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The cascading process of turbulent kinetic energy from large-scale fluid motions to
small-scale and lesser-scale fluid motions in isotropic turbulence may be modelled as
a hierarchical random multiplicative process according to the multifractal formalism.
In this work, we show that the same formalism might also be used to model the
cascading process of momentum in wall-bounded turbulent flows. However, instead
of being a multiplicative process, the momentum cascade process is additive. The
proposed multifractal model is used for describing the flow kinematics of the low-pass
filtered streamwise wall-shear stress fluctuation τ ′l , where l is the filtering length scale.
According to the multifractal formalism, 〈τ ′2〉 ∼ log(Reτ ) and 〈exp(pτ ′l )〉 ∼ (L/l)

ζp in
the log-region, where Reτ is the friction Reynolds number, p is a real number, L is an
outer length scale and ζp is the anomalous exponent of the momentum cascade. These
scalings are supported by the data from a direct numerical simulation of channel flow
at Reτ = 4200.
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1. Introduction

The phenomenological explanation of the transfer of turbulent kinetic energy from
large to small scales was introduced in the classical paper by Kolmogorov (1941)
(from now on K41) but the concept of a turbulent cascade in terms of interactions
among eddies was proposed earlier by Richardson (1922), and later by Obukhov
(1941). Since then, many detailed investigations, mostly in isotropic turbulence (HIT),
have greatly advanced our understanding of high-Reynolds-number turbulent flows
(Onsager 1949; Batchelor 1953; Heisenberg 1985; Mandelbrot 1999; Jiménez 2012),
with some of them even testing the original idea of Richardson (1922) in terms of
eddies merging and splitting as in Lozano-Durán & Jiménez (2014b).

There have been many different attempts to unravel the physical mechanism behind
the cascade with varying but complementary tools. A classic physical explanation is
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given in terms of vortex stretching, where the strain at a given scale stretches vortices
at a smaller scale. This interaction induces higher velocities by the conservation of
angular momentum, resulting in a net energy transfer from large to small scales (Goto
2012; Leung, Swaminathan & Davidson 2012; Lozano-Durán, Holzner & Jiménez
2016). It has also been known for some time that the cascade is not one-directional
from large to small scales, but that there is a balance between direct and inverse
transfers. Most of the evidence for this backscatter originates from filtering techniques
in scale space (Piomelli et al. 1991; Aoyama et al. 2005; Cardesa et al. 2015). Other
interpretations of the cascade are rooted in statistical mechanics, as the works by Leith
(1967) and Orszag (1970), where energy transfer is modelled as an entropy-driven
random process in phase space, with the energy tending to equipartition while drifting
either up or down in scale.

In the present work, we focus on the multifractal formalism (Meneveau &
Sreenivasan 1991; Frisch & Donnelly 1996; Mandelbrot 1999), which has been
successful in characterizing the inertial energy cascade. Within this framework,
statistical properties of the flow such as the central moments of the two-point velocity
increments and the coarse-grained energy dissipation have been reasonably well
estimated. However, instead of energy, here we will study another often-encountered
cascading process in wall-bounded turbulence, that is, the momentum. In this case,
momentum is transferred from the large energy-containing eddies to smaller scales
until it is drained at the wall.

The momentum cascade and the energy cascade are, in many ways, analogous.
The sizes of the energy-containing motions are the only relevant length scales in
the inertial range; consequently, the energy flux is nearly constant across all scales
in the inertial range. The analogous range of scales in wall-bounded flows is the
logarithmic range. In the log-region, eddy sizes scale with their distance from the
wall and the momentum flux −〈u′v′〉 is almost constant, where u, v are the velocities
in the streamwise and wall-normal directions, the superscript ′ indicates fluctuating
quantities and 〈·〉 denotes ensemble average. Fluid motions in the inertial range are
self-similar, as is also the case for structures in the log-region (see e.g. Del Álamo
et al. 2006; Lozano-Durán, Flores & Jiménez 2012; Marusic et al. 2013; Baars,
Hutchins & Marusic 2017; Morrill-Winter, Philip & Klewicki 2017), consistent with
the attached-eddy hypothesis scenario proposed by Townsend (1980) and extended
by Perry & Chong (1982) and Marusic & Perry (1995). Dissipation drains energy
at viscous scales (ν3/〈ε〉)1/4, where ν is the kinematic viscosity and ε is the energy
dissipation. Momentum, on the other hand, is drained at the wall by fluid motions
of viscous scales ∼ν/uτ , where uτ is the friction velocity. Both dissipation and
wall-stress fluctuations are known to be intermittent (see e.g. Park et al. (2012) and
Mathis et al. (2013) for discussion on the wall-stress fluctuations).

