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This paper presents fundamental analysis of the injection and release of fluid into
porous media or geological reservoirs saturated by a different fluid undergoing a
background flow, and tests the predictions using analogue laboratory experiments.
The study reveals new results important for an understanding of the transport of
hazardous contaminants through aquifers and the long-term fate of carbon dioxide
(CO2) in geological CO2 sequestration. Using numerical and asymptotic analysis, we
describe a variety of flow regimes that arise, and demonstrate an almost instantaneous
control of injected fluid by the far field conditions in geological reservoirs. For a
continuous input, the flow develops a horizontal interface between the injected and
ambient fluids. The background flow thereby effectively caps the height of the injected
fluid into a shallower region of vertical confinement. For a released parcel of fluid,
gravitational spreading is found to become negligible after a short time. A dominant
control of the interface by the background pressure gradient arises, and stems from
the different velocities at which it drives the injected and ambient fluids individually.
Similarity solutions describing these dynamics show that the parcel approaches a
slender triangular profile that grows horizontally as t1/2, where t is time, a rate
faster than relaxation under gravity. Shock layers develop at the front or back of
the parcel, depending on whether it is more or less viscous than the ambient fluid.
New analytical results describing the long-term effects of residual trapping due to
capillary retention are developed, which yield explicit predictions for the time and
length scales on which a parcel of CO2 becomes retained. We end by applying our
results to geological contexts, concluding that even slight background motion can
have considerable implications for long-term transport through the subsurface.
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1. Introduction
An understanding of the fate of fluid contaminants in porous geological formations

is necessary in order to ensure the safe exploitation of our natural environment.
The long-term transport of fluids through the subsurface is of concern in many
applications of major humanitarian significance. These include the geological disposal
of radioactive waste, the spoiling of freshwater reservoirs by inputs containing
dissolved contaminants, the fate of fluids injected for industrial processes such as
enhanced oil recovery and hydraulic fracture, and the long-term fate of supercritical
CO2 sequestered for geological carbon storage (Bickle 2009; Orr 2009). The potential
for waste products to leak and migrate from their disposal location poses major risks
to maintaining environmental standards. Of particular importance is the long-term
migration of CO2 injected during geological carbon storage, which is key to assessing
the viability of this emerging technology. To date, the analysis of fluid releases in
porous media or aquifers has concentrated on cases where the medium or rock
is either unsaturated or saturated with a quiescent fluid (Barenblatt 1952; Bear
1988; Huppert & Woods 1995; Lyle et al. 2005; Nordbotten, Celia & Bachu 2005;
Nordbotten & Celia 2006; Vella & Huppert 2006; Hesse et al. 2007; MacMinn
& Juanes 2009; Golding & Huppert 2010; Gunn & Woods 2011; de Loubens &
Ramakrishnan 2011a; Pegler, Huppert & Neufeld 2013a, 2014a; Zheng et al. 2015;
Guo et al. 2016). These studies focus on the effects of substrate topography and
vertical confinement. However, they neglect a widespread feature of geological
reservoirs, namely a background flow of the saturating ambient fluid. Such flows
are prevalent in subsurface environments, and are driven by long-range gradients
in hydrostatic pressure from surface precipitation or poroelastic deformation. We
demonstrate in this paper that even slight background flow generally creates dominant
long-term controls on the released fluid.

For the fundamental situation in which a two-dimensional parcel of fluid is released
into a quiescent porous medium, it is found that the parcel relaxes self-similarly
under gravity with its horizontal extent growing in proportion to t1/3, where t is time
(Barenblatt 1952). This solution also describes the relaxation of a parcel released
on an incline in a semi-infinite porous medium (Huppert & Woods 1995). It is
also the final regime resulting from the release of a parcel in a confined reservoir
of quiescent fluid (Hesse et al. 2007). To the best of our knowledge, the general
control of a background flow on the evolution of a released fluid parcel has not
been considered previously. A primary result of this paper is to show that the regime
determined by Barenblatt (1952) generally fails to arise under the influence of even
weak background motion, and we determine the new asymptotic regimes that arise in
these new situations.

Our study begins by considering the effects of a background flow on the continuous
input of fluid injected at a constant rate, as characterises the injection phase of CO2
sequestration. Interesting dynamics arise in this case because the background flow
and injectate compete for space within the confining porous layer. The effects of
a background flow on a continuous input were considered previously by Gunn &
Woods (2012) for a strongly inclined aquifer, where different flow regimes can arise
depending on the relative directions of the inclination and the background flow. The
effect of a background flow on the rate at which a trapped region of CO2 dissolves
into an aquifer was considered by Unwin, Wells & Woods (2016). In our analysis,
we focus on the different situations of a horizontal (or broadly horizontal) substrate
with a miscible contaminant, and explore the fundamental regimes controlled purely
by background flow.
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Capillary retention in the porous matrix can occur for a finite release of a fluid
that is immiscible or partially immiscible with the ambient fluid, such as applies
to a post-injection fixed-volume release of CO2 into a saline aquifer (Hesse, Orr
& Tchelepi 2008; MacMinn, Szulczewski & Juanes 2010). While we focus on
fundamental regimes arising with negligible retention, we also conduct a short
analysis developing new analytical results for the asymptotic evolution of a parcel
subject to capillary retention, and the time and length scales on which a released
parcel of pure CO2 is retained.

A particular case of the flows we address (the special case of no background
flow) concerns an as-yet-unconsidered fundamental problem of fluid injection into
the interior of an aquifer bounded asymmetrically between a sealing fault and
a permeable fault. Studies of injection into confined porous media to date have
typically assumed a priori that the flow is axisymmetric (Nordbotten & Celia 2006;
Guo et al. 2016) or symmetric about a linear input (equivalent to a one-sided
injection) (Pegler et al. 2014a; Zheng et al. 2015). Idealisations of this kind assume
symmetrical far-field conditions on the saturating fluid. However, aquifers naturally
contain far-field asymmetries. For example, some faults provide a complete seal while
others are permeable. An important finding of this paper is that, for a fluid-saturated
aquifer, far-field asymmetries lead to dominant, almost immediate, controls on the
evolution of the injected fluid. The conditions at the margins of a geological reservoir,
however far away, are thus demonstrated to play a leading-order role in the evolution
of fluid introduced anywhere in its interior.

We complement our theoretical results with a series of analogue laboratory
experiments in which aqueous solutions of sodium chloride are injected into
a confined porous bead pack saturated with fluid undergoing a pressure-driven
background flow. These provide the first laboratory experiments of fluid transport
with a background flow, and build on those performed previously in a quiescent
medium (Pegler et al. 2014a). We use these experiments both to test our theoretical
predictions and to develop new insights regarding additional physical effects not
included in our model. These additional effects include, in particular, the role of
vertical stresses and the time dependence of fluxes caused by changes in back
stresses at the input points.

To demonstrate how our results can be used to inform geological problems, we
apply them to some examples. As a case study, we consider the injection of natural
CO2-saturated brine from a fault zone into the water-saturated Navajo Sandstone at
Green River, Utah (Allis et al. 2001; Kampman et al. 2014). The source originates
from deeper reservoirs saturated by CO2, where CO2-charged brine is driven vertically
through a fault by formation overpressures and leaks laterally into higher sandstone
aquifers, including the Navajo. The injected brine is subsequently thought to be
advected tens of kilometres or more by a background flow of water. The site provides
a natural analogue for subsurface CO2 transport on time scales of tens of thousands
of years, thus providing a route towards understanding some long-term implications
and risks of engineered geological carbon storage. We use our analytical results to
assess the degree of spreading by the background flow. We also apply our results
more generally to address the effect of background flow on the evolution of pure CO2
injected in geological carbon storage. For typical parameter values, background flow
advects CO2 between one and two orders of magnitude faster than the background
flow itself.

We begin in § 2 by outlining the development of our model describing the evolution
of a contaminating fluid in a confined aquifer with a background flow. The equations
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FIGURE 1. (Colour online) Schematic of a dense fluid contaminant introduced into a fluid-
saturated porous medium at the volumetric flux Q1(t) with a background flow of flux Q2.

are studied first in § 3 in the context of a continuous input of fluid, with the
identification of the principal regimes arising with and without background flow.
This is followed in § 4 by an analysis of the long-term migration of a fluid parcel
released with fixed volume, and the various long-term modes of deformation that
develop. In § 5, we present our laboratory study and comparisons with the theory.
Section 6 discusses the geological implications of the results, and we conclude in § 7
by summarising the key findings.

2. Model equations
We consider a two-dimensional porous medium of uniform porosity φ and

permeability k saturated by an ambient fluid of density ρ2 and dynamic viscosity
µ2 (figure 1). The medium is assumed to be confined by two impermeable horizontal
boundaries along z = 0 and z = H. A large-scale horizontal pressure gradient drives
a background flow at the volumetric flux per unit width (or depth-integrated Darcy
velocity) Q2, assumed to be constant. The saturating fluid enters the medium from an
input far upstream in the negative x direction, corresponding physically to a source
of fluid driven by surface precipitation, for example. The fluid is assumed to exit
the medium far downstream. The special case Q2 = 0 models the case of a sealing
fault lying far upstream, which we address as a special case (§ 3). A second fluid
of greater density ρ1 and viscosity µ1 is introduced through an input point at x= 0
at a volumetric flux per unit width Q1(t) to form an intruding current of height
h(x, t) along the base of the medium. It should be noted that our analysis applies
equally to buoyant injected fluid (e.g. CO2 injected into an aquifer) on reversal of
the z coordinate. The interface between the injected and ambient fluids, z= h(x, t), is
assumed to remain sharp.

