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Abstract

This article presents the results of research concerning possibilities of applying multilayer perceptron type of neural
network for fault diagnosis, state estimation, and prediction in the gas pipeline transmission network. The influence of
several factors on accuracy of the multilayer perceptron was considered. The emphasis was put on the multilayer
perceptrons’ function as a state estimator. The choice of the most informative features, the amount and sampling period
of training data sets, as well as different configurations of multilayer perceptrons were analyzed.
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1. INTRODUCTION

The growth of industrial production causes an increase in
energy consumption. It is reflected in a more severe oper-
ation of large energy production and distribution systems
such as, for example, the natural gas pipeline network and
the electric power systems. The staff of the dispatching
centers is faced with increasingly high demands concerning
the reliability and security in providing the required energy.
For that reason, intensive research is being conducted to
find new, faster, and more accurate computer methods for
implementation of high-level supervisory control func-
tions, such as fault diagnosis or monitoring. Traditional al-
gorithmic approaches use methods of filtering and estimation
~Isermann, 1984; Saif, 1998!. Expert systems are also one
of the approaches, but an extensive heuristic knowledge
base is required for their operation~Kramer & Finch, 1988!.
However, in cases when the information about the system
state is incomplete or a mathematical model of the pro-
cesses is ill defined, methods of machine learning are much
more suitable~Gupta & Rao, 1994!. The artificial neural
networks~ANNs! represent the learning technique that is
capable of acquiring and storing new “process knowledge”
on the basis of representative training samples regarding

system behavior in different operating conditions. ANNs
are widely used in the areas of identification, control~Naren-
dra, 1996!, signal processing~Feldkamp & Puskorius, 1998!,
resource scheduling~Kartam & Tongthong, 1997!, and
project control~Al-Tabtabai et al., 1997!. Recently, this ap-
proach was frequently applied in developing high-level su-
pervisory control functions~Lee et al., 1996; Edwards et al.,
1999!.

This article presents the results of the research conducted
to apply the multilayer perceptron~MLP! type of artificial
neural network in designing a set of advanced functions of
the supervisory control system: functions for estimation and
prediction of selected process variables, as well as the fault
diagnosis function. The accuracy of supervisory functions
depends upon external influences originating from input
variables, and upon internal characteristics of the MLP used.
The external influence on the MLP’s performance was ex-
tensively investigated by means of training sets reduction
~with regard to the number of samples and features that
describe each input sample!. The impact of the internal char-
acteristics of MLP was tested by using changes of the num-
ber of hidden neurons and a type of neuron’s activation
function. The performance evaluation of MLP-based super-
visory control functions is mostly done with the aid of the
10-fold cross validation experimental procedure~Peterson
et al., 1995; Leisch et al., 1998!. Final assessment of statis-
tical significance of the influences is made with the use of
Fisher’s test. After a great number of different MLP train-
ing and testing runs, the following three factors were cho-
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sen as the most significant: the choice of the features, the
number of inputs, and the sampling period.

The next section of the article describes the structure of
the system with supervisory control functions designed by
using MLPs. The third section gives the general overview
of the procedure for analyzing the influence of the factors
on the accuracy of MLP performance. The forth section
gives the detailed experimental results of the performance
analysis of the MLP-based supervisory control functions.

2. DEVELOPMENT OF A SUPERVISORY
CONTROL SYSTEM BY USING MLPs

A gas pipeline network is a large-scale and spatially distrib-
uted system with a great number of sensors. But even such
a large number of measurements is not sufficient to cover
the complex nonlinear dynamics of this system’s behavior
~Osiadacz, 1987!. That is why it is very important to have,
within computer-based control of that system, a super-
visory function capable of indicating undesired or unper-
mitted states and taking appropriate actions to maintain the
process and to avoid damages or accidents.

The major part of the Yugoslav natural gas transmission
and distribution network is located in the province of Vojvo-
dina, the northern part of Yugoslavia. The central supervis-
ing station of the Supervisory Control And Data Acquisition
~SCADA! system is realized by reliable industrial personal
computer stations interconnected via a local area network.
The key features of this SCADA system are open architec-
ture, hot stand-by, an effective human–machine interface
subsystem, and an information link to the enterprise infor-

mation system. To achieve better supervision and control
over the gas-transport process, basic SCADA functions are
augmented with advanced supervisory functions. Figure 1
shows the proposed structure of the supervisory control sys-
tem based on MLPs. The following functions can be
distinguished:

• State estimation:estimation of the pressure and flow
changes in time in the network’s nodes.

