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Abstract

Foot-and-mouth disease virus (FMDV) remains an important pathogen of livestock more
than 120 years after it was identified, with annual costs from production losses and vaccin-
ation estimated at €5.3–€17 billion (US$6.5–US$21 billion) in FMDV-endemic areas.
Control and eradication are difficult because FMDV is highly contagious, genetically and anti-
genically diverse, infectious for a wide variety of species, able to establish subclinical carriers in
ruminants, and widely geographically distributed. For early detection, sustained control, or
eradication, sensitive and specific FMDV surveillance procedures compatible with high
through-put testing platforms are required. At present, surveillance relies on the detection
of FMDV-specific antibody or virus, most commonly in individual animal serum, vesicular
fluid, or epithelial specimens. However, FMDV or antibody are also detectable in other
body secretions and specimens, e.g., buccal and nasal secretions, respiratory exhalations
(aerosols), mammary secretions, urine, feces, and environmental samples. These alternative
specimens offer non-invasive diagnostic alternatives to individual animal sampling and the
potential for more efficient, responsive, and cost-effective surveillance. Herein we review
FMDV testing methods for contemporary and alternative diagnostic specimens and their
application to FMDV surveillance in livestock (cattle, swine, sheep, and goats).

Introduction

Foot-and-mouth disease virus (FMDV) is a member of family Picornaviridae, genus
Aphthovirus (Bachrach, 1977; Rodrigo and Dopazo, 1995; Rueckert, 1996). FMDV was the
first virus of vertebrates to be identified, i.e., Loeffier and Frosch (1897) collected vesicular
fluid, passed it through ceramic filters impermeable to bacteria, and reproduced clinical
signs in cattle exposed to the filtrate. FMDV consists of a single-stranded, positive-sense
RNA genome of approximately 8500 bases organized in three major regions (5′ non-coding
regulatory region, polyprotein coding region, and 3′ non-coding regulatory region), with a
polyadenylated 3′-end and a small, covalently linked protein (VPg) at the 5′-end.
Polyproteins are post-translationally cleaved by viral protease into four structural proteins
(VP1, VP2, VP3, and VP4) and eight non-structural proteins (NSPs; L, 2A, 2B, 2C, 3A, 3B,
3C, and 3D) (Ryan et al., 1989). Structural proteins VP1, VP2, and VP3 assemble to form
an icosahedral structure that is internally bound by VP4. NSPs function in virus replication
and interactions with host cell factors and for processing of the structural proteins
(Domingo et al., 2002; Grubman and Baxt, 2004).

The classic clinical signs of FMDV infection (vesicles on the mouth and feet) were first
described by Hieronymous Fracastorius (1546) after observing an outbreak in cattle near
Verona, Italy (Mahy, 2005). FMDV is infectious for most animals in the order Artiodactyla
(even-toed ungulates), but especially cattle, buffalo, swine, sheep, and goats (Burrows, 1968;
Gibbs et al., 1975a, 1975b; Bastos et al., 2000; Kitching, 2002a, 2002b; Alexandersen and
Mowat, 2005). In addition, more than 70 wildlife species are known to be susceptible to
FMDV, including white-tailed deer (Odocoileus virginianus) (Snowdon, 1968; Fenner et al.,
1993; Moniwa et al., 2012). FMDV in wildlife species is a serious concern because of the pro-
blems entailed in eradicating the virus from such populations. In the USA, 20,000 mule deer
(Odocoileus hermionus) were killed in Stanislav National Forest to control the 1924–1926
FMDV outbreak in California.

The virus is highly contagious and, depending on the route of exposure, ≤10 tissue culture
infectious doses are sufficient to infect and produce clinical disease in susceptible ruminants
(Sellers et al., 1971; Alexandersen et al., 2003b). Although incubation time can be considerably
longer, depending on dose and route of infection, viremia typically appears 24–48 h post-
exposure with vesicles in the mouth and on the feet, thereafter (Yilma, 1980; Baxt and
Mason, 1995). In an FMDV outbreak, transmission within and between populations can be
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rapid due to the short in vivo replication cycle (4–6 h) and acute
onset of shedding (1–3 days) (Donaldson et al., 1987; Grubman
and Baxt, 2004; Grau et al., 2015). The most common route of
FMDV transmission is direct contact, however, transmission
can occur over significant distances due to aerosol and mechan-
ical dissemination of virus through water, feed, and fomites
(Brooksby, 1982; Thomson et al., 2003). Clinically healthy
FMDV carriers (reported up to 3.5 years in cattle, 9 months in
sheep, and 4 months in goats) occur in both naïve and vaccinated
ruminants, complicating control and eradication efforts (Pereira,
1981; Kitching, 1998; Alexandersen et al., 2002a, 2003b).

Infection elicits a rapid immune response, but as a result of
extensive antigenic variation, immunity against one FMDV isolate
does not necessarily protect against others (Bedson and Maitland,
1927; Galloway et al., 1948; van Bekkum et al., 1959; Gebauer
et al., 1988; Salt, 1993; Sutmoller et al., 2003).Variation in VP1,
VP2, and VP3 proteins made it possible for early investigators
to use cross-neutralization tests to classify serotypes. In 1922,
Vallée and Carré reported the presence of what is known today
as serotype O in France and serotype A in Germany. Shortly
thereafter, Waldmann and Trautwein (1926) reported what is
now identified as serotype C in Germany (Brown, 2003). Three
more serotypes (South African Territories; SAT 1, SAT 2, and
SAT 3) were discovered in South Africa by Brooksby (1958)
and Asia 1 was identified in Pakistan in 1957 (Brooksby and
Rogers, 1957). Antigenic variation is a challenge to FMDV control
because it has the potential to complicate vaccinology and
diagnostics.

Depending on the geographic region, serotype-specific, inacti-
vated FMDV vaccines are used to control clinical disease in
endemic areas, but have also been used in FMDV eradication
campaigns, e.g., Uruguay, Argentina, and Paraguay (Sumption
et al., 2008). Outbreaks have occurred in every livestock-
containing region of the world with the exception of New
Zealand. According to the World Animal Health Organization
(OIE, 2017), 66 countries are free of FMDV without vaccination,
nine countries are free of FMDV with vaccination, and the
remainder are endemically infected or lack reliable data upon
which to base their true status.

