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The knowledge gradient (KG) policy was originally proposed for online ranking and selec-
tion problems but has recently been adapted for use in online decision-making in general
and multi-armed bandit problems (MABs) in particular. We study its use in a class of
exponential family MABs and identify weaknesses, including a propensity to take actions
which are dominated with respect to both exploitation and exploration. We propose vari-
ants of KG which avoid such errors. These new policies include an index heuristic, which
deploys a KG approach to develop an approximation to the Gittins index. A numerical
study shows this policy to perform well over a range of MABs including those for which
index policies are not optimal. While KG does not take dominated actions when ban-
dits are Gaussian, it fails to be index consistent and appears not to enjoy a performance
advantage over competitor policies when arms are correlated to compensate for its greater
computational demands.

Keywords: stochastic dynamic programming

1. INTRODUCTION

Bayes sequential decision problems (BSDPs) constitute a large class of optimization prob-
lems in which decisions (i) are made in time sequence and (ii) impact the system of interest
in ways which may be not known or only partially known. Moreover, it is possible to learn
about unknown system features by taking actions and observing outcomes. This learning
is modeled using a Bayesian framework. One important subdivision of BSDPs is between
offline and online problems. In offline problems, some decision is required at the end of a
time horizon and the purpose of actions through the horizon is to accumulate information
to support effective decision-making at its end. In online problems, each action can bring an
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immediate payoff in addition to yielding information, which may be useful for subsequent
decisions. This paper is concerned with a particular class of online problems although it
should be noted that some of the solution methods have their origins in offline contexts.

The sequential nature of the problems coupled with imperfect system knowledge means
that decisions cannot be evaluated alone. Effective decision-making needs to account for
possible future actions and associated outcomes. While standard solution methods such as
stochastic dynamic programming can in principle be used, in practice they are computa-
tionally impractical and heuristic approaches are generally required. One such approach is
the knowledge gradient (KG) heuristic. Gupta and Miescke [8] originated KG for applica-
tion to offline ranking and selection problems. After a period of time in which it appears
to have been studied little, Frazier, Powell, and Dayanik [5] expanded on KG’s theoretical
properties. It was adapted for use in online decision-making by Ryzhov, Powell, and Fra-
zier [14] who tested it on multi-armed bandits (MABs) with Gaussian rewards. They found
that it performed well against an index policy, which utilized an analytical approximation
to the Gittins index (GI); see Gittins, Glazebrook, and Weber [7]. Ryzhov, Frazier, and
Powell [12] have investigated the use of KG to solve MABs with exponentially distributed
rewards, while [10] give versions for Bernoulli, Poisson and uniform rewards, though without
testing performance. They propose the method as an approach to online learning problems
quite generally, with particular emphasis on its ability to handle correlated arms. Initial
empirical results were promising but only encompassed a limited range of models. This
paper utilizes an important sub-class of MABs to explore properties of the KG heuristic for
online use. Our investigation reveals weaknesses in the KG approach. We inter alia propose
modifications to mitigate these weaknesses.

In Section 2, we describe a class of exponential family MABs that we will focus on,
together with the KG policy for them. Our main analytical results revealing weaknesses in
KG are given in Section 3. Methods aimed at correcting these KG errors are discussed in
Section 4 and are evaluated in a computational study which is reported in Section 5. In this
study, a range of proposals are assessed for Bernoulli and Exponential versions of our MAB
models. Gaussian MABs have characteristics, which give the operation of KG distinctive
features. The issues for such models are discussed in Section 6, together with an associated
computational study in Section 6.1. Section 7 identifies some key conclusions to be drawn.

2. A CLASS OF EXPONENTIAL FAMILY MABS

2.1. MAB Problems for Exponential Families

We consider MABs with geometric discounting operating over a time horizon T ∈ Z
+ ∪ {∞},

which may be finite or not. Rewards are drawn from exponential families with independent
conjugate priors for the unknown parameters. More specifically the setup is as follows:

1. At each decision time t ∈ {0, 1, . . . , T − 1} an action a ∈ {1, . . . , k} is taken. Associ-
ated with each action, a, is an (unknown) parameter, which we denote as θa. Action
a (pulling arm a) yields a reward, which is drawn from the density (relative to some
σ-finite measure on R)

f(y | θa) = eθay−ψ(θa), y ∈ Ω, θa ∈ Θ, (2.1)

where Ω ⊆ R is the support of f, ψ is a cumulant generating function and parameter
space Θ ⊆ R is such that ψ (θ) <∞, ∀θ ∈ Θ. Reward distributions are either discrete
or absolutely continuous, with Ω a discrete or continuous interval [min Ω,max Ω]
where −∞ ≤ min Ω < max Ω ≤ ∞. We shall take a Bayesian approach to learning
about the parameters θa.
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2. We assume independent conjugate priors for the unknown θa with Lebesgue densities
given by

g(θa | Σa, na) ∝ eΣaθa−naψ(θa), θa ∈ Θ, 1 ≤ a ≤ k, (2.2)

where Σa and na are known hyper-parameters. This then defines a predictive density

p(y | Σa, na) =
∫

Θ

f(y | θa)g(θa | Σa, na)dθa (2.3)

which has mean Σa/na. Bayesian updating following an observed reward y on arm a
produces a posterior p(θa|y) = g(θ|Σa + y, na + 1). Thus, at each time we can define
an arm’s informational state as the current value of hyper-parameters Σa, na, such
that the posterior for θa given the observations to date is g(θa|Σa, na). The posterior
for each arm is independent so the informational states of arms not pulled at t are
unchanged.

3. The total return when reward yt is received at time t is given by
∑T−1
t=0 γtyt, where

discount rate γ satisfies either 0 < γ ≤ 1 when T <∞ or 0 < γ < 1, when T = ∞.
The objective is to design a policy, a rule for choosing actions, to maximize the
Bayes’ return, namely the total return averaged over both realizations of the system
and prior information.

The current informational state for all arms, denoted (Σ,n) = {(Σa, na), 1 ≤ a ≤ k}
summarizes all the information in the observations up to the current time.

When 0 < γ < 1, T = ∞, the Bayes’ return is maximized by the GI policy; see Gittins,
Glazebrook, and Weber [7]. This operates by choosing, in the current state, any action a,
satisfying

νGI(Σa, na, γ) = max
1≤b≤k

νGI(Σb, nb, γ) , (2.4)

where νGI is the GI. We describe GIs in Section 4 along with versions adapted for use in
problems with 0 < γ ≤ 1, T <∞. Given the challenge of computing GIs and the general
intractability of deploying dynamic programming to solve online problems, the prime inter-
est is in the development of heuristic policies which are easy to compute and which come
close to being return maximizing.

2.2. The KG Heuristic

The Knowledge Gradient policy KG is a heuristic, which bases action choices both on
immediate returns Σa/na and also on the changes in informational state which flow from a
single observed reward. It is generally fast to compute. To understand how KG works for
MABs suppose that the decision time is t and that the system is in information state (Σ,n)
then. The current decision is taken to be the last opportunity to learn and so from time t+ 1
through to the end of the horizon whichever arm has the highest mean reward following
the observed reward at t will be pulled at all subsequent times. With this informational
constraint, the best arm to pull at t (and the action mandated by KG in state (Σ,n)) is
given by

AKG(Σ,n,t) = arg max
a

{
Σa
na

+H(γ, s) max
1≤b≤k

E

(
Σb + IaY

nb + Ia
| Σ,n,a

)}
, (2.5)

where Y is the observed reward at t and Ia is an indicator taking the value 1 if action a
is taken at t, 0 otherwise. The conditioning indicates that the reward Y depends upon the
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current state (Σ,n) and the choice of action a. The constant H(γ, s) is a suitable multiplier
of the mean return of the best arm at t+ 1 to achieve an accumulation of rewards for the
remainder of the horizon (denoted here by s = T − t). It is given by

H(γ, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ(1 − γs−1)
1 − γ

if 0 < γ < 1, T <∞,

γ

1 − γ
if 0 < γ < 1, T = ∞,

s− 1 if γ = 1, T <∞.

