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Wave patterns of stationary gravity–capillary
waves from a moving obstacle in a magnetic fluid
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The influence of a magnetic field on the pattern of stationary waves formed on the surface
of a magnetic fluid (ferrofluid) when an obstacle moves has been studied both theoretically
and experimentally. It is found that a vertical magnetic field narrows the cone of stationary
waves and increases their amplitude. In the wake region, the peaks of the Rosensweig
instability appear in a magnetic field that is smaller than the critical field that determines
this instability occurrence. A horizontal magnetic field parallel to the obstacle velocity
expands the cone of waves but reduces their amplitude up to the suppression of stationary
waves. A horizontal field perpendicular to the obstacle velocity also expands the cone of
waves and stabilizes their amplitude.
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1. Introduction

In nature, stationary waves behind an obstacle are observed in the oceans when storms
and hurricanes move in the atmosphere (Svirkunov & Kalashnik 2014) and on the water
surface behind moving objects (Kelvin 1906). The case of ship waves on a water surface
has been studied in detail since Lord Kelvin’s study (Thomson 1886). Analysis of these
waves was based on the dispersion equation for gravity waves occurring on the water
surface. A more detailed study of gravity waves continues at the present time (Darmon,
Benzaquen & Raphaël 2014; Pethiyagoda, McCue & Moroney 2014). Waves on the surface
of a thin film of a viscous fluid have been studied by Ledesma-Alonso et al. (2016). After
Wilton (1915), the attention of researchers focused on the peculiarities of formation of
stationary gravity–capillary waves. This issue is at present being extensively studied both
experimentally and theoretically (Moisy & Rabaud 2014; Liang & Chen 2018; Gnevyshev
& Badulin 2020; Flamarion & Ribeiro 2022).
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The cause of the formation of stationary waves behind a moving obstacle (or a steady
obstacle in a fluid flow) is dispersion, i.e. the dependence of the phase and group wave
velocity on the wavelength. In magnetic fluids (ferrofluids), the dispersion equation
(with the exception of common dispersion equations for the waves on a free surface)
is determined by the magnetic field strength. Dispersion equations for deep water, for a
layer of finite thickness, for a layer with two free boundaries and for other geometries
can be found in Cowley & Rosensweig (1967), Zelazo & Melcher (1969) and Berkovsky
et al. (1993). These dispersion equations were confirmed experimentally by Barkov &
Bashtovoy (1977), Bercegol et al. (1987), Reimann et al. (2005) and Groh et al. (2007).
But as far as we know, there are only three works devoted to stationary waves behind
obstacles in magnetic fluids (Berkovsky et al. 1980; Browaeys et al. 2001a,b).

In Berkovsky, Bashtovoi & Krakov (1980), the effect of a magnetic field on the wave
patterns was theoretically studied in the limiting cases of gravity waves in deep water and
capillary waves in a thin liquid layer. It was shown that in these limiting cases the magnetic
field parallel to the flow does not change the pattern of waves, but decreases the critical
flow velocity above which the formation of stationary waves is possible. In this case, as
the field increases, the wave crests approach the source, and at a sufficiently large field the
stationary wave pattern is completely suppressed.

A field lying in the surface plane, which is perpendicular to the velocity, expands the
wave cone angle. As a result, the crests of capillary waves on a thin layer transform from
parabolas to hyperbolas, and in the presence of very strong magnetic fields the asymptote
of these hyperbolas tends to become perpendicular to the magnetic field. In the case of
gravity waves in a deep layer, the Kelvin angle increases, also tending to π/2, and thus we
have a one-dimensional problem.

Wave resistance for gravity–capillary waves from a point source in a vertical magnetic
field was studied in Browaeys et al. (2001b). It was found that the critical flow velocity,
above which the formation of stationary waves may occur, decreases, and the wave
resistance increases according to the relation

R = R0√
1 −

(
H
H∗

)2
, (1.1)

where R0 is the wave resistance in the absence of a magnetic field, H is the magnetic field
strength and H∗ is the critical value of the magnetic field above which the free surface of
the magnetic fluid becomes unstable (Rosensweig instability). The fact that the magnetic
field affects the wave resistance is supported by the results of the subtle experiment of
Browaeys et al. (2001a,b).

To date, there are no theoretical or experimental data regarding the influence of a
magnetic field on the gravity–capillary wave patterns created by a moving obstacle. This
influence can differ significantly in all three cases of the magnetic field orientation relative
to the direction of motion of the wave source.

2. Problem formulation and development of a method for its solution

A detailed explanation of the reasons for the formation of stationary waves initiated by a
moving obstacle is given in Whitham (1974). We here only briefly repeat these reasons to
avoid any ambiguities. Let us suppose that, at some initial time, the source of perturbations,
moving with velocity u, is at the point Q (figure 1), and at time t it reaches the point P.
In order for the wave pattern to remain stationary relative to the source, the projection of
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Figure 1. Construction of wave elements in the stationary wave problem.

the source velocity on the wave direction (vector k) must be compensated by the phase
velocity of the wave c, i.e. the following equality must hold:

u cosψ = c. (2.1)

Since the phase velocity of a dispersive wave depends on the wavenumber k, this
equality allows us to determine the value of k in the direction ψ .

The location of the wave crest T is determined by the group velocity cgr rather than
by the phase velocity. For dispersive waves, these velocities are not equal, e.g. for gravity
waves on water, cgr = c/2. If all points satisfying relation (2.1) are in the semicircle of
radius PQ/2, then the stationary wave crests are in the semicircle of radii PQ/4 centred at
the point R. It is therefore easy to understand (Lighthill 1978) that, in the right triangle
RTP, the maximum angle ξ at which the crests of stationary waves from the source are
seen is determined by the relation

sin ξ = RT
PR

= 1
3
, (2.2)

which yields the known value of the half-angle of the Kelvin cone ξ = 19.47°.
Since the phase velocity c =ω0(k)/k, relation (2.1) can be written as

uk cosψ − ω0(k) = G(k, ψ) = 0, (2.3)

where ω0(k) is the dispersion equation for the waves propagating on the surface of a
motionless fluid.

In relation (2.2), the ratio RT/PR is determined by the relationship between the group
and phase wave velocities, i.e. by their dispersion equation.