Originally, FMDV used in vaccine production was derived
from fluid collected from vesicular lesions on virus-inoculated
cattle, just as was done previously for the production of smallpox
vaccine virus (vaccinia virus) (Fenner, 1990; Sutmoller et al.,
2003). Thus, Vallée et al. (1926) attempted to produce a FMDV
vaccine using formaldehyde-inactivated fluid and loose epithelial
tissues from vesicles on calves. Thereafter, Frenkel (1947) used
macroscopic slices of tongue epithelium to propagate virus and
prepare formaldehyde-inactivated vaccine. This approach was
used by Rosenbusch et al. (1948) to produce enough FMDV vac-
cine to vaccinate more than two million cattle in Argentina
(Brown, 2003). Over time, various cell lines, e.g., pig kidney
(IBRS-2, MVPK-1), porcine kidney (LFBK), or baby hamster kid-
ney fibroblast (BHK-21), were used in diagnostics or for FMDV
propagation (Capstick et al., 1962; Snowdon, 1966; Swaney,
1976; Mohapatra et al., 2015). Among these cell lines, BHK-21
has been used for large-scale production of FMDV vaccine
(Doel, 2003). In addition, a variety of contemporary vaccine tech-
nologies have been evaluated under experimental conditions, e.g.,
subunit, vector expression of subunit components, and DNA
vaccines.

Protective immunity is directed toward structural proteins
(Longjam et al., 2011). Therefore, elimination of NSPs (L, 2A,

2B, 2C, 3A, 3B, 3C, and 3D) during vaccine production results
in vaccinates without antibodies against these proteins, i.e.,
DIVA (differentiating infected from vaccinated animals) vaccines.
That is, DIVA-vaccinated animals produce antibodies against
FMDV structural proteins, but not against NSPs, whereas
FMDV-infected animals produce antibodies against both struc-
tural and NSPs. Implementation of a DIVA strategy based on
the detection of antibodies against NSPs in infected animals is
used to monitor the ongoing success of FMDV eradication and
to maintain ‘FMD-free with vaccination’ status (Bergmann
et al., 2004). However, it has been observed that inadequately
purified FMDV vaccines can contain enough residual NSP to
induce anti-NSP antibody and produce false-positive enzyme-
linked immunosorbent assay (ELISA) results (Uttenthal et al.,
2010).

Whether the goal is early detection, sustained control, or eradi-
cation, diagnostically and analytically sensitive and specific (but
affordable) FMDV surveillance tools are mandatory. Herein we
review FMDV testing methods, contemporary and alternative
diagnostic specimens, and their application in FMDV surveillance
in livestock (cattle, swine, sheep, and goats).

Tests and testing

Prior to the development of the complement fixation test (1929),
FMDV infection was diagnosed primarily by clinical signs, i.e.,
the presence of vesicles on epithelial surfaces of the feet, mouth,
nasal regions, and mammary glands (Bachrach, 1968). However,
diagnosis based on clinical signs is complicated by the fact that
other viral infections, e.g., swine vesicular disease virus (SVDV),
vesicular stomatitis virus (VSV), and vesicular exanthema of
swine virus (VESV), may produce lesions which are indistinguish-
able from FMDV. Today, the detection of FMDV infections relies
on the detection of FMDV-specific antibody (virus neutralization,
antibody ELISA) or on the detection of the virus and/or viral
components (virus isolation, antigen-capture ELISA, or reverse
transcription-polymerase chain reaction (RT-PCR)). These
techniques are reviewed below.

Virus detection

Direct complement fixation test
Prior to the development of techniques for virus isolation, Ciuca
(1929) showed that the direct complement fixation test could be
used to detect FMDV and serotype isolates. The method was
based on the fact that guinea pig-derived complement is bound
by virus–antibody complexes. If virus–antibody binding does
not occur, the free complement will lyse sheep red blood cells
(RBC) in the presence of anti-sheep RBC antibody. It was possible
to identify FMDV serotypes using the direct complement fixation
test because FMDV antibodies are serotype-specific. Later, Traub
and Mohlmann (1943) used the direct complement fixation test
to serotype FMDV in cattle. The direct complement fixation
test is best used early in infection because it requires a high con-
centration of virus in the test specimen; thus, it is not useful when
vesicles begin to resolve (Rice and Brooksby, 1953). Further,
serum with pro- or anti-complementary activity will affect the
test results (Ferris and Dawson, 1988).

Virus isolation
FMDV isolation was first described by Frenkel (1947) using
primary bovine tongue epithelial cells, but Sellers (1955) and
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Bachrach et al. (1955) adapted primary bovine and swine kidney
cells to FMDV diagnostics. Historically, bovine thyroid cells were
considered the best primary cells for FMDV isolation, but more
recently, continuous cell lines, e.g., IBRS-2, MVPK-1 clone 7,
LFBK, BHK21, and BHK21-CT, have been widely used (Dinka
et al., 1977; Nair, 1987; House and House, 1989; Ferris et al.,
2006a, 2006b). Among several stable cell lines, bovine kidney
cells expressing β6 and αV and integrin subunits (LFBK-αVβ6)
were highly susceptible to all FMDV serotypes (LaRocco et al.,
2013). The availability of cell culture techniques and the realiza-
tion that FMDV could be grown in vitro made typing of
FMDV isolates more practicable (Rweyemamu et al., 1982).

Virus isolation is the only way to confirm the presence of live
FMDV, despite well-recognized challenges: (1) working with
infectious FMDV presents a significant biosafety risk; (2) cell cul-
tures lose susceptibility to the virus over time; (3) cell lines lose
permissiveness to the virus over passages; (4) antibodies present
in samples from infected animals may completely or partially
neutralize FMDV; (5) virus isolation is much less analytically sen-
sitive than RT-PCR (Alexandersen et al., 2003a); (6) cytopathic
effect can be caused by a variety of factors, not just FMDV,
thus positive results must be confirmed using other methods.