• Short-term forecasting:prediction of the gas consump-
tion for time intervals from 15 minutes to a few hours.
It is possible to make the consumption prediction for
the particular consumers—network’s sink node, pre-
determined group of the consumers, or the complete
pipeline network.

• Fault diagnosis:detection and diagnosis of faulty sen-
sors, and early detection and classification of gas leaks
in the pipeline network.

The requirements, imposed with the advanced super-
visory functions, have necessitated fulfillment of a number
of conditions related to the corresponding program mod-
ules and internal database. Major characteristics of these
supervisory functions are listed:

1. A connection with the SCADA database is estab-
lished, with the aim of extraction and filtration of the
required values of the process variables.

2. An internal database of supervisory control functions
is created. It contains parameters of individual func-
tion modules~input–output quantities, time interval,
sampling time, etc.!. In addition, it contains param-

Fig. 1. The schematic representation of the proposed supervisory control system.
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eters of corresponding MLP models~training param-
eters and model configuration!.

3. Procedures for on-line execution of MLP models for
the purposes of estimation or prediction of a process
variable are embedded.

4. Procedures for training— creation of MLP models are
integrated into the system.

5. A module for continuous monitoring of selected esti-
mates of process variables is developed and consti-
tutes a part of the supervisory control functions. These
variables are subsequently compared to the correspond-
ing measured values obtained through the SCADA
system. This module serves the purpose of fault de-
tection in various parts of the gas pipeline network.

Considering the aforementioned supervisory control func-
tions based on MLPs, different sets of input variables can
be chosen. When the MLP performs the state estimator func-
tion, the input variables can be the key measured variables
or their deviations from reference values~Isermann, 1998!.
The input variables for an MLP that performs the function
of short-term demand prediction are, in most cases, a series
of values of previous consumption. The indicators of the
week days and0or weather conditions can also be very im-
portant~Peng et al., 1992!. In case of a diagnostic MLP, the
main task is to produce the knowledge concerning the rela-
tionships between the symptoms obtained either by mea-

surements or by state estimation, and the unknown faults
~causes! ~Isermann, 1998!.

The design preparation phase of supervisory control func-
tions ~see Fig. 1! is very important. It takes several steps.
The first step is to systematize the data, measured at the gas
pipeline network. The systematization is done on the basis
of the operator’s knowledge and statistical analysis. The
next step consists of choosing states0features that corre-
spond the best to the output function of the given MLP. The
training data set, which is indispensable for the training of
an adequate MLP, is formed in that way~Carpenter & Hoff-
man, 1997!. The error back-propagation method is used for
this purpose~Haykin, 1994!.

The samples, which should serve for MLP training and
testing, are obtained from the SCADA system. The mea-
sured data correspond to the normal state, when there is no
leakage or other faulty state. Each sample is described by a
set of selected features which support best the function that
MLP is trained for. The MLPs performing the function of
the state estimator were used to present the experimental
design of MLP for supervisory control system. The state
estimator for the whole pipeline network consists of numer-
ous MLPs. Each of them has several measured inputs, while
the output is a single estimated state variable~see Fig. 1!.

As an illustration, Figure 2 depicts comparative chart of
estimated and measured pressure in one node of the gas
pipeline network. MLP-based pressure estimation func-
tions have shown high accuracy with a relative error that is
approximately 1%.

Fig. 2. Actual and estimated pressure changes in Becej.
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3. EXPERIMENTAL DESIGN OF THE
MLP NEURAL NETWORK

In the multilayer perceptron type of a neural network with
one hidden and one output layer, the mapping of the input
samplex into the outputy is given by the expression

y 5 GO @WO{GH @WH{x# # , ~1!

where WH and WO are matrices of synaptic weights on
hidden and output layers, respectively; andGH @{# andGO@{#
are generally nonlinear diagonal matrix operators contain-
ing the activation function of neurons. The accuracy of this
neural network can be achieved during network training by
adjusting elements of synaptic weights matricesWH and
WO. The successful input–output mapping, that is, the ac-
curacy of the neural network, depends on external influ-
ences, originating from input vector samples, and on internal
characteristics of the neural network. External influences
can be assessed by the amount of data, its representative-
ness, completeness, informativeness, and so on. The inter-
nal group of influences consists of factors such as the number
of hidden layers and the number of neurons in them, the
type of neuron’s activation function, neurons connections,
the process of learning, and so on. The impact of those
factors on the neural network output can be expressed by
functional dependencey 5 f ~x1, x2, . . .xi . . . .xm!, wherexi

is i th influencing factor andm is the total number of
factors.