As is known, the dispersion equation for gravity–capillary waves in deep water has the
form

ω0(k) =
√

kg + σk3

ρ
, (2.4)

whence it is easy to find the minimum phase velocity of the waves:

cmin = min
(ω0

k

)
= min

(√
g
k

+ σk
ρ

)
. (2.5)

Then

c2
min = 2

√
σg
ρ
, kmin =

√
ρg
σ
. (2.6a,b)
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These quantities are further used to determine the dimensionless wavenumber k̂ and the
dimensionless velocity U :

k̂ = k
kmin

, U = u
cmin

. (2.7a,b)

Using (2.4) and (2.7a,b), we can rewrite expression (2.3) in dimensionless form:

Ĝ(k̂, ψ) = −2U k̂ cosψ +
√

2
√

k̂ + k̂
3 = 0. (2.8)

The locus of points that form the crests of stationary waves is determined by the group
velocity. Therefore, according to Whitham (1974), the crests of waves oriented at an angle
μ (figure 1) are located at a distance r from the moving obstacle:

r = θ

k cosμ
, (2.9)

where θ is the wave phase (ζ = a cos(kx − ωt + θ), c = ω/k, a is the wave amplitude, ζ
is the wave height). In this case, the angle μ can be calculated as (Whitham 1974)

tanμ =
1

k̂

∂Ĝ
∂ψ

∂Ĝ

∂ k̂

. (2.10)

Thus, if the dispersion equation ω0(k) is known, then, given that ξ = π–μ–ψ , (2.8)–(2.10)
allow us to find the coordinates of the wave crest points (r, ξ ) in the polar coordinate system
associated with the centre coinciding with the source of disturbances, where the angle ψ
is used as a parameter.

3. Wave patterns of gravity–capillary waves in ordinary liquids

The roots of (2.8) have the form

k̂1,2 = U2cos2ψ ±
√
U4cos4ψ − 1, (3.1)

and are real only for
U > 1. (3.2)

The smaller root determines a pattern of the gravity branch of stationary waves and the
larger root a pattern of the capillary branch. Depending on the value of U , the pattern of
crests changes. At values of U close to unity, the capillary branch is located in front of
the source, the gravity branch is behind it and the crest lines are close to the straight lines
perpendicular to the velocity vector. As U increases, the slope of the crests increases and,
at U∗ ≈ 1.938, a cusp appears on the crest line of the gravity branch (figure 2b). With a
further increase in the obstacle velocity, a second cusp occurs (figure 2c). These cusps are
called the gravity (larger angle) and capillary (smaller angle) cusps, although both are on
the gravity branch. Note that, up to U ≈ 3, the regions of the capillary and gravity branches
do not intersect, and at U > 3 both branches are inside the cone with angle αcusp

g , which
tends to the Kelvin angle with increasing U (figure 2c).

The angle of inclination of the demarcation line ξd, to which both the capillary and
gravity branches asymptotically tend and which separates these branches up to U ≈ 3,
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Figure 2. (a–c) Wave patterns (lines of isophase) at different flow velocities in dimensionless coordinates for
the same phase: (a) U = 1.2, (b) U = 1.938 and (c) U = 6. The arrows below the panels show the direction
of movement of the obstacle. Here and further the red line refers to the capillary branch, the cyan line depicts
the gravity branch and the green dashed line represents the demarcation line (equation (3.3)). The gravity cusp
angle is shown in magenta, the capillary cusp line in blue and the Kelvin angle line in black. (d) Wave pattern
on coloured water near the moving obstacle (experiment), u = 20 cm s−1; light areas correspond to the inclined
surfaces of the wave and the dark areas correspond to the horizontal surfaces of the crests and troughs of
stationary waves.

is determined by the equality 0 of the radical expression in (3.1), i.e. cos2ψ = 1/U2.
Moreover, k̂ = 1. In this case, expression (2.10) has the form tanμ = 2((k̂2 + 1)/(k̂2 −
1)) tanψ , and therefore tanμ = ∞. Since tan ξ = (tanμ+ tanψ)/(tanμ× tanψ − 1),
then

tan ξd = 1/ tanψ = 1/
√
U2 − 1. (3.3)

The linear theory shows the shape of the crests but does not provide information about
the amplitude of the stationary waves. Nonlinear analysis (e.g. Moisy & Rabaud 2014)
shows that the energy emitted by a moving source is accumulated along with the angles of
the capillary and gravity cusps. However, for further analysis and meaningful comparison
with the experiment carried out for velocities at which there were no cusps in the crest
lines, the amplitude of stationary waves at U < 2 is of greatest interest. As shown in
figure 11 of Moisy & Rabaud (2014), at low velocities, the inclination angle of a group
of high-amplitude stationary waves is noticeably smaller than the inclination angle of the
line demarcating the gravity and capillary branches ξd.

4. Experimental set-up and magnetic fluid

The experimental study of the gravity–capillary waves formed on a magnetic fluid free
surface was carried out with a set-up shown schematically in figure 3. Two pairs of
Helmholtz coils (1) were used to produce a magnetic field of either vertical (with radius
R1 = 122.5 mm and number of turns N1 = 390) or horizontal (with radius R2 = 97.5 mm
and number of turns N2 = 321) orientation. A cylindrical glass cell (2) of inner diameter
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Figure 3. Scheme of the experimental set-up: 1, two pairs of Helmholtz coils, for the vertical and horizontal
fields; 2, glass cell; 3, two-channel power supply; 4, milliteslameter; 5, resistor; 6, analogue-to-digital converter;
7, magnetic fluid; 8, stepper motor; 9, copper obstacle; 10, video camera; 11, mirror; 12, light source.
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Figure 4. Relative distribution of the field strength along the radius of the Helmholtz coils R1 (1) and R2
(2). Vertical dashed lines mark the boundaries of the cuvette of diameter D = 123.5 mm (experiment). The
inhomogeneity of the magnetic field in this cell did not exceed 5 %.

D = 123.5 mm and sidewall height of 50 mm was placed on a horizontal platform in the
centre of the Helmholtz coils. A magnetic field with a uniformity of at least 95 % in the
central part of the coils (figure 4) was generated using a dual-channel stabilized Mastech
DC power supply HY3010E-2B (3).