Propagating virus on cell culture requires technical skill,
adequate laboratory facilities, and more time than molecular
assays. The diagnostic sensitivity of FMDV isolation varies
among laboratories, virus serotype, and the cells used in the pro-
cedure (Alexandersen et al., 2003a). Ferris et al. (2006a) evaluated
test performance using a set of vesicular samples from
FMDV-infected cattle (serotypes O, A, Asia 1, and SAT 2),
SVDV-infected pigs, and negative control samples from cattle
and pigs. Based on the results obtained from five European
FMDV reference laboratories, bovine thyroid primary cells pro-
vided the highest rate of FMDV isolation (94%) when compared
with primary lamb kidney cells (69%). The rate of isolation also
varied among continuous cell lines: 69% for IBRS-2, 56% for
BHK21 and 25% for BHK21-CT. In addition, primary bovine thy-
roid cells and IBRS-2 cells were susceptible to all FMDV sero-
types, whereas primary lamb kidney cells, BHK21, and
BHK21-CT cells were not susceptible to FMDV serotype SAT2.
Data from more recent studies suggested that newer cell lines
are highly susceptible to FMDV, but only partial comparisons
among cell lines have been done. Brehm et al. (2009) compared
primary bovine thyroid cells, IBRS-2, BHK21, and ZZ-R 127
(fetal goat) cell lines using FMDV isolates representing all seven
serotypes. Although less sensitive than primary bovine thyroid
cells, cell line ZZ-R 127 was more sensitive than the other cell
lines included in the comparison. Similarly, LaRocco et al.
(2013) found the LFBK-αVβ6 continuous cell line to be more sus-
ceptible to FMDV than primary lamb kidney, IBRS-2, and
BHK21 cells.

Antigen-capture ELISA
The OIE (2012) recommends the use of FMDV antigen-capture
ELISA for the detection of viral antigen and identification of viral
serotype in clinical specimens and culture isolates (Roeder and
Le, 1987; Ferris and Donaldson, 1992). Crowther and Abu-El
Zein (1979) and Crowther and Elzein (1979, 1980) initially
reported the use of antigen-capture ELISA to detect FMDV in
cell culture and later applied the test to the detection of FMDV
in cattle epithelial tissues. Currently, antigen-capture ELISAs
based on polyclonal antibodies or various monoclonal antibodies
targeting structural or NSPs are available (Hamblin et al., 1984;

Roeder and Le, 1987; Ferris and Dawson, 1988). Antigen-capture
ELISA is capable of rapidly testing large numbers of samples, i.e.,
results can be obtained in 3–4 h (Alexandersen et al., 2003a;
Grubman and Baxt, 2004). However, the antigenic variability
within and between serotypes further compromises the limited
analytical sensitivity of the antigen-capture ELISA format.
Studies showed that 70–80% of cell culture-positive samples and
63–71% of RT-PCR-positive oral/nasal swabs were detected by
antigen-capture ELISA (Alexandersen et al., 2003a; Morioka
et al., 2014).

Antigen-capture lateral-flow assay
FMDV antigen-capture lateral-flow assays or rapid chromato-
graphic strip tests allow rapid on-site diagnosis in areas where
the disease is endemic and in reference laboratories when a
rapid result is needed. These assays detect FMDV antigens in ves-
icular fluids or epithelial suspension from infected animals using
monoclonal or polyclonal antibodies (Reid et al., 2001; Ferris
et al., 2009, 2010; Oem et al., 2009; Jiang et al., 2011). Oem
et al. (2009) reported that a monoclonal antibody-based lateral-
flow assay showed 87% diagnostic sensitivity and 99% diagnostic
specificity for the detection of FMDV serotypes O, A, Asia1, and
C when testing epithelial suspension specimens.

Reverse transcription-polymerase chain reaction
Relative to other virus detection methods, RT-PCR is considered
to offer shorter turn-around time plus higher diagnostic and ana-
lytical sensitivity and specificity (Callens et al., 1998; Reid et al.,
1998, 1999, 2000; Moss and Haas, 1999; Alexandersen et al.,
2003a; Shaw et al., 2004; King et al., 2006). Although FMDV is
highly resistant to degradation in the environment, RT-PCR can
detect nucleic acid from both infectious or inactivated virus,
thereby reducing the impact of sample-handling deficiencies on
virus detection (Cottral, 1969; Longjam et al., 2011). The
FMDV genome is heterogeneous. To avoid false-negative results,
RT-PCR primers and probes must target nucleic acid sequences
that are broadly conserved across all serotypes. For surveillance,
RT-PCR can be used in parallel with virus isolation to achieve a
more complete epidemiological picture (Laor et al., 1992;
Höfner et al., 1993; Rodríguez et al., 1994; Marquardt et al.,
1995; Callens et al., 1998; Callens and De Clercq, 1999).

Realtime RT-PCR. Realtime RT-PCR (rRT-PCR) has been widely
used in FMDV diagnosis because it offers improved analytical
sensitivity and a simpler testing format, i.e., electrophoresis is
not required. The first universal FMDV rRT-PCR used primers
and probes specific to a highly conserved region within a polypep-
tide gene (P3) and achieved an analytical sensitivity for all FMDV
serotypes estimated at 1 × 102 TCID50 (Meyer et al., 1991).
Carrillo et al. (2005) compared whole-genome sequences of 113
FMDV isolates and found that the 5′UTR and 3D
(RNA-dependent RNA polymerase gene) regions shared a high
degree of nucleotide identity among FMDV isolates, i.e., 83%
(5′UTR) and 91% (3D) homology. Further studies showed that
primers and probes based on 5′UTR or 3D were analytically spe-
cific, i.e., no false positives were observed when testing specimens
containing SVDV, VSV, or VESV (Callahan et al., 2002; Reid
et al., 2002; Ferris et al., 2006a, 2006b; Shaw et al., 2007).
Although OIE currently recommends the use of ‘universal’ pri-
mers and probes targeting conserved sequences within the
5′UTR or 3D regions, serotype-specific assays have also been cre-
ated (Reid et al., 2014; Bachanek-Bankowska et al., 2016).
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Several studies have evaluated the diagnostic performance of
5′UTR and 3D FMD RT-PCRs. Using a variety of specimens con-
taining viruses representing O, A, and Asia-1 serotypes plus
serum and vesicular samples from FMDV-negative animals,
Reid et al. (2014) reported no false-positive results and detection
rates of 91 and 96% for 3D and 5′UTR rRT-PCRs, respectively.

