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An experimental investigation of resonant standing water waves in a rectangular tank
with a corrugated bottom is reported. The study was stimulated by the theory of
Howard & Yu (J. Fluid Mech., vol. 593, 2007, pp. 209–234) predicting the existence
of normal modes that can be significantly affected by Bragg reflection/scattering. As a
result, the amplitude of the standing waves (normal modes) varies exponentially along
the entire length of the tank, or from the centre out in each direction, depending
on the phase of the corrugations at the tank endwalls. Experiments were conducted
in a 5 m tank fitted with a sinusoidal bottom with one adjustable endwall. Waves
were excited by small-amplitude sinusoidal horizontal movement of the tank using an
electrical motor drive system. Simultaneous time-series data of standing oscillations
were recorded at well-separated positions along the tank to measure the growth in
amplitude. Waveforms over a section of the tank were filmed through the transparent
acrylic walls. Except for very shallow depths and near the tank endwalls, the
experimental measurements of resonant frequencies, mean wavelengths, free-surface
waveforms and amplitude growth are found in essential agreement with the Bragg
resonant normal mode theory.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction

Waves over variable topography have been studied by various techniques for a long
time, particularly in the last thirty years. These studies are a natural extension of
the classical theory of waves over a horizontal flat bottom, and are also important
for applications to waves in oceans, lakes, rivers and estuaries. When the relevant
length scales of the fluid motion are large compared to the water depth, fairly
tractable models using shallow-water theories are appropriate, although on planetary
scales rotational effects are usually an important complication. If the waves are short
compared to the depth, bottom variations are essentially irrelevant. The intermediate
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Standing waves in a rectangular tank with a corrugated bed 123

case, where wavelength, depth and bottom variations have comparable scales, is more
complex. Initial studies have revealed that propagating surface waves can be excited
by corrugated seabeds, particularly when the number of submerged sandbars is large
and when the free-surface wavelength is approximately double that of the bottom
corrugations. This has come to be known as Bragg resonance of surface waves by
periodic seabeds.

Theoretical studies of the Bragg phenomenon, as it applies to seabed–wave
interaction, began with Davies (1980, 1982), who considered the reflection of surface
water waves incident upon an undulating seabed, showing that, even with relatively
few bottom corrugations, very substantial wave reflection can occur if the wavenumber
of the bottom topography is approximately twice the free-surface wavenumber. He
used regular perturbation theory based on the amplitude of the bottom corrugations
and noted a singularity in this approach when the water wavelength was near twice
the corrugation spacing, and was apparently the first to note ‘. . . analogies in solid
state physics concerning the vibration of atomic lattices, a special case of which is
Bragg reflection of X-rays from a crystal plane . . . ’. Riley (1984) also noticed this
singularity about the same time, but did not further investigate it, as he had other
objectives in view. Davies & Heathershaw (1983, 1984) considered wave reflection
from sinusoidally varying topography using linear perturbation theory and, for the first
time, associated the name ‘Bragg’ with the fluid dynamic resonance between surface
waves and bottom ripples. Mei (1985) used a multi-scale perturbation approach
to clarify the situation near this ‘resonance’, which is now usually described as
water wave Bragg resonance, reflection, or scattering. Kirby (1986a) investigated
the problem by numerical integration of a model equation for waves propagating
over a corrugated bottom, thus verifying and improving on the analytical results
reported in Davies & Heathershaw (1984). In a follow-on paper, Kirby (1986b)
investigated the gradual reflection of weakly nonlinear Stokes waves in regions
of varying topography. A contribution towards understanding the experiments of
Heathershaw (1982) discussed below, and one that complements and improves upon
the theory of Davies & Heathershaw (1984), is the theoretical study of Benjamin,
Boczar-Karakiewicz & Pritchard (1987) in which new experiments were also reported.
Some time later, Kirby (1993) elucidated numerically the reflection of linear surface
waves by sinusoidal bars in the case when the incident wave frequency is not
necessarily close to resonance.