(2.6)

KG can be characterized as the policy resulting from the application of a single policy
improvement step to a policy which always pulls an arm with the highest prior mean return
throughout. Note that for (γ, T ) ∈ (0, 1) × Z

+, H(γ, s) is increasing in both γ (T fixed) and
in T (γ fixed). For any sequence of (γ, T ) values approaching the limit (1,∞) in a manner
which is co-ordinatewise increasing, the value of H(γ, s) diverges to infinity. This fact is
utilized heavily in Section 3.

We now develop an equivalent characterization of KG based on Ryzhov, Powell, and
Frazier [14] which will be more convenient for what follows. We firstly develop an expression
for the change in the maximal mean reward available from any arm when action a is taken
in state (Σ,n). We write

νKG
a (Σ,n) = E

{
max

1≤b≤k
μ+1
b − max

1≤b≤k
μb | Σ,n,a

}
, (2.7)

where μb is the current arm b mean return Σb

nb
and μ+1

b is the mean return available from
arm b at the next time conditional on the observed reward resulting from action a. Please
note that μ+1

b is a random variable. It is straightforward to show that

AKG(Σ,n,t) = arg max
1≤a≤k

{
μa +H(γ, s)νKG

a (Σ,n)
}
. (2.8)

Hence, KG gives a score to each arm and chooses the arm of highest score. It is not an
index policy because the score depends upon the informational state of arms other than the
one being scored. That said, there are similarities between KG scores and GIs. The Gittins
index νGI(Σa, na) exceeds the mean return Σa/na by an amount termed the uncertainty
or learning bonus. This bonus can be seen as a measure of the value of exploration in
choosing arm a. The quantity H(γ, s)νKG

a (Σ,n) in the KG score is an alternative estimate
of the learning bonus. Assessing the accuracy of this estimate will give an indication of the
strengths and weaknesses of the policy.

2.3. Dominated Arms

In our discussion of the deficiencies of the KG policy in the next section, we shall focus,
among other things, on its propensity to pull arms which are suboptimal to another arm
with respect to both exploitation and exploration. Hence, there is an alternative which is
better both from an immediate return and from an informational perspective. We shall call
such arms dominated. We begin our discussion with a result concerning properties of GIs
established by Yu [19].

Theorem 2.1: The Gittins index νGI (cΣ, cn, γ) is decreasing in c ∈ R
+ for any fixed Σ, n, γ

and is increasing in Σ for any fixed c, n, γ.
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We proceed to a simple corollary whose proof is omitted. The statement of the result
requires the following definition.

Definition 2.2: An arm in state (Σ, n) dominates one in state (Σ′, n′) if and only if
Σ/n > Σ′/n′ and n < n′.

Corollary 2.3: The GI policy never chooses dominated arms.

Hence, pulling dominated arms can never be optimal for infinite horizon MABs. We shall
refer to the pulling of a dominated arm as a dominated action in what follows. Exploration
of the conditions under which KG chooses dominated actions is a route to an understanding
of its deficiencies and prepares us to propose modifications to it, which achieve improved
performance. This is the subject matter of the following two sections.

3. THE KG POLICY AND DOMINATED ACTIONS

3.1. Conditions for the Choice of Dominated Actions under KG

This section will elucidate sufficient conditions for the KG policy to choose dominated arms.
A key issue here is that the quantity νKG

a (and hence the KG learning bonus) can equal
zero in cases where the true learning bonus related to a pull of arm a may be far from zero.
Ryzhov, Powell, and Frazier [14] stated that νKG

a > 0. However, crucially, that paper only
considered Gaussian bandits. The next lemma is fundamental to the succeeding arguments.
It says that, for sufficiently high γ, the KG policy will choose the arm with the largest νKG.

Lemma 3.1: ∀Σ,n, t for which maxaνKG
a (Σ,n) > 0 ∃γ∗, T ∗ such that γ > γ∗, T > T ∗ ⇒

AKG (Σ,n, t) = arg maxa νKG
a (Σ,n).

Proof: The result is a trivial consequence of the definition of the KG policy in Section 2.2
together with the fact that H(γ, s) diverges to infinity in the manner described in
Section 2. �

The next result gives conditions under which νKG
a (Σ,n) = 0.

Lemma 3.2: Let Ca (Σ,n) denote maxb �=a μb = maxb �=a Σb/nb. If a ∈ arg maxb μb and the
observation state space, Ω, is bounded below with minimum value min Ω then

νKG
a (Σ,n) = 0 ⇔ Σa + min Ω

na + 1
≥ Ca (Σ,n) ; (3.1)

while if a /∈ arg maxb μb and Ω is bounded above with maximum value max Ω then

νKG
a (Σ,n) = 0 ⇔ Σa + max Ω

na + 1
≤ Ca (Σ,n) . (3.2)

In cases where a ∈ arg maxb μb with Ω unbounded below, and where a /∈ arg maxb μb with Ω
is unbounded above, we have νKG

a (Σ,n) > 0.
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Proof: Note that

νKG
a (Σ,n) = EYa

[
max
b
μ+1
b − max

b
μb | Σ,n,a

]

= EYa

[
max

(
μ+1
a , Ca (Σ,n)

) | Σ,n,a] − max
b
μb. (3.3)

Hence,

νKG
a (Σ,n) = 0 ⇔ EYa

[
max

(
μ+1
a , Ca (Σ,n)

) | Σ,n,a] = max
b
μb. (3.4)

If a ∈ arg maxb μb and so maxbμb = μa then, observing that

EYa

[
max

(
μ+1
a , Ca (Σ,n)

) | Σ,n,a] ≥ EYa

[
μ+1
a | Σ,n,a] = μa, (3.5)

we infer from Eq. (3.4) that νKG
a (Σ,n) = 0 if and only if

max
(
μ+1
a , Ca (Σ,n)

)
= μ+1

a ⇔ μ+1
a ≥ Ca (Σ,n) (3.6)

with probability 1 under the distribution of Ya. Under our setup as described in Section 2,
this condition is equivalent to the right-hand side (RHS) of Eq. (3.1). If a /∈ arg maxb μb,
then maxbμb = Ca (Σ,n) and so, suitably modifying the previous argument, we infer that
νKG
a (Σ,n) = 0 if and only if

max
(
μ+1
a , Ca (Σ,n)

)
= Ca (Σ,n) ⇔ μ+1

a ≤ Ca (Σ,n) (3.7)

with probability 1 under the distribution of Ya. Under our setup as described in Section 2,
this condition is equivalent to the RHS of Eq. (3.2). The unbounded cases follow directly
from the formula for νKG

a (Σ,n) as the change in μa due to an observation has no finite limit
in the direction(s) of unboundedness. This completes the proof. �

Informally, νKG
a = 0 if no outcome from a pull on arm a will change which arm has

maximal mean value. When a ∈ arg maxb μb this depends on the lower tail of the distribution
of Ya, while if a /∈ arg maxb μb it depends on the upper tail. This asymmetry is important
in what follows.

Theorem 3.3: If Ω is bounded below then there are choices of Σ,n,γ, T for which the KG
policy chooses dominated arms.