Despite the many common features, four decades after the work of Mandelbrot
(1972), the multifractal formalism has not been extended to modelling of the
momentum cascade in wall-bounded flows. Even the basic idea of momentum
cascade has not been used as much as its energy counterpart by the wall-bounded
turbulence community (see e.g. Flores & Jiménez (2010) and Jiménez (2012) for
some discussion on the difference and common features between the momentum
cascade and the energy cascade).

In the present work, the momentum cascade in wall-bounded flows at high Reynolds
numbers is investigated using the multifractal framework. A brief introduction to the
multifractality is included in § 2. In § 3, an analogy is formally made between the
energy cascade and the momentum cascade. The multifractal formalism is then
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Energy

Energy

(a)
(b) (c)

FIGURE 1. (a) A sketch of the Richardson cascade. (b) A typical sketch of the Richardson
cascade in textbooks. Eddies of different sizes are displaced. (c) A schematic of the energy
cascade according to the multifractal formalism. εnj is the volume-averaged dissipation rate
in eddy Wnj. mnj is a multiplicative. W11 is the first of the hierarchy. Three hierarchies
are sketched.

extended to modelling the momentum cascade. Estimates of the scalings of the
low-pass filtered wall-shear stress are presented and tested in a direct numerical
simulation (DNS) of channel flow at friction Reynolds number Reτ = 4200. Finally, a
short discussion and summary are given in § 4.

2. The energy cascade and the multifractal formalism

The cascade process of Richardson (1922) is sketched in figure 1. In such sketches,
eddies of different sizes are often displaced for illustration purposes, as is done in
figure 1(b) (see e.g. Frisch & Donnelly 1996; Pope 2001).

Developments after the celebrated K41 phenomenology have led to the fractal and
multifractal formalism (see Frisch & Donnelly 1996) as well as Navier–Stokes-based
statistical models including the direct interaction approximation and the shell model
(Kraichnan 1991, 1965; Biferale 2003). The discussion in this section is limited to
multifractal models. Figure 1(c) is a schematic of the cascade process according to
the multifractal formalism. We define the volume-averaged energy transfer (including
both forward cascading and backward scattering) in an eddy Wnj as

Πnj =
1

Vnj

∫
Wnj

Π dV, (2.1)

where Vnj is the volume of eddy Wnj, and the subscript n and j indicate the jth eddy
at the nth cascade step, respectively. Without loss of generality, Π11= 1. Analogously
the volume-averaged dissipation rate is defined as

εnj =
1

Vnj

∫
Wnj

ε dV. (2.2)

For statistically stationary flows, 〈εnj〉 = 〈Πnj〉 by energy conservation. When W11
breaks into W21, W22, the energy flux is not necessarily equally split into the daughter
eddies. The volume-averaged dissipation rates in W21 and W22 are therefore not 1
in general. Without loss of generality, in eddy W21, ε21 = 1 · m12 and in eddy W22,
ε22 = 1 ·m22. According to figure 1(a), ε21V21 + ε22V22 = ε11V11. This cascade process
continues, giving rise to eddy W3j and fluid motions of lesser sizes.

After n steps of this cascade process, the size of the energy-containing eddies
decreases to l = L/rn, where L is the characteristic length of eddy W11 and r
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is a constant. Following Meneveau & Sreenivasan (1991), r is set to be 2. The
volume-averaged dissipation rate in eddy Wnj is

εnj = 1 ·m1j1 ·m2j2 . . . ·mnjn, (2.3)

where j1, j2, . . . , jn are indices of the multiplicatives at the 1st, 2nd, and nth cascade
step that lead to Wnj. According to (2.3), the energy cascade is a multiplicative process
and only interactions among neighbouring scales are accounted for. For l=L/rn in the
inertial range, the cascade process is self-similar and mij’s are identically distributed
multiplicatives and equal to m. Then, equation (2.3) leads to the following scaling
laws