Hindson et al. (2008) evaluated 5′UTR, 3D, or both rRT-PCRs
using vesicular epithelium samples containing FMDV (serotypes O,
C, Asia-1, SAT1, SAT2, SAT3), SVDV, or VESV. The diagnostic
sensitivities of the 5′UTR and 3D rRT-PCRs were 87 and 97%,
respectively. Combining the two methods resulted in a diagnostic
sensitivity of 98%. King et al. (2006) compared the diagnostic
sensitivities of the 5′UTR and 3D FMDV rRT-PCRs using 394
FMDV clinical specimens (serum, vesicular epithelium).
Approximately 94% of samples (367 of 392) were positive on one
of the two rRT-PCRs, with 88.1% (347 of 394) positive on both
assays. Sequence analyses showed that all false-negative tests were
the result of nucleotide substitutions within the region targeted
by the primers or probes (King et al., 2006). Therefore, laboratories
may need to provide both 3D and 5′UTR RT-PCR testing, to
reduce the likelihood of false-negative results caused by nucleotide
changes in the 3D or 5′UTR target areas (Moniwa et al., 2007).

Antibody detection

FMDV antibody detection methods are routinely used for several
purposes; e.g., to certify animals or animal by-products are free
from FMDV infection prior to import or export, to demonstrate
previous exposure to FMDV or vaccination, or to evaluate anti-
genic matching of vaccines.

Indirect complement fixation test
The indirect complement fixation test was the first in vitro test
developed for the detection of FMDV-specific antibody (Rice
and Brooksby, 1953). The assay was further developed to detect
FMDV antibodies from multiple FMDV serotypes (Nordberg
and Schjerning-Thiesen, 1956; Sakaki et al., 1977, 1978). At pre-
sent, use of the indirect complement fixation test is only recom-
mended by the OIE if FMDV ELISA testing is not available
(OIE, 2012).

Serum-virus neutralization test
The FMDV serum-virus neutralization test (SVN) is a serotype-
specific assay for the detection of neutralizing antibodies elicited
by vaccination or infection (Golding et al., 1976). Post-
vaccination sero-surveys for FMDV are a major indicator in the
assessment of preventive vaccination programs (Sobrino et al.,
2001). The existence of circulating neutralizing antibody is asso-
ciated primarily with resolution of viremia (Pacheco et al.,
2010). The test may be performed on various cell lines, although
Moonen and Schrijver (2000) found that BHK or IBRS-2 cells
provided better results than PK-2 cells. The test is more specific
than the indirect complement fixation test and is recommended
for international trade by OIE, but the slow throughput (72 h to
perform the test) is incompatible with rapid response and/or rou-
tine commerce. In addition, the assay’s requirement for infectious
virus mandates that testing be performed in a high-level biocon-
tainment facility; often a difficult and expensive hurdle to clear.

Enzyme-linked immunosorbent assay
Elzein and Crowther (1978) developed the first indirect FMDV
antibody ELISA. Subsequently, various FMDV ELISAs have

been developed for the detection of antibodies and for serotyping
of viruses (Rai and Lahiri, 1981; Ouldridge et al., 1982; Hamblin
et al., 1984; Ouldridge et al., 1984; Roeder and Le, 1987; Pattnaik
and Venkataramanan, 1989). ELISAs are highly repeatable,
cost-effective, and compatible with a variety of sample types,
e.g., milk, probang, and oral fluid specimens (Burrows, 1968; de
Leeuw et al., 1978; Blackwell et al., 1981; Longjam et al., 2011;
Senthilkumaran et al., 2017).

Structural protein ELISAs. FMDV structural protein ELISAs are
serotype-specific tests designed to detect antibodies elicited by
vaccination or infection. Several blocking or competitive ELISAs
have been developed based on serotype-specific polyclonal or
monoclonal antibodies against capsid protein (VP1, VP2, and
VP3), 146S particle, or 12S subunit epitopes (Cartwright et al.,
1980; Roeder and Le, 1987; Sáiz et al., 1994). These assays provide
faster throughput than SVN and avoid the need for tissue culture
and live FMDV.

NSP ELISAs. Several FMDV-recombinant NSPs, e.g., 3ABC, 3AB,
3A, 3B, 3C, 2A, 2B, and 2C, have been used as target antigens in
FMDV blocking and indirect ELISAs. Among these, antibodies
against the 3ABC polyprotein are the most sensitive indicator of
FMDV replication (Grubman, 2005; Henderson, 2005). Brocchi
et al. (2006) compared four commercial NSP ELISAs and the
OIE index screening assay using serum samples (n = 3551) from
vaccinated and unvaccinated cattle, pigs, and sheep exposed to
FMDV (Table 1). Diagnostic specificity was adequate for all
tests (97–98%) and all tests displayed excellent diagnostic sensitiv-
ity (100%) when testing samples from recently exposed, unvaccin-
ated animals. However, detection rates were much lower when
testing vaccinated or exposed animals. As discussed previously,
NSP antibody ELISAs can play a key role in verifying the status
of countries considered FMD-free with vaccination.