Proof: If we consider cases for which

Σ1

n1
>

Σ2

n2
, n1 < n2; Σb = cΣ2, nb = cn2, 3 ≤ b ≤ k, c ≥ 1, (3.8)

then it follows that μ2 = μb, ν
KG
2 ≥ νKG

b , 3 ≤ b ≤ k, and all arms except 1 and 2 can be
ignored in the discussion. We first suppose that Ω unbounded above. It follows from
Lemma 3.2 that νKG

2 (Σ,n) > 0. Since min Ω > −∞, we can further choose (Σ,n) such that

Σ1 + min Ω
n1 + 1

≥ Σ2

n2
= C1(Σ,n). (3.9)

From the above result we infer that νKG
1 (Σ,n) = 0. We now suppose that Ω is

bounded above, and hence that ∞ > max Ω > min Ω > −∞. Choose (Σ,n) as follows:
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Σ1 = max Ω + 2min Ω, n1 = 3,Σ2 = max Ω + 3min Ω, n2 = 4. It is trivial that these choices
mean that arm 1 dominates arm 2. We have that

Σ1 + min Ω
n1 + 1

=
max Ω + 3min Ω

4
=

Σ2

n2
= C1(Σ,n) (3.10)

and hence that νKG
1 (Σ,n) = 0. Further we have that

Σ2 + max Ω
n2 + 1

=
2max Ω + 3min Ω

5
>

Σ1

n1
= C2(Σ,n) (3.11)

and hence that νKG
2 (Σ,n) > 0. In both cases discussed (i.e., Ω bounded and unbounded

above) we conclude from Lemma 3.1 the existence of t, γ∗, T ∗ such that γ > γ∗, T >
T ∗ ⇒ AKG(Σ,n, t) = arg maxa νKG

a (Σ,n) = 2, which is a dominated arm, as required. This
concludes the proof. �

Although the part of the above proof dealing with the case in which Ω is bounded
above identifies a specific state in which KG will choose a dominated arm when H(γ, s)
is large enough, it indicates how such cases may be identified more generally. These occur
when the maximum positive change in the mean of the dominated arm (μ2 → μ+1

2 ) is larger
than the maximum negative change in the mean of the dominating arm (μ1 → μ+1

1 ). This
can occur both when the Ya have distributions skewed to the right and also where the
corresponding means are both small, meaning that a large y can effect a greater positive
change in μ2 than can a small y a negative change in μ1. A detailed example of this is given
for the Bernoulli MAB in the next section. Similar reasoning suggests that the more general
sufficient condition for KG to choose dominated arms, namely νKG

2 (Σ,n) > νKG
1 (Σ,n) with

arm 2 dominated, will hold in cases with Ω unbounded above if the distribution of Ya has
an upper tail considerably heavier than its lower tail.

3.2. Stay-on-the Winner Rules

Berry and Fristedt [1] demonstrated that optimal policies for MABs with Bernoulli rewards
and general discount sequences (including all cases considered here) have a stay-on-the-
winner property. If arm a is optimal at some epoch and a pull of a yields a success (ya = 1),
then arm a continues to be optimal at the next epoch. Yu [19] extends this result to the
exponential family considered here in the following way: an optimal arm continues to be
optimal following an observed reward which is sufficiently large. The next result is an
immediate consequence.

Lemma 3.4: Suppose that Ω is bounded above. If arm a is optimal at some epoch and a pull
of a yields a maximal reward (ya = max Ω) then arm a is optimal at the next epoch.

The following result states that the KG policy does not share the stay-on-the-winner
character of optimal policies as described in the preceding lemma. In its statement, we use
ea for the k-vector whose ath component is 1, with zeroes elsewhere.

Proposition 3.5: If Ω is bounded above and below ∃ choices of Σ,n,t, γ, T and a for which
AKG (Σ,n, t) = a, AKG (Σ + maxΩea,n + ea, t) �= a.

Proof: For the reasons outlined in the proof of Theorem 3.3 we may assume without
loss of generality that k = 2. As in that proof we consider the state (Σ,n) with
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Σ1 = max Ω + 2min Ω, n1 = 3,Σ2 = max Ω + 3min Ω, n2 = 4. We suppose that a pull of
arm 2 yields an observed reward equal to max Ω. This takes the process state to
(Σ + maxΩe2,n + e2, t) =

(
Σ/,n/

)
, say. We use the dashed notation for quantities asso-

ciated with this new state. Observe that μ/2 > μ
/
1 and hence that 2 ∈ arg maxb μ

/
b . We note

that
Σ/2 + min Ω

n
/
2 + 1

=
2max Ω + 4min Ω

6
= μ

/
1 = C2(Σ/,n/), (3.12)

which implies via Lemma 3.2 that νKG
2

(
Σ/,n/

)
= 0. We also have that

Σ/1 + max Ω

n
/
1 + 1

=
2max Ω + 2min Ω

4
> μ

/
2 = C1(Σ/,n/), (3.13)

which implies via Lemma 3.2 that νKG
1

(
Σ/,n/

)
> 0. The existence of t, γ, T for which

AKG (Σ,n, t) = 2, while AKG
(
Σ/,n/, t+ 1

)
= AKG (Σ + maxΩe2,n + e2, t) �= 2 now fol-

lows from Lemma 3.1. �

3.3. Examples

We will now give more details of how the KG policy chooses dominated actions in the
context of two important members of the exponential family.

3.3.1. Exponential rewards. Suppose that Ya | θa � Exp(θa) and θa � Gamma
(na + 1,Σa) which yields the unconditional density for Ya given by

ga(y) = (na + 1)Σna+1
a (Σa + 1)−na−2, y ≥ 0, (3.14)

with E(Ya) = Σa/na. Let arm 1 dominate arm 2. For this case Ω = [0,∞) and from
Lemma 3.2, the unboundedness of Ω above means that νKG

2 (Σ,n) > 0, while νKG
1 (Σ,n) = 0

if and only if

Σ1

n1 + 1
≥ Σ2

n2
. (3.15)

Hence from Lemma 3.1, we can assert the existence of t, γ, T for which KG chooses
dominated arm 2 whenever Eq. (3.15) holds.

Ryzhov and Powell [13] discuss the online KG policy for Exponential rewards in detail.
They observe that νKG

a can be zero, but do not appear to recognize that this can yield
dominated actions under the policy. Later work (Ding and Ryzhov [4]) showed that this can
lead to the offline KG policy never choosing the greedy arm, an extreme case of dominated
errors. However, with the online KG policy the greedy arm will eventually be selected as
νKG
a for the other arm tends to zero. These papers note that, in states for which

Σ1

n1 + 1
≤ Σ2

n2
≤ Σ1

n1
, (3.16)

the value of νKG
1 (Σ,n) , while not zero, penalizes the choice of the greedy arm relative

to other arms in a similar way to the bias which yields dominated actions. Policies which
mitigate such bias are given in the next section and are evaluated in the computational
study following.
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3.3.2. Bernoulli rewards. Suppose that Ya | θa � Bern (θa), with θa � Beta (Σa,
na − Σa) and so Ω = {0, 1} and P (Ya = 1) = Σa/na = 1 − P (Ya = 0). Since Ω is bounded
above and below, dominated actions under KG will certainly occur. Demonstrating this in
terms of the asymmetric updating of Beta priors can be helpful in understanding the more
general case of bounded rewards. Use δ+a and δ−a for the magnitudes of the upward and
downward changes in E (Ya) under success and failure, respectively. We have

δ+a =
na − Σa

na (na + 1)
; δ−a =

Σa
na (na + 1)

, (3.17)

from which we conclude that δ+a ≥ δ−a ⇔ μa ≤ 0.5. Prompted by this analysis, consider a
case in which k = 2,Σ1 = Σ2; n1 +m = n2 for some m ∈ N

+. Arm 1 dominates arm 2.
Further, the fact that

Σ1 + min Ω
n1 + 1

=
Σ1

n1 + 1
≥ Σ1

n1 +m
=

Σ2

n2
= C1 (Σ,n) (3.18)

implies via Lemma 3.2 that νKG
1 (Σ,n) = 0. From Lemma 3.2 we also conclude that

νKG
2 (Σ,n) > 0 ⇐⇒ Σ2 + max Ω

n2 + 1
=

Σ1 + 1
n1 +m+ 1

>
Σ1

n1
= C2 (Σ,n) . (3.19)

The strict inequality in the RHS of Eq. (3.19) will hold whenever n1 > (m+ 1) Σ1. Thus,
for suitably chosen t, γ and T, the KG policy will take dominated actions in a wide range of
states. Suppose now that T = ∞ and hence the immediate claim is that under the condition
n1 > (m+ 1) Σ1 the KG policy will take dominated action 2 for γ large enough. We now
observe that in practice dominated actions can be taken for quite modest γ. Returning to
the characterization of the KG policy we infer that in the above example, dominated action
2 will be chosen whenever

n1 > (m+ 1) Σ1,
γ

1 − γ
>

m (n1 +m+ 1)
{n1 − (m+ 1) Σ1} . (3.20)

Such errors will often be costly. Note also that the condition n1 > (m+ 1) Σ1 suggests
that dominated actions occur more often when arms have small mean rewards. This is
investigated further in the computational study following.