〈(εn/ε1)
p
〉 ∼ 〈mp

〉
n
∼ (L/l)ζp, ζp = log2(〈m

p
〉), (2.4)

where the eddy index j is dropped, εn is the volume-averaged energy dissipation of
a typical eddy at the nth cascade step and p > 0 is an integer. ζp is the so-called
‘anomalous exponent’. According to K41, the energy flux is equally split into the
daughter eddies at every cascade step, which implies m ≡ 1 and 〈εp

l 〉 = 〈ε1〉
p. Later,

Kolmogorov (1962) modelled log(m) as a Gaussian random variable. According to this
log-normal model, ζp = c1p2

+ c2p, where c1, c2 are constants. The reader is directed
to Frisch & Donnelly (1996) for detailed discussions on other fractal and multifractal
models including the β model (Frisch, Sulem & Nelkin 1978), the p-model (Meneveau
& Sreenivasan 1987), etc. The brief overview here is merely a short introduction to the
basic ideas behind the multifractal formalism and is not meant to be a comprehensive
review of the work on the topic of energy cascade.

3. The momentum cascade

Figure 2 is a schematic of the momentum cascade in high-Reynolds-number
wall-bounded turbulence. The streamwise momentum is carried by the large-scale
eddies in the boundary layer, then passed to small-scale and lesser-scale eddies and
last drained at the wall. The momentum transfer in wall turbulence is governed by the
flux term (−〈u(v+Vr)〉+ ν∂u/∂y), where Vr is the wall-normal velocity of the frame
of reference. Although it is the wall-normal derivative of the flux term that enters
the momentum equation, whose sign is independent of the frame of reference, the
sign of the flux term itself does depend on Vr (Jiménez 2016). To avoid ambiguity,
we consider the momentum cascade of the fluctuating velocities in this study, as is
usually done for the energy cascade in HIT. In this case, the mean velocity does not
play a role, and the direction of the momentum transfer is determined by the flux
term 〈u′v′〉, which is independent of the frame of reference. In wall-bounded flows,
where positive y is the wall-normal direction and points away from the wall, u′ and
v′ are negatively correlated on average. This determines the momentum transfer, on
average, being from the bulk region to the wall. Unless noted otherwise, wall units
are used for normalization.

The quantity of interest here is the low-pass filtered streamwise wall-stress
fluctuation, which is defined as

τ ′l (x)=
∫

Gl(x− r)τ ′(r) dr, (3.1)

where τ is the wall-shear stress in the flow direction, Gl is a filtering kernel, and the
subscript l is the filtering length scale. τ ′l =0 for l/δ→∞ and τ ′l = τ

′ for l/(ν/uτ )→0.
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Multifractal formulation for momentum cascade

Flow direction

Momentum

FIGURE 2. A schematic of the momentum cascade from large-scale eddies to small-scale
eddies in wall-bounded flows. The shear stresses on the wall bear footprints of eddies of
all scales (lightly shaded grey).

We model the low-pass filtered wall-stress fluctuation as an additive process (see Yang,
Marusic & Meneveau 2016a, for other flow quantities that follow additive processes)

τ ′l (x, z)= a1(x, z)+ a2(x, z)+ a3(x, z)+ · · · + anl(x, z), (3.2)

where both τ ′l and the addends ai are functions of spatial coordinates at the wall (x
and z), an addend ai is an increment in τ ′l due to an eddy of height ∼δ/2i. δ is
the boundary layer height and the number of addends is nl ∼ log2(δ/l). The spatial
dependence will be dropped hereafter for brevity. Following the multifractal formalism,
the addends ai are identically and independently distributed (i.i.d.) and equal to a.
Filtering at the viscous scale ∼ν/uτ gives back the unfiltered wall-shear stress τ ′ =
τ ′Cν/uτ , where C is an O(1) constant. According to (3.2), the variance of the wall-shear
stress fluctuations in boundary layer flows follows