To assess the influence of external and internal factors on
the neural network accuracy, a three-phase experiment is
created. The first phase consists of the preparation of initial
data, the selection of the state features, and the reduction of
the training sample set. If we suppose a fully connected
MLP with one hidden layer trained by the back-propagation
method, two internal factors are considered: the number of
neurons in the hidden layer and the type of activation func-
tion. To obtain a training set with the most informative
samples and features, it is appropriate to examine the im-
pact of input data informativeness on the accuracy of the
neural network. The quality of the information contained in
the samples is assessed through two different~external! fac-
tors: features selection and data quantity.

In the second phase, many-fold cross validation is used
to analyze the learning and generalization abilities of the
artificial neural network. Withn-fold cross validation and
an initial data set of sizeN, n test trials are carried out. Each
trial employsN 2 N0n samples as the training set and the
remainingN0n samples as the test set. In this experiment
10-fold cross validation is used, which means that the ini-
tial data seth is partitioned into 10 equal setsh1,h2, . . . ,h10.
During thekth trial, the seth 2 hk is used for training and
hk is left for testing. The error measure used in this exper-
iment is the mean square output error, defined for thekth
set as

Eav
tr 5

1

N 2 N0n
{ (

ieh2hk

6di 2 yi 6, k 5 1, . . . ,10, fortraining stage;

Eav
ts 5

1

N0n
{(

iehk

6di 2 yi 6, k 5 1, . . . ,10, fortesting stage; ~2!

wheredi and yi are the desired and the calculated neural
network outputs, respectively. Finally, in the third phase of
experiment, the variance is analyzed.

4. DESCRIPTION OF THE EXPERIMENT
AND ANALYSIS OF THE RESULTS

To evaluate the impact of external~data contents and quan-
tity! and internal~the structure of the neural network, the
choice of activating functions, the training method! factors
on the neural network’s accuracy, the three-step experiment
was conducted. The first step takes data preparation, mak-
ing the choice of features, and forming the training set. The
second step consists of the 10-fold cross validation, which
was performed to analyze the neural network’s capabilities.
The last step consists of dispersion analysis, which serves
to define the statistical importance of the factors, with the
use of Fisher’s test~Lochner & Matar, 1990!.

During the first step of the experiment, the statistical
method for defining the correlation between separate fea-
tures was used to establish the existence and the strength of
the relation between variables. In that way, the less impor-
tant features were eliminated. Six out of 15 considered fea-
tures were selected~those with the greatest correlation
coefficient!. They are shown in Table 1.

Taking into account the correlation coefficients, two con-
venient sets of input variables were formed out of those six
features. One set contained the pressures, and the other con-
tained pressures and flow, as shown in Table 2.

During the second step of the experiment, the impact of
the length of the considered time interval~data quantity!
was investigated. The data for the whole year 1998 were
considered, with the total of 34,560 samples~the samples
were taken every 15 minutes!. The MLPs with one hidden
layer were trained, and they were given data for 15, 30, and

Table 1. Correlation between pressure in node Becej (PBCJ)
with selected variables

State Variables Correlation Coefficients

PBCJ ~k 2 1! 0.9885
PGSP 0.9803
PHRG 0.9432
QHRG 20.6520
QBCJ 20.5333
QBCJ ~k 2 1! 20.5200

P: pressure, Q: flow,~k 2 1!: previous time instance.
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60 days. While evaluating MLP performance, not only were
the training or testing errors taken into account, but also the
neural networks’ training period. The 30-day period gave
the best relation between the training period and the trained
neural network’s error, and the analysis was continued with
those data.

Concerning the neural network’s internal characteristics,
logistic sigmoidal was chosen as the activation function for
neurons in the hidden layer, while the pure linear activation
function was selected for the output layer. The number of
hidden neurons was changed in function of the variation of
number of inputs in expression 2N 1 1, wereN is the vari-
able number of inputs~Lippmann, 1987!. The impact of the
number of inputs variation on the MLP’s accuracy was in-
vestigated by reducing the number of inputs from three to
two ~by excluding the pressure in node Horgos-PHRG!.