3.3.3. Gaussian rewards. Here we have Ya | θa � N (θa, 1) and θa � N (Σa/na, 1/na).
Hence, Ω = R is unbounded and if arm a is chosen, the distribution of μ+

a is symmetric
about μa. In this case, the KG policy does not choose dominated actions and the value of
νKG
a is always greater for the arm with smaller prior precision na. Despite this fact, KG

can still take poor decisions by underestimating the learning bonus for the greedy arm. The
Gaussian MAB is discussed further in Section 6.

4. POLICIES WHICH MODIFY KG TO AVOID TAKING DOMINATED ACTIONS

In this section, we present new policies which are designed to mitigate the defects of the KG
approach elucidated in the previous section. The performance of these are assessed along
with some earlier proposals, in the numerical study of the next section.

Non-dominated KG (NKG): This proposal modifies standard KG by prohibiting
dominated actions. It achieves this by always choosing a non-dominated arm with highest
KG score. Any greedy arm is non-dominated and hence one always exists.
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Positive KG (PKG): The KG score for a greedy arm reflects a negative change in its
posterior mean, while that for non-greedy arms reflect positive changes. The PKG policy
modifies KG such that for all arms it is positive moves, which are registered. It achieves this
by modifying the KG scores for each greedy arm a as follows: in the computation of the score
replace the quantity Ca (Σ,n) = maxb �=a μb by the quantity C∗

a (Σ,n) := 2μa − Ca (Σ,n).
This adjustment transforms the KG scores νKG

a (Σ,n) to adjusted values νPKG
a (Σ,n). The

change maintains the key distance used in the KG calculation as C∗
a − μa = μa − Ca but

ensures that it is non-negative. For non-greedy arms b we have νKG
b (Σ,n) = νPKG

b (Σ,n).

Theorem 4.1: Policy PKG never chooses a strictly dominated arm.

Proof: Suppose that arm 2 is strictly dominated by arm 1 such that Σ1/n1 > Σ2/n2 and
n2 ≥ n1 + 1. In the argument following we shall suppose that k = 2. This is without loss
of generality as the addition of any other arm b with μb ≤ μ1 does not effect the PKG
score of arm 2 and can only increase the PKG score of the non-dominated arm 1. Given
that μ1 > μ2, in order to establish the result, namely that APKG (Σ,n) = 1 it is enough to
establish that νPKG

1 (Σ,n) ≥ νPKG
2 (Σ,n). From the definitions of the quantities concerned

we have that

νPKG
1 (Σ,n) = E

{
max

(
μ+

1 − C∗
1 (Σ,n) | Σ,n,1)

, 0
}

= EY1 max
{(

Σ1 + Y1

n1 + 1
−

(
2Σ1

n1
− Σ2

n2

))
, 0

}
, (4.1)

while

νPKG
2 (Σ,n) = EY2 max

{(
Σ2 + Y2

n2 + 1
− Σ1

n1

)
, 0

}
. (4.2)

However, under the conditions satisfied by (Σ,n) it is easy to show that, ∀y ∈ R,

max
{(

Σ1 + y

n1 + 1
−

(
2Σ1

n1
− Σ2

n2

))
, 0

}
≥ max

{(
Σ2 + y

n2 + 1
− Σ1

n1

)
, 0

}
(4.3)

and hence that

νPKG
1 (Σ,n) ≥ EY1 max

{(
Σ2 + Y1

n2 + 1
− Σ1

n1

)
, 0

}
. (4.4)

But from Shaked and Shanthikumar [15] we infer that Y1 exceeds Y2 in the convex ordering.
Since max

{(
Σ2+y
n2+1 − Σ1

n1

)
, 0

}
is convex in y it follows that

νPKG
1 (Σ,n) ≥ EY1 max

{(
Σ2 + Y1

n2 + 1
− Σ1

n1

)
, 0

}

≥ EY2 max
{(

Σ2 + Y2

n2 + 1
− Σ1

n1

)
, 0

}

= νPKG
2 (Σ,n) (4.5)

and the result follows. �

KG-index (KGI): Before we describe this proposal we note that Whittle [18] produced
a proposal for index policies for a class of decision problems called restless bandits which
generalize MABs by permitting movement in the states of non-active arms. Whittle’s indices
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generalize those of Gittins in that they are equal to the latter for MABs with 0 < γ < 1,
T = ∞. Whittle’s proposal is relevant for MABs with finite horizon T <∞ since time-
to-go now needs to be incorporated into state information which in turn induces a form of
restlessness. In what follows, we shall refer to Gittins/Whittle indices as those which emerge
from this body of work for all versions of the MABs under consideration here.

The KGI policy chooses between arms on the basis of an index which approximates
the Gittins/Whittle index appropriate for the problem by using the KG approach. We
consider a single arm with (Σ, n) prior, finite horizon t and discount factor γ, 0 ≤ γ ≤ 1.
To develop the Gittins/Whittle index νGI

t (Σ, n, γ) for such a bandit we suppose that a
charge λ is levied for bandit activation. We then consider the sequential decision problem
which chooses from the actions {active, passive} for the bandit at each epoch over horizon
t with a view to maximizing expected rewards net of charges for bandit activation. The
value function Vt (Σ, n, γ, λ) satisfies Bellman’s equations as follows:

Vt (Σ, n, γ, λ) = max
{

Σ
n

− λ+ γEY [Vt−1 (Σ + Y, n+ 1, γ, λ)] ; Vt−1 (Σ, n, γ, λ)
}
. (4.6)

It is easy to show that this is a stopping problem in that, once it is optimal to choose the
passive action at some epoch then it will be optimal to choose the passive action at all
subsequent epochs. Hence, Eq. (4.6) may be replaced by the following:

Vt (Σ, n, γ, λ) = max
{

Σ
n

− λ+ γEY [Vt−1 (Σ + Y, n+ 1, γ, λ)] ; 0
}
. (4.7)

We further observe that Vt (Σ, n, γ, λ) decreases as λ increases, while keeping t,Σ, n
and γ fixed. This yields the notion of indexability in index theory. We now define the
Gittins/Whittle index as

νGI
t (Σ, n, γ) = min {λ;Vt (Σ, n, γ, λ) = 0} . (4.8)

This index is typically challenging to compute.
We obtain an index approximation based on the KG approach as follows: In the stopping

problem with value function Vt (Σ, n, γ, λ) above, we impose the constraint that whatever
decision is made at the second epoch is final, namely will apply for the remainder of the
horizon. This in turn yields an approximating value function V KG

t (Σ, n, γ, λ) which when
0 < γ < 1 satisfies the equation

V KG
t (Σ, n, γ, λ)

= max

{
Σ
n

− λ+
γ

(
1 − γt−1

)
(1 − γ)

EY

[
max

(
max

(
Σ + Y

n+ 1
, λ

)
− λ; 0

)
| Σ, n

]
; 0

}
(4.9)

and which is also decreasing in λ for any fixed t,Σ, n and γ. When γ = 1 the constant
multiplying the expectation on the RHS of Eq. (4.9) becomes t− 1. The indices we use for
the KGI policy when T <∞ are given by

νKGI
t (Σ, n, γ) = min

{
λ;V KG

t (Σ, n, γ, λ) = 0
}

= min
{
λ;λ ≥ Σ

n
and V KG

t (Σ, n, γ, λ) = 0
}
, (4.10)

where Σ, n, γ are as previously and t is the time to the end of the horizon. Note that the
second equation in Eq. (4.10) follows from the evident fact that the index is guaranteed to
be no smaller that the mean Σ/n.
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Trivially Vt (Σ, n, γ, λ) and V KG
t (Σ, n, γ, λ) are both increasing in the horizon t and

consequentially so are both νGI
t (Σ, n, γ) and νKGI

t (Σ, n, γ). When 0 < γ < 1 the limits
limt→∞ νGI

t (Σ, n, γ) and limt→∞ νKGI
t (Σ, n, γ) are guaranteed to exist and be finite. These

limits are denoted νGI (Σ, n, γ) and νKGI (Σ, n, γ) respectively, the former being the GI. We
use the indices νKGI (Σ, n, γ) for the KGI policy when 0 < γ < 1, T = ∞.

