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In this paper, we main consider spherically symmetric tree T . First, under the condition
lim supn→∞ |T (n)|/|Ln| < ∞, we investigate the strong law of large numbers (SLLNs) for
T -indexed Markov chains on the nth level of T . Then, combining the Stolz theorem, we
obtain the SLLNs on T . Finally, we get Shannon–McMillan theorem for T -indexed Markov
chains. The obtained theorems are generalizations of some known results on Cayley tree
TC,N and Bethe tree TB,N .

1. INTRODUCTION

By a tree T we mean an infinite, locally finite, connected graph with a distinguished vertex
o called the root and without loops or cycles. We only consider trees without leaves. That
is, the degree (the number of neighboring vertices) of each vertex (except o) is required to
be at least 2.

The set of all vertices with distance n(= 0, 1, 2, . . .) from the root, denote by Ln, is
called the nth level of T . We denote by T

(n)
(m) the union from the mth to nth level of T ,

specially by T (n) the union from the root to nth level of T . For each vertex t, there is a
unique path from o to t, and |t| for the number of edges on this path. For any two vertices
s and t, denote by s ≤ t, if s is on the unique path from the root o to t, denote by s ∧ t the
vertex farthest from o satisfying s ∧ t ≤ s and s ∧ t ≤ t. If s ≤ t and |s| = |t| + k, then we
say t is the kth predecessor of s. In this paper, we denote the first predecessor of t by 1t,
the second predecessor of t by 2t, . . . , and by nt the nth predecessor of t. We also call t as
a son of 1t. We set XA = {Xt, t ∈ A} and denote by |A| the number of vertices of A.

If the degree of each vertex on a tree is N + 1 , we call it a Bethe tree, denote by TB,N ;
If each vertex on a tree has N sons, we call it a Cayley tree, denote by TC,N . Both the
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Figure 1. The T (4) of a spherically symmetric tree (solid line).

Bethe tree and the Cayley tree are called homogeneous trees. If the degrees of any vertices
on a tree T are uniformly bounded, then we call T a uniformly bounded degree tree (see
[3,6]). If every vertex at the nth level of T has the same degree (may depend on n), then we
call T a spherically symmetric tree(see [1]). A spherically symmetric tree example is given
below (see Figure 1).

Remark 1: From the definitions we know that the homogeneous tree model is a special case
of the uniformly bounded degree tree or spherically symmetric tree.

Definition 1 (see [1]): Let S be a finite state space, {Xt, t ∈ T} be a collection of S-valued
random variables defined on the probability space (Ω,F,P). Let

{p(x), x ∈ S} (1)

be a distribution on S, and
(P (y|x)), x, y ∈ S (2)

be a stochastic matrix on S2. If for any vertex t,

P(Xt = y|X1t
= x and Xs for t ∧ s ≤ 1t)

= P(Xt = y|X1t
= x) = P (y|x) ∀x, y ∈ S, (3)

and
P(X0 = x) = p(x) ∀x ∈ S,

{Xt, t ∈ T} will be called S-valued Markov chains indexed by an infinite tree T with the
initial distribution (1) and transition matrix (2), or called T -indexed Markov chains with
state-space S.
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Since Benjamini and Peres [1] have given the notion of the tree-indexed Markov chains
and studied the recurrence and ray-recurrence for them. Berger and Ye (see [2,4,12]) studied
the entropy properties for some stationary random fields on homogeneous tree. Some papers,
such as [9–11], studied the strong limit properties for Markov chains field on homogeneous
trees. Some literatures, such as [3,6,8], studied the strong limit properties for Markov chains
indexed by an infinite tree with uniformly bounded degree.

However, in [2,3,5,6,8–12], the degrees of the vertices in the tree models are uniformly
bounded. What if the degree is not uniformly bounded? Many authors tried to study the
limit properties of Markov chains indexed by such trees. Liu Wen and Yang Weiguo [5]
studied the deviation theorems for Markov chains field on a generalized Bethe tree or
a generalized Cayley tree, in fact the tree model is a special case of uniformly bounded
degree tree. Wang Kangkang and Zong Decai [7] tried to establish some Shannon–McMillan
approximation theorems for Markov chain field on the generalized Bethe tree, but the results
seem crude. In this paper, we drop the uniformly bounded restriction. We mainly consider
spherically symmetric trees. We arrange the rest of this paper as following. In part 2, we
give some notations and lemmas; In part 3, we state our main results, under the con-
dition lim supn→∞ |T (n)|/|Ln| < ∞, the strong law of large numbers and AEP with a.e.
convergence for finite Markov chains indexed by a spherically symmetric tree. Our present
outcomes can imply the results on Cayley tree TC,N and Bethe tree TB,N with degree N ≥ 2
(see [11]), but cannot be implied by [3], and the technique is different from the above articles.