Sampling and sample types

Serum

Transmission of FMDV can occur via respiratory, oral, or percu-
taneous exposure (Alexandersen et al., 2003a). The initial replica-
tion of virus usually occurs at the site of entry followed by spread
to regional lymph nodes through the circulatory system
(Henderson and Brooksby, 1948). Viremia appears as soon as
24 h post-exposure (Cottral and Bachrach, 1968; Alexandersen
et al., 2002a, 2003a, 2003b; Kitching, 2002a; Murphy et al.,
2010). Viremia typically lasts 4–5 days in ruminants and 2–10
days in pigs, although the level of viremia is usually higher in
pigs than in ruminants (Alexandersen et al., 2001, 2002b, 2002c,
2003a, 2003b; Alexandersen and Donaldson, 2002; Hughes
et al., 2002; Murphy et al., 2010; Stenfeldt et al., 2016).

Serum specimens are useful for the detection of FMDV during
viremia, i.e., serum samples collected ≤7 days post-infection
(DPI) can be used for FMDV detection by virus isolation,
rRT-PCR, and antigen-capture ELISA, with later samples useful
for antibody detection. In cattle and pigs, Alexandersen et al.
(2002a, 2002b, 2002c) reported the appearance of ELISA-detectable
FMDV serum antibody by 5 DPI and neutralizing antibodies ≤2
days later (Alexandersen et al., 2002a, 2003a). In sheep,
ELISA-detectable serum antibody appeared by 9 DPI and neutraliz-
ing antibody between 6 and 10 DPI (Armstrong et al., 2005).
Coincident with the first detection of antibody is the progressive
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clearance of virus from circulation and a reduction of virus in most
tissues, with the exception of the pharyngeal region of ruminants
(McCullough et al., 1992; Alexandersen et al., 2003b). Paired
serum samples collected 7–14 days apart may be used to diagnose
FMDVon the basis of rising antibody levels in response to infection.
Serum antibody remains at high levels for several months post-
infection and is detectable for years, with the exception that
FMDV-specific antibody may be detected for only a few months
in young pigs (Alexandersen et al., 2003a). The use of filter papers
for antibody detection or FTA cards for nucleic acid detection has
been reported as a method to achieve diagnosis without the need
to refrigerate or freeze serum samples (OIE, 2008).

Vesicular epithelium and fluid

During viremia, FMDV is distributed to secondary replication
sites, i.e., tongue epithelium, nasal mucosa, salivary glands, coron-
ary band epithelium, myocardium, kidney, spleen, and liver
(Alexandersen et al., 2001, 2003a). Viral amplification occurs
mainly in cornified stratified squamous epithelium, e.g., feet,
teats, dental pad, gum, tongue, and lips, resulting in the formation
of liquid-filled vesicles (Alexandersen et al., 2001; Oleksiewicz
et al., 2001; Arzt et al., 2011a, 2011b). FMDV replication in pha-
ryngeal epithelial and lymphoid tissues of cattle, sheep, and goats
occurs in both the acute and persistent phases of disease
(Alexandersen et al., 2001, 2003a).

Depending on the route of introduction, vesicles become vis-
ible 1–3 days after exposure (Alexandersen et al., 2001, 2003a;
Murphy et al., 2010; Arzt et al., 2011a). However, subclinical
infection is common in small ruminants, e.g., sheep and goats
(Cardassis et al., 1966; McVicar and Sutmoller, 1972; Gibson
and Donaldson, 1986; Pay, 1988; Kitching, 2002a, 2002b). If pre-
sent, vesicles are generally on the feet of small ruminants, e.g.,
sheep and goats (Cardassis et al., 1966; Littlejohn, 1970; Gibson
and Donaldson, 1986; Pay, 1988). If oral lesions are present in
small ruminants, they commonly occur on the dental pad, rather
than tongue as occurs in cattle (Geering, 1967). Vesicular fluid
from unruptured vesicles on the dental pad, gum, tongue, lips,
or feet of clinically affected animals is an ideal specimen for

FMDV identification, because it contains a high concentration
of virus (there are no reports of antibody detection in vesicular
fluid) (Alexandersen et al., 2001). However, vesicular fluid is gen-
erally only present in 1–2 days old lesions before they have rup-
tured. Alternatively, vesicular epithelium from ruptured lesions
can be collected. FMDV can be detected in these samples up to
10–14 days (Alexandersen et al., 2003a, 2003b). These samples
should be stored in glycerine containing 0.04 M phosphate buffer
saline (pH 7.6) (Ferris and Dawson, 1988). In the laboratory, the
specimen can be crushed with sterile sand or beads and then
mixed with laboratory medium to make a 10% suspension for
testing by virus isolation, rRT-PCR, or antigen-capture ELISA
(Oliver et al., 1988; Reid et al., 2001, 2002; Alexandersen and
Donaldson, 2002; Sakamoto et al., 2002). More recently, it has
been reported that FMDV RNA can be detected directly from
dry vesicular material by homogenizing the specimen with RNA
extraction lysis buffer and then testing by rRT-PCR (Howson
et al., 2017, 2018). Collection of vesicular fluid and epithelium
are most appropriate in the acute stage of infection. Both speci-
mens are the sample of choice for FMDV detection using
RT-PCR, antigen-capture ELISA, or antigen-lateral-flow device
(OIE, 2017).

Buccal samples

FMDV replicates in pharyngeal epithelial tissues and may be
detected in esophageal–oropharyngeal fluid by 24 h post-exposure
(Salt, 1993). In ruminants, FMDV replication in pharyngeal epi-
thelial tissues is protracted, i.e., the virus may be isolated from
esophageal–oropharyngeal fluid samples for up to 9 months in
sheep and 3.5 years in cattle (McVicar and Sutmoller, 1969;
Straver et al., 1970; Zhang and Kitching, 2001; Juleff et al.,
2008; Arzt et al., 2011a, 2011b). In swine, infectious FMDV is
present in most buccal samples for <28 days (oral fluid, nasal
swab, esophageal–oropharyngeal fluid, tissues of the pharynx,
tonsil, tongue, epiglottis, larynx, soft palate, nasopharynx, lung),
although FMDV RNA was still detected in the tonsils of the
soft palate at 28 DPI (Zhang and Bashiruddin, 2009; Arzt et al.,
2011b; Stenfeldt et al., 2016).