Theorem 4.2: The KGI policy does not choose dominated arms.

We establish this result via a series of results.

Lemma 4.3: V KG
t (Σ, n, γ, λ) and νKGI

t (Σ, n, γ) are both increasing in Σ for any fixed values

of t, n, γ, λ.

Proof: Since the quantity
(
max

(
Σ+y
n+1 , λ

)
− λ; 0

)
is increasing in y and Y | Σ, n is stochas-

tically increasing in Σ, it follows easily that the expectation on the RHS of Eq. (4.9) is
increasing in Σ. The result then follows straightforwardly. �

We now proceed to consider the equivalent bandit, but with prior (cΣ, cn), where c > 0.

Lemma 4.4: V KG
t (cΣ, cn, γ, λ) is decreasing in c for any fixed values of t,Σ, n, γ and for

any λ ≥ Σ
n .

Proof: First note that for y ≥ Σ/n, the quantity max ((cΣ + y/cn+ 1), λ) , regarded as a
function of c, is decreasing when λ ≥ Σ/n. For y < Σ/n,max ((cΣ + y/cn+ 1), λ) = λ and
hence is trivially decreasing in c. Note also that the quantity max ((cΣ + y/cn+ 1), λ) ,
regarded as a function of y, is increasing and convex. We also observe from Yu [19] that
Y | cΣ, cn is decreasing in the convex order as c increases. It then follows that, for c1 > c2
and for λ ≥ Σ/n,

EY

(
max

(
c1Σ + Y

c1n+ 1
, λ

)
| c1Σ, c1n

)
≤ EY

(
max

(
c1Σ + Y

c1n+ 1
, λ

)
| c2Σ, c2n

)

≤ EY

(
max

(
c2Σ + Y

c2n+ 1
, λ

)
| c2Σ, c2n

)
(4.11)

from which the result trivially follows via a suitable form of Eq. (4.9). �

The following is an immediate consequence of the preceding lemma and Eq. (4.10).

Corollary 4.5: νKGI
t (cΣ, cn, γ) is decreasing in c for any fixed values of t,Σ, n, γ.

It now follows trivially from the properties of the index νKGI
t established above that if

(Σ1, n1) dominates (Σ2, n2) then νKGI
t (Σ1, n1, γ) ≥ νKGI

t (Σ2, n2, γ) for any t, γ. It must also
follow that νKGI(Σ1, n1, γ) ≥ νKGI(Σ2, n2, γ) when 0 < γ < 1. This completes the proof of
the above theorem.

Closed form expressions for the indices νKGI
t are not usually available, but are in simple

cases. For the Bernoulli rewards case of Section 3.3.2 we have that

νKGI
t (Σ, n, γ) =

Σ
n

+
γ

(
1 − γt−1

)
(1 − γ)

Σ (Σ + 1)

(n+ 1)
{
n+ γ(1−γt−1)

(1−γ) Σ
} . (4.12)
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In general numerical methods such as bisection are required to obtain the indices. If the
state space is finite it is recommended that all index values are calculated in advance.

Fast calculation is an essential feature of KG but it should be noted that this is not
universal and that index methods are more tractable in general. An example of this is the
MAB with multiple plays (Whittle [17]). Here m arms are chosen at each time rather than
just one. Rewards are received from each of the arms as normal. For an index policy the
computation required is unchanged – the index must be calculated for each arm as normal
with arms chosen in order of descending indices. The computation for KG is considerably
larger than when m = 1. The KG score must be calculated for each possible combination
of m arms, that is

(
n
m

)
times. For each of these we must find the set of arms with largest

expected reward conditional on each possible outcome. Even in the simplest case, with
Bernoulli rewards, there are 2m possible outcomes. For continuous rewards the problem
becomes much more difficult even for m = 2. It is clear that KG is impractical for this
problem.

An existing method with similarities to KG is the Expected Improvement algorithm of
Jones, Schonlau, and Welch [9]. This is an offline method of which KG can be thought of as
a more detailed alternative. It was compared with KG in Frazier, Powell, and Dayanik [6]
in the offline setting. The Expected Improvement algorithm is simpler than KG and always
assigns positive value to the greedy arm unless its true value is known exactly. Its arm
values are “optimistic” in a manner analogous to the PKG policy described above and it
is reasonable to conjecture that it shares that rule’s avoidance of dominated actions (see
Theorem 4.1). As an offline method it is not tested here but it may be possible to develop
an online version.

5. COMPUTATIONAL STUDY

This section will present the results of experimental studies for the Bernoulli and
Exponential MAB. A further study will be made for the Gaussian MAB in Section 6.1.

5.1. Methodology

All experiments use the standard MAB setup as described in Section 2.1. For Bernoulli
rewards with k = 2 policy returns are calculated using value iteration. All other exper-
iments use simulation for this purpose. These are truth-from-prior experiments i.e. the
priors assigned to each arm are assumed to be accurate.

For each simulation run a θa is drawn randomly from the prior for each arm a ∈
{1, 2, . . . , k}. A bandit problem is run for each policy to be tested using the same set of
parameter values for each policy. Performance is measured by totalling, for each policy, the
discounted true expected reward of the arms chosen. For each problem 160000 simulation
runs were made.

In addition to the policies outlined in Section 4, also tested are the Greedy policy
(described in Section 2.1) and a policy based on analytical approximations to the GI (Brezzi
and Lai [2]), referred to here as GIBL. These approximations are based on the GI for a
Wiener process and therefore assume Normally distributed rewards. However, they can be
appropriate for other reward distributions by Central Limit Theorem arguments and the
authors found that the approximation was reasonable for Bernoulli rewards, at least for
n not too small. Other papers have refined these approximations but, although they may
be more accurate asymptotically, for the discount rates tested here they showed inferior
performance and so only results for GIBL are given.
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5.2. Bernoulli MAB

The first experiment tests performance over a range of γ for k ∈ {2, 10} arms, each with
uniform Beta(1, 1) priors. The mean percentage lost reward for five policies are given in
Figure 1. The results for the greedy policy are not plotted as they are clearly worse than
the other policies (percentage loss going from 0.64 to 1.77 for k = 2). The overall behavior
of the policies is similar for k = 2 and k = 10. KGI is strong for lower γ but is weaker for
higher γ while GIBL is strongest as γ increases. The sharp change in performance for GIBL
at γ ≈ 0.975 occurs because the GIBL index is a piecewise function. Both NKG and PKG
improve on KG for k = 2 but the three KG variants are almost identical for k = 10. The
difference between KG and NKG gives the cost for the KG policy of dominated actions.
These make up a large proportion of the lost reward for KG for lower γ but, as γ increases,
overgreedy errors due to the myopic nature of the KG policy become more significant
and these are not corrected by NKG. These errors are also the cause of the deteriorating
performance of KGI at higher γ. At k = 10 the states given in Section 3.3 where KG was
shown to take dominated actions occur infrequently. This is because, for larger numbers of
arms there will more often be an arm with μ ≥ 0.5 and such arms are chosen in preference
to dominated arms.