Let u1(x, t) and u2(x, t) denote the horizontal interstitial velocities of the ambient
and injected fluids respectively. We model the flow using Darcy’s law and a
hydrostatic-flow (Dupuit) approximation in which the horizontal velocities and
pressures of the two fluid layers are given by

ui =−
k
µi

∂pi

∂x
,

{
p2 = P(x, t)− ρ1gz (0 6 z 6 h),
p1 = P(x, t)− ρ1gh− ρ2g(z− h) (h 6 z 6 H), (2.1a,b)

where P(x, t) is the as-yet-undetermined pressure along the base of the medium and
g is the gravitational strength. On substituting (2.1b) into (2.1a), we obtain

u1 =
k
µ1

∂P
∂x
, u2 =

k
µ2

(
∂P
∂x
−1ρg

∂h
∂x

)
, (2.2a,b)
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where 1ρ ≡ ρ1 − ρ2 is the density difference between the two fluids. Mass
conservation across the full depth of the medium implies that the depth-integrated
horizontal velocity or volumetric flux per unit width of both fluids combined,
Q(x, t), must be uniform throughout the regions x < 0 and x > 0, with a jump
of Q(0+, t) − Q(0−, t) = Q(t) across the injection point. Upstream, the total flux is
equal to the background flux Q2, and hence Q(x, t)= Q2 for all x< 0. For x> 0, it
equals the sum Q2 +Q1(t). Hence,

φ[hu1 + (H − h)u2] =Q(x, t)≡
{

Q2 for x< 0,
Q2 +Q1(t) for x> 0. (2.3)

On substituting (2.2a,b) into (2.3) and rearranging, we determine the expression for
the background pressure gradient,

∂P
∂x
=

[
−
µ2

k
Q(x, t)+1ρg(H − h)

∂h
∂x

]/
[Mh+ (H − h)], (2.4)

where M ≡ µ2/µ1 is the viscosity ratio (ambient fluid over injected fluid). By
substituting (2.4) into (2.2a), we obtain the flow rate of the injected fluid,

u1 =
1
φ

[
MQ(x, t)−U(H − h)

∂h
∂x

]/
[Mh+ (H − h)], (2.5)

where U ≡1ρgk/µ1 is the intrinsic Darcy speed at which a parcel of injected fluid
falls vertically in an infinite porous medium saturated by the ambient fluid. By
substituting (2.5) into the depth-integrated form of the mass-conservation equation for
the lower fluid, we obtain the governing equation for the interface,

∂h
∂t
=−

∂(hu1)

∂x
=−

∂

∂x

h
(

MQ(x, t)−U(H − h)
∂h
∂x

)
φ[Mh+ (H − h)]

 . (2.6)

This equation generalises those developed previously to model fluid injection or finite-
volume release in quiescent porous media to allow for a spatially dependent total flux
Q(x, t) given by (2.3), which incorporates the background flow.

To specify the injection of the input fluid at x= 0, we impose

[hu1]
+

−
=Q1(t) or

[
∂h
∂x

]+
−

=
Q1(t)
HU

(
M −

H
h

)
at x= 0, (2.7a,b)

where the latter follows on substitution of (2.5) and simplification.
The current forms both an upstream flow front x = x−(t) and a downstream flow

front x= x+(t). To determine their evolutions, we impose the conditions of vanishing
frontal thickness and kinematic rates of propagation,

h(x+)= 0, ẋ+ = u1(x+)=
1
φ

(
MQ(x+, t)

H
−U

∂h
∂x

)
, (2.8a,b)

h(x−)= 0, ẋ− = u1(x−)=
1
φ

(
MQ(x−, t)

H
−U

∂h
∂x

)
, (2.9a,b)

where a dot denotes differentiation with respect to t.
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The injection of the current is assumed to initiate at t = 0 and occur continuously
at a constant rate until a total volume per unit width V is injected. To model this, we
impose

Q1(t)=Q1I(t), where I(t)=
{

1 (Q1t 6 V),
0 (Q1t> V), (2.10)

and Q1 is a constant. Our analysis will address the cases of continuous injection (V
infinite) and of a finite-volume input (V finite) separately.

2.1. Dimensionless model and representative parameter values
By forming scaling relationships between the terms in (2.6)–(2.10), we can determine
the intrinsic horizontal length and time scales

L≡
UH2

Q1
, T ≡

φUH3

Q2
1

(2.11a,b)

respectively, which characterise the flow of a gravity current of height h∼H injected
into a quiescent aquifer. We use these scales to form dimensionless variables according
to

x=
(

UH2

Q1

)
x̂, t=

(
φUH3

Q2
1

)
t̂, h=Hĥ, Q=Q1Q̂. (2.12a−d)

This choice maximises the generality of solutions to the associated dimensionless
model. Recasting (2.6) in terms of (2.12) and dropping the hats, we obtain

∂h
∂t
=−

∂

∂x

h

MQ(x, t)− (1− h)
∂h
∂x

Mh+ (1− h)


 , (2.13)

where

Q(x, t)=
{

I(t)+ B (x> 0),
B (x< 0), and I(t)=

{
1 (0 6 t 6 V),
0 (t> V). (2.14a,b)

The input condition (2.7b) becomes[
∂h
∂x

]+
−

=

(
M −

1
h

)
I(t) at x= 0. (2.15)

The flow-front conditions (2.8) become

h(x+, t)= 0, ẋ+ =M[I(t)+ B] −
∂h
∂x
(x+, t), (2.16a,b)

h(x−, t)= 0, ẋ−=MB−
∂h
∂x
(x−, t). (2.17a,b)

The system depends on three dimensionless parameters,

M ≡
µ2

µ1
, B≡

Q2

Q1
, V ≡

V
Q1T

, (2.18a−c)
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which represent the ratio of the ambient viscosity to the injectate viscosity, the ratio of
the background flux to the input flux, and the dimensionless total volume of injected
fluid (t= V is the dimensionless time at which the input is stopped).

Representative parameter values for different physical situations are given as follows.
The case M� 1 represents the case of a negligible ambient viscosity, as applies to a
good approximation to hydrological problems involving the flow of water into an air-
saturated aquifer, for which M≈ 0.01. For flows involving the evolution of a solution
of water charged with a contaminating solute such as sodium chloride or CO2, M ≈
0.5–1. The converse case of a low-viscosity contaminant (M > 1) characterises the
injection of supercritical CO2 into a saline aquifer. As estimated in § 6, M≈ 5–20 are
typical values for CO2 injection, and B is of order unity given representative injection
rates and background flow rates.

3. Continuous input
This section explores the effects of a background flow on a continuous injection of

fluid (V =∞). In order to illustrate the essential dynamics, we solved the initial-value
problem (2.13)–(2.17) numerically. A scheme was developed in which the domains
upstream and downstream of the input point are each mapped onto temporally fixed
domains and the derivatives in the equations are discretised using centred differences.
The details of this scheme are provided in appendix A.

The solution for the case of no background flow, B=0, is shown in figure 2(a). This
case represents the input of fluid between a sealing fault far upstream that imposes a
net volumetric flux Q = 0 throughout the region x < 0 in accord with (2.14a), with
the effect of producing asymmetrical far-field conditions on the saturating fluid. For
illustration, we have chosen M = 0.5 (injected fluid twice as viscous as the ambient
fluid).

The injected current is initially symmetrical, splitting equally between leftwards and
rightwards propagation. The symmetry is confirmed by the plots of x+(t) and |x−(t)|
shown in figure 3(a). The initial growth conforms to an early-time similarity solution
in which

x+ ∼ |x−| ∼ 1.18t2/3 (t→ 0+), (3.1)

which describes the continuous injection of fluid into a semi-infinite unsaturated
porous medium (Huppert & Woods 1995). The prefactor in (3.1) has been adjusted
here to account for the half–half split of the current in two directions. This similarity
solution has also been determined previously to describe the early-time flow of a
one-sided injection into a fluid-saturated confined porous medium in accordance with
a general principle that unsaturated dynamics are recovered for h�M−1 (Pegler et al.
2014a). The general emergence of this similarity solution in the flows considered
here verifies that this principle also applies in the presence of asymmetrical far-field
conditions, as well as a background flow.

By t = 1, the symmetry begins to break, at which time the majority of the fluid
is propagating to the right, towards the permeable fault, as t. A slower current
propagates towards the sealing fault to the left as t1/2. The break in symmetry about
x = 0 demonstrates a remarkable effect of the far-field conditions in providing an
almost instantaneous long-range control of the direction in which the injected fluid
propagates.

The solution with a non-zero background flux B = 1 and M = 0.5 (figure 2b)
illustrates several effects of a background flow. Early times again conform to the
symmetrical self-similar growth (3.1). However, in contrast to the case B = 0, the
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FIGURE 2. (Colour online) Numerically determined solutions to (2.6)–(2.17) describing
the evolution of a fluid injected continuously for (a) no background flow, B = 0, and
viscosity ratio M= 0.5 (injectate twice as viscous as the ambient fluid), (b) a background
flux B= 1 and M= 0.5, and (c) B= 1 and M= 2 (injectate half as viscous as the ambient).
Height profiles are shown at times t= 0.0625, 0.25, 1, 4 and 8. The long-term similarity
solution describing flow towards the sealing fault for B = 0, given by our numerical
solution to (3.5)–(3.6), is shown by the curve of green crosses in (a). The steady-state
solution (3.11a) is shown as a red dotted curve in (b). The prediction for the position of
the horizontal interface hH given by (3.9b) is shown as a dashed blue line in (b,c).

10010–110–210–3 102101
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FIGURE 3. (Colour online) Distances of the positive and negative flow fronts from the
injection point, x+(t) and |x−(t)|, for the solutions of figure 2. In all cases, the flow is
symmetrical at early times in accord with (3.1), which is shown as a line of blue circles
in each panel. The late-time asymptote (3.10) for the positive flow front x+ is shown as a
black dashed line in each case. In (a), the late-time asymptote for the negative flow front
described by the similarity solution of § 3.1.1, |x−| ∼ ηN t1/2, is shown as a line of green
crosses. The long-term steady position of |x−| for B> 0, as given by (3.11b), is shown
as a horizontal dotted red line in (b,c).
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interface does not approach the top boundary asymptotically. Instead, it forms a steady
horizontal interface along the centre of the medium. The positive flow front x+(t)
again grows in proportion to t but at a faster rate than in the case B= 0. Meanwhile,
the upstream flow in x< 0 approaches a (stagnant) steady state of finite extent −x−,
contrasting with the indefinite expansion (x−→−∞ as t→∞) occurring in the case
B= 0.

The flow for B= 1 and M= 2 (ambient fluid twice as viscous as the injected fluid)
is shown in figure 2(c). Compared with the case M = 0.5, the injected fluid forms a
shallower layer. It also flows a shorter distance upstream against the background flow.
Unlike the cases with M = 0.5, the current develops a broader slope, reminiscent of
the profile resulting from a one-sided injection of relatively less viscous fluid into a
quiescent aquifer.

3.1. Injection into a quiescent asymmetrical reservoir
We begin with a dedicated analysis of the special long-term regimes that arise with
no background flow, B= 0. For this case, our solution of figure 2(a) indicated that the
majority of the injected fluid eventually propagates towards the permeable fault at long
times, hu1∼1. Therefore, the rightwards flow for B=0 approaches the same long-term
regimes as a one-sided injection into a confined aquifer, as detailed by Pegler et al.
(2014a) and Zheng et al. (2015). As determined therein, the asymptotic position of
the positive flow front for M 6 1 is

x+ ∼ t (t→∞), (3.2)

which is shown by the dashed line in figure 3(a). The general possible regimes,
including those for M > 1 and B > 0, will be reviewed later in the text preceding
(3.10). The result of (3.2) confirms the long-term prediction of our numerical solution.
In the practical context, the asymptotic regime of (3.2) will apply until the rightwards
flow front interacts with the downstream end of the aquifer, beyond which time a
different regime, possibly involving leakage of the current through the permeable
fault, will apply. While the rightwards-propagating regime described by (3.2) is
asymptotically equivalent to that of a one-sided injection towards a permeable fault,
a qualitative difference is that the interface never touches the top boundary of the
medium as it does in that case. A gap must persist in the present case in order to
provide a conduit for fluid to escape the confined region x < 0. The gap gradually
narrows over time but never vanishes completely. It should be noted that this conduit
would not necessarily occur for the related problem of a point-source injection
because, in that case, ambient fluid can flow around the injectate.