Table 1. Detection of FMDV infection in cattle using non-structural protein-based ELISAs (modified from Brocchi et al., 2006)a

Days post-exposure n

Percent positive (95% confidence intervalb)

3ABC ELISAc 3ABC ELISAd 3ABC ELISAe 3ABC ELISAf 3B ELISAg

1. Non-vaccinated cattle exposed
to infection (n = 54)

7–14 5 100 (48–100) 100 (48–100) 100 (48–100) 100 (48–100) 100 (48–100)

15–27 27 100 (87–100) 100 (87–100) 100 (87–100) 100 (87–100) 100 (87–100)

28–100 26 100 (87–100) 100 (87–100) 96 (80–100) 92 (75–100) 100 (87–100)

2. Vaccinated cattle exposed
to infection (n = 285)

7–14 180–181 49 (41–56) 49 (41–56) 41 (34–49) 50 (43–58) 32 (26–40)

15–27 131 60 (51–69) 53 (45–62) 50 (42–59) 53 (44–61) 38 (30–47)

28–100 107–108 69 (60–78) 64 (54–73) 58 (49–68) 50 (40–61) 56 (46–65)

>100 47 72 (57–84) 75 (60–86) 57 (42–72) 38 (25–54) 47 (32–62)

aCattle serum samples obtained from experimental and known-status field animals.
b95% confidence intervals calculated from proportional data given in Brocchi et al. (2006).
cNCPanaftosa-screening (Panaftosa, Pan American Health Organization, Rio de Janeiro, Brazil).
dCeditest® FMDV-NS (Cedi diagnostics B.V., Lelystad, The Netherlands. Currently produced and marketed as Priocheck® FMDV-NS by Thermo Fisher Scientific Prionics Lelystad B.v., Lelystad,
The Netherlands).
eSVANOVIR™ FMDV 3ABC-Ab ELISA (Svanova, Upsala, Sweden).
fCHEKIT-FMD-3ABC (Bommeli Diagnostics/Idexx, Bern, Switzerland).
gUBI® FMDV NS ELISA (United Biomedical Inc., New York, USA).
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Probang sampling was first described as a method to collect
esophageal–oropharyngeal fluid from ruminants by Sutmoller
and Gaggero (1965). The sample is collected by inserting a
small metal cup (‘probang cup’) on a long shaft through the
mouth and into the pharyngeal region, thereby allowing the
esophageal–oropharyngeal secretions to pool in the cup.
Different sizes of probang cups are used, depending on the
ruminant species. Probang sampling from pigs has only been
reported under research conditions (Parida et al., 2007;
Stenfeldt et al., 2013). Although esophageal–oropharyngeal fluid
samples are the only method that offers a realistic chance of
detecting FMDV in late-stage infection and in persistently
infected ruminants, probang sampling is labor-intensive (involves
several persons), requires technical skill, and necessitates animal
restraint during the collection process (Kitching and
Alexandersen, 2002; Kitching and Hughes, 2002; Kitching,
2002a, 2002b). Stenfeldt et al. (2013) reported that farmers were
reluctant to allow probang sampling because of concerns that
the collection process might harm their animals.

Oral fluid samples from pigs and cattle have been used to
detect FMDV antibody and nucleic acid (Callens et al., 1998;
Alexandersen et al., 2003b; Parida et al., 2006, 2007; Stenfeldt
et al., 2013; Mouchantat et al., 2014; Grau et al., 2015; Vosloo
et al., 2015; Senthilkumaran et al., 2017). Oral fluid samples can
be collected from individual animals using various absorbent
materials or from groups housed in the same space (pens or cor-
rals) by allowing them to chew on rope suspended in the pen
(Alexandersen et al., 2003b; Prickett et al., 2008; Kittawornrat
et al., 2010; Stenfeldt et al., 2013; Mouchantat et al., 2014;
Vosloo et al., 2015; Senthilkumaran et al., 2017). Oral fluid collec-
tion is simple, non-invasive, rapid and cost-effective; for which
reasons it has been widely applied to livestock surveillance, espe-
cially swine (Prickett and Zimmerman, 2010). FMDV can be
detected in oral fluid samples by RT-PCR for up to 15 DPI in cat-
tle, 8 DPI in sheep, and more than 27 DPI in pigs (Alexandersen
et al., 2003b; Parida et al., 2007).

Conventional inactivated FMDV vaccines induce only a sys-
temic antibody response whereas viral replication in infected ani-
mals produces both systemic and mucosal immune responses
(McCullough et al., 1992). Therefore, FMDV infection results in
antibody-positive oral fluid or esophageal–oropharyngeal fluid
samples, but vaccinated animals remain antibody-negative
(DIVA) (Kitching, 2002b; Parida et al., 2006). Virus neutralization
assays and IgA-specific ELISAs for esophageal–oropharyngeal or
oral fluid samples have been developed to detect
FMDV-infected animals in vaccinated populations (Archetti
et al., 1995; Salt et al., 1996; Amadori et al., 2000; Parida et al.,
2006; Eblé et al., 2007; Biswas et al., 2008; Mohan et al., 2008;
Pacheco et al., 2010; Stenfeldt et al., 2016). Using an experimental
ELISA based on a 3ABC polyprotein, FMDV-specific IgA was
detected in oral fluids from pigs by 14 DPI (Senthilkumaran
et al., 2017). Earlier workers reported that FMDV-specific IgA
could be detected in esophageal–oropharyngeal or oral fluid sam-
ples for up to 182 DPI in cattle and 112 DPI in pigs (Eblé et al.,
2007; Mohan et al., 2008).