However, states where μ < 0.5 for all arms will occur more frequently when arms have
lower θ. Here dominated actions can be expected to be more common. We can test this
by using priors where β > α. Figure 2 shows the effect of varying the β parameter for all
arms. The discount rate γ = 0.98 is quite a high value where the greedy policy can be
expected to perform poorly since exploration will be important. However, as β increases
the performance of KG deteriorates to the extent that it is outperformed by the greedy
policy. This effect is still seen when k = 10. The superior performance of NKG shows that
much of the loss of KG is due to dominated actions. Policy PKG improves further on NKG
suggesting that KG makes further errors due to asymmetric updating even when it does not
choose dominated arms. A clearer example of this is given in Section 5.3. Both policies based
on GI approximations perform well and are robust to changes in β. KGI is the stronger of
the two as GIBL is weaker when the rewards are less Normally distributed.

The same pattern can also be seen to be present when arms have low success probabili-
ties but prior variance is high. Figure 3 gives results for β = 1 with low α. The range shown

Figure 1. Mean percentage of lost reward compared to the GI policy for five policies for
the Bernoulli MAB with uniform priors and γ ∈ [0.9, 0.99]. The left plot shows k = 2 while
on the right k = 10.
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Figure 2. Percentage lost reward relative to the GI policy for six policies for the Bernoulli
MAB with α = 1, β ∈ [1, 10] and γ = 0.98. The left plot shows k = 2 while on the right
k = 10.

Figure 3. Percentage lost reward relative to the GI policy for six policies for the Bernoulli
MAB with β = 1, α ∈ [0.02, 0.5] and γ = 0.98. The left plot shows k = 2 while on the right
k = 10.

focuses on lower prior μ which correspond to β ∈ [2, . . . , 50] in the setup of the previous
experiment. The higher prior variance makes arms with higher success probabilities more
likely than in the previous experiment but as α is reduced the performance of KG can still
be seen to deteriorate markedly. The other policies tested do not show this problem.

Arms with low θ are common in many applications. For example, in direct mail market-
ing or web-based advertising where θ is the probability that a user responds to an advert.
The unmodified KG is unlikely to be an effective method in such cases.

The equivalent plots with prior μ > 1 do not show any significant changes in behavior
compared to uniform priors.

Another policy that is popular in the bandit literature and which has good theoretical
properties is Thompson Sampling (e.g., Russo and Van Roy [11]). Results for this method
are not given in detail here as its performance is far inferior on these problems to the other
policies tested. For example, on the results displayed in Figure 1 losses were in the ranges
from 1.3–4% and 6–15% for k = 2 and k = 10 respectively with the best performance coming
for γ = 0.99. It is a stochastic policy and so makes many decisions that are suboptimal
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Figure 4. Mean percentage of lost reward compared to the KG policy for three policies
for the Exponential MAB with Gamma(2,3) priors and γ ∈ [0.9, 0.99]. The left plot shows
k = 2, while on the right k = 10.

(including dominated errors). Its strength is that it explores well in the limit over time,
eventually finding the true best arm. However, with discounted rewards or when the horizon
is finite it gives up too much short term reward to be competitive unless γ is close to 1 or
the finite horizon is long. In addition, note that it will spend longer exploring as k increases
as it seeks to explore every alternative. Performance on the other problems in this paper
was similar and so are not given.

5.3. Exponential MAB

This section gives the results of simulations for policies run on the MAB with Exponentially
distributed rewards as outlined in Section 3.3. These are shown in Figure 4. Here the lost
reward is given relative to the KG policy (the negative values indicate that the other policies
outperformed KG). Different priors give a similar pattern of results.

The results show a clear improvement over the KG policy by PKG and NKG policies.
Notably the PKG earns better reward than the NKG indicating that the bias that causes
dominated errors also causes suboptimal choices when arms are not dominated. Policy KGI
gives the best performance although similar to PKG.

6. THE GAUSSIAN MAB

Here we consider the Gaussian case Ya | θa � N(θa, 1) and θa � N (Σa/na, 1/na). In the
brief discussion in Section 3, we noted that KG does not take dominated actions in this
case. While Ryzhov, Powell, and Frazier [14] give computational results which demonstrate
that KG outperforms a range of heuristic policies, the policy still makes errors. In this
section we describe how errors in the estimation of arms’ learning bonuses constitute a new
source of suboptimal actions. We also elucidate easily computed heuristics which outperform
KG. A major advantage of KG cited by Ryzhov, Powell, and Frazier [14] is its ability to
incorporate correlated beliefs between arms. We will later show, in Section 6.1.3, that it is
unclear whether KG enjoys a performance advantage in such cases.

We shall restrict the discussion to cases with k = 2, 0 < γ < 1 and T = ∞ and will
develop a notion of relative learning bonus (RLB) which will apply across a wide range of
policies for such problems. We shall consider stationary policies π whose action in state
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Figure 5. The left plot shows RLB values for KG and GI policies for γ = 0.95, n1 = 1,
μ1 = 0. The right plot shows the nature of KG actions over different arm 2 states.

(Σ,n) ≡ (Σ1, n1,Σ2, n2) depends only upon the precisions nb and the difference in means
Δμ := Σ2/n2 − Σ1/n1. We shall write π (Δμ, n1, n2) in what follows. We further require
that policies be monotone in the sense of the following definition of the RLB.

Definition 6.1 Relative Learning Bonus: If π is monotone in Δμ such that ∃ function
Rπ : N

2 → R with π (Δμ, n1, n2) = 2 ⇔ Δμ ≥ Rπ (n1, n2) ∀ (n1, n2) then Rπ is the RLB
function.

This monotonicity is a natural property of deterministic policies and holds for all policies
considered in this section since increasing Δμ while holding n1, n2 unchanged favors arm
2 in all cases. The RLB gives a method of comparing the actions of index and non-index
policies but it is also useful when comparing index policies. A natural method of evaluating
an index policy would be to measure the difference in its indices from GI in the same states.
This can be inaccurate. An index formed by adding a constant to GI will give an optimal
policy so it is not the magnitude of the bias that is important but how it varies. The RLB
and the idea of index consistency (discussed later) give methods to assess this distinction.

Under the above definition we can set Σ1 = 0 without loss of generality. We then have
that Δμ = μ2 and arm 2 is chosen by policy π in state (Σ,n) if and only if μ2 ≥ Rπ (n1, n2).
Figure 5 illustrates this for the GI and KG policies, the former of which determines the
optimal RLB values. The plots are of slices through the RGI and RKG surfaces with n1 = 1
and with γ set at 0.95. As n2 increases the GI learning bonus for arm 2 decreases, yielding
values of RGI (1, n2) which are increasing and concave. Comparison with the RKG (1, n2)
suggests that the latter is insufficiently sensitive to the value of n2. This is caused by a KG
value close to zero for arm 2 when n2 ≥ 2 and results in a mixture of overexploration and
overexploitation. In practice, when the priors of the two arms are close, overexploration is
the main problem. For n1 > 1 the RLB curves have a similar shape but with smaller R as
the learning bonuses for both policies decrease with increased information over time.

Figure 6 contains comparative plots of RGI (1, n2) and Rπ (1, n2) for three other policies
π and with γ again set at 0.95. The policies are KGI, described in Section 4, and two others
which utilize analytical approximations to the GI, namely GIBL (Brezzi and Lai [2]) and
GICG (Chick and Gans [3]). Although the latter use similar approaches to approximating
GI their behavior appear quite different, with GIBL overgreedy and GICG overexploring.
This changes when γ is increased to 0.99 where both policies overexplore. Although not
shown here, the approximation of GI by both GIBL and GICG improve as n1 increases
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Figure 6. Plots of actions for KGI, GIBL and GICG (from left to right) for γ = 0.95, n1 = 1, μ1 = 0.
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and the corresponding RLB curves are closer. A suboptimal action is often less costly
when overgreedy, especially for lower γ since immediate rewards are guaranteed while the
extra information from exploration might not yield any reward bonus until discounting has
reduced its value. Weber [16] enunciates a desirable property for policies which is enjoyed
by the optimal GI policy. It can be thought of as a generalized stay-on-a-winner property.