Magnetic field induction at the centre of the coil system was measured by a
milliteslameter (4). The output signal from a small resistor (5), connected serially to
the coils, was fed to the input of an analogue-to-digital converter ADC LA-I24 USB
(6) and processed using a standard software kit. The obtained current I was recalculated
using the values of the vertical magnetic field strength H, orthogonal to the fluid surface,
according to the dependence H(I) kA m−1 = 1.0493I A, and H(I) kA m−1 = 1.1095I A for
a horizontal magnetic field, tangential to the surface.

The cylindrical vessel was filled with a magnetic fluid (7). Layers of thickness h = 16 ±
1 mm and h = 30 ± 1 mm were used. A movable platform with a stepper motor (8),
powered by a two-channel stabilized DC source (3), was placed in the working area in
the horizontal plane from the sidewall of the vessel. The moving platform was rigidly
connected to a smooth polished copper rod (9) of d = 1.5 mm in diameter and 300 mm
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long. The free end of the rod, bent at an angle of 90°, was immersed to a depth of
1–2 mm in the magnetic fluid, not touching the vessel bottom. The rod passed through
two non-magnetic guide bushings spaced 30 mm apart – non-magnetic sleeve bearings.
Any possible vibrations of the rod and the obstacle associated with it were damped by the
guide bushings, as well as by the rigidity of the rod material. Thus, the rod played the role
of a moving obstacle considered as a point. In this case, the Bond number was defined
as Bo = d/λc = 0.2 (where d is the rod diameter and λc is the capillary wavelength,
λc = 2π

√
σ/ρg) taking into account the properties of the magnetic fluid presented below.

Since the Bond number is small, we use the point source approximation in the further
analysis.

The velocity of the platform motion along with the obstacle was controlled using a
Mastech current source. The voltage applied to the platform varied from 8 to 12 V, which
made it possible to change the obstacle velocity in the range from 13.7 to 22.9 cm s−1.

The images of waves on the free surface of the liquid layer were captured by a Baumer
TXG50 digital machine vision camera (Germany) (10) operating at a frame rate of 70
to 100 f.p.s. The pictures were obtained from both above and the side. For filming, a
flat mirror (11) was installed above the coil system at an angle of 45° from the side.
Visualization of the relief of the layer surface was performed using a circular LED light
source (12).

In the experiments, we used a magnetic fluid of the type ‘magnetite + kerosene + oleic
acid’, which was prepared by the standard method of chemical precipitation. The magnetic
fluid density is ρ= (1753 ± 5) kg m−3 at ambient and working fluid temperatures
(27 ± 1) °C. The dynamic viscosity of the fluid was determined using a Brookfield
DV-II + Pro rotational viscometer, and it is expressed as η= (54 ± 1) mPa s at the same
temperature. A magnetic fluid with such a high viscosity (and at the same time high
magnetization) was chosen so that the wave pattern had an opportunity to stabilize at the
very beginning of the obstacle movement. The surface tension of the ferrofluid measured
by the standard ring tear-off method with a commercial Sigma 701 tensiometer (KSV
Instruments Ltd) is σ = (25.7 ± 0.2) mN m−1.

The magnetization curve of the fluid (figure 5) was measured by the differential sweep
method described in detail in Lebedev (1989). The saturation magnetization of the fluid is
72.74 kA m−1. The relative magnetic permeabilities μr = ∂M/∂H and μs = M/H were
calculated from the magnetization curve (figure 6):

μr = −4.00 × 10−12H3 + 1.28 × 10−7H2 − 0.00151H + 8.79, δ = 1.75 %,
μs = −4.00 × 10−12H3 + 1.15 × 10−7H2 − 0.00128H + 8.79, δ = 2.34 %.

}
(4.1)

Here, H is measured in A m−1 and δ is the standard deviation. The volume concentration of
magnetic particles covered with surfactant is 0.57, the dipole–dipole interaction parameter
is estimated as λ= 0.8 and the average magnetic moment of the particle 〈m〉 = 1.62 ×
10−19 A m2.

The photos (frames) obtained during the experiment were processed using the image
processing software Comef 4.3 (OEG GmbH, Germany). The stationary wave crest tilt
angles were measured depending on the magnitude and orientation of the applied magnetic
field. By adjusting the position of the lighting device relative to the liquid surface and the
parameters of brightness, contrast and exposure time of the camera during the experiment,
the image of the wavefront can be obtained. For obstacle velocity exceeding 16 cm s−1,
apart from the main crest of the wavefront (capillary branch), the gravity wave is seen in
figure 7(a). For each frame, the wave cone angles were measured along several auxiliary
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Figure 5. Magnetic fluid magnetization curve.
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Figure 6. Magnetic permeabilities of magnetic fluid, where μr = ∂M/∂H, μs = M/H.

lines (figure 7) and along the secondary waves, which are the trajectories of the liquid trace
behind the moving obstacle. An example of stationary waves in a horizontal transverse
magnetic field is presented in the supplementary movie available at https://doi.org/10.1017/
jfm.2022.691.

As a result, the final value of the measured angle for each frame was averaged over the
entire dataset, the variance of which determined the measurement error. It should be noted
that in the frame field the angles of inclination of the wave cone to the right and left relative
to the obstacle (in figure 7, respectively, from above and from below) differed somewhat,
which is associated with small deviations of the optical system from the vertical. However,
the difference in the obtained angles of the wave cone on both sides relative to the obstacle
does not in general exceed the statistical measurement error.

Hereinafter in the text of the paper, photos depict the view of the magnetic fluid free
surface from above, and the direction of the obstacle movement is considered from right
to left in the horizontal plane. In the presented images, the light areas correspond to the
inclined surfaces of the wave and the dark areas correspond to the horizontal surfaces of
the crests and troughs of stationary waves (figure 7a).

In the case of low obstacle velocity, as well as under the influence of a rather high
magnetic field parallel to the velocity vector, the amplitude of stationary waves is very
small. The wavefront is similar to a very small hemispherical surface in the vicinity of the
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1 cm
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ξ1
ξ
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ξ3

(a) (b)

Figure 7. Measurement scheme for the angles of the wave profile arising on the surface of a magnetic fluid
near an obstacle moving from right to left at u = 20 cm s−1: (a) Hτ = 0; (b) Hτ = 5.5 kA m−1. The magnetic
field is collinear to the velocity.

obstacle (figure 7b). The measurement of angles, in this case, became almost impossible.
Therefore, further experimental data are presented only for the wavefront in the form of
cones (figure 7a).