Mammary secretions

In 1968, Burrows reported that FMDV appeared in the milk of
cattle exposed to infected animals an average of 2.2 days before
clinical signs. Subsequent experiments showed extensive viral rep-
lication in bovine mammary gland parenchyma beginning 8–32 h

post-exposure (Burrows et al., 1971; Alexandersen et al., 2003b).
FMDV can also be detected in pig, sheep, and goat milk coinci-
dent with the appearance of viremia, but higher viral titers are
present in sheep milk versus serum, suggesting either FMDV rep-
lication in small ruminant mammary gland tissue or the concen-
tration of virus in milk (Burrows, 1968; McVicar, 1977; Arzt et al.,
2011a, 2011b). Blackwell et al. (1981) reported that FMDV could
be shed in cattle mammary secretions for up to 14 DPI and was
detectable in pasteurized whole milk, skim milk, cream, and cel-
lular components in mammary secretions. Using rRT-PCR,
FMDV nucleic acids can be detected in bovine milk for up to
23 days. These data justify the testing of bulk tank milk samples
by RT-PCR for the early detection of FMDV in dairy herds
(Reid et al., 2006). Modeling the concentration of FMDV in
bulk milk as a function of the number of cows shedding virus
at any point in time, Thurmond and Perez (2006) predicted
that FMDV nucleic acids could be detected in bulk tank milk
samples between 2.5 and 6.5 days post-exposure, depending on
the within-herd transmission rate. Further, it was predicted that
nucleic acid could be detected in bulk tank milk before 10% of
the cows showed clinical signs.

Individual and bulk tank milk samples have also been tested
for FMDV-specific antibody, either for detection or for monitor-
ing the response to vaccination (Armstrong and Mathew, 2001;
Rémond et al., 2002; Thurmond and Perez, 2006; Fayed et al.,
2013). Serum antibody is concentrated into mammary secretions
by active transport mediated by neonatal Fc receptors on the
basolateral surface of the mammary epithelial cells. As a result,
mammary secretion collected from FMDV-infected cattle can
contain higher levels of antibody than serum (Stone and DeLay,
1960). FMDV neutralizing antibody can be detected in mammary
secretions within 7 days after exposure in cattle (Stone and Delay,
1960). ELISA-detectable FMDV antibody can be detected in
mammary secretions for up to 12 months post-vaccination in cat-
tle, 24 weeks post-vaccination in pigs, and 83 days post-
vaccination in sheep (Burrows, 1968; de Leeuw et al., 1978;
Blackwell et al., 1982; Francis and Black, 1983; Armstrong,
1997; Kim et al., 2017).

Nasal and upper respiratory tract secretions

Respiratory tract mucosa is the initial site of FMDV replication
and the virus is present in both upper and lower respiratory
tract secretions during the acute phase of infection (Korn, 1957;
Donaldson and Ferris, 1980; Alexandersen et al., 2003a, 2003b).
The specimens can be used in preclinical diagnosis because
FMDV RNA may be detected in nasal swabs from 1 day before
clinical signs through 10–14 days after the appearance of serum
antibodies (Marquardt et al., 1995; Callahan et al., 2002;
Alexandersen et al., 2003a, 2003b). In pigs, FMDV RNA can be
detected in nasal swabs from 6 h through 7 DPI, i.e., up to 2
days after the appearance of serum antibody (Alexandersen
et al., 2003a).

Aerosols

Airborne droplets or droplet nuclei containing infectious FMDV
derived from secretions or excretions produced in respiratory,
oral, and pedal epithelia present a significant challenge for pre-
vention and control (Sutmoller and McVicar, 1976; Burrows
et al., 1981; Brown et al., 1992; Sørensen et al., 2000).
Re-analysis of epidemiological and meteorological data collected
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during the 1982–1983 epidemic in Denmark suggested that
FMDV was aerosolized and transmitted over a distance of
70 km (Christensen et al., 2005). Infectious FMDV can be
detected in respiratory exhalations 1–6 days post-exposure in cat-
tle (Alexandersen et al., 2003a). FMDV RNA can be detected in
respiratory exhalations 6 h to 4 days post-exposure in pigs
(Alexandersen et al., 2001; Oleksiewicz et al., 2001). Notably,
pigs aerosolize more virus than ruminants, i.e., 1 × 106.1 median
tissue culture infective dose (TCID50) per day in pigs (Sellers
et al., 1971) compared with 1 × 104.3 TCID50/day in cattle and
sheep (McVicar and Sutmoller, 1976), because the virus replicates
more extensively in swine respiratory mucosa (Oleksiewicz et al.,
2001; Alexandersen and Donaldson, 2002; Alexandersen et al.,
2002a, 2002b, 2002c; Arzt et al., 2011a). In sheep, FMDV was
detectable in respirations 17 h to 13 days post-exposure, i.e.,
FMDV is shed in aerosol 1–2 days before the appearance of clin-
ical signs (Burrows, 1968; Sellers and Parker, 1969; Alexandersen

et al., 2002b). Experimentally, cattle and sheep can be infected by
airborne exposure to as little as 1 × 101 TCID50, whereas pigs
require more than 1 × 103 TCID50 (Alexandersen and
Donaldson, 2002; Donaldson and Alexandersen, 2002;
Alexandersen et al., 2002a; Stenfeldt et al., 2016).

Theoretically, on-farm air sampling could be used for pre-
clinical non-invasive FMDV surveillance. For example, Pacheco
et al. (2017) reported that FMDV RNA could be detected by pas-
sing air through filters, then disrupting the filters, extracting
FMDV RNA, and performing RT-PCR. Similarly, Oem et al.
(2005) detected FMDV RNA in exhaled air from infected cattle
using a microchip-based hand-held air sampling device (Ilochip
A/S, Denmark). FMDV RNA was harvested by washing the
chip chamber with 25 µl of 0.1% (v/v) TritonX-100 solution
(Sigma-Aldrich) followed by QIAamp Viral RNA Mini Kit
(Qiagen, Germany) (Oem et al., 2005). However, routine
FMDV surveillance based on air sampling would need to account

Table 2. Temporal range for the detection of FMDV or viral components in alternative specimens

Species Assay Specimen DPIa References

Cattle rRT-PCR Serum 1–6 Alexandersen et al. (2003a, 2003b); Stenfeldt et al. (2013)

Probang sample 1–553 Alexandersen et al. (2002a, 2002b, 2002c); Moonen et al. (2004);
Subramanian et al. (2012); Stenfeldt et al. (2013)