The experiment was designed and its results were ana-
lyzed by using the 10-fold cross validation with Taguchi’s
method~Lochner & Matar, 1990; Peterson et al., 1995!.
With this methodological approach it is possible to deter-
mine which of the considered factors have the most effect
on given neural network errors. The use of Taguchi’s method
in the second step of the experiment can be briefly de-
scribed in following way. As has already stated, the output
of the neural network is now a function of three variables,

whose values can be controlled~i.e.,y5 f ~x1, x2, x3!!. The
controlled variablesx1, x2, andx3 are called factors. The
main goal is to find the level of influence of the change of
each factor on the neural network diagnostic accuracy. This
is done by varying each factor independently of the others,
or by varying two or three factors simultaneously in an
orderly way, with recording of influences of factors’ changes
on the neural network output. During this experiment, the
considered factors were varied between two values each:
factor x1—selection of features~pressures only, or pres-
sures and flow!; x2—number of inputs~2 or 3!; x3—data
sampling period~5 hours or 60 minutes!. There were eight
trials, each using the combination of two given values, as
shown in Tables 3 and 4.

The results of each trial were recorded, repeated for each
samples set prepared in the 10-fold cross validation man-
ner. The average value of 10 experiments is written in the
Value column. This value is copied along the row of this
trial, into cells without an asterisk sign. For example, in
trial number 4, the value ofx1 is Set 1~pressures only!, x2

is equal to two inputs, andx3 has a value of 60 minutes.
Final totals and averages are taken in each column~cells
without an asterisk!. The last row in the table, Effect, gives
the numerical value of the average effect that the changes
of the value of each factor have on the neural network error.
The values in the Effect row represent the differences be-
tween average errors found for the two values in each
column.

The results in the Effect row in Tables 3 and 4 indicate
that the sampling period has the strongest impact on train-
ing error averaged over 80 runs of the 10-fold cross valida-
tion. The second factor, number of inputs, has less influence.
Further evaluation of the results in the effect row ranks the
first factor, selection of features, as a factor with the small-
est influence, because its value is much lower then the val-
ues of the other two factors. The columns labeled asX1X2,

Table 2. Input–output selected variable sets

Selected Features—Set 1 Selected Features—Set 2

Input: PHRG Input: PHRG

Input: PGSP Input: PGSP

Input: PBCJ ~k 2 1! Input: QBCJ

Output: PBCJ Output: PBCJ

Table 3. The effects of the three experimental factors on average training error for node Becej

X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3

Tr Value Set 1 Set 2 3-7-1 2-5-1 5 h 60 min.

1 0.2250 0.2250 * 0.2250 * 0.2250 * * 0.2250 * 0.2250 * 0.2250 0.2250 *
2 0.0910 0.0910 * 0.0910 * * 0.0910 * 0.0910 0.0910 * 0.0910 * * 0.0910
3 0.5033 0.5033 * * 0.5033 0.5033 * 0.5033 * * 0.5033 0.5033 * * 0.5033
4 0.0961 0.0961 * * 0.0961 * 0.0961 0.0961 * 0.0961 * * 0.0961 0.0961 *
5 0.3247 * 0.3247 0.3247 * 0.3247 * 0.3247 * 0.3247 * * 0.3247 * 0.3247
6 0.0621 * 0.0621 0.0621 * * 0.0621 0.0621 * * 0.0621 0.0621 * 0.0621 *
7 0.4924 * 0.4924 * 0.4924 0.4924 * * 0.4924 0.4924 * 0.4924 * 0.4924 *
8 0.0878 * 0.0878 * 0.0878 * 0.0878 * 0.0878 * 0.0878 * 0.0878 * 0.0878

T 1.8824 0.9154 0.9670 0.7028 1.1796 1.5454 0.3370 0.9862 0.8962 1.0042 0.8782 1.1488
A 0.2353 0.2289 0.2418 0.1757 0.2949 0.3864 0.0843 0.2466 0.2241 0.2511 0.2196 0.2872

E 20.0129 20.1192 0.3021 0.0225 0.0315 0.1038 20.0328

Tr: Trial, A: Average, T: Total, E: Effect.
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X2X3, and so forth are used for measuring interaction ef-
fects. The results show that any combination of the factors
interacts in a detrimental way, because absolute values of
their effect row are lower then corresponding values forx1,
x2, andx3 factors. Similar results are obtained during cross
validation of the neural network’s test error~see Table 4!.
So, the same conclusion can be made for both the training
and testing stages of neural network output.