5. Stationary waves in a vertical magnetic field

The surface of a magnetic fluid in a vertical magnetic field becomes unstable (Cowley &
Rosensweig 1967) when the magnetization of the fluid is greater than the critical one. This
phenomenon is called the Rosensweig instability. The dispersion equation for linear waves
obtained by Zelazo & Melcher (1969) and for a deep layer (kh � 1) has the form

ω0(k) =
√

kg − μ0M2
n

1 + 1/
√
μrμs

k2

ρ
+ σk3

ρ
, (5.1)

where Mn is the normal component of the fluid magnetization.
If, as before, kmin and cmin are defined as characteristic quantities, then we can write

(5.1) in dimensionless form as

ω̂2
0 = k̂ − μ0M2

n

1 + 1/
√
μrμs

1√
ρgσ

k̂2 + k̂3. (5.2)

The dimensionless complex (μ0M2
n/(1 + 1/

√
μrμs))(1/

√
ρgσ), which determines the

onset of the Rosensweig instability, we call the Rosensweig number now, in the year of
the 90th anniversary of Dr Ronald Rosensweig. In this study, the Rosensweig number is
denoted by Ron.

The dispersion equation in its dimensionless form is as follows:

ω̂2
0 = k̂ − Ronk̂2 + k̂3. (5.3)

From (5.3) it follows that the frequency ω̂2
0 > 0 only for Ron< 2. The frequency ω̂2

0 =
0 for Ron = 2, k̂ = 1, i.e. for Ron> 2, ω̂2

0 < 0, and the surface is unstable in a vertical
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magnetic field; the most unstable wavelength is the wavelength corresponding to k̂min.
However, at Ron< 2, the surface remains stable, and the motion of the obstacle across the
surface may cause the formation of stationary waves. This wave resistance was discovered
and measured by Browaeys et al. (2001b). At the same time, the influence of the magnetic
field on the shape of the crests of gravity–capillary waves remained unknown except for
two special cases (Berkovsky et al. 1980).

Using (5.3), (2.8) takes the form

√
2U k̂ cosψ =

√
k̂ − Ronk̂

2 + k̂
3
. (5.4)

The solution to this equation is

k̂1,2 = (U2cos2ψ + Ron/2)±
√
(U2cos2ψ + Ron/2)

2 − 1. (5.5)

Since the radical expression in (5.5) must be positive, the necessary condition for the
formation of stationary waves is

cosψ > cosψ∗ =
√

2 − Ron

2U2 . (5.6)

Since the maximum value of cos ψ = 1, the existence of stationary waves is possible only
at an obstacle velocity that satisfies the condition

U >
√

1 − Ron/2. (5.7)

Since the condition of the magnetic fluid surface stability Ron< 2 must be satisfied, we
draw the obvious conclusion: the critical velocity, above which the formation of stationary
waves is possible, tends to zero with increasing magnetic field. However, it should be
remembered that the position of the crests is determined by the group velocity, which
must be positive. According to (5.1), the group velocity of waves on the magnetic fluid
surface is

∂ω0

∂ k̂
= 1 − 2Ronk̂ + 3k̂

2

2
√

k̂ − Ronk̂
2 + k̂

3
≥ 0, (5.8)

and hence it follows that

Ron <
√

3. (5.9)

Thus, the minimum velocity of the obstacle, at which stationary waves occur on the surface
of the magnetic fluid placed in a vertical magnetic field, is equal to

U > U∗ =
√

1 −
√

3/2 ≈ 0.3660. (5.10)

Taking into account (5.4), expression (2.10) yields the angle μ:

tanμ = 2 tanψ
k̂

2 − Ronk̂ + 1

(k̂
2 − 1)

. (5.11)

The critical angle ψ∗ defines the line that demarcates the capillary and gravity
branches. Moreover, k̂1 = k̂2 = 1. Then from (5.11) it follows that tanμd = ∞.
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Figure 8. Angle ξ as a function of the normalized wavenumber for U = 3 at various values of the Rosensweig
number Ron. The upper extremum corresponds to the gravity branch and the lower extremum corresponds to
the capillary one (Ron = √

3, ξc = 0). The numbers next to the curves indicate the value of the Rosensweig
number.

Since ξ = π − μ− ψ , therefore

tan ξ = tanμ+ tanψ
tanμ× tanψ − 1

. (5.12)

Then

tan ξd = 1
tanψ∗ =

√
2 − Ron

2U2 + Ron − 2
. (5.13)

As the Rosensweig number increases, the demarcation angle ξd decreases, i.e. as the
magnetic field increases, the wave crests should approach the region of the wake behind
the obstacle.

Since the maximum amplitude of stationary waves is observed in the region of angles
corresponding to the gravity and capillary cusps, it is of interest to know how the value of
the Rosensweig number changes these angles and, consequently, the observed pattern of
stationary waves. Figure 8 shows the curves ξ(k̂/k̂1) for U = 3, where k̂1 is the minimum
value of the wavenumber of the gravity branch corresponding to the angle ψ = 0, k̂1 =
(U2 + Ron/2)−

√
(U2 + Ron/2)

2 − 1.
Figure 8 shows that the cusp angles, both ξ cusp

g and ξ cusp
c , decrease with increasing

Ron, and at Ron = √
3 the capillary cusp angle ξ cusp

c = 0. A further increase in Ron will
lead to negative values of the angle ξ cusp

c , which may indicate the impossibility of the
existence of stationary waves at values of the Rosensweig number greater than

√
3 due to

the wavenumbers at which the angle ξ cusp
c is negative.