Buccal sampleb 1–15 Alexandersen et al. (2003a, 2003b); Stenfeldt et al. (2013)

Nasal swab 3–18 Subramanian et al. (2012)

Feces 4–8 de Rueda et al. (2015)

Virus isolation Serum 1–8 Burrows (1968); Blackwell et al. (1982)

Respiratory exhalation 1–4 Alexandersen et al. (2003a, 2003b)

Probang sample 1–469 Burrows (1968); de Leeuw et al. (1978); Blackwell et al. (1982); Moonen
et al. (2004); Subramanian et al. (2012)

Nasal swab 3–5 Subramanian et al. (2012)

Milk 1–13 Burrows (1968); de Leeuw et al. (1978); Blackwell et al. (1982)

Swine Antigen-capture ELISA Buccal sampleb 1–7 Morioka et al. (2014); Senthilkumaran et al. (2017)

rRT-PCR Serum 1–11 Alexandersen et al. (2003a, 2003b); Doel et al. (2009); Stenfeldt et al.
(2013); Senthilkumaran et al. (2017)

Buccal sampleb 1–27 Alexandersen et al. (2003a, 2003b); Parida et al. (2007); Stenfeldt et al.
(2013); Mouchantat et al. (2014); Grau et al. (2015); Vosloo et al. (2015);
Senthilkumaran et al. (2017)

Respiratory exhalation 1–5 Parida et al. (2007); Doel et al. (2009)

Pharyngeal swab 1–15 Mouchantat et al. (2014)

Probang sample 1–27 Parida et al. (2007); Stenfeldt et al. (2013)

Nasal swab 1–14 Alexandersen et al. (2003a, 2003b); Parida et al. (2007); Senthilkumaran
et al. (2017)

Feces 3–11 Fukai et al. (2015)

Virus isolation Serum 1–4 Alexandersen et al. (2003a, 2003b)

Buccal sampleb 1–5 Parida et al. (2007); Senthilkumaran et al. (2017)

Respiratory exhalation 1–5 Alexandersen et al. (2003a, 2003b); Parida et al. (2007)

Pharyngeal fluid 2–10 Burrows (1968)

Nasal swab 2–5 Parida et al. (2007)

Feces 3–4 Fukai et al. (2015)

Rectal swab 1–7 Burrows (1968)

aDays post-inoculation (DPI) represent the minimum and maximum detection points reported.
bBuccal samples including samples collected with cotton swabs, cotton rope, or rope-in-a-bait collection devices.

106 Korakrit Poonsuk et al.

https://doi.org/10.1017/S1466252318000063 Published online by Cambridge University Press

https://doi.org/10.1017/S1466252318000063


for the fact that viral aerosols are highly dynamic, non-uniform,
and subject to atmospheric and climatic conditions (Verreault
et al., 2008). Furthermore, air sampling devices differ in recovery
efficiency (Tseng and Li, 2005; Verreault et al., 2008). Comparing
all air sampling methods reported from 1960 to 2008, Verreault
et al. (2008) concluded that no single sampling method was opti-
mal for all climatic conditions. Perhaps for these reasons, aerosol
sampling has primarily been a research tool for understanding
and modeling the transmission of FMDV over distances.

Other sample types

Information concerning the shedding and detection of FMDV
in urine or feces from FMDV-susceptible species is sparse, but
shedding of FMDV in cattle urine and feces between 2 and 6
DPI has been reported (Bachrach, 1968; Garland, 1974). FMDV
may be resistant in the environment, depending on the virus
strain and the ambient conditions, and has been detected by
virus isolation for up to 39 days in cattle urine and 14 days in
feces (Bachrach, 1968; Cottral, 1969; Donaldson et al., 1987;
McColl et al., 1995; Alexandersen et al., 2003a). In general,
urine and feces have not been considered suitable diagnostic spe-
cimens because they contain little virus and are likely to be mixed
with environmental contaminants and other body fluids (Parker,
1971; Alexandersen et al., 2003a). However, in the context of
molecular diagnostics, these sample types may deserve further
evaluation in terms of their suitability for environmental surveil-
lance and monitoring.

Conclusions

FMDV remains an important pathogen of livestock more than 120
years after it was first identified because it is highly contagious,
genetically and antigenically diverse, infectious for a wide variety
of species, able to establish subclinically infected carriers in some
species, and widely geographically distributed (Brito et al., 2017).
The ‘burden of disease’ imposed by FMDV is economically aston-
ishing. Globally, Knight-Jones et al. (2017) estimated the annual
costs from production losses and vaccination at €5.3–€17 billion
(US$6.5–US$21 billion) in FMDV-endemic areas. In FMDV-free
areas, they estimated the annual costs of FMDV outbreaks
at≥€1.2 billion (US$1.5 billion).

With good reason, the OIE and the Food and Agriculture
Organization (FAO) have proposed the global eradication of
FMD by the year 2030 (Rodriguez and Gay, 2011). This objective
creates the need for alternative control methods, i.e., vaccines
that provide broad-range protective immunity and diagnostic
methods that can differentiate vaccinated from infected animals.
Nevertheless, eradication is not feasible without the inclusion of
accurate, cost-effective surveillance.

Historically, FMDV surveillance has typically been based on
individual animal serum, vesicular fluid, or epithelial samples.
Although current methods are still necessary for FMDV diagno-
ses, individual animal sampling and testing is impractical and
expensive for surveillance in countries endemic with the disease.
In an outbreak scenario, it would be feasible for individual sam-
pling to occur. However, FMDV or antibody are also present in
other body secretions, e.g., buccal and nasal secretions, respiratory
exhalations (aerosols), mammary secretions, urine, feces, and
environmental samples (Table 2). Alternative specimens can be
used to support control and elimination programs by enabling
herd-level sampling for FMDV surveillance at a lower cost and

with less effort. Future research should focus on the development
of diagnostic assays able to exploit the detection opportunities
offered by alternative specimens, because, without these tools,
the goal of FMDV eradication is unlikely to succeed.
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