3.1.1. The self-similar flow towards the sealing fault
Figure 3(a) indicates that the leftwards current grows in proportion to t1/2, a

significantly slower rate than the rightward current (3.2). To understand this evolution,
it should be noted first that, as the gap above the current in the region x> 0 closes,
the fluid above the injection point gradually approaches the top boundary,

h(0)∼ 1 (t→∞). (3.3)

The leftwards current is therefore fed by a region of fixed height asymptotically. The
long-term flow to the left can therefore be described by (2.6), (2.8a) and (3.3). No
explicit time-independent horizontal length scale can be formed from scalings of these
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FIGURE 4. (Colour online) The solid curve shows the prefactor ηN(M) to the frontal
position x− ∼ −ηN t1/2 describing the long-term propagation of the injected fluid in the
direction of the sealed fault for the case of no background flow (B = 0) plotted against
the viscosity ratio M, obtained from numerical solutions of (3.5)–(3.6). The plot shows the
decrease of the rate of propagation with M. The horizontal dashed green line shows the
asymptote ηN ∼ 1.62 for M→ 0, which represents the limit of an unsaturated aquifer. The
curve of blue circles represents the asymptote for M→∞ given by (3.7), as predicted
by the boundary-layer analysis of appendix B. The insets illustrate the self-similar profiles
for M= 10−3 and M= 103, the latter showing the strongly concave profile that arises for
large M.

equations, indicating a similarity solution. We define the relevant similarity variables
by

η= t−1/2x, h= h(η), (3.4a,b)

with frontal evolution x−=−ηN t1/2, where ηN is a constant to be determined. In terms
of (3.4), equation (2.13) becomes

−
1
2
ηh′ =

[
h(1− h)h′

Mh+ (1− h)

]′
, (3.5)

where we use a prime to denote d/dη. The conditions (3.3) and (2.16a,b) become

h(0)= 1, h(−ηN)= 0, h′(−ηN)=
1
2ηN . (3.6a−c)

We solved (3.5)–(3.6) numerically using a scheme in which (3.5) is integrated
subject to (3.6b,c) using the Matlab routine ode113. This integration was iterated
in conjunction with a bisectional search which tunes ηN to meet (3.6a). The height
profile and extent thus determined are shown as curves of green crosses in figures 2(a)
and 3(a), and provide a close match with our numerical solution to the initial-value
problem. The t1/2 regime described here will cease once the current makes contact
with the sealing fault, assumed to lie far in the negative x direction; beyond that time,
a no-flux condition will apply at the left-hand edge of the current, and the current
will proceed to fill the left-hand section of the aquifer to long times.

By solving (3.5)–(3.6) over a range of viscosity ratios M, we determine the
universal relationship between ηN and M shown in figure 4. For M� 1, it is found
that ηN ∼ 1.62. This limiting value represents the self-similar flow of a gravity current
fed from a constant pressure head into an unsaturated or semi-infinite porous medium
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FIGURE 5. (Colour online) The boundary-layer structure underlying the self-similar
propagation of a gravity current towards a closed fault in the limit of small injectate
viscosity, M → ∞. The case M = 100 is illustrated. The numerical solution to the
exact equations (3.5)–(3.6) is shown as a solid curve, with the flow front indicated by
a star. As detailed in appendix B, the flow involves a boundary layer of extent δ ∼
(M log M)−1/2 near the flow front ηN ∼ 2(M−1 log M)1/2, representing a transition from a
region dominated by resistance to ambient flow to a region wherein the resistance to flow
of the injectate becomes leading order (and ultimately constrains the tip propagation). The
outer solution satisfying (B 4a) is shown as a dotted red curve. The inner solution (B 7),
which consistently matches the outer solution to the frontal conditions (3.6b,c), is shown
as a dashed blue curve.

(Pritchard 2007; Neufeld, Vella & Huppert 2009). It is recovered here for M → 0
because the far-field condition of the sealing fault has no effect when M = 0. As M
increases from zero, ηN decreases. Perhaps counterintuitively, reducing the viscosity
of the current therefore decreases its rate of propagation. It should be noted that the
opposite of this conclusion holds for the analogous (fixed-headed input) similarity
solution describing flow towards a permeable fault (Pegler, Huppert & Neufeld 2014b).
The coefficient ηN instead decreases with M here because, with a sealing fault, the
current must drive a return flow of ambient fluid in order to propagate. For larger M,
the stresses associated with mobilising the return flow are larger, thus resisting the
propagation of the current.

For M→∞, as applies approximately to pure CO2 injected into a saline aquifer,
the resistance to ambient flow becomes a dominant effect. This limit produces a
distinct asymptotic regime in which the evolution of the interface throughout the
majority of the flow is resisted by the mobilisation of the ambient fluid. Remarkably,
the viscosity of the injectate nevertheless remains important near the flow front
within a small boundary layer of extent δ = O[(M log M)−1/2

], and provides the
ultimate constraint on the overall rate of propagation. The mathematical analysis of
this boundary-layer structure is provided in appendix B. The structure is illustrated in
figure 5, where our numerical solution to the exact equations (3.5)–(3.6) for M= 100
is shown alongside the inner and outer solutions determined in appendix B. The
analysis reveals the asymptote

ηN ∼ 2(M−1 log M)1/2 (M→∞), (3.7)

which is shown as a curve of circles in figure 4 and validates the numerically
determined values for M� 1.
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3.2. The effects of background flow
The solution for B= 1 and M= 0.5 (figure 2b) indicates several effects of background
flow. Most evident are the development of an asymptotically steady horizontal
interface in the region x > 0 and the approach of the flow for x < 0 towards a
steady state.

To determine these asymptotic regimes, we consider the steady form of (2.6),
namely ∂(hu1)/∂x = 0. Since the long-term flow only propagates in the positive x
direction, u1 > 0 (otherwise, the leftwards current would remain unsteady), it follows
that the dimensionless flux of injected fluid hu1 is equal to zero for x< 0 and unity
for x> 0. Using (2.5), we therefore obtain

hu1 = h
[

MQ(x)− (1− h)h′

Mh+ (1− h)

]
=

{
0 (x< 0),
1 (x> 0), (3.8)

where, here, h and Q are functions of x only and we have used a prime to denote
d/dx.

To seek a solution to (3.8) with a horizontal interface for x> 0, we set h′ ≡ 0 and
Q(x)= B+ 1, to yield

M(B+ 1)h
Mh+ (1− h)

= 1 and hence h=
1

MB+ 1
≡ hH (3.9a,b)

on making h the subject. The height predicted by (3.9b) is shown as a horizontal
dashed line in figure 2(b,c) and matches a prevailing interior region of the numerical
solution at long times. Two fluids driven simultaneously into a porous medium thus
divide along a critical height hH that depends on the viscosity ratio M and flux ratio
B between the fluids. For less viscous injectate (M larger) or larger background flux
(B larger), (3.9b) predicts that the height confining the lower fluid, hH , becomes
smaller.

The sustained gap above the injected current effectively confines the current into
a shallower quiescent aquifer of effective depth hH . Consequently, the rightwards
current is asymptotically equivalent to a one-sided injection with no background
flow adjusted to an effective aquifer depth hH = 1/(MB+ 1). To review the regimes
arising for a one-sided injection with no background flow (Pegler et al. 2014a; Zheng
et al. 2015), we recall that, in that case, the current generally grows vertically to
span the depth of the medium fully. For M < 1, the two flow fronts along the top
and bottom boundaries both propagate as t at long times and form the ends of an
asymptotically linear interface of constant length which is relatively short compared
with the horizontal extent of the flow at long times. For M = 1, a similar regime
arises except with the horizontal length of the interface growing as t1/2 under the
effect of gravity. For M > 1, the interface approaches a large-scale concave profile
in which the front propagates at the faster rate of Mt and the upper front at the
slower rate of M−1t. With the results for the long-term frontal position adjusted to
incorporate the effective aquifer height of (3.9b), the leading position of the positive
flow front with background flow can be determined as

x+ ∼
{

t/hH = (1+MB)t, for M 6 1,
Mt/hH =M(1+MB)t, for M > 1. (3.10a,b)

The asymptotes (3.10) are shown as dashed black lines in figure 3(a–c) and agree
with the large-time numerical predictions. Expression (3.10a) shows that for M 6 1,
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the effect of background flow is to increase the rate of propagation of the flow front
by a value MB relative to its speed if B= 0. For M> 1, the speed of propagation is
further enhanced by the extra factor of M. For M� 1, (3.10b) has the limiting form
x+ ∼ BM2t. The value of the quadratic prefactor M2 is considerable for CO2 storage,
with representative values lying in the range 25–400. Background flow can therefore
advect injected fluid significantly faster than the background flow itself, an effect that
has the potential to provide a dominant control on the migration of CO2.

To analyse the steady state arising for x<0, we set Q(x)=B in (3.8). By integrating
that equation analytically subject to the asymptotic condition h(0)∼ hH , we obtain the
steady-state height profile and negative frontal position

h= 1− [(1− hH)
2
− 2MBx]1/2, x− =−

1− (1− hH)
2

2MB
(3.11a,b)

respectively. The predicted steady profile of (3.11a) is shown by the curve of red
circles in figure 2(b) and agrees with the numerically determined profile at long times.
The corresponding agreement with (3.11b) is shown in figure 3(b,c). Expression
(3.11b) implies that |x−| is smaller for less viscous injectate (M larger), and hence
the current propagates less far against the background flow when it is less viscous
(confirmed by the comparison of the steady profiles arising for x< 0 in figure 2a,b).
The regime of (3.11) is not just steady but completely static (u1 = 0). That is, fluid
entering the upstream region x< 0 never leaves it and is retained there to long times.

4. Release of a parcel
This section explores the propagation and deformation of a miscible fluid parcel

following its release into a background flow (the effects of residual trapping for
immiscible fluid will be considered in § 6.3). To illustrate the essential phenomena,
we determined numerical solutions to the initial-value problem (2.13)–(2.17). This was
done by modifying our numerical solver to perform a transition from the two-domain
representation used above for t < V to a single-domain representation [x−, x+] for
t > V (as detailed in appendix A). Illustrative solutions for V = 4, background flux
B= 1 and viscosity ratios M = 0.5, 1 and 2 are shown in figure 6(a–c).