〈τ ′
2
〉 = 〈τ ′Cν/uτ

2
〉 = 〈(a1 + a2 + · · · + anCν/uτ

)2〉 = 〈a2
1〉 + 〈a

2
1〉 + · · · + 〈a

2
nCν/uτ
〉

= nCν/uτ 〈a
2
〉 ∼ log(δ/(Cν/uτ ))∼ log(Reτ ), (3.3)

where 〈aiaj〉 = 0 for i 6= j. It then follows that STD (τ ′)≡
√
〈τ ′2〉 ∼

√
log(Reτ ). This

is in contrast to the scaling suggested by Schlatter & Örlü (2010)√
〈τ ′2〉 ∼ log(Reτ ), (3.4)

and the one proposed by Alfredsson et al. (1988), STD (τ ′) = 0.4. Figures 3(a,b)
show respectively the standard deviation and the variance of the wall-shear stress
fluctuations in boundary layer flows as functions of the friction Reynolds number.
Both scalings in (3.3), (3.4) provide reasonably good fits for the data from low
to moderate Reynolds numbers. Considering this, including DNS data, which are
between Reτ ≈ 180 (Kim, Moin & Moser 1987) and Reτ ≈ 5200 (Lee & Moser 2015)
is not very useful here. Predictions according to (3.3), (3.4) are only tellingly different
at high Reynolds numbers (Reτ > 105), where only one data point is available. The
available data generally favour (3.3). The evidence here, however, is not conclusive,
because the data from Mathis et al. (2013) are not direct measurements but are
inferred results based on a calibrated near-wall small-scale signal and a modulation
model. Future confirmation/refutation of the scaling in (3.3) will need measurements
of the wall-shear stresses from one same facility at friction Reynolds numbers that
span at least two decades (from Reτ ≈ 103 to 105 and higher), an investigation that
may be done at CICLoPE (Vinuesa, Duncan & Nagib 2016).
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FIGURE 3. (a)
√
〈τ ′2〉 as a function of Reτ . The data are reported in Österlund (1999)

and Mathis et al. (2013). The dotted line corresponds to
√
〈τ ′2〉 = 0.4 from Alfredsson

et al. (1988). The dashed line corresponds to the scaling
√
〈τ ′2〉 = 0.24 + 0.018 ln(Reτ )

(Schlatter & Örlü 2010). The solid line is the least-square fit of the data according to
(3.3) and is 〈τ ′2〉 = 0.10 + 0.68 ln(Reτ ). (b) 〈τ ′2〉 as a function of Reτ . The dashed line
and the solid line are straight lines in (a) and (b), respectively.

5

10

15

FIGURE 4. exp(τ ′) as a function of the spanwise coordinate in channel flow at Reτ =4200.
The dashed line corresponds to τ ′ = 0.

It is worth noting that according to (3.2), exp(τ ′l ) follows a multiplicative process.
Therefore exp(τ ′l ) is formally analogous to the energy dissipation rate in HIT.
Figure 4(a) shows exp(τ ′) as a function of the spanwise coordinate. The signal
resembles dissipation signals in HIT (see e.g. figure 1(b) in Meneveau & Sreenivasan
(1991) for comparison). The data are from the DNS of Lozano-Durán & Jiménez
(2014a) of channel flow at Reτ ≈ 4200.

We have examined 〈τ ′2〉 as a function of the friction Reynolds number in figure 3
and exp(pτ ′) qualitatively in figure 4. Next, we investigate the scaling behaviour
of the moment generating function 〈exp(pτ ′l )〉, which is a useful statistical tool in
general and central moments can be derived by 〈φn

〉 = d〈exp(pφ)〉/dp|p=0, where φ is
a generic random statistical quantity. To make predictions of the scaling behaviour of
〈exp(pτ ′l )〉 as a function of l, we follow the same steps that lead to (2.4). Considering
addends being i.i.d.,

〈exp(pτ ′l )〉 ∼ 〈exp(pa1)〉〈exp(pa2)〉〈exp(pa3)〉 · · · 〈exp(panl)〉

∼ 〈exp(pa)〉nl ∼ (δ/l)log2(〈exp(pa)〉)

= (δ/l)ζp, ζp = log2(〈exp(pa)〉). (3.5)
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FIGURE 5. (a) 〈exp(pτ ′l )〉 as functions of the filtering length for p=−4, −3, 1, 1.5. The
enclosed region corresponds to 340< l+z and l/δ < 0.8. The stress is low-pass filtered in
the spanwise direction. The bold line indicates the slope of 〈exp(−4τ ′l )〉 in the enclosed
region and the slope is 0.14. (b) 〈exp(pτ ′l )〉 as functions of 〈exp(−4τ ′l )〉 for p=−4, −3,
−2, −1. The corresponding values of the reference scaling at l = δ, 0.1δ and l+ = 100,
10 are indicated using thin vertical lines.

