ � B ′
in KKG.

Thus, we are really defining a triangulated category structure on the opposite category
of KKG. Generally, the opposite category of a triangulated category is again triangulated
with ‘the same’ exact triangles with suspension and desuspension exchanged, but for KKG

we have �2 � id and we can ignore that issue.
The crucial step is to check axiom (TR1), in particular, that any KKG-morphism is

represented by a G-equivariant ∗-homomorphism up to KKG-equivalence; see [Laf07,
Lemma A.3.2]. Having established that, the rest is quite standard; one can follow [MN06,
Appendix A] to check that the triangles of the form

�B → Con(f )→ A→ B

satisfy axioms (TR2), (TR3), and (TR4) for the opposite category of KKG.
Finally, suppose that an equivariant ∗-homomorphism f : A→ B is surjective with a

C0(X)-linear completely positive section B → A. Then the G-C∗-algebra I = ker f is
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isomorphic to Con(f ) in KKG, by the embedding homomorphism

I → Con(f ), a �→ (a, 0).

It follows that there is an exact triangle of the form

I A B �I .
f
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