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SUMMARY
In standard pseudoinverse-based approaches to treat redun-
dant manipulators, the vector of joint increments that
corresponds to a desired motion in the space of the
secondary task is projected in the Jacobian null space
associated with the primary task. In general, this projection
may distort the projected vector, so that the secondary task
may not adequately be executed. A usual remedy is to rotate
the null space projection operator by using a special-
purpose weighting matrix. The problem, however, is that
this rotation cannot be enforced arbitrarily since it influ-
ences the manipulator’s performance. In our work we
propose an algorithm that is independent on the chosen null
space operator and always provides the best attainable
motion in the space of the secondary task. Hence, the
secondary task is executed more efficiently and the
numerical procedure is more robust. A series of numerical
experiments confirmed these results.
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1. INTRODUCTION
A majority of efforts in treating redundancy have been
concentrated at the kinematic level of control with respect to
different types of criteria. Algorithms were reported that
enable robots to avoid obstacles.1,2 or ill-conditioned
configurations.3–5 Many authors based their approach on the
utilisation of the pseudoinverse.6–8 Some authors developed
symbolic solutions to this problem.9,10 But no symbolic
solution can be developed for a general-type redundant
manipulator unless certain conditions are met by the
mechanism.

The calculation schemes based on the pseudoinverse are
procedures of local optimisation.11 They minimise a
weighted norm of joint velocities. Yet, the central point
and a distinctive property of various pseudoinverse-based
methods is in the determination of the null space projection
operator.12 A proper selection of the null space projection
operator provides a secondary motion of the manipulator
that respects different criteria.13,14 Some authors reported
results of obtaining global optima with integral-type of
criteria,15,16 others optimised the weighted null space
projection operator to avoid instabilities.17 An alternative to
the pseudoinverse-based methods is the extended Jacobian
method.18 In a more recent formulation19 this algorithm
appears to be well suited for more general choices of the

secondary criterion. It must be pointed out, however, that
different optimum solutions drastically change the manip-
ulator’s motion characteristics.20

In a standard pseudoinverse-based approach, the vector of
joint increments that corresponds to a desired motion in the
space of the secondary task is projected in the null space of
the Jacobian matrix associated with the primary task. This
operation may distort the projected vector, so that the
secondary task may not be executed in the best possible
way. A usual strategy to overcome the problem is to use the
weighted pseudoinverse and optimise the weighting matrix
with respect to the requirements of the secondary task.
However, the weighting matrix cannot be chosen arbitrarily
since it effects the manipulator’s motion characteristics. The
objective of the present article is to propose a novel
formulation which, independently on the chosen null space
operator, provides the maximum attainable increment in the
range of the secondary task.

2. OUTLOOK OF PSEUDOINVERSE-BASED
TECHNIQUE
Let the primary task be to achieve some desired values of
task coordinates p given as a function of joint coordinates q,
where vector p is of dimension m and q of dimension n. It
is expressed in the well known differential form21

dp2JPdq=0, (1)

where JP is the m3 n Jacobian matrix that incorporates the
derivatives {∂p/∂qi}. We assume that n>m. The reverse
relationship is

J+
PA =dp2dq=0, (2)

where

J+
PA =A21JT

P(JPA
21JT

P)21 (3)

is the so-called weighted pseudoinverse of JP whose
dimension is n3 m, and A is a positive definite n3 n
weighting matrix. The utilisation of the pseudoinverse leads
to a minimisation of joint velocities21 expressed in the
quadratic form q̇TAq̇.

Let the secondary task be expressed in the same way as
the primary task

ds2JSdq=0, (4)

where the objective is to achieve a q that corresponds to
given values of secondary task coordinates s, and JS is the
Jacobian that includes derivatives {∂s/∂qi}. If s is of
dimension l, JS is of dimension l3 n. If n>l, we can take
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advantage of the n3 l pseudoinverse J+
S =JT

S(JSJ
T
S)21 to

obtain

J+
S ds2dq=0. (5)

Arrange the increment of joint coordinates in the primary
dqP and the secondary dqN (subordinated) part, so that dqN

does not produce any change in the primary task coordinates
p

dq=dqP +dqN. (6)

By multiplying by JP we get

dp=JPdqP +JPdqN, (7)

where it is requested that

JPdqN =0. (8)

Then

dp=JPdqP⇒dqP =J+
PAdp. (9)

Let dqN be given in the following form

dqN =NPAdqS, (10)

where dqS is an arbitrary n-dimensional vector of joint
increments associated with the secondary task, and matrix
NPA is of dimension n3 n. Because of (8) the following must
be valid

JPNPA =0. (11)

According to Liegois22 matrix

NPA =I2J+
PAJPA (12)

lies in the null space of JP. The null space projection
operator NPA is indempotent NPANPA =NPA. It is also
Hermitian, NT

PA =NPA, when A is a unity matrix. The degree
of redundancy is mathematically determined as the rank of
the null space projection operator

D= rank{NPA}=n2 rank{JP}. (13)

D is the achievable order of the secondary motion that can
in general change in dependence on q but it does not depend
on A if this is full-rank. We assume that l>D.