For case (a), M= 0.5, the profile resulting from the input condition rapidly smooths
the interface. Relatively more fluid migrates towards the front of the parcel to produce
an asymmetrical shape. The whole fluid parcel translates at approximately half the
speed of the background flow. At long times, the profile steepens near the positive
flow front x+. For M = 1, the parcel instead propagates at the same rate as the
background flow. In this case, the current retains a fully symmetrical shape. For
M= 2, the parcel is advected approximately twice as fast as the background flow. In
this case, a steepened profile develops instead near the negative flow front x−.

4.1. The leading-order rate of propagation of the parcel
To analyse these regimes, we begin by considering asymptotic simplifications of the
model equations. It is evident from the numerical solutions that the parcel generally
becomes increasingly slender with time. That is, h→ 0 and 1x→∞ as t →∞,
where 1x≡ x+ − x−. Accordingly, the slope ∂h/∂x∼ h/1x→ 0. In these limits, the
gravitational contributions to the flow-front conditions (2.16b) and (2.17b) become
asymptotically smaller than the order-unity contributions from the background flow.
With regards to the leading position of the parcel, gravitational spreading can therefore
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FIGURE 6. (Colour online) Evolutions of fluid parcels of dimensionless volume V = 4
released into a porous medium with a dimensionless background flux B= 1 and viscosity
ratios (a) M = 0.5, (b) M = 1 and (c) M = 2, obtained from our numerical solution of
(2.13)–(2.17). Times are indicated above each profile. For injected fluid more viscous than
the ambient (M< 1), the parcel develops a gravity-smoothed frontal shock layer. For equal
viscosities (M=1), the profile develops a symmetrical parabolic shape in its moving frame
described by the similarity solution (4.19), which is shown by the curve of purple circles
at t= 300. For a less viscous injectate (M> 1), the parcel develops a trailing shock layer.

be neglected. In the absence of those contributions, (2.16b) and (2.17b) each integrate
to yield the long-term leading-order displacements of the flow fronts,

x± ∼MBt (t→∞). (4.1)

The parcel as a whole therefore advects at a rate of M multiplied by the background
flow rate. For geological carbon storage, the rate of advection of CO2 by the
background flow may be as high as M= 20 times the ambient flow rate, implying an
order-of-magnitude difference in velocity between the parcel and the ambient fluid.
The potential for considerable differences in flow rates between the parcel and the
ambient differs qualitatively from how a background flow typically affects a fluid
body in non-porous fluid-mechanical configurations, for which interfacial viscous
drag drives an immersed fluid parcel towards the same velocity as the background
flow. The relative smallness of interfacial shear stresses in a porous medium renders
that effect negligible, allowing instead for considerable velocity contrasts between the
parcel and the ambient fluid.

4.2. The deformation of the parcel
To explore how the parcel deforms in its moving reference frame, we recast (2.13)–
(2.17) in terms of the moving coordinate system (ξ , t), where

ξ = x− (MB)t. (4.2)
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FIGURE 7. (Colour online) The deformation velocity uD(h), representing the advective
prefactor to the nonlinear wave equation (4.6) and the rate at which the background
pressure gradient advects the interface in the frame of the parcel. The cases shown
correspond to (a) a more viscous injectate, M = 0.5, (b) an equally viscous injectate,
M = 1, and (c) a less viscous injectate, M = 2.

In terms of these coordinates, equation (2.13) becomes

∂h
∂t
=MB

(
[Mh+ (1− h)]2 − 1
[Mh+ (1− h)]2

)
∂h
∂ξ
+
∂

∂ξ

(
h(1− h)

Mh+ (1− h)
∂h
∂ξ

)
(4.3)

and conditions (2.16) and (2.17) become

h(ξ+)= 0, ξ̇+ =−
∂h
∂ξ
, (4.4a,b)

h(ξ−)= 0, ξ̇− =−
∂h
∂ξ
. (4.5a,b)

Our numerical solutions for M = 0.5 and 2 (figure 2a,c) indicated prevailing interior
regions of the parcel in which |∂h/∂ξ | � 1 connected to short shock layers through
which ∂h/∂ξ becomes large at either the front or back of the parcel respectively. To
understand this structure, we begin by considering the simplified flow regimes arising
from the decay ∂h/∂ξ→ 0. Assuming that the first term in (4.3) is non-zero (M 6= 1),
this term will dominate over the second gravitational term in the limit ∂h/∂ξ → 0,
yielding

∂h
∂t
∼MB

(
[Mh+ (1− h)]2 − 1
[Mh+ (1− h)]2

)
∂h
∂ξ
≡−uD(h)

∂h
∂ξ
. (4.6)

This nonlinear advection equation governs the deformation of the interface caused by
the relative rates of advection of the two fluid species by the background flow. It
shows that the relative rate of advection is dependent on the height of the interface
separating the fluids, h. The parcel thus evolves as a nonlinear wave with rate of
advection uD(h) in the frame moving with the background flow, which we refer to
as the deformation velocity. The function uD(h) is different for each value of M, and
is shown for (a) M = 0.5, (b) M = 1 and (c) M = 2 in figure 7. For M < 1, uD is
positive, implying that fluid migrates forwards in the frame of the flow fronts. This
is consistent with the development of a shock at the downstream edge. For M = 1,
uD is identically zero because the background flow advects both fluids at exactly the
same rate and hence does not generate the velocity contrast necessary to deform the
parcel. In this special case, the advective term in (4.3) (proportional to B) is identically
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FIGURE 8. (Colour online) The magnitude of the stretching factor |Ω| = 2BM|1 − M|,
representing the coefficient in the nonlinear advection equation (4.7) describing the leading-
order dynamics as h→ 0 and M 6= 1. For small ambient viscosity (M→ 0), Ω ∼ 2M→ 0
and the background flow plays a small role in deforming the particle to leading order.
For M = 0.5, Ω attains a local maximum (the green circle), implying that for M < 1 a
fluid parcel is stretched fastest if it is exactly twice as viscous as the ambient fluid. For
M= 1, the lack of viscosity contrast abruptly removes any effect of the background flow
on deforming the parcel (Ω = 0), and the purely gravity-driven flow (in the frame of the
parcel) described by the theory of § 4.5 applies uniquely. For M>1, Ω increases relatively
significantly as 2M2, implying the potential for considerable deformation of a parcel that
is less viscous than the ambient fluid.

zero and its assumed dominance in deriving (4.6) above is uniquely invalid; we defer
addressing this case to § 4.5. For M > 1, uD is instead negative and fluid migrates
backwards in the frame of the parcel, consistent with the formation of a trailing shock
layer.

4.3. The self-similar horizontal stretching of the parcel
At long times, the injectate layer thins, h→ 0, and the deformation velocity uD(h)
defined in (4.6) approaches the linear asymptote uD(h)∼Ωh, where Ω ≡ 2BM(1−M)
is the stretching parameter. In this limit, equation (4.6) reduces asymptotically to

∂h
∂t
∼−Ωh

∂h
∂ξ
, (4.7)

which is a simple nonlinear wave equation with prefactor proportional to Ω (an
inviscid Burgers equation). The absolute value |Ω| measures the rate at which the
background flow stretches the interface horizontally. The value of |Ω/B| is plotted as
a function of M in figure 8, with the main plot showing log–log axes and the inset
showing natural axes. For M� 1, Ω increases with M (as 2M) because M increases
the background stress driving the deformation. However, at M= 0.5, the increase stops
and Ω attains a local maximum, shown as a green circle. While increasing M still
increases the ambient stress in the range 0.5<M<1, the increasing similarity between
the rates at which the background flow advects the two fluid species individually as
M approaches unity causes the ambient stress to become less effective at deforming
the parcel. At M= 1, Ω = 0 because the background flow does not drive any one fluid
faster than the other. The value M= 0.5 is the critical value at which the increase in
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the background pressure gradient balances the reduction in the rate of deformation
caused by the viscosities of the two fluids becoming similar. For M> 1, the viscosity
contrast is reinstated and the magnitude of Ω continues to increase. Ultimately, it
grows as 2M2, attaining values larger than those possible for M < 1.

We begin our analysis of (4.7) with the case of a relatively more viscous injected
fluid, M < 1, for which Ω > 0. Motivated by the development of a shock layer near
the front x+, we seek a solution to (4.7) subject to (2.17a) and the volume constraint∫ ξ+(t)

ξ−(t)
h(x, t) dx= V, (4.8)

with the anticipation that a conflict between the resulting solution to these equations
and condition (2.16a) produces the shock front (this will be confirmed in § 4.4 below).
Since no horizontal length scale can be formed from scalings of (4.7), (2.17a) and
(4.8), one can anticipate that they support a similarity solution. To determine this, we
recast these three equations in terms of the similarity variables

ζ =
x

(ΩVt)1/2
, h=

Vf (ζ )
(ΩVt)1/2

, (4.9a,b)

which yield
1
2
(ζ f ′)′ = f f ′, f (0)= 0,

∫ 1ζ

0
f (ζ ) dζ = 1, (4.10a−c)

where 1ζ ≡ ζ+ − ζ−. On integrating (4.10a) subject to (4.10b,c), we obtain

f = ζ , 1ζ =
√

2. (4.11a,b)

This result shows that the leading-order flow approaches a linear similarity solution
with a single shock front (cf. de Loubens & Ramakrishnan 2011b). The approach
is confirmed in figure 9(a), where (4.11) is plotted as a dashed blue line and the
numerical solution is shown as a solid black curve for M = 0.5 at t = 4 × 103. The
convergence occurs fastest near the negative flow front because the gravitational
dynamics is weakest furthest from the shock layer. The evolution of the horizontal
extent implied by (4.11b) is

1x∼ (2ΩVt)1/2 = 2[BVM(1−M)t]1/2. (4.12)

This result shows that the extent of the parcel grows as t1/2 with a prefactor that
is proportional to

√
Ω and

√
V . The parcel therefore stretches horizontally faster for

larger values of the parameter Ω and volumes V .

4.4. The shock layer
While describing the prevailing interior of the parcel, the similarity solution (4.11)
conflicts with the condition of vanishing thickness at the nose (2.16a). This conflict
indicates that the second-order (gravitational) term in (4.7) remains significant near
x= x+ to produce a narrow ‘shock layer’ in which gravity suppresses the overturning
of the interface. To investigate its intervention, we begin by considering the direct
simplification of (4.3) arising from the limit h→ 0 only, namely

∂h
∂t
∼−Ωh

∂h
∂ξ
+
∂

∂ξ

(
h
∂h
∂ξ

)
. (4.13)
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FIGURE 9. (Colour online) The long-term regimes arising for (a) M= 0.5 shown at time
t= 4× 103 and (b) M= 2 shown at t= 200, as given by our numerical solution to the full
equations (2.13)–(2.16). The self-similar asymptotes describing the prevailing triangular
regions, given by (4.11) for M < 1 and (4.20) for M > 1, are shown by the dashed blue
lines in (a) and (b) respectively. The leading-order solutions describing the gravitational
smoothing of the shock fronts, given by (4.17) for M < 1, are shown by the curves of
circular markers.