The following examples are used to explain the condition lim supn→∞ |T (n)|/|Ln| < ∞.

Example 1: A Cayley tree TC,N (N ≥ 2) satisfies this condition. In fact, in such
a tree, |Ln| = Nn and |T (n)| = 1 + N + N2 + · · · + Nn, hence lim supn→∞ |T (n)|/|Ln| =
N/(N − 1) < ∞.

Example 2: A kind of spherically symmetric tree (see Figure 1), on which the degree
of the root o is 2, and for any integer n ≥ 1, the degree of the vertices on the nth level is
n + 2. Actually, in such a tree, |Ln| = 2 × n! and |T (n)| = 1 + 2 + 2 × 2! + 2 × 3! + · · · + 2 ×
n!, where n! = 1 × 2 × · · · × (n − 1) × n. It is easy to verify that lim supn→∞ |T (n)|/|Ln| =
1 < ∞.

Example 3: If all the vertices have the same degree 2 in a spherically symmetric tree, then
lim supn→∞ |T (n)|/|Ln| = ∞. Actually, in this case, the tree becomes the set of integers. We
will not consider this case in this work.

2. SOME NOTATIONS AND LEMMAS

Let k ∈ S, denote

Sn(k) =
∑

t∈T (n)

δk(Xt), (4)

S1
n(k) =

∑
t∈T

(n)
(1)

δk(X1t
), (5)

where

δk(i) =

{
1, i = k,

0, i �= k.
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Sn(k) can be considered as the number of k in the set of random variables XT (n)
= {Xt :

t ∈ T (n)}, S1
n(k) can be considered as the number of k’s among the variables in T (n−1),

weighted according to the number of sons. Denote

Ln(k) =
∑
t∈Ln

δk(Xt) = Sn(k) − Sn−1(k), (6)

L1
n(k) =

∑
t∈Ln

δk(X1t
) = S1

n(k) − S1
n−1(k). (7)

Remark 2: By (4) and (5), we have
∑

k∈S Sn(k) = |T (n)|, ∑
k∈S S1

n(k) = |T (n)| − 1.

Lemma 1 (Huang and Yang [3, Theorem 1]): Let T be an infinite tree. Let (Xt)t∈T be a
T -indexed Markov chain with finite states space S defined as before, {gt(x, y), t ∈ T} be
functions defined on S2. Let Lo = {o}, and

Gn(ω) =
∑

t∈T
(n)
(1)

E[gt(X1t
,Xt)|X1t

], (8)

{an, n ≥ 1} be a sequence of nonnegative random variables. Let α > 0. Set

B = { lim
n→∞ an = ∞}, (9)

and

D(α) =

⎧⎪⎨
⎪⎩lim sup

n→∞
1
an

∑
t∈T

(n)
(1)

E[g2
t (X1t

,Xt)eα|gt(X1t ,Xt)||X1t
] = M(ω) < ∞

⎫⎪⎬
⎪⎭ ∩ B, (10)

Hn(ω) =
∑

t∈T
(n)
(1)

gt(X1t
,Xt). (11)

Then

lim
n→∞

Hn(ω) − Gn(ω)
an

= 0 a.e. on D(α). (12)

Lemma 2 (Yang [11, Theorem 2]): Let T be a homogeneous tree, (Xt)t∈T be a T -indexed
Markov chain with finite states space S defined by Definition 1, Sn(k) be defined by (4). Let
(P (y|x))x,y∈S be a ergodic stochastic matrix with unique stationary distribution π. Then

lim
n→∞

Sn(k)
|T (n)| = π(k) a.e.. (13)

Lemma 3: Let T be a spherically symmetric tree, (Xt)t∈T be a T -indexed Markov chain
with finite states space S defined by Definition 1, Sn(k) and S1

n(l) be defined by (4) and (5),
respectively. If

lim sup
n→∞

|T (n)|
|Ln| < ∞, (14)

then we have

lim
n→∞

⎧⎪⎨
⎪⎩

Sn(k)
|Ln| −

∑
l∈S

P (k|l)S1
n(l)

|Ln|

⎫⎪⎬
⎪⎭ = 0 a.e.. (15)
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Proof: Let an = |Ln| and gt(X1t
,Xt) = δk(Xt) in Lemma 1, we can find that

Hn(ω) = Sn(k) − δk(Xo),

Gn(ω) =
∑

t∈T
(n)
(1)

E[gt(X1t
,Xt)|X1t

] =
∑

t∈T
(n)
(1)

E[δk(Xt)|X1t
]

=
∑

t∈T
(n)
(1)

P (k|X1t
) =

∑
l∈S

P (k|l)
∑

t∈T
(n)
(1)

δl(X1t
) =

∑
l∈S

P (k|l)S1
n(l).