Definition 6.2: A policy is index consistent if, once an arm is chosen then it continues to
be chosen while its GI remains above its value at the start of the period of continuation.

The region of overexploration in the RLB plot in Figure 5 yields states in which KG is
not index consistent. It will simplify the proof and discussion of the next result if we write
the GI for an arm in state (Σ, n) as νGI (Σ, n) = (Σ/n) + lGI (n) , where lGI is the GI (i.e.,
optimal) learning bonus for the arm. Note that for notational economy we have dropped
the γ-dependence from the index notation. It now follows from the above definition that
RGI (n1, n2) = lGI (n1) − lGI (n2). More generally, if π is an index policy we use lπ for the
learning bonus implied by π, with Rπ (n1, n2) = lπ (n1) − lπ (n2).

To prove Proposition 6.3 we use that each policy overexplores, as shown in Figures 5
and 6 for KG and GICG and for (e.g.) γ = 0.99 for GIBL (not shown). The idea of the proof
is that a policy that overexplores overestimates the RLB of the arm with lower n. After the
arm is pulled n increases and its RLB is reduced. There are values of y such that the arm’s
GI will increase (as its reduction in RLB is smaller) but its μ will not increase sufficiently
to overcome the loss of RLB and so the policy will switch arms.

Proposition 6.3: Policies KG, GIBL and GICG are not index consistent.

Proof: For definiteness, consider policy KG. From the calculations underlying Figure 5 we
can assert the existence of state (Σ,n) such that Σ1 = 0, n1 = 1, n2 = 2 and 2RKG (1, 2) >
Σ2 > 2RGI (1, 2), equivalently, RKG (1, 2) > μ2 > RGI (1, 2) , when γ = 0.95. It follows that
AKG (Σ,n) = 1 and KG overexplores in this state. We suppose that the pull of arm 1 under
KG in state (Σ,n) yields a reward y satisfying μ2 > (y/2) > RGI (1, 2) = lGI (1) − lGI (2).
But νGI (y, 2) = (y/2) + lGI (2) > lGI (1) = νGI (0, 1) and so the GI of arm 1 has increased
as a result of the reward y. However, the symmetry of the Normal distribution and the
fact that μ2 > y guarantees that KG will choose arm 2 in the new state. Thus, while the
GI of arm 1 increases, KG switches to arm 2 and hence is not index consistent. Regions
of overexploration for GIBL and GICG (in the former case when γ = 0.99) means that a
similar argument can be applied to those policies. This concludes the proof. �

An absence of overexploration does not guarantee index consistency for a policy. How-
ever, we now give a sufficient condition for an index policy never to overexplore and to be
index consistent.

Proposition 6.4: If index policy π satisfies 0 ≤ Rπ (n1, n2) ≤ RGI (n1, n2) ∀n1 < n2 then
it never overexplores and is index consistent.

Proof: Let state (Σ,n) be such that Σ1 = 0. This is without loss of generality. For the
overexploration part of the result, we consider two cases. In case 1, we suppose that μ2 >
0 and the GI policy chooses greedily when it chooses arm 2. This happens when μ2 ≥
RGI (n1, n2). If n1 < n2 then the condition in the proposition implies that μ2 ≥ Rπ (n1, n2)
and policy π must also choose arm 2. If n1 ≥ n2 then the condition in the proposition
implies that Rπ (n1, n2) ≤ 0 and hence that μ2 ≥ Rπ (n1, n2) trivially, which implies that
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policy π continues to choose arm 2. This concludes consideration of case 1. In case 2,
we suppose that μ2 ≤ 0 and so the GI policy chooses greedily when it chooses arm 1.
If n1 < n2 then we have μ2 ≤ 0 ≤ Rπ (n1, n2), while if n1 ≥ n2 then we must have that
μ2 ≤ RGI (n1, n2) ≤ Rπ (n1, n2) ≤ 0. Either way, policy π also chooses arm 1 and case 2 is
concluded. Hence, under the condition in the proposition, policy π never explores when
GI is greedy, and so never overexplores. For the second part of the result suppose that in
state (Σ,n) , index policy π chooses arm a and that the resulting reward y is such that
νGI (Σa + y, na + 1) > νGI (Σa, na) , namely arm a’s GI increases. Under the condition in
the proposition we then have that

Σa + y

na + 1
+ lGI (na + 1) >

Σa
na

+ lGI (na)

⇔ Σa + y

na + 1
− Σa
na

> RGI (na, na + 1) ≥ Rπ (na, na + 1)

⇒ Σa + y

na + 1
+ lπ (na + 1) >

Σa
na

+ lπ (na) (6.1)

and we conclude that policy π will continue to choose arm a. Hence, π is index consistent.
This concludes the proof. �

Conjecture 6.5: On the basis of extensive computational investigation we conjecture that
policy KGI satisfies the sufficient condition of Proposition 6.4 and hence never overexplores
and is index consistent. We have not yet succeeded in developing a proof.

6.1. Computational Study

This section gives the results of computational experiments on the MAB with Normally
distributed rewards (NMAB). The same methodology as in Section 5 is used. As well as
the basic MAB, also considered are the finite horizon NMAB with undiscounted rewards
(Section 6.1.2) and a problem where arm beliefs are correlated (Section 6.1.3). It extends the
experiments of Ryzhov, Powell, and Frazier [14] by testing against more competitive policies
(including GI) and by separating the effects of finite horizons and correlated arms. In both
of these latter problems the Gittins Index Theorem (Gittins, Glazebrook, and Weber [7]) no
longer holds and there is no index policy that is universally optimal. This raises the question
of whether index policies suffer on these problems in comparison to non-index policies such
as KG.

A new parameter, τ for the observation precision is introduced for several of these
experiments so that Ya | θa � N(θa, τ). In Section 6, it was assumed τ = 1 but the results
given there hold for general τ . The posterior for θ is now updated by p(θa|y) = g(θ|Σa + τy,
na + τ). We take τ to be known and equal for all arms.

6.1.1. Infinite horizon, discounted rewards. The first problem compares KG, KGI, GIBL,
GICG against the optimal policy on the standard NMAB over a range of τ . The lost reward
as a percentage of the optimal reward is shown in Figure 7. The plot does not show the loss
for GICG for high τ and γ = 0.9 as it is very high relative to the other policies (rising to
> 38%). The Greedy policy has similarly poor performance.

Ryzhov, Powell, and Frazier [14] used the GICG policy as a comparator for the KG
policy for the discounted Gaussian MAB. It was described as “the current state of the
art in Gittins approximation”. These approximations are supposed to be better than the
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Figure 7. Lost reward versus optimal for heuristic policies for the NMAB with γ = 0.9
(left) and γ = 0.99 (right). There are k = 10 arms each with a N(0, 1) prior.

older GIBL but it appears that the improvements are mainly for large n which may not
result in improved performance. The RLB plots earlier in this section suggest that the
approximations for low n are not better and it is more important to be accurate in states
reached at early times due to discounting. As γ becomes larger these early actions form a
smaller portion of total reward and are therefore less significant.

There is no one best policy for all problem settings. Policy KGI is uniformly strong for
γ = 0.9 but is weaker for γ = 0.99. Both KGI and KG do well for high τ . This is because
more information is gained from a single observation and so myopic learning policies become
closer to optimal. As τ becomes smaller it becomes important to consider more future steps
when evaluating the value of information. However, when τ is very low learning takes so
long that a simple greedy approach is again effective. Hence, KG and KGI are weakest for
moderate values of τ between 0.1 and 1, depending on the number of arms.