To study the shock layer, we transform this equation into the frame of the shock and
the similarity height variable (3.4b) by defining the horizontal coordinate and scaled
height,

X = ξ − (2ΩVt)1/2, h= (ΩVt)−1/2F(X). (4.14a,b)

In terms of these variables, (4.13) becomes

Ω

V

(
−

F
2t1/2
+ t1/2Ft

)
−
Ω
√

2
FX =−ΩFFX + (FFX)X. (4.15)

To seek a solution that matches steadily to (4.11), we set Ft = 0. Since F is of order
unity, the first term in (4.15) decays as t−1/2 and is negligible as t→∞, leaving

−
1
√

2
ΩFX =−ΩFFX + (FFX)X. (4.16)

By integrating this equation subject to the frontal condition (2.16a), we obtain

F∼
√

2(1− eΩ(x−x+)/2). (4.17)

This solution is shown as a curve of green circles in figure 9(a) and successfully
describes the profile through the shock layer. Expression (4.17) shows that the extent
of the shock is of O(Ω−1), implying, in particular, that a stronger background flow
creates a shorter shock layer. This length scale remains constant in time but, since
1x given by (4.12) increases with time, the shock layer becomes increasingly smaller
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relative to the horizontal extent of the parcel as a whole as t→∞. Equation (4.17)
predicts that F→

√
2 as x→−∞. This confirms a correct matching between (4.17)

and the value of the outer solution (4.11) in the limit ζ →
√

2, in accordance with
van Dyke’s matching rule.

4.5. Equally viscous input and ambient fluids
As noted above, for M= 1, the background flow advects the injected fluid at exactly
the same rate as the background flow itself. Its effect in deforming the parcel,
represented by the first term on the right-hand side of (4.3), is therefore identically
zero. In this unique case, the assumption that the gravitational term in (4.3) becomes
negligible as the slope of the parcel decreases is invalid. Instead, (4.3) simplifies to

∂h
∂t
=
∂

∂ξ

(
h(1− h)

∂h
∂ξ

)
∼
∂

∂ξ

(
h
∂h
∂ξ

)
(h→ 0), (4.18)

and describes a purely gravity-driven relaxation of the parcel in the frame of the
background flow. In its moving frame, the parcel therefore relaxes exactly as if in
a quiescent porous medium. As determined by Barenblatt (1952), this equation, along
with the volume constraint (4.8), supports the exact similarity solution

h=
(

3
32

V2

t

)1/3
[

1−
(

2
9Vt

)2/3

ξ 2

]
, 1x= (36Vt)1/3. (4.19a,b)

This dome-shaped profile is shown as a curve of purple circular markers in figure 6(b).
It confirms the leading-order symmetrical relaxation of the parcel in a frame moving
with the background flow. It should be noted that the rate of relaxation 1x ∝ t1/3

predicted by (4.19b) is slower than the rate 1x∝ t1/2 predicted by (4.12) for M 6= 1.
The effect of the background flow in directly stretching a released parcel for M 6= 1
thus drives a greater rate of horizontal extension than would occur by gravity acting
independently.

4.6. Less viscous input fluid
For M > 1, the first term in (4.3) is non-zero, and hence, like the cases of M < 1,
it becomes dominant at late times. Likewise, the resulting simplified equation (4.7)
describes the leading-order dynamics. The only difference is that the stretching factor
Ω is negative if M< 1. That is, the background flow advects higher fluid backwards
in the frame of the parcel. To address this case, we repeat the steps of the analysis
of § 4.3 above, except with Ω replaced by its absolute value |Ω| in (4.9), and applying
(2.16a) instead of (2.17a). The analysis determines the similarity solution

f =−ζ , 1ζ =
√

2. (4.20a,b)

Like (4.11), (4.20) describes a triangular profile. However, its gradient is opposite to
the case M < 1 and thus predicts a shock at the negative flow front instead of the
positive flow front. The asymptotic approach of our numerical solution towards (4.20)
is confirmed in figure 9(b), where (4.20a) is shown as a dashed blue line at t= 200.
The time of transition towards the similarity solution is faster for M = 2 than M =
0.5 because the magnitude of the stretching parameter |Ω| = 2 is four times larger.
For M > 1, there is no maximum value of |Ω|, contrasting with the case M < 1, for
which it was noted that there is a maximum at M = 0.5. Background flow thus has
the potential to provide significantly greater rates of stretching when the parcel is less
viscous than the ambient fluid compared with cases where it is more viscous.
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FIGURE 10. (Colour online) Schematic of our experimental system.

5. Experimental study
A series of laboratory experiments was conducted to confirm aspects of the model

predictions and to assess the significance of further mechanical considerations not
incorporated within our model. The experiments were conducted in an acrylic tank
with dimensions of length 200 cm, height 25 cm and internal spacing 0.6 cm
(figure 10). Spacers confined a region of internal height 10 cm that was fully
enclosed except for a 10 cm horizontal gap at the right-hand edge of the upper
confining boundary. This enclosed region was filled with glass beads of diameter
2 mm to create a porous medium. The mean porosity was φ ≈ 0.38 ± 0.01 and the
mean permeability was k≈ 3.1 (±0.2)× 10−5 cm2 (Pegler et al. 2014a).

For the saturating ambient fluid, we used freshwater of density ρ2 = 0.998
(±0.001) g cm−3 and viscosity µ2 ≈ 0.93–0.99 (±0.01) g cm−1 s−1, which were
measured before each set of experimental runs using a hydrometer and a U-tube
viscometer respectively. For the injected fluid, we used denser (and more viscous)
solutions of water and sodium chloride to create density differences of 1ρ =
0.069–0.178 (±0.001) g cm−3 and injectate viscosities of µ1 ≈ 1.16–1.72 (±0.01)
g cm−1 s−1.

A continuous input of ambient fluid was achieved using a raised reservoir of
freshwater connected via a syphon to the inlet at the upper left-hand corner of the
enclosed region. The hydrostatic head in the reservoir was maintained to create a
fixed input pressure, and the mass of the reservoir was continuously monitored to
determine the input flux per unit width Q2(t). The ambient fluid partially filled an
open region above the porous medium. An outlet in the face of the cell allowed fluid
to overspill through a large exit tube and thus fixed the hydrostatic head of the upper
surface of the ambient fluid over time. With the background flow already initiated,
the dyed salty water was injected through an inlet at the base of the medium at a
distance of 40 cm from the left-hand edge. The injection flux Q1(t) was determined
analogously to the background flux. Two sets of experiments were conducted. In
the first set (runs 1–6), the injection was continued until the end of the experiment
(V =∞). Across these runs, the hydrostatic head of the fluids in the reservoirs was
varied to create a variety of input rates. In the second set (runs 7–8), we terminated
the injection once a finite volume per unit width V was input. Each experiment was
recorded using a digital camera with time-lapse photography.

Analysis of the mass readings of the feeding reservoirs showed some temporal
changes in the rates of input of both the ambient and injected fluids over the course

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.501


556 S. S. Pegler, A. S. D. Maskell, K. A. Daniels and M. J. Bickle

200 400 600 800 1000

100

200

0

0.1

0

0.2

0.3

t (s)

(a)

200 400 600 800 1000

t (s)

(b)

FIGURE 11. (Colour online) (a) The volume per unit width of fluid injected into the
tank, as inferred from the mass reading for the reservoir of dyed injected fluid over the
course of experiment 4. The dotted curve shows the raw data. The solid blue curve shows
the fitted least-squares parabola. (b) The associated linear change in Q1(t) implied by the
derivative of the fitted parabola, which we used to determine the constants Q(0)

1 and α1
in (5.1a).

of each experiment. Since the pressure heads at both input points were effectively
constant, we anticipate that the reduction of the input rates is a physical effect of
the tank becoming filled with the relatively more viscous fluid, which increases the
resistance to driving both fluids into the tank. An illustrative example of a decrease in
the rate of dyed fluid is shown for experiment 4 in figure 11. A least-squares parabola
provides a good fit to the data, as shown overlaid as a solid curve in figure 11(a),
with similar fits applicable to all of runs 1–6. The corresponding linear relationships
for the input and ambient fluxes (illustrated for Q1(t) in figure 11b) are

Q1(t)≈Q(0)
1 − α1t, Q2(t)≈Q(0)

2 − α2t, (5.1a,b)

where Q(0)
1 ≡Q1(0) and Q(0)

2 ≡Q2(0) are the fluxes at t=0, and α1 and α2 are constants
determined from the least-squares fit. In order to incorporate this variation within our
model, we apply (5.1) in place of (2.3). With the same non-dimensionalisation (2.12),
except with the initial flux Q(0)

1 in place of Q1, the augmented dimensionless model
is given by generalising (2.14) to

Q̂(x̂, t̂)=
{

B(t̂)+ I(t̂) (x̂< 0),
B(t̂) (x̂> 0), where

{
I(t̂)= 1− A1 t̂,
B(t̂)= B0 − A2 t̂. (5.2)

These specifications depend on the initial ratio of background fluxes, B0 ≡ Q(0)
2 /Q

(0)
1 ,

and two dimensionless rates of change, Ai ≡ αiT /Q(0)
1 , which are listed for each

experiment in table 1. No significant variation in flux was evident in the finite-volume
release experiments 7 and 8. This is expected because the volume of the more viscous
dyed fluid inputted was sufficiently small in these experiments that any increase in
the resistance to driving fluid into the tank was negligible.

5.1. Experimental results and theoretical comparisons
The evolution of a representative experiment (run 4) is shown as a time-lapse sequence
in figure 12. The experiment is also shown in the supplementary movie available
at https://doi.org/10.1017/jfm.2017.501. In agreement with the theory, the current is
initially close to symmetrical and subsequently develops a shorter component flowing
upstream against the background flow and a larger component flowing downstream
with the background flow. An approximately sharp interface between the injected and
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Units 1 2 3 4 5 6 7 8

ρ1 g cm−3 1.176 1.176 1.176 1.176 1.176 1.176 1.067 1.067
ρ2 g cm−3 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
µ1 g cm−1 s−1 (10−2) 1.72 1.72 1.72 1.72 1.72 1.72 1.16 1.16
µ2 g cm−1 s−1 (10−2) 0.93 0.93 0.9 0.93 0.93 0.93 0.99 0.99

Q(0)
1 cm2 s−1 0.445 0.415 0.535 0.256 0.552 0.129 0.322 0.172

Q(0)
2 cm2 s−1 0.085 0.294 0.392 0.309 0.758 1.13 0.124 0.283

α1 cm2 s−2 (10−4) 4.04 2.58 3.41 1.26 3.29 −0.93 — —
α2 cm2 s−2 (10−4) −0.90 0.32 1.18 0.50 3.37 4.85 — —

V — — — — — — 0.19 0.097
M 0.54 0.54 0.54 0.54 0.54 0.54 0.85 0.85
B0 0.27 0.68 0.73 1.42 1.45 8.80 0.39 1.65
A1 0.55 0.43 0.27 0.90 0.28 −5.17 — —
A2 −0.12 0.053 0.092 0.36 0.28 27.0 — —

S 0.015 0.051 0.068 0.063 0.13 0.20 — —

TABLE 1. Parameter values used in our laboratory experiments. The first set of
experiments (runs 1–6) involved a sustained continuous input (V = ∞). The second set
(runs 7 and 8) involved a finite-volume release (V finite). The two sets are individually
listed from left to right in ascending order of initial dimensionless background flux B0.

ambient fluids is retained. Some slight fading at the downstream flow front indicates a
stronger effect of hydrodynamic dispersion in smearing the interface for regions where
the current displaces the ambient fluid. The theoretical height profiles given by our
numerical solution to the model (2.13)–(2.17) and (5.2) are overlaid as white dashed
curves; generally good agreement is observed.