Using Mei’s asymptotic method, Yu & Mei (2000a,b) extended the work of
Bailard, DeVries & Kirby (1992) to investigate waves passing over a periodic array
of sandbars and then (partially) reflecting from a beach or seawall. They demonstrated
that the resulting partially standing waves over the periodic bed depended sensitively
on the effective position of the shore reflection with respect to the phase of the bed
corrugations, at least when the incident waves had a length near twice the sandbar
spacing. In particular, though waves of length nearly twice the sandbar spacing would
be largely reflected and so reduced in amplitude at the end of the sandbar patch, they
could in fact be enhanced at a reflective beach if the proper phase relationship
of the beach reflection and the bar patch were to occur. This was followed up
in Howard & Yu (2007) (hereafter HY2007), who considered normal modes of a
stationary rectangular tank with a corrugated bottom. When the corrugations are
relatively small, most of these normal modes are only slight perturbations of the
flat-bottom modes, in both their frequencies and their eigenfunctions. But a few
of them, whose frequencies correspond to propagating waves of wavelength about
twice the corrugation spacing, are strongly affected by the collaborative effects of
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Bragg reflection, and their eigenfunctions can be considerably modified (though their
frequencies are little perturbed). As shown in HY2007, these modifications depend
sensitively on the position of the endwalls of the tank with respect to the phase of
the bottom corrugations.

In order to set the stage for our experimental study, and the particular approach
we employ, it is useful to briefly review experimental work on wave motion over
corrugated-bottom topography. The first contribution, to our knowledge, was by
Bagnold (1946), in a paper to which G. I. Taylor added a postscript note. Bagnold
used a suspended plate connected to a rotating bar to excite standing waves over
a sandy bottom in a water tank and observed the formation of bars, which he
photographed. Sandbar growth and the interaction of surface water waves with an
undulating seabed topography was studied, in considerable detail, by Heathershaw
(1982) using resistance gauges. The results obtained were in remarkably good
agreement with the linearized theoretical predictions of Davies (1980, 1982). The
experiments performed by Davies & Heathershaw (1983, 1984) focused on the fluid
flow over fixed artificial bars with flat beach at each end, and measured the reflection
of incident waves. As noted above, these experimental studies were followed by
Benjamin et al. (1987), who used rigid corrugations with a wave maker at one end
of the tank and a plane sloping beach at the other. They obtained remarkably clean
data for surface elevations in the range 0.1–0.2 mm using proximity transducers.
Relying on another kind of gauge, the capacitance probe, Kirby & Anton (1990)
measured reflection coefficients from a field of four artificial bars whose spacing
could be varied with the flat segments between them and near the two ends. Soon
afterwards, again utilizing resistance wires, O’Hare & Davies (1993) undertook a
comprehensive study of both the evolution of sandbars and the interaction between
them and the fluid flow over an erodible bed, with a sand patch positioned in the
central section of the tank. Their experiments employed two kinds of sand, coarse
and fine, and their data compared favourably with models and numerical simulations.

There are two broad goals of the present study which stand in sharp contrast to
previous experimental work.

The first objective is to systematically explore the roles of the relative water depth
and boundary conditions on waves passing over a fixed sinusoidal bed terminating
abruptly at the endwalls. Thus the focus here is not on investigating sandbar formation
or on simulating waves approaching shallow beaches as in the experiments reviewed
above, but on the essential aspects of the Bragg phenomenon in its most fundamental
form. The problem, as formulated mathematically in HY2007, does not include
nonlinear effects. In this regard, it is also of interest to see how the physics of Bragg
resonance changes as the surface of the water approaches the top of the corrugations.
Although many critical aspects of standing waves near the Bragg resonance, including
the direction(s) in which the amplitude increases, depend sensitively on the endwall
boundary conditions, no previous experimental study has attempted to document this
behaviour. Earlier experiments aimed more narrowly at modelling waves near shallow
beaches and thus focused on progressive waves with small reflection at the ends.

The second objective is to test the existing mathematical analysis, map its
limitations and stimulate new theoretical directions. The extant theory in HY2007,
though linear, is far from transparent as it is formulated, and the results are obtained
in a conformally transformed plane. As a result, the theoretical corrugation profile
is not exactly sinusoidal; see figure 1. Furthermore, as pointed out in Yu & Howard
(2012), there is strong evidence that the exact Floquet modes used in the theory form
a complete basis and can be used to solve boundary-value problems in a manner

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

31
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.318


Standing waves in a rectangular tank with a corrugated bed 125

–10
–8
–6
–4

–8

–4

–2
0

50 100 150 200 250 300 350 400

–16

–12

0

0

50 100 150 200 250 300 350 4000

(a)