Figure 9 shows that the capillary cusp angles decrease with increasing obstacle velocity,
both in the presence and in the absence of a magnetic field. Gravity cusp angles decrease
for Ron < Ro∗

n≈0.6 and increase for Ron > Ro∗
n. The critical velocity at which a cusp

occurs on the crest line decreases with increasing fluid magnetization so that at Ron = √
3

the critical velocity is equal to U∗ = 0.538.
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Figure 9. Angles ξ cusp (red lines at the bottom) and ψcusp (blue lines at the top) corresponding to the cusps
as a function of the dimensionless velocity for different values of the Rosensweig number. In the absence of
a magnetic field (Ron = 0), cusps appear at U = 1.938, but as Ron increases, these angles decrease, and, at
Ron = √

3, both are equal to zero at U = 0.538.
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Figure 10. Change in the shape of the crests with an increase in the Rosensweig number. Here U = 0.9, the
green dashed line demarcates the capillary and gravity branches of waves and the black line is the classic Kelvin
cone: (a) Ron = 0.3816, ξd = 88.2◦; (b) Ron = 0.846, ξd = 57.55◦; (c) Ron = 1.659; ξd = 27.31◦.

The shape of the crests in polar coordinates r, ξ is determined by (2.9) for the radius
r, in which tan μ is given by (5.11), and by (5.12) for the polar angle ξ . In this case, the
wavenumber for the capillary and gravity branches is given by (5.5), and the angle ψ plays
the role of a parameter.

Figure 10 shows isophase lines for θ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 at U = 0.9. It can
be seen that the shape of stationary waves changes with increasing Ron. In the absence
of magnetic properties, stationary waves do not exist at such a speed. As follows from
(5.7), their onset is possible in this case at Ron > 2(1–U2) = 0.38. At Ron = 0.3816
(figure 10a), the isophase lines are almost straight, perpendicular to the direction of motion
(ξd = 88.2◦). With an increase in the magnetization of the fluid, the slope of the isophase
lines decreases, and at Ron = 1.577 a cusp appears (figure 10c). As Ron increases, the
gravity and capillary cusps separate, but differ by such a small angle that this difference is
almost indistinguishable (figure 10c). As Ron approaches

√
3, ξ cusp

c → 0.
For U > 1.938, cusps exist without a magnetic field. Figure 11 shows the isophase lines

at U = 2. As can be seen, along with a decrease in the angle of the demarcation line ξd, the
cone of stationary waves is compressed, both the gravity cusp angle ξ cusp

g and the capillary
angle ξ

cusp
c decrease. As Ron approaches

√
3, the two families of isolines intersect, and

ξ
cusp
c tends to zero.

For U > 3, the branches of the capillary and gravity isolines intersect. Figure 12 shows
how the ‘Mach cone’ changes with the Rosensweig number at U = 4. As can be seen, now
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Figure 11. Same as in figure 10 for U = 2: (a) Ron = 0, ξd = 30.0◦; (b) Ron = 0.846, ξd = 21.66◦;
(c) Ron = √

3, ξd = 10.55◦.
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Figure 12. Same as in figure 10 for U = 4: (a) Ron = 0, ξd = 14.48◦, ξ cusp
c = 11.06◦, ξ cusp

g = 19.59◦;
(b) Ron = 0.8464, ξd = 10.95◦, ξ cusp

c = 7.02◦, ξ cusp
g = 18.52◦; (c) Ron = √

3, ξd = 5.25◦, ξ cusp
c = 0.0◦,

ξ
cusp
g = 17.23◦.

it is always ξ cusp
g > ξd > ξ

cusp
c . As Ron increases, all three angles decrease, but if the angle

ξ
cusp
g decreases slightly, then the angles ξd and ξ cusp

c decrease noticeably, and ξ cusp
c → 0,

thereby noticeably narrowing the inner Mach cone.
A comparison of the isophase line patterns with the patterns of stationary waves

obtained experimentally is of particular interest. However, such a comparison requires a
thorough analysis of the distribution of the magnetic field outside and inside the magnetic
fluid layer. The Rosensweig number includes the fluid magnetization, which depends on
the magnetic field strength inside the fluid, and the controlled parameter is the external
magnetic field. But the strength of the magnetic field inside the fluid depends on the
magnetization. In addition, one should take into account the finite size of the ferrofluid
volume.

The volume of fluid in the cell has the shape of a cylinder. An analytical solution is
known (Pshenichnikov 1993), which makes it possible to find the magnetic field Hi inside
a cylindrical magnetizable volume, depending on the external field He and the magnetic
permeability of the medium:

Hi = He

1 + N(μs(Hi)− 1)
, (5.14)

where the demagnetization factor N is defined as

N = 1 − 1
2

[
z + d√

R2 + (z + d)2
− z − d√

R2 + (z − d)2

]
. (5.15)

Here, d is half the height of the cylinder, R is its radius and the origin of the frame of
reference is located at the geometric centre of the cylinder. For the dimensions of the cell
(d = 8 mm, R = 60 mm), the demagnetization factor for the points located on the magnetic
fluid surface (z = d) is N = 0.871. Then, taking into account expression (4.1) for μs(H)
and magnetic fluid properties and solving (5.14) by the iteration method, we obtain data
relating the Rosensweig number to the external magnetic field (table 1).
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I (A) He (A m−1) Hi (A m−1) M(Hi) (A m−1) μs μr Ron

0.5 525 68 524 8.70 8.68 0.01
1.0 1049 138 1047 8.61 8.58 0.06
1.5 1574 208 1568 8.52 8.48 0.13
2.0 2099 281 2087 8.43 8.37 0.23
2.5 2623 355 2605 8.34 8.26 0.36
3.0 3148 430 3120 8.25 8.16 0.52
3.5 3673 507 3634 8.16 8.05 0.70
4.0 4197 586 4146 8.07 7.94 0.91
4.5 4722 667 4656 7.98 7.83 1.15
5.0 5247 750 5163 7.89 7.72 1.41
5.5 5813 841 5708 7.79 7.60 1.73
6.0 6296 921 6171 7.70 7.50 2.01

Table 1. Dependence of the Rosensweig number and the strength of the magnetic field inside the magnetic
fluid Hi on the external magnetic field He. Here I is the current in the Helmholtz coils.
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Figure 13. (a) Isophase lines (U = 1.478) and (b) experimental patterns of stationary wave crests (U = 1.48 ±
0.1). The angle of inclination of the demarcation line ξd and the angle of the cone of stationary waves in the
experiment decrease with increasing magnetic field.

Note that the onset of Rosensweig instability occurs on the surface of the magnetic fluid
at Ron> 2. In the experiments without a moving obstacle, the flat surface of the magnetic
fluid became unstable at He = 6.3 ± 0.1 kA m−1, which corresponds to the data in table 1.