6.1.2. The finite horizon NMAB. This section considers a variant on the NMAB where
the horizon is a fixed length and rewards are not discounted (FHNMAB). One strength
of KG is that it adapts easily for different horizon lengths and discount rates. GIBL and
GICG, however, are designed only for infinite horizons. Ryzhov, Powell, and Frazier [14] got
round this problem by treating the discount rate as a tuning parameter. This allowed them
to run experiments on a single horizon length (T = 50). However, it is not ideal. Firstly,
the tuning parameter will need to be different for different horizons and there is no simple
way to set this. Secondly, the policy is not appropriate for the problem because a policy
for a finite horizon should be dynamic, it should change over time by exploring less as the
end time approaches, whereas this policy is static over time. We give a method here by
which any policy designed for an infinite discounted problem can be adapted to a finite
horizon one so that it changes dynamically with time. Note that all KG variants given in
this paper (including KGI) are already dynamic when the horizon is finite so do not require
any adjustment.

Definition 6.6 Finite Horizon Discount Factor Approximation: A policy which depends
on a discount factor γ can be adapted to an undiscounted problem with a finite horizon
T by taking

γ(t, T ) =
T − t− 1
T − t

, t = 0, 1, . . . , T − 1. (6.2)
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Figure 8. Lost reward on the FHNMAB. Left shows performance over a τ ∈ [10−2, 102]
with T = 50, right over T ≤ 400 with τ = 1. All k = 10 arms had the same N(0, 1) prior.

This chooses a γ such that γ/(1 − γ) = T − 1 − t so that the ratio of available immediate
reward to remaining reward is the same in the infinite case with γ discounting (left-hand
side (LHS)) as the undiscounted finite case (RHS).

Figure 8 shows percentage lost reward versus KG for KGI and the adjusted GIBL (with
KG shown as a straight line at zero).

Note that the scale of the vertical axis on the right plot is quite close to zero so that
no policies are very distinct from KG here. GIBL shows similar behavior to that seen in
Figure 7 with infinite horizons, performing similarly to KG at τ = 1 (worse for shorter
horizons but better for higher T ) but doing very badly as τ increases above 1. KG and KGI
show similar results but KG is the preferred policy for T ≥ 60.

6.1.3. The correlated NMAB. The NMAB variant where arm beliefs are correlated was
studied in Ryzhov, Powell, and Frazier [14] where the ability of KG to handle correlated
beliefs was given as a major advantage of the policy. However, being able to incorporate
correlation into the KG policy does not mean performance will improve and the experimen-
tal results that were given were mixed. A further short experimental study is conducted
here for several reasons. Firstly, as shown earlier in this section, the GI approximation used
(GICG) performs poorly in many circumstances and the GIBL and KGI policies might
offer a stronger comparison. Secondly, Ryzhov, Powell, and Frazier [14] used the finite
horizon undiscounted version of the problem. As described earlier the policies based on
GI are not designed for this problem so an artificial tuning parameter was introduced.
Here we use infinite horizon with discounted rewards as before. This makes it clearer
to see the effect of the introduction of correlation without the extra complication of the
different horizon.

The problem is the same as the NMAB described in Section 6 except that beliefs are
captured in a single multivariate Normal distribution for all the arms rather than one
univariate Normal for each arm. For each simulation run the θ values for all arms are drawn
from this true multivariate prior. The belief correlation structure can take many different
forms, but here we use the same the power-exponential rule used in Ryzhov, Powell, and
Frazier [14]. Prior covariances of the variance–covariance matrix C are

Ci,j = e−λ(i−j)2 . (6.3)
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Figure 9. Lost reward versus GI on the correlated NMAB for λ ∈ [0.05, 1] with γ = 0.9
(left) and γ = 0.99 (right). Both use k = 10 with τ = 1.

where the constant λ determines the level of correlation (decreasing with λ). In the
experiments here all prior means are zero.

Two versions of KG are tested, the complete version that incorporates the correlation
(CKG) and a version that assumes the arms are independent (IKG). Details of the CKG
policy are given in Ryzhov, Powell, and Frazier [14] using an algorithm from Frazier, Powell,
and Dayanik [6]. All policies tested (including IKG) use the true correlated model when
updating beliefs but, apart from CKG, choose actions that make the false assumption
that arms are independent. Updating beliefs using the independence assumption results in
much poorer performance in all cases and therefore these results are not shown. CKG is
significantly slower than the other polices, scaling badly with k. This limits the size of the
experiment so 40,000 runs are used. The results over λ ∈ [0.05, 1] are shown in Figure 9.
The first observation is that, although GI is not optimal for this problem, it still clearly
outperforms all the other heuristics indicating that using a index policy is not an obvious
handicap. The GI approximation policies’ performance follows a similar pattern to the
independent NMAB with KGI stronger at γ = 0.9 and GIBL stronger at γ = 0.99. IKG
compares well to both these policies but again there is no evidence that non-index methods
are stronger than index methods. More surprising is that CKG is clearly inferior to IKG.
Frazier, Powell, and Dayanik [6] found CKG to be stronger in the offline problem but this
does not appear to translate to the online problem. Exactly why this is so is not clear as
this is a difficult problem to analyze. CKG requires O(k2 log(k)) to compute compared to
IKG which requires O(k). CKG’s performance would have to be much better to justify its
use and in many online problems with larger k it would simply not be practical while IKG
and the three simple index policies all scale well.

These experiments only scratch the surface of the correlated MAB problem and there are
a number of possible issues. As rewards are observed the correlations in beliefs reduce and
the arms tend to independence. Therefore correlations will be most important in problems
with short horizons or steep discounting. Secondly, the number of arms used here is quite
small. This is partly because CKG becomes very slow as k increases so its use on larger
problems would not be practical. A feature of correlated arm beliefs is that we can learn
about a large number of arms with a single pull and therefore independence assumptions
should be punished with greater numbers of arms. However, we still learn about multiple
arms as long as belief updating is handled accurately which is easy to do in this Gaussian
setting. If this is not done then learning will be much slower and we did find that it is
important that belief updating incorporates correlations.
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One difficulty with analyzing policies on this problem is that it still matters that the
policy is effective on the basic MAB problem. Suboptimality in this regard can mask the
effect of introducing correlation and changes may improve or worsen performance quite
separately from addressing the issue of correlations. For example, if a policy normally over-
explores then any change that makes it greedier might improve performance. Thompson
Sampling is a policy that can easily incorporate correlations (by sampling from the joint
posterior) but the high level of exploration that comes from randomized actions does not
do well on short horizon problems and any changes due to correlations will be too subtle to
change that.

7. CONCLUSION

We identify an important class of errors, dominated actions which are made by KG. This
involves choosing arms that have both inferior exploitative and explorative value. Much of
the existing work on KG has focused on Gaussian rewards but these have features (sym-
metric and unbounded distributions) that avoid the domination problem. For other reward
distributions the performance of KG can suffer greatly. Two new variants are given which
remove this problem. Of these, NKG is simpler while PKG gives better experimental results
by correcting errors besides those arising from dominated actions.

We also introduced an index variant of KG which avoids dominated actions, which we
called KGI. For problems where the optimal policy is an index policy, simulation studies
indicate that KGI is more robust than other proposed index policies that use approximations
to the optimal index. It has computational advantages over KG and performed competitively
in empirical studies on all problems tested including those where index methods are known
to be suboptimal. One such problem is the MAB with correlated beliefs. Although KG can
incorporate these beliefs it was found that any performance gain was, at best, small and
did not justify the extra computation involved.

The new variants we introduce give a range of simple heuristic policies, of both index
and non-index type. On the problems tested here at least, there did not appear to be any
advantage to using non-index methods and, in addition, index methods have computational
advantages on some BSDPs. However, this may not always be the case and further research
will be needed to be more confident on other variants of this problem.
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