 (b)

FIGURE 1. Comparison of the sinusoidal bottom used in the experiments (solid lines)
with the theoretical corrugation profile (dashed lines) given by (2.1) for (a) h= 8 cm and
(b) h= 14 cm. In each case, z= 0 is the undisturbed free surface and the different vertical
scales should be noted. The right endwall position is that for configuration 1.

similar to the well-known set of propagating and evanescent waves over a flat bottom,
but a formal mathematical proof is not yet available – thus our experiments provide
a valuable test on this aspect. The experiments are also used to determine under what
conditions the linear description may prove insufficient, showing how the actual flows
differ from those predicted, thus paving the way for a nonlinear analysis and further
experiments.

The experiments were designed specifically to test the dependence of resonant free-
surface waveforms on the end phases of a sinusoidal bedform placed between the
vertical endwalls of a rectangular tank. The length of the tank in our set-up could
be changed by a quarter of a corrugation wavelength, so that, according to the theory,
the longer tank would result in a surface wave amplitude varying exponentially from
one end to the other (asymmetric configuration 1), whereas the slightly shorter tank
would excite waves with amplitude varying exponentially from the centre out towards
opposite endwalls (symmetric configuration 2). In each configuration, and for various
water depths, the normal modes with frequencies near the first-order Bragg reflection
condition were excited and the amplitudes of the standing waves were measured at
two locations along the tank. Unlike earlier experimental investigations, we utilize
new pressure probes to measure surface elevation, developed for this study. Additional
data were collected using capacitance probes in order to validate the pressure probe
data and provide an indication of experimental accuracy. Standing waves excited in
the set-up were also filmed over a 1 m segment of the tank at various water depths,
in both configurations, and detailed surface wave profiles were numerically extracted;
this experimental method has not previously been applied in Bragg resonance studies.

The organization of the paper is as follows. In § 2 we review briefly the theory
in HY2007 to provide predictions of the normal modes for the two configurations
of our experiment. In § 3 we describe in detail the experimental set-up, including
the apparatus, the mechanical drive system and the data acquisition systems. Results
presented in § 4 include sample time series of standing waves and free-surface
waveforms. Measured frequencies, amplitude ratios and mean wavelengths are given
for the relevant normal modes of the tank, i.e. those whose natural frequencies are
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sufficiently close to the Bragg frequency so that the cooperative effects of bottom
corrugations are significant. Additionally, frequency response curves are given to
suggest the precision to which the Bragg resonant normal mode frequencies can be
experimentally defined. All results are compared with theoretical predictions. We
conclude with a summary and discussion in § 5. Appendix A provides the theory of
operation of the new pressure wave gauges and an error analysis for their application
to the measurement of the amplitude ratios in this experiment.

2. Review of theoretical results
2.1. Background

Until recently, the only known complete basis of linear modes for water waves
was for the case of two-dimensional time-periodic motions for constant depth
over a flat horizontal bed. This complete set of modes is usually described as
two oppositely directed propagating waves and two infinite families of evanescent
waves. It has played important roles in various boundary-value problems, in particular
in engineering applications.

For periodic bottom topographies, the studies given in HY2007 and Yu & Howard
(2010, 2012) have provided a new approach. Two principal ideas are involved:
(a) use of a conformal map of the flow domain to a strip, and (b) use of the general
ideas of the Floquet theory to exploit the spatial periodicity. HY2007 avoided some
complexities of (a) by restricting attention to a particular family of bed profiles for
which the conformal map was well known. By examining their behaviours as the
bed becomes flat, connections are established between these exact Floquet solutions
and the set of flat-bottom modes. A full treatment of the theory for arbitrary periodic
bed profiles is given in Yu & Howard (2012), including the method of constructing
the needed map. The familiar basis of flat-bottom propagating and evanescent waves
is thus extended to the case of arbitrary periodic topographies. An application of
this work to wave scattering with different boundary conditions is reported in Yu &
Zheng (2012).