Figure 13 shows the experimental patterns of stationary wave crests for obstacle velocity
u = 22.9 ± 1.5 cm s−1 or U = 1.48 ± 0.1 and the corresponding isophase lines for U =
1.476 at different values of the Rosensweig number for a layer 30 mm thick. It can be seen
that at this obstacle velocity, the cone angle corresponds well to the angle of inclination of
the demarcation line.

Of particular interest is a surface state that occurs when the Rosensweig number
approaches

√
3. As is well known, the onset of Rosensweig instability takes place at

Ron = 2, but, following (5.9), the stationary waves in the entire range of angles ξ are
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Wave patterns of stationary gravity–capillary waves
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Figure 14. (a) Isophase lines of stationary waves (Ron = √
3, U = 1.478). Capillary cusp angle ξc =

0, ξd = 14.4◦; blue line 1 shows the direction to the end of the observed waves. (b) Experimental wave pattern
at Ron = 1.73 ± 0.11, U = 1.48 ± 0.1, ξ = 22.8◦. The arrow points to a peak in the wake region, which is
similar to the peaks of Rosensweig instability. The layer thickness is 30 mm.

possible only for Ron <
√

3. Figure 14 shows the pattern of isophase lines for Ron = √
3

and the experimental pattern of stationary waves at a current in Helmholtz coils I = 5.5 A,
i.e. Ron = 1.73 (table 1). It can be seen that the Rosensweig instability develops behind the
obstacle in the wake region (the arrow points to the peak instability), while in the absence
of a moving obstacle, the instability occurs at Ron> 2. We also note that for Ron ≤ 1.15, the
theoretical and experimental cone angles of stationary waves are close, and at Ron = 1.73
they noticeably differ. The reason for this may be that with an increase in Ron, the wave
pattern is determined mainly by the capillary branch, since the gravity one becomes less
noticeable. Since the extent of the wave pattern is small, we observe only the initial part
of the capillary branch (blue line 1 in figure 14 shows the direction to the end of the
observed waves). In that case, the measured angle ξ is larger than the demarcation angle
ξd. However, we do not rule out that nonlinear effects can be essential, since the amplitude
of stationary waves increases with increasing Ron.

Figures 15 and 16 show the experimental data obtained at obstacle velocity ranging from
16 to 23 cm s−1 for a layer thickness of 16 mm. It can be seen (figure 16) that for all values
of the obstacle velocity u, the cone angle of stationary waves decreases with increasing
magnetic field strength. Similarly, the demarcation line angle also decreases. It should be
noted that the theoretical value of ξd is always higher than the experimental values of the
cone angle; this difference is significant at lower obstacle velocities. Based on the data of
the nonlinear analysis presented in Moisy & Rabaud (2014), this result seems natural. The
region of maximum amplitudes does not coincide with ξd and, at low velocities, the cone
angle is first less than ξd and then close to this angle. At high velocities, the maximum
amplitude of stationary waves is observed in the region of the capillary cusp angle ξ cusp

c .
As the obstacle velocity increases, the cone angle also decreases (figure 16) for all values

of the magnetic field strength, similarly to the dependence in the case of a non-magnetic
fluid.

6. Stationary waves in a horizontal magnetic field parallel to the velocity vector

In a magnetic field parallel to the velocity vector, the magnetic fluid surface remains stable,
and its dispersion equation for a deep layer (kh � 1) has the form (Zelazo & Melcher 1969)

ω0(k) =
√

kg + μ0M2
τ

1 + √
μrμs

k2

ρ
+ σk3

ρ
, (6.1)
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Figure 15. Influence of the magnetic field on the cone angle. The markers show the experimental data for a
layer of 16 mm in thickness; the lines correspond to the angle of the demarcation line ξd (equation (5.13)). For
the markers on lines: 1, 16.1 cm s−1; 2, 18.4 cm s−1; 3, 20.3 cm s−1; 4, 22.9 cm s−1. The dashes mark parts of
the curves in the region Ron >

√
3.
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Figure 16. Influence of the obstacle velocity on the cone angle. The markers show the experimental data
for a layer of 16 mm in thickness. The lines represent (5.13) for the demarcation angle ξd: dash-dotted,
H = 2.1 kA m−1; dotted, H = 3.15 kA m−1; dashed, H = 4.2 kA m−1; solid, H = 5.25 kA m−1.

where Mτ = M cosψ is the tangential component of the fluid magnetization.
If, as before, we use kmin and cmin defined above as the characteristic quantities, then

(6.1) in dimensionless form can be written as

ω̂2
0 = k̂ + μ0M2

τ

1 + √
μrμs

1√
ρgσ

k̂2 + k̂3. (6.2)
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Wave patterns of stationary gravity–capillary waves

Let us introduce the tangential Rosensweig number Roτ = (μ0M2/(1 + √
μrμs))

(1/
√
ρgσ). Then the dispersion equation in dimensionless form is

ω̂2
0 = k̂ + Roτ k̂2cos2ψ + k̂3. (6.3)

In this case (2.8) takes the form

Ĝ(k̂, ψ) = −2U k̂ cosψ +
√

2
√

k̂ + Roτ k̂
2
cos2ψ + k̂

3 = 0, (6.4)

and its solution gives the wavenumbers for the capillary and gravity branches of stationary
waves:

k̂1,2 = 1
2 [(2U2 − Roτ )cos2ψ ±

√
(2U2 − Roτ )

2cos4ψ − 4]. (6.5)

It follows from expression (6.5) that the radical expression is positive, i.e. the emergence
of stationary waves is possible if the condition

cosψ > cosψ∗ =
√

2
2U2 − Roτ

(6.6)

or

U > U∗ =
√

1 + Roτ
2

(6.7)

is satisfied.
As follows from (6.7), the longitudinal magnetic field increases the critical value of the

velocity above which stationary waves may occur.
The group velocity determines the locus of the crests, and expression (2.10), taking into

account (6.4), allows us to find the angle μ:

tanμ = 2U2 − Roτ
U2 × k̂

2 + Roτ k̂cos2ψ + 1

k̂
2 − 1

tanψ. (6.8)

The demarcation line angle is determined by the equality of the roots k̂1,2 of the
equation, namely the radical expression is equal to zero, while k̂1,2 = 1. Since in this case
tanμ = ∞, then, as in the case of a vertical field, using (5.12), we can write

tan ξd =
√

1

U2 − 1 − Roτ
2

. (6.9)

Thus, with increasing magnetic field, the demarcation angle ξd increases, and thus the
slope of the isophase lines should also increase, which means that the wave crests should
be oriented perpendicular to the flow. When the tangential Rosensweig number reaches the
value Ro∗

τ = 2(U2 − 1), the existence of stationary waves becomes impossible. Finally,
we can conclude that the magnetic field parallel to the flow expands the cone of stationary
waves and, after reaching the critical value Ro∗

τ , it suppresses the waves. It is assumed
that the amplitude of stationary waves may also decrease with an increase in the tangential
Rosensweig number.