Some discrepancies between the theory and the data occur mainly along the
upstream interface, where the theory overpredicts the distance propagated by the
negative flow front |x−|. This trend is illustrated for all of our continuous-input
experiments in figure 13, where the positions of the positive and negative flow fronts
measured from the digital images and predicted by our theory are shown together.
The experiments with larger background flow tend to produce larger discrepancies.
We conjecture that the discrepancy is caused by stresses associated with vertical
flow weakening the (Dupuit) approximation of hydrostatic pressure; this hypothesis
is considered in detail below. Since less fluid propagates upstream than predicted by
the theory, correspondingly more fluid flows downstream. This explains the slight
underprediction of the position of the downstream flow front observed for each
experiment.

A time-lapse sequence of the finite-volume experiment (run 7) is shown in figure 14.
The flow-front evolutions for both finite-volume experiments (runs 7 and 8) are shown
in figure 15, where the times at which the input ceases are shown as vertical dashed
lines. The plots show good agreement with the theoretical predictions. Again, some
discrepancies occur near the negative flow front, which persist as the parcel advects
downstream. For run 8, the negative flow front x− propagates relatively further
downstream and is observed to leave small patches of the injected fluid behind its
trailing edge. The patches remain for a short period of time before being swept away
by the ambient fluid. The phenomenon is indicated by the step-like progression of
x− that occurs for t > 600 s in figure 15(b), which measures the distance furthest
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FIGURE 12. (Colour online) Time-lapse sequence of photographs showing a representative
experiment (run 4) at times (a) 80 s, (b) 200 s and (c) 800 s after the injection of the
dyed salty water was initiated. The dyed fluid, introduced at x = 0, is advected through
the bead pack by an ambient background flow of the saturating clear freshwater. The
vertical aspect has been stretched by a factor of two. The theoretical prediction of the
full numerical model given by (2.13)–(2.17) with (5.2) in place of (2.14) is overlaid as a
white curve in each panel.
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FIGURE 13. (Colour online) The positions of the positive and negative flow fronts x+
and x− (crosses) as measured from the experimental images for runs 1–6 involving
a continuous input of fluid. Each is compared alongside the theoretical prediction of
(2.13)–(2.17) and (5.2) shown as a curve.

upstream at which a patch is observed and lags intermittently behind the bulk of the
parcel. We anticipate that these patches arise as a consequence of localised regions of
lower permeability in the bead pack, which intermittently trap patches of the parcel
as it passes through.
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FIGURE 14. (Colour online) Time-lapse sequence showing a representative finite-volume
release (run 7) at (a) the time t=140 s at which the input is terminated and (b) t=1800 s.
The vertical aspect has been stretched by a factor of two. The theoretical prediction of
the full numerical model given by (2.13)–(2.17) with (5.2) in place of (2.14) is overlaid
as a white curve in each panel.
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FIGURE 15. (Colour online) Comparisons between the experimental data (crosses) and
theoretical predictions (solid curves) of the model (2.13)–(2.17) for the negative and
positive flow fronts, x− and x+, measured for experimental runs 7 and 8. In these runs,
the inputs were terminated at the times indicated by the vertical dashed lines to create a
finite-volume release.

5.2. The role of vertical stresses
Analysis of the runs involving a continuous input revealed a persistent, if relatively
small, discrepancy between the data and the theory in the position of the negative
flow fronts. We anticipate that this discrepancy is a consequence of a weakening of
the assumption of predominantly horizontal flow (the Dupuit approximation) caused
by a large interfacial slope at the negative flow front. In the extreme limit of a large
background flow, the interaction between the ambient flow and the injected fluid
would more closely approximate the flow around a locally vertical boundary created
by the injected fluid, with the ambient fluid just upstream of the negative flow front
x− being directed vertically in a stagnation-point flow. Stresses associated with this
vertical flow weaken the assumption of hydrostatic pressure (2.1b) underlying the
theory.

In steady state, the flow along the upstream interface is tangential to the interface.
Therefore, we can anticipate that the significance of the vertical flow is measured by
the magnitude of the gradient of the interface ∂h/∂x at the negative flow front x−.
Using (3.11b), the model prediction for the magnitude of this gradient is

∂h
∂x
=MB

H
L
=

µ2Q2

1ρgkH
≡ S, (5.3)
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FIGURE 16. (Colour online) Scatter plot showing the correlation between the background
strength parameter S, as defined by (5.3), and the relative discrepancy between the final
position of the negative flow front as predicted by the theory, xT

−
, and the experimental

data, xE
−

, for runs 1–6. The positive correlation indicates that the weakening of the Dupuit
approximation of predominantly horizontal flow, as measured by S, is responsible for the
discrepancy.

where S is a dimensionless number that we refer to as the background flow strength.
The self-consistency of the model depends on S�1, with larger values of S predicting
a larger deviation from hydrostatic pressure. A similar dimensionless parameter to
(5.3) was used by Pegler et al. (2013b) to explain discrepancies due to vertical stresses
for the related problem of a transition from a point-like radial injection towards
gravitational relaxation in a vertical Hele-Shaw cell. The value of S is evaluated
for runs 1–6 in the final row of table 1. In figure 16, we have plotted the relative
discrepancy between the final position of the negative flow front between theory, xT

−
,

and experiment, xE
−

, against S. The plot indicates a positive correlation between the
value of (5.3) and the degree of discrepancy, indicating that the discrepancy is indeed
due to a weakening of the assumption of hydrostatic pressure.

6. Geophysical applications
Background flow arises in geological aquifers as a consequence of hydrostatic

pressure gradients from surface precipitation. This section applies the theoretical
results to understand the general effects of background flow on both dissolved
contaminants and injected fluid such as sequestered CO2.

6.1. Navajo Sandstone
As a case study, we consider the leaking of CO2-charged brine into the water-saturated
Navajo Sandstone in North America. The brine originates from a much deeper
formation saturated by CO2. The CO2-charged brine propagates from this aquifer
through a permeable fault and, on its route to the surface, partially leaks into the
Navajo Sandstone. The leaked fluid is subsequently advected tens of kilometres (e.g.
Kampman et al. 2009) through this sandstone by a background flow of saturating
water. Fluid samples taken from the reservoir through the depth of the aquifer near the
fault indicate that CO2-charged brine spans the depth of the aquifer with a significant
concentration gradient (Kampman et al. 2014). Measured or calculated parameters
representing the aquifer and fluids are provided in table 2, with references provided
in the caption.

The dissolved CO2 and NaCl create a density difference of 1ρ ≈ 12 kg m−3 and
a viscosity ratio of M = µ2/µ1 = 0.99. The flux ratio is B=Q2/Q1 ≈ 3.9, indicating
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Parameter Symbol Units Navajo injection Geological CO2 storage

Reservoir thicknessa H m 140 10–200
Porosityb φ 0.175 0.1–0.3
Permeabilityb k m2 5× 10−13 10−14–10−12

Injectate densityc ρ1 kg m−3 1016 600–800
Ambient densityc ρ2 kg m−3 1004 1000
Injectate viscosityc µ1 Pa s 1.015× 10−3 (0.5–1)× 10−4

Ambient viscosityc µ2 Pa s 1.006× 10−3 (0.5–1)× 10−3

Input fluxd Q1 m2 s−1 2.1× 10−6 10−5–10−4

Background fluxb Q2 m2 s−1 0.54× 10−6 0–10−5

Viscosity ratio M 0.99 5–20
Flux ratio B 3.9 0–1

TABLE 2. Geophysical parameter estimates. The column for the Navajo case study
lists specific values measured or calculated. The column for CO2 storage lists generic
representative values for reservoirs in which CO2 sequestration may be applied.

aKampman et al. (2014).
bKampman et al. (2009).

cUsing the concentrations measured by Kampman et al. (2014) in conjunction with the
tables of Dubacq, Bickle & Evans (2013).

dMaskell (2017).

a significant role of background flow. Assuming that the input and ambient fluxes
remain approximately constant, we apply the theoretical results of § 3. According
to the theory, the interface between the injected and ambient fluids approaches an
approximately horizontal interface along a height (3.9b) given dimensionally by

hH =
H

1+MB
. (6.1)

For the values given above, hH ≈ 0.2H ≈ 30 m. The brine is therefore predicted to
occupy a region spanning one-fifth of the depth of the aquifer.

The corresponding prediction for the interstitial flow rate of the brine is

u1 =
Q1

φhH
= (1+MB)

Q1

φH
, (6.2)

which is evaluated as u1≈ 4.2× 10−7 m s−1
≈ 13 m yr−1. Based on this, the injected

fluid is estimated to span the 20 km length of the Navajo Sandstone in approximately
1500 years. The prediction for the distance that the flow extends upstream against the
background flow, as given by (3.11b), has the dimensional form

|x−| =
1
2

[
1−

(
1−

1
1+MB

)2
]
1ρgkH2

µ2Q2
. (6.3)

This distance is evaluated as approximately 400 m. This value is consistent with
the measurements of downhole fluid samples taken 100 m upstream of the fault
(Kampman et al. 2014), indicating a limit to the extent of propagation of the brine
against the groundwater flow. The result is also consistent with observations of
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bleaching of the exposed Entrada Sandstone related to previous inputs of CO2-rich
brines (Wigley et al. 2012). The bleaching occurs in the basal 20 m of the formation,
extends less than 500 m upstream, and approximately 10 km downstream of the fault,
which are consistent with our theoretical predictions.