By substituting (10) into (6) and by multiplying by JS we
have

ds=JSdqP +JSNPAdqS⇒dqS =(JSNPA)+ (ds2JSdqP). (14)

An increment in the secondary task coordinates ds depends
on both dqN and dqP, so that it can be separated into

ds=dsP +dsN, dsP =JSdqP, dsN =JSdqN. (15)

If we take into account (6, 10, 15), a complete increment in
joint coordinates can be written as follows

dq=J+
PAdp+NPA(JSNPA)+ (ds2JSJ

+
PAdp). (16)

It is the well know task priority approach where the first part
of the joint increment is the particular solution which is
associated with the primary task. It is of a higher priority in
comparison with the second part which is the homogeneous
solution associated with the secondary task.1,8

3. RANGE OF SECONDARY TASK SPACE
In accordance to the definition of the manipulability
ellipsoids,23 a sphere dqT

SdqS =1 produces an ellipsoid in l-

dimensional space of ds whose principal axes are the Eigen
vectors of JSJ

T
S and their lengths are the related singular

values. Even though there is some controversy in its
definition and utilisation when different types of task
coordinates are treated simultaneously, such as linear and
angular velocities,13,24 the measure of manipulability gives a
significant insight in the motion properties of a mechanism,
in particular when this is redundant. Since an increment in
joint coordinates is referred to as the secondary motion of a
redundant manipulator when it does not produce any
increment in the primary task coordinates, it is clear that
only a part of elements ds in the manipulability ellipsoid
(the space of vectors dsN) can be accomplished by the
secondary motion of the redundant manipulator; the space
of dsN is the range of the secondary task.

The secondary motion can only be assembled in the null
space of the Jacobian matrix Jp where a vector dqS is
projected through the null space operator NPA onto dqN.
Thus, an element on the surface of the sphere dqT

SdqS =1 is
transformed onto an element that lies inside the sphere
defined by dqT

NdqN#1. The null space of the Jacobian
matrix Jp is span by the n-dimensional orthonormal Eigen
vectors of matrix NPANT

PA =NPA, denoted as EPA =(eA1,
eA2, . . . , eAD). Note that only D Eigen vectors correspond to
a non zero singular value of NPA. Thus, any combination dqN

described as a function of parameters g=(g1, . . . , gD)T

dqN =EPAg (17)

is an element of the surface of the sphere dqT
NdqN =1 if

g2
1 +g2

2 + · · ·+g2
D =1. (18)

The values of dsN, as defined in (15), that are functions of
dqN constrained by (18), form an ellipsoid in the vector
space of ds that can be accomplished by the secondary
motion of the manipulator. We could call it the secondary
manipulability ellipsoid (Figure 1), whose principal axes are
the l-dimensional Eigen vectors of matrix JSNPA(JSNPA)T

(denoted by uA1, uA2, . . . , uAD) that correspond to the non
zero values of the singular values of matrix JSNPA. The non
zero singular values are the lengths of the principal axes. We
assume here that rank{JS}= l$D, so that rank{JSNPA}=D.
The secondary manipulability ellipsoid characterises the
range of the secondary task bounded by (18). It visualises
the potential of a redundant manipulator to solve the

Fig. 1. Manipulability ellipsoid mapped in the null space of the
primary task.
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secondary task with no interference with the primary task in
a given location q. Some aspects of studying redundancy
from a similar viewpoint were reported.25

4. BEST NULL SPACE PROJECTION
In relation to the formulation of the range of the secondary
task space in the previous section we can state that the
vector space of dsN that isn’t in conflict with the primary
task is span by the set of l-dimensional orthonormal Eigen
vectors uA1, uA2, . . . , uAD of matrix JSNPA(JSNPA)T. There-
fore, it is possible to distinct an arbitrary dsN in the range of
the secondary task in the following form

dsN =UPAg. (19)

Here

UPA =[uA1. . .uAD] (20)

is a l3 D orthogonal matrix (its rows are orthonormal
vectors) UT

PAUPA =I, and g=(g1, . . . ,gD)T is an arbitrary
vector.