For an accurate comparison with experimental data, it is necessary to establish a
correspondence between the internal magnetic field in the magnetic fluid layer and the
external field created by the Helmholtz coils. However, the magnetic fluid layer is a disk
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Figure 17. Dependence of the isophase lines (a–c) and the shape of stationary wave crests (d– f ) for
dimensionless velocity U = 1.3 on the external magnetic field parallel to the velocity vector. The layer
thickness is 30 mm.

of finite dimensions located in a magnetic field parallel to flat surfaces, i.e. the layer
is a three-dimensional object. The magnetic field inside such an object has a complex
structure and cannot be reduced to one specific value. Therefore, below we present only
the experimental dependences obtained for the external magnetic field and perform a
qualitative comparison between the experimental results and the theoretical values.

Figure 17 illustrates the effect of a longitudinal magnetic field on the wave patterns. We
can see how the isophase lines change with increasing Rosensweig number (figure 17a–c);
the experimental wave patterns are presented in (figure 17d– f ). As the external magnetic
field increases, the angle of the wave cone increases in both cases, and, at a sufficiently
high magnetic field (Roτ > Ro∗

τ ), the wave pattern is suppressed. Indeed, at H> 5 kA
m−1, the surface distortions near a moving obstacle can hardly be called a stationary wave
pattern.

The change in the cone angle under the action of an external magnetic field for a layer
of 17 mm in thickness is shown in figure 18. It can be seen that, with an increasing
magnetic field, the angle of the wave wedge increases, although this increase is not very
large. Figure 19 shows how the slope of the demarcation line changes with increasing
Rosensweig number. Although a direct comparison of these two dependences is difficult
due to the complex distribution of the magnetic field along the surface observed during
the experiment, the difference between the cone angle (experiment) and the demarcation
angle is rather large, yet we can compare these angles qualitatively. As can be seen from
figure 17, as the magnetic field increases, the stationary waves are suppressed, and their
amplitude is significant only near the obstacle. This means that it is practically impossible
to measure the angle of the wave cone in such fields. Therefore, the experimental data
presented in figure 18 refer to those values of the number Roτ at which the curves ξd(Roτ )
in figure 19 are almost horizontal. As the Rosensweig number approaches the critical
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Figure 18. Dependence of the cone angle on the external magnetic field for a layer 17 mm thick.
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Figure 19. Dependence of the demarcation angle ξd on the tangential Rosensweig number. The curves
correspond to the velocities shown in figure 18: 1, U = 1.03; 2, 1.12; 3, 1.18; 4, 1.30; 5, 1.47.

value, the demarcation angle grows very rapidly, but it is difficult to obtain similar results
in an experiment because the amplitude of stationary waves becomes very small, and the
wave pattern becomes indefinite.

Figures 17–19 show the data for low velocities. As is known (Moisy & Rabaud 2014),
at low Bond numbers, the amplitude of stationary waves is maximum in the region of
the capillary cusp and, at high numbers, in the region of the gravity cusp. Therefore, the
effect of the Rosensweig number on the cusp angles is of particular interest. Figure 20
shows the dependence of the cusp angles on the obstacle velocity for various values of
the Rosensweig number. Although the cusp angle decreases in the vertical field (figure 9),
the gravity cusp angle in the longitudinal field almost does not change with an increase in
the Rosensweig number. The cusp appears at all values of the Rosensweig number at the
angle ξ cusp

g = ξ
cusp
c ∼= 22.06◦. With increasing velocity, the gravity cusp angle tends to the

Kelvin angle of 19.47°. The capillary cusp angle decreases, as in the case when a magnetic
field is not present. At a fixed velocity, the gravity cusp angle increases from the Kelvin
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Figure 20. Influence of the Rosensweig number on the capillary and gravity cusp angles.

angle to 22.06° and then disappears. The capillary angle ξ cusp
c increases more strongly but

it does not exceed the value 22.06°. For low values of the Bond number Bo = d/λmin � 1,
the maximum amplitude of stationary waves is observed near the angle ξ cusp

c (Moisy &
Rabaud 2014), and therefore it can be expected that, at high obstacle velocity, the angle of
the cone of stationary waves will be less than 22°.

7. Stationary waves in a horizontal magnetic field perpendicular to the velocity vector

The dispersion equation has the form (6.1) in a magnetic field perpendicular to the velocity
vector. In this case Mτ = M sinψ . Then, (2.8) can be written as

Ĝ(k̂, ψ) = −2U k̂ cosψ +
√

2
√

k̂ + Roτ k̂
2
sin2ψ + k̂

3 = 0, (7.1)

and its solution gives the wavenumbers for the capillary and gravity branches of stationary
waves in the form

k̂1,2 = 1
2 [2U2cos2ψ − Roτ sin2ψ ±

√
(2U2cos2ψ − Roτ sin2ψ)

2 − 4]. (7.2)

It follows from expression (7.2) that the radical expression is positive, i.e. the emergence
of stationary waves is possible if the condition

cosψ > cosψ∗ =
√

2 + Roτ
2U2 + Roτ

(7.3)

or

U > U∗ = 1 (7.4)

is satisfied.
As follows from (7.4), the perpendicular magnetic field does not change the critical value

of the velocity above which the onset of stationary waves is possible.
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Figure 21. (a,b) Theoretical isophase lines. (c,d) Experimental photographs for u = 16.03 cm s−1

(U = 1.037).