6.2. CO2 injection
Next, we apply the results to investigate the effect of background flow on pure
CO2 injected into the subsurface for geological carbon storage. For this, we consider
generic ranges of representative values for typical sandstone aquifers where geological
carbon storage may be applied. These values are listed in the final column of table 2.
For typical ranges of reservoir temperatures and fluid compositions, the CO2 will
be M = 5–20 times less viscous than the ambient water in the host rock. Given a
representative input rate per unit width of Q1= 10−4 m2 s−1 and a typical background
flow rate of Q2 = 10−4 m, we estimate that B can be of order unity. The case of
no background flow, B= 0, may be more applicable to marine aquifers (such as the
Sleipner project in the North Sea), for which precipitation cannot generate long-range
hydrostatic imbalances. However, background flow can be driven in that case by
poroelastic deformation due to the weight of the overlying rock. Below, we determine
the magnitude of such motion necessary for an appreciable effect on the migration
of CO2.

In accordance with the result of (3.10), the leading front of the CO2 current is
predicted to propagate in the direction of the background flow at a rate of

u1 =M(1+MB)
Q1

φH
≈

M2Q2

φH
≈M2u2, (6.4)

where the last two approximations apply for MB� 1. The injected fluid thus moves
approximately M2 times faster than the ambient fluid. The significant quadratic
dependence on M2 stems from the dual effect of the viscosity ratio for M > 1 in
both reducing the effective height of confinement of the current (given by (6.1))
and increasing the horizontal length of the convex similarity solution describing the
injected current. For geological carbon storage, the CO2 could travel as much as
M2
= 400 times faster than the background flow. A relatively small background flow

may therefore be sufficient to have a significant impact on CO2 spreading. Using a
characteristic flow rate of the injected fluid of u1 ≈ 1.9 × 10−6 m s−1

≈ 60 m yr−1

obtained from measurements of the CO2 plume at Sleipner (Boait et al. 2012)
and the viscosity ratio M ≈ 13, we determine that a background flow rate of just
u2 ≈ u1/M2

≈ 1.2 × 10−8 m s−1
≈ 0.37 m yr−1 would be necessary to affect the

migration of CO2 significantly.
For the evolution of a parcel of CO2 after its input ceases, we apply the predictions

of the theory of § 4. The result of (4.1) predicts that the parcel of injected CO2 is
subsequently advected at the slower rate of a single factor of M times the background
flow rate, u1=Mu2. The horizontal extent of the asymptotic similarity solution (4.11)
arising under a background flow (4.12) has the dimensional form

1x(t)=
2[M(M − 1)Q2V t]1/2

φH
, (6.5)

where V is the volume per unit width of fluid released. For illustrative values of
H = 10 m, φ = 0.2, M = 10, Q2 = 10−5 m2 s−1 and V = 103 m2, (6.5) predicts
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that 1x ≈ 0.95 t1/2. This implies a horizontal extent of 280 m in 1 day, 5.3 km in
1 year and 170 km in 103 years. It should be noted that this result assumes negligible
residual trapping, an approximation that may apply in the case of a pure CO2 parcel
only if the aquifer contains an existing residual of CO2 from a previous injection;
a detailed evaluation of the effect of residual trapping is provided in the following
subsection. The surface area of the interface between the injected CO2 and the ambient
water predicted by (6.5) may provide an ultimate constraint on the rate at which a
parcel of CO2 dissolves into the ambient water to become permanently secured.

6.3. Residual trapping
If the injectate is immiscible or only partially miscible in the ambient fluid, as
applies to pure CO2 injected into a saline aquifer, a certain proportion of fluid can
be retained in the porous matrix as a residue trailing the parcel (Hesse et al. 2008).
The primary effect of this trapping is to reduce the mass of the parcel of CO2 over
time. Let R denote the proportion of the porous matrix occupied by residual CO2 in
the wake of the parcel; a typical value is R≈ 0.2. Let V(t) denote the volume of the
pure CO2 parcel. To investigate the effects of residual trapping, we model the loss to
the capillary trail as being proportional to the height of the current multiplied by its
leading-order rate of horizontal propagation,

V̇(t)∼−Rhmax(t)ẋ−(t), (6.6)

where hmax(t) ≡ maxx[h(x, t)]. Using the asymptotic solution (4.20) to evaluate hmax
and (4.1) to evaluate ẋ−, we obtain the ordinary differential equation

V̇ ∼−RH
(

2V
Ωt

)1/2 [MQ2

φH

]
. (6.7)

On integrating this equation, we obtain the evolution of the volume of the parcel,

V(t)=

{
1−

R
φ

[
MQ2t
|M − 1|V0

]1/2
}2

V0, (6.8)

where V0 ≡ V(0) is the total volume of CO2 input. This analytical result yields an
efficient means to assess the effect of capillary retention for mobilisation of a packet
of sequestered CO2 over time. Setting V = 0 in (6.8) yields the total time tres and
horizontal distance xres= x± at which the CO2 becomes fully residually trapped, given
by

tres =
|M − 1|

M
φ2

R2

V0

Q2
, xres =

|M − 1|φV0

R2H
(6.9a,b)

respectively. Using the values for our numerical example given in § 6.2 above, we
evaluate tres ≈ 3 yr, which indicates that a packet of CO2 will become fully trapped
by capillary retention after a few years. It is interesting that the distance propagated
by the parcel, xres, given by (6.9b) does not depend on the background flux Q2. The
‘favourable’ cancellation of Q2 in deriving this result is caused by the coincidence that
a faster background flow rate simultaneously increases both the rate of propagation of
the parcel and the rate of mass loss. For our illustrative parameter values, the total
distance propagated by the parcel is xres ≈ 4.5 km.
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Residual trapping is likely to be a significant effect for a first-time finite
(post-injection) release of CO2. It should be noted, however, that it does not occur in
the case of a constant-flux input (§ 3), because, in that case, the current only grows
(∂h/∂t > 0) and thus cannot leave a trail. This case may be of greater relevance to
industrial-scale CO2, for which the aim would be to use the full aquifer for storage,
as opposed to releasing a finite volume that occupies a relatively small proportion of
the total available storage space. Residual trapping is also not relevant if the injectate
is miscible (R = 0), as applies to the migration of dissolved CO2 or contaminants
through aquifers.

6.4. Model applicability
We end by summarising the applicability of our theoretical results. Three sources of
additional physical effects not included in our model include those identified by our
laboratory study, namely the possible role of vertical stresses, as measured by the
parameter (5.3), the role of time-dependent variations in fluxes caused by the gradual
accumulation of less viscous fluid in the reservoir, and the effect of localised patches
of fluid left in the wake of the parcel inside local regions of low permeability. Perhaps
the primary limitation of the solutions we describe is as a model for the localised
continuous injection of CO2 at a point source. In such cases, it is permissible for
the CO2 to expand to fill the depth of the aquifer at the injection site because the
ambient fluid can flow laterally around the injection zone, a feature that cannot occur
for the infinite line source we have assumed. The input of brine into the Navajo
Sandstone is introduced through a linear fault along a length of approximately 2 km.
We anticipate that the flow near the input may approximate that of a linear source,
but, for scales much larger than the fault, the flow will approach an asymptotic
regime that is effectively fed by a point source. Some lateral spreading of the flow
will also occur under gravity in the direction perpendicular to the background flow,
which is not addressed by our analysis. Other three-dimensional effects may stem
from the fact that the fault is aligned at an angle to the prevailing background flow,
as well as being partially sealing. For the finite-volume release, we anticipate that
the asymptotic regimes we describe do also apply to leading order in the case of a
three-dimensional parcel released into a linear background flow because the control of
the flow deformation by the background flow will dominate at long times over lateral
spreading of the parcel under gravity. An exploration of these three-dimensional
phenomena may provide interesting directions for future analysis.

7. Conclusions
We have developed a theory describing regimes of contaminant transport in

geological reservoirs by a background flow, tested its predictions using experimental
data, and applied the results to assess the significance of background flow in natural
examples. The results show that background flow and far-field asymmetries have
dominant controls on released fluids in typical subsurface environments.

For a continuous injection along a line source into the interior of an aquifer,
the injection initially flows symmetrically, with equal parts flowing upstream and
downstream. Asymmetry quickly arises as the effects of a background flow or, in
the case of no background flow, the asymmetries in the far-field boundary conditions
take hold. A dedicated analysis of the special regimes arising for the case of no
imposed background flow was conducted, which provides a model of the injection
into an aquifer bounded between a sealing fault and a permeable fault. Fluid was
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found to propagate predominantly towards the permeable fault as t and, in this
direction, ultimately approaches the equivalent asymptotic regimes found previously
for a one-sided injection. The component flowing towards the sealing fault instead
forms a self-similar flow growing as t1/2 with a prefactor dependent on the viscosity
ratios. This growth predicts that the entire aquifer ultimately becomes saturated by
the injected fluid, but with the region between the input and the sealing fault taking
considerably longer. The filling towards the sealing fault occurs more slowly when
the injected fluid is less viscous compared with the ambient because of a dominant
effect of the stresses associated with mobilising a return flow of ambient fluid in
order to conserve mass. In the limit of small injectate viscosity, the t1/2 similarity
solution contains a boundary layer at the flow front in which the injectate viscosity
ultimately intervenes to constrain the rate of propagation.

Background flow was found to cap a continuously injected current below a depth
given by (6.1). The regimes arising downstream of the input are equivalent to those
of a one-sided injection into a shallower aquifer with the effective thickness (6.1).
Upstream, the flow approaches a steady state of finite extent (6.3), contrasting with
the indefinite t1/2 expansion occurring in the case of no background flow. For injected
fluid less viscous than the ambient fluid, the background flow drives an injected fluid
at a rate that can be considerably faster than the background flow rate itself. That
contribution is equal to the speed of the background flow rate multiplied by the square
of the viscosity ratio (6.4), a factor which can be as high as 400 for CO2 injected into
a saline aquifer.

For the release of a parcel of fixed volume, we found that a background flow
advects the parcel as a whole at a rate given by the background flow speed multiplied
by the viscosity ratio. Moving the governing equations into the frame of the parcel
revealed that background flow not only advects the parcel as a whole but also controls
the deformation of the parcel itself. The phenomenon occurs as a consequence of
contrasts in the rates at which the two fluid species are driven by the background
pressure gradient. It generally provides the dominant control on deformation. The
only exception is when the injected and ambient fluids have equal viscosity, in
which case the gravitational dynamics uniquely remains dominant. In all other cases,
gravitational spreading becomes negligible. The leading-order equation describing the
deformation due to the background pressure gradient is a nonlinear wave equation
with a height-dependent advective prefactor. Similarity solutions to this equation
show that the asymptotic extent under this effect grows as t1/2. The rate of horizontal
growth is faster than occurs under gravity alone (or in the case of equal viscosities),
for which the parcel relaxes as t1/3. The self-similar asymptotic profile contains a
triangular cross-section with a steep shock at the downstream or upstream flow front
for an injectate that is more or less viscous than the ambient, respectively. Wave
breaking at the shock is suppressed by a short region in which gravity intervenes to
prevent the overturning of the interface. For a parcel more viscous than the ambient,
there is an ‘optimal’ rate of stretching of the horizontal extent when the injected fluid
is exactly twice as viscous as the ambient.