While isotropy is expected at small scales in the bulk region (at scales �y, see
Saddoughi & Veeravalli (1994) for detailed discussion), at the wall, isotropy is not
expected at any scale because of the dominating effect of shear. Because isotropy is
lost, spatial filtering in wall-bounded flows is not as straightforward as it is in HIT.
As the channel is populated with long-living elongated streaks that span the entire
periodic domain, filtering flow quantities in the x direction needs many independent
realizations for convergence. Limited by the number of DNS samples, the streamwise
wall-shear stress is low-pass filtered in the spanwise direction only. Filtering in
the streamwise direction leads to less converged data and limits the analysis to
small |p| values. However, similar observations can still be made and none of the
conclusions here are affected if the wall-shear stress is filtered in the streamwise
direction. Figure 5(a) shows 〈exp(pτ ′l )〉 for p = −4, −3, 1, 1.5 as functions of the
filtering length. Power-law behaviour is found in the enclosed region between l+≈ 350
and l/δ = 0.8, thus providing direct support to (3.2). The bounds of the power-law
scalings in flat-plate boundary layer flows are expected to be flow-dependent but not
Reynolds-number-dependent (see e.g. de Silva et al. 2015). In flows where the wall
is curved, the length scale imposed by the surface curvature lR might limit the size
of the attached eddies, thus limiting the range of the scalings to ∼O(lR).

The power-law scalings shown in figure 5(a) are often referred to as ‘strong
self-similarity’. The existence of ‘strong self-similarity’ depends on firstly the
multifractal formalism, equation (3.2), and secondly the additives being i.i.d. As
the addends are only i.i.d. in the log-region, ‘strong self-similarity’ can only be
observed in the log-region and the corresponding range of spanwise scales, assuming
that the momentum carrying eddies have an average spanwise-to-wall-normal aspect
ratio 2–3 (Del Álamo et al. 2006; Lozano-Durán et al. 2012). Even supposing that
the low-pass filtered streamwise stress fluctuation does follow an additive process
across all scales, the addends of eddies in the bulk and the viscosity-affected regions
are not expected to be statistically similar to those in the log-region. As a result,
‘strong self-similarity’ fails at viscosity-affected scales (l+ . 300) and at integral
scales (l ∼ O(δ)). At these scales, the multifractal formalism may be examined
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–0.05
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FIGURE 6. (a) Anomalous exponent as a function of the power exponent p. The solid
line corresponds to 0.0098p2. (b) Premultiplied p.d.f. of exp(pτ ′) for p=−4 and p= 1.5.
The magnitude of the premultiplied p.d.f. is not relevant for the present work and is not
shown here.

using the so-called extended self-similarity (ESS), which are power-law scalings of
〈exp(pτ ′l )〉 as functions of 〈exp(poτ

′

l )〉 for fixed po. ESS does not depend critically on
the addends being i.i.d. (see detailed discussion in Yang et al. 2016c), and therefore
it is often referred to as ‘weak self-similarity’. Figure 5(b) shows the ESS scalings for
po =−4. In contrast to ‘strong self-similarity’, which is only found in the log-region,
ESS scalings are found across all scales from l+= 10 to l= δ. This suggests that the
low-pass filtered streamwise stress fluctuations may be modelled using (3.2) across
all scales, although the large-scale flow motions and the viscosity affect the statistical
properties of the addends in the bulk region and the near-wall region, respectively.

ESS provides a measure of ζp/ζpo . Therefore, the anomalous exponent ζp is known
given a ζpo (Benzi et al. 1993). While HIT admits an exact scaling 〈εn〉∼〈ε〉, the same
is not true for the momentum cascade counterpart (except for the trivial case of p= 0,
〈exp(0 · τl)〉=1). As a result, the analogous anomalous exponent defined in (3.5) needs
to be measured directly by fitting the data in the enclosed region in figure 5(a). The
measured exponent ζp is shown as a function of the power exponent p in figure 6(a),
which, according to the multifractal formalism, ζp = log2(〈exp(pa)〉). The anomalous
exponent ζp was defined for the MGF of the streamwise velocity fluctuation (Yang,
Marusic & Meneveau 2016b), which was subsequently found to be universal (Krug
et al. 2017). While the universality of the anomalous exponent defined here has not
been tested, it is likely that ζp for the wall-shear stress is also universal. It should be
noted that without invoking the multifractal assumption, a is a constant, and ζp is a
linear function of p. Following Kolmogorov (1962), and modelling the addends a as
Gaussian random variables, it is straightforward to show that ζp=CLNp2, where CLN is
a constant. As is seen, CLN=0.0089 gives a fairly good fit for the measured exponents.
Because rare events are not fully accounted for in a log-normal model (Landau &
Lifshitz 1987), the fact that log-normal model fits the measurements well suggests
that the momentum cascade is less intermittent than the energy cascade counterpart.