The last phase of the experiment consists of the analysis
of variance by technique known as factorial experiment 23,
where the label 23 means the experiment with three factors
with two values each. Analysis of variance conducted in
this way determines statistical significance of the factors by
using Fisher’s test. After the generation of eight orthogonal
contrasts~Lochner & Matar, 1990!, and the calculation of
the corresponding sums of mean square errors and degrees
of freedom are accomplished, Table 5 is created. The crite-
rion v0, which represents calculated measure of signifi-
cance of each factor, should be compared with the values
from Fisher’s distribution tables for the same degree of free-
dom and for 95% and 99% levels of significance. The re-

sults show that the third factor, the sampling period, has the
greatest significance. According to the results of the Fish-
er’s test, it has attained the 99% statistical significance in
both the training and the testing stages. The second factor,
the number of inputs, has attained 95% significance, but
only in the training stage, while it is slightly less significant
in the testing stage. The first factor, features selection, is
not statistically significant. This can be explained by the
fact that there is a very slight difference between two train-
ing sets—just one of their inputs is different, and they are
both formed from features with strong correlation coeffi-
cients. Those results coincide with the results obtained by
using the Taguchi analysis.

5. CONCLUSION

This article presents the results of the research carried out
to design the reliable knowledge base for the state estima-
tors of natural gas transmission pipeline networks, by using
the artificial neural networks. The existence of the reliable
state estimators is tremendously important in designing a
successful supervisory control system. The procedure of
the proposed system design contains input data preparation
and neural network training stages. During data prepara-
tion, the input data and feature samples are carefully se-
lected. The MLP neural network is trained by using error
back-propagation method. The accuracy of the neural net-
work was investigated from two basic points of view:~1!
influence of the amount of training data and the choice of
the most important features; and~2! influence of the con-
figuration characteristics of neural networks. Experiments
have shown that among the factors considered, the sam-
pling period and the number of inputs might be the most
effective in decreasing the error of the neural network-
based supervisory functions.

Table 4. The effects of the three experimental factors on average testing error for node Becej

X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3

Tr Value Set 1 Set 2 3-7-1 2-5-1 5 h 60 min.

1 0.2742 0.2742 * 0.2742 * 0.2742 * * 0.2742 * 0.2742 * 0.2742 0.2742 *
2 0.1107 0.1107 * 0.1107 * * 0.1107 * 0.1107 0.1107 * 0.1107 * * 0.1107
3 0.5863 0.5863 * * 0.5863 0.5863 * 0.5863 * * 0.5863 0.5863 * * 0.5863
4 0.1028 0.1028 * * 0.1028 * 0.1028 0.1028 * 0.1028 * * 0.1028 0.1028 *
5 0.3795 * 0.3795 0.3795 * 0.3795 * 0.3795 * 0.3795 * * 0.3795 * 0.3795
6 0.0656 * 0.0656 0.0656 * * 0.0656 0.0656 * * 0.0656 0.0656 * 0.0656 *
7 0.5256 * 0.5256 * 0.5256 0.5256 * * 0.5256 0.5256 * 0.5256 * 0.5256 *
8 0.1017 * 0.1017 * 0.1017 * 0.1017 * 0.1017 * 0.1017 * 0.1017 * 0.1017

T 2.1464 1.0740 1.0724 0.8300 1.3164 1.7656 0.3808 1.1342 1.0122 1.1186 1.0278 1.2882 0.8582 0.9682 1.1782
A 0.2683 0.2685 0.2681 0.2075 0.3291 0.4414 0.0952 0.2836 0.2531 0.2797 0.2570 0.3221 0.2146 0.2421 0.2946

E 0.0004 20.1216 0.3462 0.0305 0.0227 0.1075 20.0525

Tr: Trial, A: Average, T: Total, E: Effect.

Table 5. Results of the analysis of variance for node Becej

Factors Trainingv0 Testv0 V 5 95% V 5 99%

X1 0.0560 0.0000 3.98 7.01
X2 4.7881 2.1899 3.98 7.01
X1X2 0.1710 0.1379
X3 30.7853 17.7477 3.98 7.01
X1X3 0.3343 0.0761
X2X3 3.6342 1.7115
X1X2X3 0.3630 0.4077
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