To obtain a vector g that produces the desired increment
in the secondary task coordinates ds we must combine
expressions (15) and (19). Thus we get

UPAg=ds2dsP. (21)

By multiplying (21) by UT
PA and by taking advantage of the

orthogonality of UPA we can extract g explicitly

UT
PAUPA g=g=UT

PA(ds2dsP). (22)

It is then substituted in (19)

dsN =UPAUT
PA(ds2dsP), (23)

and from (15)

dqN =J+
S UPAUT

PA(ds2dsP). (24)

The resultant formula

dq=J+
PAdp+J+

S UPAUT
PA(ds2J+

PAdp). (25)

is an alternative to (16) and represents the best possible
increment in joint coordinates dq that produces the desired
secondary displacement expressed by vector ds.

The following equality

UPAUT
PA =UPBUT

PB, (26)

where A and B are arbitrary full rank positive definite n3 n
weighting matrices as introduced in (3), assures that the
secondary part of the joint displacement J+

S UPAUT
PAds does

not depend on the selection of the weighting matrix and thus
always offers the best attainable solution from the viewpoint
of the secondary task. In our opinion, this is the most
positive aspect of formulating the inverse kinematics
solution in the form of (25) instead of (16). In many control
schemes the selection of the weighting matrix is of crucial
importance because it provides a desired dynamic property
of the manipulator which should not be disturbed by the
secondary task. The weighting matrix rotates the null space
of the Jacobian in what was termed the effective null
space.17 It is the central point of many attempts to resolve
redundancy with solutions processing different character-
istics that assist to avoid obstacles and singularities or

minimise a given criterion.12,15,16,26 Lately, a weighted null
space projection operator suitable for a weighted joint
torque optimisation was reported17 with the aim to avoid
instabilities that arise from unrealisable joint velocities. On
the other hand, the proposition in which the weighting
matrix is proportiional to the mechanism’s inertia matrix,27

has become the most standard control scheme of redundant
robots.

5. STEEPEST DESCENT OPTIMISATION
Assume that the secondary task of a redundant manipulator
is to mimimise a quadratic cost function (which is a very
reasonable assumption in a vast variety of practical
implementations)

c=sTWs→min
q

, (27)

where W is a diagonal l3 l full-rank matrix of positive
weights wi, while dqN is constrained by the primary task. An
iterative procedure is to provide a series of dqN that step by
step minimise c and do not interfere with the primary task.
In a commonly used gradient projection technique to
minimise a scalar cost function13,22 the joint displacement is
expressed as

dq=kPJ
+
PAdp2kSNPAJ+

S H∂c
∂si
J, (28)

which is analogous to (18). Here kS and kP are selected in
order to assure the convergence of the numerical procedure.
The trouble with such an approach is that in general the
projection of the gradient in the null space of Jp rotated by
A many not provide the maximum decrease of the cost
function. Hence, the iterative procedure may not be able to
locate the desired minimum in an acceptable number of
iterations. One remedy is to adequately rotate the null space
of Jp by changing the weighting matrix A. As mentioned in
the previous section, this may not be the best way because
it interferes with the desired dynamic properties of the
manipulator. For this reason we propose to use

dq=kPJ
+
PAdp2kSJ

+
S UPAUT

PA SH∂c
∂si
J2J+

PAdpD. (29)

which assures the steepest descent optimisation of the
quadratic scalar cost function c independently on the chosen
weighting matrix A.

6. NUMERICAL EXAMPLE
To illustrate the above concepts, a simple planar mechanism
with four parallel revolute joints is used (Figure 2). Vector
q=(q1, q2, q3, q4)

T includes the joint angles and the primary
task coordinates p=(x, y)T represent the position vector of
the end effector

ui =ui21 +qi, i=1, . . . , 4, u0 =0,

xi =di cos(ui)+xi+1, i=4, . . . , 1, x5 =0

yi =di sin(ui)+yi+1, i=4, . . . ,1, y5 =0, (30)
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where x=xl, y=yl, and di are the link lengths. The Jacobian
and its derivatives are

JP =F2y1

x1

2y2

x2

2y3

x3

2y4

x4
G,

∂JP

∂q1

=2Fx1

y1

x2

y2

x3

y3

x4

y4
G, 

∂JP

∂q2

=Fx2

y2

x2

y2

x3

y3

x4

y4
G,

∂JP

∂q3

=2Fx3

y3

x3

y3

x3

y3

x4

y4
G, 

∂JP

∂q4

=2Fx4

y4

x4

y4

x4

y4

x4

y4
G. (31)

In the treated example D=2 in non-singular configura-
tions. The secondary task of the manipulator is to minimise
the static joint torques s=t=JT

Pf produced by an arbitrary
finite force vector f applied to the end effector. The Jacobian
related to the secondary task is

JS =F∂JT
P

∂q1

f 
∂JT

P

∂q2

f
∂JT

P

∂q3

f
∂JT

P

∂q4

fG. (32)