The crest position is determined by the group velocity. Using (7.1) yields expression
(2.10) needed to find the angle μ:

tanμ = 2U2 + Roτ
U2 × k̂

2 + Roτ k̂sin2ψ + 1

k̂
2 − 1

tanψ. (7.5)

Then tan ξ is calculated using relation (5.12).
The demarcation angle is determined by the equality of the roots k̂1,2 of the equation, i.e.

the equality of the radical expression to zero, while k̂1,2 = 1. Since in this case tanμ =
∞, then, taking into account (5.12), we can write

tan ξd =
√

2 + Roτ
2(U2 − 1)

. (7.6)

Hence it follows that, with an increase in the external magnetic field (Rosensweig
number), the demarcation angle increases, i.e. the cone of stationary waves becomes wider.

As the cone expands, the crests of stationary waves are oriented in the direction of the
magnetic field. But, as is known (Cowley & Rosensweig 1967), a magnetic field tangential
to the surface does not affect waves whose crests are oriented along it. On this basis, it
can be assumed that, in contrast to the longitudinal field, the magnetic field perpendicular
to the obstacle velocity will only change the shape of the crests of stationary waves, but it
will not affect their amplitude.

Figures 21(a) and 21(b) show the change in the shape of the isophase lines at a
velocity somewhat greater than the critical one. It can be seen that, as the Rosensweig
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Figure 22. Same as in figure 21 for u = 20.24 cm s−1 (U = 1.3). Wave patterns (c,d) observed from above
initiated by the obstacle moving right to left.
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Figure 23. Experimental dependence of the angle cone of maximum amplitudes on the external magnetic
field. The standard deviation is 3°–5°.

number increases from 0.25 to 5.1, the demarcation angle changes from 75.5° to 81.7°.
Figures 21(c) and 21(d) show the experimental patterns of stationary waves obtained at
the same velocity in fields of 1.11 and 7.77 kA m−1. Due to the finite size of the cell, it
is difficult to match the exact value of the Rosensweig number to an external magnetic
field. However, it can be argued that, in our case, these fields correspond to Rosensweig
numbers in the ranges 0.2–0.28 and 4.5–5.7, respectively. So, the cone angle of stationary
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Figure 24. Dependence of the demarcation angle on the Rosensweig number.
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Figure 25. Dependence of the cusp angles on the obstacle velocity for different values of the magnetic field.
The numbers near the curves indicate the value of the Rosensweig number Roτ .

waves varies from 46.4° to 61.9°. It should be noted that, at low velocities, the cone angle
of maximum amplitudes is significantly smaller than the angle of the demarcation line
(Moisy & Rabaud 2014).

At higher velocity (U = 1.3), the influence of the field is more evident (figure 22). At
the same values of the Rosensweig number, the demarcation angle changes from 51.9° to
66.2°, and, in the experiment performed at the same values of the magnetic field, the angle
of the zone of maximum amplitudes increases from 34° to 52°.

The experimental dependence of the cone angle of stationary waves on the magnitude
of the magnetic field is shown in figure 23. A magnetic field directed across the direction
of movement of the obstacle noticeably increases the angle of the wave cone. Figure 24
shows the dependence of the demarcation angle on the Rosensweig number, from which it
can be seen that this angle also increases with an increasing magnetic field.

948 A17-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.691


M.S. Krakov, C.A. Khokhryakova and E.V. Kolesnichenko

y

y

0

5

10

15

0 5–5 10 20 25
x

15

Roτ = 0, ξd = 30.0°

x
Roτ = 0, ξd = 14.48°

ξc = 11.1°, ξg = 19.6°

0

5

10

15

0 5–5 10 20 25
x

15

Roτ = 2.5, ξd = 40.9°

0

5

10

15

0 5–5 10 20 25
x

15

Roτ = 20, ξd = 62.4°

0

20

40

60

0 20–20 40 60 80 100
x

Roτ = 2.5, ξd = 21.17°

ξc = 18.4°, ξg = 22.7°

0

20

40

60

0 20–20 40 60 80 100
x

Roτ = 20, ξd = 40.58°

0

20

40

60

0 20–20 40 60 80 100

(c)(b)(a)

( f )(e)(d)

Figure 26. Change in the shape of isophase lines with an increase in the transverse magnetic field: (a–c)
U = 2; (d– f ) U = 4.

With an increase in the obstacle velocity, one can observe cusps on the isophase line.
These cusps are of special interest because the maximum amplitudes of stationary waves
concentrate in the region of cusps. As shown by the dependence of the capillary and
gravity cusps angles on the Rosensweig number (figure 25), both cusp angles increase
with increasing magnetic field. This means that the cone of stationary waves under the
action of the magnetic field perpendicular to the flow will expand even at high velocities
of the obstacle. Moreover, an increase in the magnetic field leads to the disappearance
of the cusps. Indeed, as is known, in the absence of a magnetic field, a cusp appears
at U = 1.938. But with the value of the Rosensweig number Roτ = 6, the critical velocity
value is U = 3.024. This means that the existing cusps in the isophase lines at, for example,
U = 2.5 will disappear with an increasing magnetic field. This process is illustrated in
figure 26. The figure shows the change in the shape of the isophase lines with an increase
in the Rosensweig number at obstacle velocities U = 2 and U = 4.

8. Conclusions

The linear analysis and experimental research performed in this study make it possible to
draw the following conclusions:

• A governing parameter characterizing the influence of a magnetic field on the wave
pattern of stationary waves on the surface of a magnetic fluid is the Rosensweig
number Ro.

• With an increase in the Rosensweig number in a vertical magnetic field, the cone
of stationary waves narrows, the amplitude of waves increases and, instead of
stationary waves, the peak characteristic of the Rosensweig instability appears on
the surface of the magnetic fluid in the wake region. As a result, the Rosensweig
instability develops on the surface of the magnetic fluid, which makes it impossible
for stationary waves to occur in this case.

• A horizontal magnetic field parallel to the obstacle velocity vector expands the cone
of stationary waves and reduces their amplitude, and therefore stationary waves on
the surface of the magnetic fluid are completely suppressed by the magnetic field.
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• A horizontal magnetic field perpendicular to the obstacle velocity vector also
expands the cone of stationary waves but it has no impact on their amplitude.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.691.
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