Finally, the data convergence can be examined using the premultiplied probability
density function (p.d.f.). Figure 6(b) shows the premultiplied p.d.f.s of exp(pτ ′) for
p = −4 and 1.5. Because exp(pτ ′) emphasizes fluctuations that have the same sign
as p, 〈exp(p1τ

′)〉 converges more slowly than 〈exp(p2τ
′)〉 for |p1| > |p2|, p1p2 > 0.
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Also, because low-pass filtering damps fluctuations in a signal, 〈exp(pτ ′)〉converges
more slowly than 〈exp(pτ ′l )〉 (see O’Neil & Meneveau (1993), Yang et al. (2016b)
for detailed discussion). As 〈exp(pτ ′l )〉 is the area under the its premultiplied p.d.f.,
figure 6(b) suggests that both 〈exp(−4τ ′)〉 and 〈exp(1.5τ ′)〉 are statistically converged.
Then, by the reasoning above, all the statistics shown in figure 5(a) are converged.
Limited by the number of DNS samples, statistics for p<−4 and p> 1.5 are poorly
converged and therefore are not reported here.

4. Discussion and summary

In the present work, we have argued that the momentum cascade in wall-bounded
turbulence is analogous to the energy cascade in HIT, and that it can be modelled as
an additive process within the multifractal formalism. Analogous to the coarse-grained
dissipation rates, the statistics associated to the exponential of the coarse-grained wall
stresses follows power-law scalings. This leads to a new prediction for the variance
of the wall-shear stress, that should scale as log(Reτ ), in contrast to previous works,
where the prediction holds for the standard deviation instead (Schlatter & Örlü
2010). In addition, we have shown that the wall stress satisfies reasonably well the
‘strong self-similarity’ hypothesis for scales spanning along the log-layer, and that the
‘extended self-similarity’ holds at all scales.

Despite the similarities between the energy and momentum cascades, there are
many features in the former that are not present in the latter. (1) While the flow
is roughly isotropic in the inertial range, the momentum cascade is hardly isotropic
due to the effect of the shear. (2) The momentum cascade follows fairly well an
additive process but the energy cascade is better represented by a multiplicative one.
(3) Because τ ′ is not positive definite, back-scattering is allowed at dissipative scales
in the momentum cascade but energy back-scattering hardly happens close to the
dissipative scales. The consequence of this last point is that subgrid scale (SGS)
modelling of the momentum cascade (in today’s term, LES wall modelling, see
e.g. Piomelli & Balaras (2002)) is probably more challenging than the conventional
eddy-viscosity SGS modelling formulated in terms of the dissipation (Meneveau &
Katz 2000). (4) Velocities at the wall, because of the non-slip condition, equal the
velocity of the wall, making it difficult to formulate the momentum cascade using
a Lagrangian frame of reference, which has shown to be quite successful in SGS
modelling (Meneveau, Lund & Cabot 1996). In this sense, the results presented here
might be a useful tool for LES wall modelling of many problems, where not only the
mean stress but also the fluctuations are of interest. In this context, it is worth noting
that currently available LES wall models underpredict wall-shear stress fluctuations
(Park & Moin 2016) and the present work can be used to augment the subgrid
stresses that are not resolved by the LES grids. (5) The anomalous exponent in the
momentum cascade may be modelled as a parabolic function of the power exponent
p, whereas in the energy cascade, a super-Gaussian model has to be employed. This
suggests that the momentum cascade is less dominated by extreme events and hence
is not as intermittent as the energy cascade.

Finally, despite the knowledge gained on the energy cascade in the past century
and the analogy made here, the interscale transfer of momentum is still a problem
of its own merits and much work remains to be done to fully understand this flow
phenomenon.
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