In this case, l=n and JS is quadratic. The pseudoinverse is
then obtained by J+

S =J21
S . It follows

dt=JSdq, dq=J21
S dt. (33)

In the described series of numerical experiments, the link
lengths (d1, d2, d3, d4)

T =(1.0, 0.9, 0.8, 0.7)T were chosen and
a force f=(0.0, 1.0)T was applied to the end effector. The
primary task was to position the end effector in an arbitrary
position p0 =(1.2, 0.9)T. The secondary task was to minimise
the unweighted square norm of joint torques

c=tTt. (34)

Note that at qM =(2.42, 22.29, 0.71, 21.57)T, |t |=2.57
reaches the absolute maximum of joint torques, and at
qm =(0.08, 1.142, 0.24, 23.15)T |t |=1.22 is the absolute
minimum. We evaluated the following numerical minimisa-
tion technique

qr+1 =qr +dqr, (35)

where r=0,1, . . . is the number of iterations. The increment
in each iteration dqr was chosen (a) – in the proposed form
established in (29), and (b) – in the standard form given in
(28). In both cases we imposed A=I. The convergence was
evaluated in terms of the following norms ep = |pr 2p0|,
eq = |qr 2qm|, et =|tr| normalised by their maximum values.

In the experiment, the initial estimation for the vector of
joint coordinates was set to q0 =(2.43, 22.18, 0.70,
21.57)≈qM. Approach (a) showed much better con-
vergence and numerical stability than (b). The
characteristics of the first are presented in Figure 3. The
values of norms ep, eq, et are shown as functions of the
number of iterations when kP =0.5, kS =0.25 and kP =0.05,
kS =0.025 were chosen. In both cases the procedure
stabilised at the desired absolute minimum qm. It is
important, however, that the form of function eq did not
depend on chosen constants kP and kS. This was the main
distinction with respect to approach (b) presented in Figure
4 at kP =0.05, kS =0.025, and kP =0.005, kS =0.0025. It is
evident that by (b) the absolute minimum qm was not found.
The procedure stabilised at q'= (1.61, 22.06, 1.22,
23.84)T and at q"=(1.03, 23.44, 2.89, 26.36)T. The
obtained results depended on the chosen values of kP, kS as
is seen from the appearance of function eq.

A stabile convergence was obtained with smaller values
of constants kP, kS so that considerably more iterations were
needed than by approach (a). Figure 5 shows the manip-
ulator’s configurations corresponding to the initial
estimation qM, to minimum qm, as well as to q' and q". In
Figure 6, the norm |t'|= |t+dt| where dt comes either from
(a) or (b), is established depending on the value of constant
kS. The above curves in Figure 6 were calculated at q0. In
accordance to the presented theory, kS =1.0 provided the
maximum decrease of the cost function if we utilised
approach (a). The best performance of approach (b) was
obtained at kS =0.28. In contrast to (a), the best kS in (b) isn’t

Fig. 2. Planar 4R manipulator.

Fig. 3. Convergence of the optimisation procedure when approach
(a) is applied.
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known a priori and changes with q. Moreover, approach (b)
is quite sensitive to kS. The curves presented below in Figure
6 were calculated at q'. In this case, approach (b) failed to
provide any decrease of the cost function without regard to
the value of kS, while (a) was still effective and predictable
(the best kS =1.0).

In a series of additional experiments, the end effector
positions were changed throughout the workspace and
different initial estimations were examined. We confirmed
the advantages of the introduced optimisation technique
over the standard one. The approach adopted in this work
does not guarantee the absolute optimum in all circum-
stances, but its potential to locate the absolute optimum was
consistently greater than that of the standard approach. It
was also observed that the convergence was assured in a
relatively modest number of iterations. The major criticism
to the proposed approach is that in the present form it
incorporates the calculation of Eigen vectors of JSNP in each
iteration. However, the singular value decomposition, which
provides Eigen vectors, is nowadays quite a frequent
operation in advanced kinematic control.28

7. CONCLUSIONS
A standard technique to provide an effective execution of
the secondary task of redundant manipulators consists of
rotating the null space projection operator by changing the
weighting matrix of the pseudoinverse. Unfortunately, this
matrix cannot be changed arbitrarily since it influences the
manipulator’s performance. In our work we propose an
approach that is independent on the chosen null space
operator. It always provides the best possible execution of
the secondary task without interfering with the primary task.
Hence, the secondary task is executed more efficiently and
the numerical method is more robust.

The paper shows a numerical example with a 4R planar
manipulator where the primary task was to position the end
effector and the secondary task to minimise the static joint
torques. We compared the proposed approach with a
standard one. In both we utilised the unweighted pseudo-
inverse. The proposed approach showed much faster and
stable convergence and its potential to locate the absolute
optimum was much greater.
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