2.2. The exact Floquet solutions
Theoretical results from HY2007 are summarized here for comparison with experi-
ments. The family of theoretical corrugations is given parametrically by

hb(x)= εh cos 2ξ, where kBx= ξ − εkBh coth(2kBh) sin 2ξ, (2.1)

and kB≡π/λbar with λbar being the corrugation wavelength. The amplitude parameter
ε satisfies the inequality ε < tanh(2kBh)/(2kBh), so that hb(x) is single-valued. The
conformal transformation between the (x, z) plane and the mapped plane (ξ , η) is
given by

kBx= ξ − εb sin 2ξ cosh 2η, kBz= η− εb cos 2ξ sinh 2η, (2.2a,b)

where b = kBh/sinh(2kBh). Under the transformation, the undisturbed flow domain
−h+ hb(x)6 z 6 0 is mapped into −kBh 6 η 6 0. The periodicity of the problem is
retained. The theoretical bed profile in (2.1) is shown in figure 1 for h= 8 and 14 cm,
and compared with the sinusoidal bottom used in the experiments. The theoretical
profiles are approximately sinusoidal but exhibit smaller curvature at the troughs and
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larger curvature at the crests. The ratios |1z/abar| at the midpoint between trough and
crest are 0.37 and 0.30 for h= 8 and 14 cm, respectively.

For linear time-periodic motion, the velocity potential is φ = ϕ(x, z)e−iωt + c.c.,
where ω is the angular frequency. In the mapped plane, the Laplace equation for ϕ
is solved satisfying the transformed boundary conditions at the free surface η= 0 and
at the bed η=−kBh. The solution is given as follows:

ϕ(ξ, η;µ)= eµξ
∞∑

n=−∞
Dneinξ cosh [(n− iµ) (η+ kBh)]

cosh [(n− iµ) kBh]
, (2.3)

LnDn =Dn−2 +Dn+2, (2.4)
Ln = (εb)−1 {1− gkBω

−2 (n− iµ) tanh [(n− iµ) kBh]}. (2.5)

Equation (2.3) represents a set of solutions, individually identifiable by the Floquet
exponent µ. It is not a separable solution in the mapped domain, as the individual
terms of the sum do not satisfy the free-surface condition. For a given frequency ω,
the requirement that (2.4) be satisfied by a sequence of non-trivial Dn(µ) determines
the values of µ (occurring in ± pairs). This is the dispersion relationship for linear
Floquet modes, equivalent to that in the flat-bottom case.

The analogues of flat-bottom evanescent waves are themselves reasonably called
‘evanescent’, for they always decay rapidly in ±x directions (due to the large values of
real ±µ), and so play significant roles only near the lateral boundaries. However, the
analogues of flat-bottom propagating waves are a little different. The two-parameter
family (±µ) of ‘propagating waves’ is, as a whole, analogous to linear combinations
of left- and right-propagating waves because there is always some scattering by
the corrugations. In the (ω, ε) plane, the frequencies for the propagating wave
modes are separated by isolated bands near the Bragg frequency ω2

B = gkBtanhkBh or
similar higher-order Bragg frequencies, which we call ‘resonance tongues’. When the
frequencies fall within one of these bands, the propagating waves have real µ values
(smaller than 1 in magnitude), hence their amplitudes modulate exponentially, but
slowly, in space.

If we denote by ϕ± and ϕ±j the Floquet solutions in (2.3) corresponding to the wave
modes with ±µ and evanescent modes with real ±µj for a frequency ω, the normal
mode in the tank for that frequency is given by

ϕ =C+ϕ+ +C−ϕ− +
∑

j=1,∞
(C+j ϕ

+
j +C−ϕ−j ), (2.6)

where the coefficients C± and C±j are determined by satisfying the boundary
conditions at the tank endwalls, x= x0 and x= x0+L. Let α= kBx0, β= kBL−Nπ+α
and N be the nearest integer number of corrugation wavelengths to the actual length of
the tank (HY2007). Thus, relative to the corrugation crests, α is the phase at the left
endwall and β is the phase at the right endwall. Under the conformal transformation,
the two endwalls are mapped into the curves ξ = ξ0(η) and ξ = Nπ + ξ1(η),
respectively, where

α = ξ0 − εb sin 2ξ0 cosh 2η, β = ξ1 − εb sin 2ξ1 cosh 2η, (2.7a,b)

according to (2.2a). Since the mapping is conformal, it remains that ∂ϕ/∂n = 0 at
ξ = ξ0(η) and ξ =Nπ+ ξ1(η). The frequency ω, for which non-trivial C can be found
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to satisfy these boundary conditions, is the natural frequency of the normal mode for
the tank. In our experiments, we focus on ω inside the resonance tongue, close to ωB.
The free-surface elevation (i.e. eigenfunction) is obtained as