We developed new analytical results describing the asymptotic effects of capillary
retention on the evolution of an immiscible or partially immiscible fluid parcel in
a porous medium, such as applied to pure CO2 released into a saline aquifer. The
analysis yields analytical expressions for the volume of the parcel over time, and the
total time and distance by which a parcel of CO2 becomes fully retained. Interestingly,
even though the analysis depends on the asymptotic regimes arising under a driving
background pressure, the distance propagated by the parcel in that time, given by
(6.9b), is completely independent of the background flow rate.
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Our experimental data showed generally good agreement with the theoretical
predictions. Some discrepancies at the upstream flow front were found to correlate
with a dimensionless parameter grouping (5.3) that is larger for larger background
fluxes Q2, and indicated that the discrepancies can be attributed to the significance
of vertical stresses caused by large interfacial gradients near the upstream flow
front. Finite-volume experiments show that the parcel leaves a trail of residual
patches of fluid as it propagates. We attribute this effect to pore-scale trapping of
the injected fluid in localised regions of small permeability within the heterogeneous
pore structure.

The results were applied to geological examples, demonstrating their determination
of the relative significance of background flow, the flow rate induced by background
flow, an assessment of the minimum background flow necessary to have a significant
impact, the time scales on which its effects have an impact, and the effects of
capillary retention. We considered both a case study of the contamination of the
Navajo Sandstone by a source of dissolved CO2-charged brine and general examples
of the migration of pure CO2 following its injection into a saline aquifer. In the former
case, background flow advects the brine at approximately 10 m yr−1 and occupies
an effective depth of confinement in the lower fifth of the reservoir. The prediction
for the distance propagated against the background flow (400 m) is consistent with
the extent of observed bleaching of exposed sections of the formation. For geological
carbon storage, the significantly smaller viscosity of the injected fluid compared with
the ambient water can have considerable implications for the effects of a background
flow. The injected fluid is predicted to propagate as much as 400 times faster than
the ambient fluid during the input stage or 20 times faster after the input ceases.
These results indicate that background flow can have a strong independent control of
injected CO2 and can play a vitally important role in geological environments where
CO2 sequestration may be applied.

Acknowledgements
A.S.D.M. acknowledges support by EPSRC for a doctoral training grant and

from NERC under Highlight grant NE/N016084/1. K.A.D. was supported by a CCS
Innovation grant provided by DECC. We are grateful to C. Hitch and D. Page-Croft
for making necessary adjustments to our laboratory apparatus.

Supplementary movie
A supplementary movie is available at https://doi.org/10.1017/jfm.2017.501.

Appendix A. Numerical method for time integration
This appendix provides the details of our numerical method used to solve the

time-dependent equations (2.13)–(2.17). We first recast the equations into a new
coordinate system in which the two flow fronts and the point of input are temporally
fixed, then apply a partially implicit finite-difference scheme to the resulting system.
The rescaling eliminates any numerical issues with the transition to zero thickness
at the flow fronts (2.16a) and (2.17a), and additionally allows the numerical grid
size to scale directly with the current, thereby resolving the large interfacial gradients
associated with the early-time t2/3 similarity solution (3.1) used for initialisation.
Similar numerical schemes were used in the previous analyses of Pegler et al.
(2014a,b), wherein further validation by comparison with asymptotic similarity
solutions and laboratory experiments was provided.
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For the case of a continuous input, we apply the transformation

X =
{

x/|x−(t)|, for x−(t)6 x 6 0,
x/x+(t), for 0< x 6 x+(t),

(A 1a,b)

which maps x− (t) to the fixed point X=−1, x+ (t) to the fixed point X= 1, and the
source point x= 0 to the fixed point X = 0.

In terms of the new coordinate system (X, t), for X > 0, (2.13) becomes

ht −
ẋ+
x+

XhX =−
1
x+

(
MQ(X, t)− x−1

+
(1− h)hX

Mh+ (1− h)

)
X

, (A 2)

where the X and t subscripts denote partial derivatives. A similar equation with |x−|
in place of x+ and ẋ− in place of ẋ+ applies for X < 0. Condition (2.14) becomes

x−1
+

hX(0+, t)− |x−|−1hX(0−, t)= (M − h(0, t)−1)I(t), (A 3)

and (2.16) and (2.17) become

h(1, t)= 0, ẋ+ =M[I(t)+ B] − x−1
+

hX(1, t), (A 4a,b)

h(−1, t)= 0, ẋ− =MB− |x−|−1hX(−1, t). (A 5a,b)

We now discretise the system. Let hk
i denote the thickness at the ith spatial node

and kth time step, h(Xi, tk), where Xi is a nodal grid with X1=−1, XS= 0 and XN = 1,
and tk is the time at the kth time step. Here, i= S denotes the source node XS= 0. The
nodal grid Xi is imposed in two regions: one region is upstream of the input point,
16 i< S, with step size δX−; the second is downstream of the input point, S< i6N,
for which the step size is δX+. For simplicity, the step size in the two domains was
typically taken as equal, δX = δX− = δX+.

For every node i (other than those where a boundary condition is applied, namely 1,
S and N), we applied a semi-implicit centred finite-difference scheme to approximate
the spatial derivatives in (A 2). Thus, we rewrite (A 2) as

δtht = α(h)δX2hXX + β(h, hX)(2δX)hX, (A 6)

where δt is the time step, δX is the length step and

α(h)=
δt

δX2x2
+

[
Mh(1− h)

Mh+ (1− h)

]
, (A 7)

β(h, hX)=
δt

2δXx+

[
M(M − B− 2Mh− h2

+Mh2hX/x+)
[Mh+ (1− h)[2

+ ẋ+X
]
, (A 8)

and apply the difference approximations

hX ≈ (hk+1
i+1 − hk+1

i−1 )/(2δX), (A 9)

hXX ≈ (hk+1
i+1 − 2hk+1

i + hk+1
i−1 )/(δX

2), (A 10)

ht ≈ (hk+1
i − hk

i )/δt. (A 11)

A nonlinearity in derivatives arises because of the hX term in β given in (A 8).
In order to maintain a numerically linear discretised problem, we evaluate the hX
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term in β using the current time step k. This results in a partially implicit scheme,
which is satisfactorily stable in practice. With the discretisations of (A 9) substituted,
equation (A 6) becomes

hk+1
i − hk

i = α
k
i (h

k+1
i+1 − 2hk+1

i + hk+1
i−1 )+ β

k
i (h

k+1
i+1 − hk+1

i−1 ), (A 12)

where αk
i = α(h

k
i ) and βk

i = β[h
k
i , (hX)

k
i ]. First-order approximations can be applied to

discretise (A 3), which becomes

1
x+

(
hk+1

i+1 − hk+1
i

δX

)
−

1
|x−|

(
hk+1

i − hk+1
i−1

δX

)
=

(
M −

1
hk

i

)
I(t), (A 13)

and conditions (A 4a) and (A 5a) become

h1 = hN = 0. (A 14)

Equations (A 12)–(A 14) form a tridiagonal linear system for hk+1
i , which we solved

using Matlab’s internal linear inversion routine.
For the solutions of § 4, the source is abruptly ceased at t = V . Beyond that time,

there is no need to fix the position of the input. For this case, we applied a modified
slightly simpler rescaling of the flow to a single fixed domain via the alternative
rescaling

X′ =
x− x−(t)

x+(t)− x−(t)
, (A 15)

which maps the current onto the fixed interval of X′ given by [0, 1]. The transformed
system is omitted here for brevity. A transfer of the solution to the new nodal
representation over a regular grid of X′ at t= V was conducted using a cubic spline.

Appendix B. Boundary-layer structure for small injectate viscosity
This appendix analyses the boundary-layer structure underlying the self-similar flow

towards the sealed section of a geological reservoir (the case of zero background flow
illustrated in figure 5), as described by (3.5) and (3.6), in the limit of small injectate
viscosity, ε≡M−1

→ 0. In terms of the more convenient variables (ξ , ξN)≡ ε
1/2(η, ηN),

(3.5) can be expressed as

−
1
2
ξh′ =

[
h(1− h)h′

h+ ε(1− h)

]′
(B 1)

and conditions (3.6a,b) as

h(0)= 1, h(−ξN)= 0, h′(−ξN)=
1
2εξN . (B 2a−c)

We first seek a regular leading-order expansion in the limit ε → 0 under the
assumption that h=O(1). In this limit, equation (B 1) reduces to

−
1
2ξh′ ∼ [(1− h)h′]′, (B 3)

which describes the motion of the interface under the assumption that it is resisted
predominantly by the ambient flow. By integrating (B 3) numerically subject to (B 2)
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using a similar scheme to that used for (3.5), we obtain the outer solution shown as
a dotted red curve in figure 5. For h→ 0, equation (B 3) reduces asymptotically to

−
1
2
ξh′ ∼ h′′ and hence h∼

2K
√

π
erf
(
ξ

2

)
∼

Ke−ξ2/4

−ξ
(B 4a,b)

as ξ →−∞, where erf is the error function, K is a constant of integration and we
have used the leading-order asymptotic approximation for erf in the limit of large
argument. To find where this outer solution predicts its own asymptotic inconsistency,
it should be noted that the term of O(ε) in the denominator of (B 1) becomes
important wherever h=O(ε), or, using (B 4b), for −ξ =O(λ), where λ≡[log(1/ε)]1/2.
This observation motivates a leading-order asymptotic approximation for the extent
given by ξN = aλ, where a is a constant to be determined.

The predicted importance of the O(ε) term in (B 1) indicates the existence of a
boundary layer near −ξN in which the viscosity of the injectate becomes leading order.
To determine the leading-order reduction of (B 1) near −ξN , we re-express it in terms
of the scaled inner coordinates

z= λ−1(ξN + ξ), h=MF(z). (B 5a,b)

In terms of these variables, (B 1) and (B 2b,c) become

−aF′ =
(

FF′

F+ 1

)′
, F(0)= 0, F′(0)=

1
2

a, (B 6a−c)

where higher-order terms have been neglected and a prime here implies differentiation
with respect to z. On integrating (B 6), we obtain the inner solution

F=−1+ e(a/2)z or h=M[−1+ e(a/2)λ
−1(ξN+ξ)] (B 7a,b)

when expressed back in terms of the outer coordinates using (B 5).
Finally, we match (B 4) and (B 7). By comparing the logarithms of the reduced

forms of (B 4b) and of the inner solution (B 7b) in the intermediate region λ�−ξ�1
(the latter being given by neglecting just the −1 term), we deduce that a=2 and hence
ξN = 2λ, from which (3.7) follows. The inner solution (B 7) with a= 2 is plotted as
a dashed curve in figure 5 and is confirmed to match to the flow front consistently.
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