In order to show (15), we only need to verify D(α) = Ω in Lemma 1. In fact, by (10) and (14),

lim sup
n→∞

1
an

∑
t∈T

(n)
(1)

E[g2
t (X1t

,Xt)eα|gt(X1t ,Xt)||X1t
]

= lim sup
n→∞

1
|Ln|e

α
∑
l∈S

P (k|l)S1
n(l) ≤ eα lim sup

n→∞
|T (n)|
|Ln| < ∞. (16)

By (9), (10) and (16), we have D(α) = Ω. Hence (15) follows by Lemma 1.

Lemma 4: Let Ln(k) and L1
n(l) be defined by (6) and (7), respectively. Under the

assumption of Lemma 2, we have

lim
n→∞

⎧⎪⎨
⎪⎩

Ln(k)
|Ln| −

∑
l∈S

P (k|l)L1
n(l)

|Ln|

⎫⎪⎬
⎪⎭ = 0 a.e., (17)

lim
n→∞

⎧⎨
⎩Ln(k)

|Ln| −

∑
l∈S

P (k|l)Ln−1(l)

|Ln−1|

⎫⎬
⎭ = 0 a.e.. (18)

Proof: Since all the vertices on the same level have the same degree, hence for any n ≥ 1,
by (6) and (7),

L1
n(l) =

∑
t∈Ln

δl(X1t
) =

∑
σ∈Ln−1

|Ln|
|Ln−1|δl(Xσ) =

|Ln|
|Ln−1|Ln−1(l), (19)

by (17)–(19) holds. Now we only need to show (17). In fact, by (6), (7), and (15) we have,

∣∣∣∣∣∣∣
Ln(k)
|Ln| −

∑
l∈S

P (k|l)L1
n(l)

|Ln|

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Sn(k) − Sn−1(k)

|Ln| −

∑
l∈S

P (k|l)[S1
n(l) − S1

n−1(l)]

|Ln|

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
Sn(k)
|Ln| −

∑
l∈S

P (k|l)S1
n(l)

|Ln|

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
Sn−1(k)
|Ln| −

∑
l∈S

P (k|l)S1
n−1(l)

|Ln|

∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣
Sn(k)
|Ln| −

∑
l∈S

P (k|l)S1
n(l)

|Ln|

∣∣∣∣∣∣∣
+

|Ln−1|
|Ln|

∣∣∣∣∣∣∣
Sn−1(k)
|Ln−1| −

∑
l∈S

P (k|l)S1
n−1(l)

|Ln−1|

∣∣∣∣∣∣∣
→ 0 a.e. (n → ∞),

which implies (17) directly.

3. STRONG LAW OF LARGE NUMBERS AND SHANNON–MCMILLAN THEROEM

Theorem 1: If T is a spherically symmetric tree, Ln(k) is defined by (6), under the
assumption of Lemma 2

lim
n→∞

Ln(k)
|Ln| = π(k) a.e.. (20)

Proof: The following method is similarly with [11], we give the details in order to make
the reading clearly. Multiplying the kth equality of (17) by P (i|k), adding them together,
and using (18) once again, we have

0 = lim
n→∞

⎧⎨
⎩

∑
k∈S

P (i|k)Ln(k)

|Ln| −

∑
l∈S

∑
k∈S

P (i|k)P (k|l)Ln−1(l)

|Ln−1|

⎫⎬
⎭

= lim
n→∞

⎧⎨
⎩

∑
k∈S

P (i|k)Ln(k)

|Ln| − Ln+1(i)
|Ln+1| +

Ln+1(i)
|Ln+1| −

∑
l∈S

∑
k∈S

P (i|k)P (k|l)Ln−1(l)

|Ln−1|

⎫⎬
⎭

= lim
n→∞

⎧⎪⎨
⎪⎩

Ln+1(i)
|Ln+1| −

∑
l∈S

P (2)(i|l)Ln−1(l)

|Ln−1|

⎫⎪⎬
⎪⎭ a.e.,

where P (m)(l|j) is the m-step transition probability determined by the transition matrix
(P (y|x))x,y∈S . By induction, we have

lim
n→∞

⎧⎪⎨
⎪⎩

Ln+m(k)
|Ln+m| −

∑
l∈S

P (m+1)(k|l)Ln−1(l)

|Ln−1|

⎫⎪⎬
⎪⎭ = 0 a.e. (21)