ζ =−g−1∂φ/∂t at z= 0. (2.8)

We note that the normal mode eigenfunctions given in (2.6) are quite different
from the corresponding modes of the flat-bottom tank. The natural frequencies are
not significantly changed by the relatively small ‘perturbation’ of the corrugations.
However, with a sufficient number of corrugations in the tank, the eigenfunctions of
those modes with natural frequencies close to the Bragg resonance frequency may be
considerably altered due to the cooperative effects of successive corrugations. Those
modes will be of relatively high frequency, compared to the fundamental frequency
of the tank. The eigenfunctions locally look like standing waves, but with oscillation
amplitude varying exponentially along the length of the tank. The precise form of
these exponential variations depends sensitively on the end phases of the corrugation,
that is, on parameters α and β.

3. Experimental set-up
The experimental set-up is composed of the physical apparatus and the data

acquisition system described in §§ 3.1 and 3.2 below. In these it is natural to use the
English system of dimensions to describe components used to assemble the apparatus,
but the metric system will be employed for all experimental data. The experimental
procedure is outlined in § 3.2.

3.1. Physical apparatus
Figure 2 shows details of the apparatus, with the left half displayed above and the
right half shown below. The clear polycast tank 1 was fabricated in two 8′ sections.
The rather long 16′ length was chosen to incorporate a sufficient number of bottom
corrugations so that the amplitude growth along the channel could be detected. Before
assembling the tank, a black indelible grid 2 with 1 cm vertical and 2 cm horizontal
spacings was scribed on the inner left wall for filming purposes. The two halves of
the channel were sealed with rubber and cork gaskets and bolted together using 1/2′′
plastic bolts, washers and nuts 3 . The tank was mounted on top of the flat side of a
6′′ × 3′′ aluminium C-channel 4 with stops 5 mounted at opposite ends of the tank
and numerous aluminium/balsa guides 6 to ensure perfect alignment.

The aluminium C-channel was suspended using three pairs of 1/16′′ steel wire ropes
7 with compression eyelet sleeves. Assemblies 8 were designed to house two SR3-
ZZEEC Boca bearings separated to accommodate the eyelets using a shoulder bolt as
shown in detail 9 . With the lower assemblies mounted on the C-channel, the upper
assemblies were bolted to carefully levelled steel plates mounted on rafters in the
garage of one of the authors (P.D.W.), where the experiments took place.

Substantial resistance to bending was attained by fixing a wooden 2′′ × 4′′ beam
10 along the bottom centre of the C-channel. Care in locating the suspension points
is particularly important since the total weight of the C-channel and polycast tank
filled with water to the highest 14′′ depth used in the experiments was about 650 lb.
A study was performed to ascertain the optimum points for mounting the suspension
wires to provide least deflection under a uniformly distributed load. The 84′′ length of
the suspension wires was chosen so that the bottom of the wooden beam under the
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FIGURE 2. Sketch of the experimental apparatus. The circled numbers are items referred
to and discussed in the text.

aluminium channel hovered above the garage floor 11 by about one inch. Owing to
the flexibility of the 1/4′′ vertical sidewalls, the channel would bow outwards at high
water level. This was ameliorated by placing rectangular brackets 12 at intervals on
top of the channel.

The bed waveform 13 was fabricated using no. 2 density expanded polystyrene
foam supplied to us in 6′ lengths cut exactly 5′′ wide to fit snugly between the tank
sidewalls. For the chosen wavelength λbar = 52.36 cm and amplitude abar = 2.5 cm, a
pair of hardwood guides one wavelength long was machined to the shape

z(x)= 2.54+ abar[1− cos(2πx/λbar)], (3.1)

where x, z, abar and λbar are in centimetres. The 2.54 cm bottom thickness ensured
rigidity of the cut foam pieces while handling. The foam sections were butted together
and adhered to the bottom of the tank using industrial-strength double-sided adhesive
tape to give the configuration 1 corrugation shown in figure 2. Configuration 2 was
achieved by placing an inverted quarter-wavelength section of foam corrugation on top
of the terminal quarter wavelength of the configuration 1 corrugation. In each case a
false right endwall 14 was held in place using plastic clamps.