Since
lim

m→∞P (m+1)(k|l) = π(k) a.e. k ∈ S, (22)

and ∑
l∈S

Ln−1(l)

|Ln−1| = 1 a.e., (23)

by (21), (22) and (23), (20) holds.
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Theorem 2: If T is a spherically symmetric tree, Sn(k) and S1
n(k) is defined by (4) and

(5) respectively, under the assumption of Lemma 2, (13) holds. Furthermore, we have

lim
n→∞

S1
n(k)

|T (n)| = π(k) a.e. (24)

Proof: Noticing, by (4) and (20) is equivalent to

lim
n→∞

Sn(k) − Sn−1(k)
|T (n)| − |T (n−1)| = π(k) a.e., (25)

by (25) and Stolz theorem, (13) holds. By (19) and (20), we have

lim
n→∞

L1
n(k)
|Ln| = lim

n→∞
Ln−1(k)
|Ln−1| = π(k) a.e.,

by (5) we have

lim
n→∞

S1
n(k) − S1

n−1(k)
|T (n)| − |T (n−1)| = π(k) a.e., (26)

(24) follows by (26) and Stolz theorem.
According to the Theorem 2, we can establish the Shannon–McMillan theorem with

a.e. convergence for Markov chain fields on a spherically symmetric tree.
Let T be a tree, (Xt)t∈T be a stochastic process indexed by tree T with state space S.

Denote
P(xT (n)

) = P(XT (n)
= xT (n)

).

Let

fn(ω) = − 1
|T (n)| lnP(XT (n)

), (27)

fn(ω) will be called the entropy density of XT (n)
. If (Xt)t∈T is a T -indexed Markov chain

with state space S defined by Definition 1, we have

P(xT (n)
) = P(XT (n)

= xT (n)
) = p(xo)

∏
t∈T

(n)
(1)

P (xt|x1t
),

and

fn(ω) = − 1
|T (n)| [lnP (Xo) +

∑
t∈T

(n)
(1)

ln P (Xt|X1t
)]. (28)

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in prob-
ability, a.e. convergence) is called the Shannon–McMillan theorem or the entropy theorem
or the AEP in information theory.

Lemma 5 (Yang, [11, Theorem 2]): Let T be a homogeneous tree, under the same assump-
tion of lemma 2, then

lim
n→∞ fn(ω) = −

∑
l∈S

∑
k∈S

π(l)P (k|l) ln P (k|l) a.e.. (29)

Theorem 3: If T is a spherically symmetric tree, under the assumption of lemma 2, (29)
holds.

https://doi.org/10.1017/S0269964815000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000108


480 P. Weicai, Y. Weiguo, and S. Zhiyan

Proof: Let an = |T (n)| and gt(X1t
,Xt) = − ln P (Xt|X1t

) in Lemma 1. First, we say
D(α) = Ω for any 0 < α < 1. In fact, by (10),

lim sup
n→∞

1
an

∑
t∈T

(n)
(1)

E[g2
t (X1t

,Xt)eα|gt(X1t ,Xt)||X1t
]

= lim sup
n→∞

1
|T (n)|

∑
t∈T

(n)
(1)

E[(− ln P (Xt|X1t
))2eα|−ln P (Xt|X1t )||X1t

]

= lim sup
n→∞

1
|T (n)|

∑
t∈T

(n)
(1)

∑
xt∈S

(ln P (xt|X1t
))2e−α ln P (xt|X1t )P (xt|X1t

).

≤ 4|S|
e2(α − 1)2

< ∞,

where |S| denotes the number of the states in S, and (lnP (xt|X1t
))2e−α ln P (xt|X1t )P (xt|X1t

)
largest value is 4|S|/[e(α − 1)]2 for any 0 < α < 1.

By (8), (11), (24) and (28),

Hn(ω)
|T (n)| = − 1

|T (n)|
∑

t∈T
(n)
(1)

ln P (Xt|X1t
) = fn(ω) +

ln p(Xo)
|T (n)| , (30)

and

Gn(ω)
|T (n)| = −

∑
k,l∈S

P (k|l) ln P (k|l) S1
n(l)

|T (n)| → −
∑

k,l∈S

π(l)P (k|l) ln P (k|l) a.e. (n → ∞).

(31)
By (30), (31), and Lemma 1, (29) holds. We complete the proof.
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