The waveform starting at the left at phase α and ending at the right at phase β has
total length

L= [N + (β − α)/π]λbar, (3.2)

where N is the number of maxima. Fixing the left endwall phase at α=−π/4, we can
select the right endwall phase β and determine the appropriate N that corresponds to
the total working length of the tank. For the asymmetric configuration 1 (cf. figure 2),
β=−π/2 and N= 9, giving a working length L= 8.75λbar, i.e. L= 458.2 cm. Moving
the right endwall inwards by (1/4)λbar, we obtain the symmetric configuration 2 for
which L = 8.5λbar, i.e. L = 445.1 cm, corresponding to β = −α and N = 8. These
configurations were chosen to have the highest spatial growth rates of the resonant
surface waves.

The second component of the apparatus is the periodic drive system. We adapted
the reciprocating drive system used by Davis & Weidman (2000). The motor mounted
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on a heavy horizontal platform was geared 3:1 to a reciprocating rod 15 of length
l = 65 cm, which could be continuously offset from its drive shaft to deliver very
nearly sinusoidal motion with peak-to-peak strokes as large as 1/4′′. For these small
strokes, Davis & Weidman (2000) have shown that the power in the first harmonic is
10−6 times the power delivered at the fundamental frequency. The opposite end of the
reciprocating rod was fixed via a wrist pin 16 housed on the right bottom end of the
aluminium channel.

The maximum frequency for horizontal oscillation was 150 r.p.m. For the water
depths reported here, the highest theoretical first-mode Bragg frequency in both
configurations is about 50 r.p.m. and second-mode frequencies achieve nearly
100 r.p.m. The drive system was equipped with a revolution (r.p.m.) indicator whose
LED readout refreshed every one or two seconds for the measurements reported here.
Alignment of the natural path of tank motion was maintained using wooden guides
17 secured to the garage floor at opposite ends of the C-channel 4 .

3.2. Data acquisition procedure and timeline
Water depths h= 8, 9, 10, 11, 12, 13 and 14 cm were selected for experimentation.
The amplitude of the waves excited at Bragg resonance depends on the stroke
imparted by the reciprocating rod. Since the procedure for changing the stroke for
each new water depth is very time-consuming, we performed a set of experiments to
determine the ‘best average stroke’ for the seven water depths. Large strokes yielded
nonlinear waves at high depths and small strokes made it difficult to visually ascertain
the nodes of free-surface oscillation necessary for wavelength measurement and for
positioning the wave gauges. For all measurements presented here the chosen stroke
was 2X0 = 0.116′′, giving sinusoidal tank motions X0 sinωt.

Two measurement systems were employed to record the amplitude ratio of two
well-separated wave crests. In the first system, simultaneous time-series pressure
measurements were recorded from two spatially separated PASCO low-pressure
sensors (model CI-6534A) connected via tygon tubing to 3/32′′ inner diameter brass
tubes 18 submerged 2 cm below the quiescent free surface. Since the probes were
removed during each adjustment to a new water depth, care was taken to remove
water droplets trapped in the brass tubes before re-immersion; generally the brass
tubes were blown dry with air from a pressurized canister. The probes, always placed
at experimentally observed locations of wave crests, were widely separated to obtain
large differences in wave amplitude. For configuration 1 where the amplitude grows
monotonically, the probes were placed at the second crest in from each endwall,
giving a separation distance 2.5λe, where λe is the experimentally measured average
free-surface wavelength. For configuration 2, where the wave amplitude grows from
the centre of the tank towards each endwall, one probe was placed at the first crest
to the left of centre and the other was located 2λe to its right. A theoretical analysis
of the pressure calibration and rise height of liquid inside the brass tube is given in
appendix A. The results give 0.08896 kPa cm−1 for probe 1 and 0.08888 kPa cm−1

for probe 2.
The second measurement system incorporates high-frequency, capacitance-type wave

gauges 19 borrowed from Penn State University. The water-penetrating portion of the
gauge consists of a 1.6 mm outer diameter glass tube, which contains a conductor
and is sealed at the underwater end. Details on the electronic conditioning of the
signal may be found in Henderson & Hammack (1987). A direct calibration for the
capacitance probe gave 2.268 V cm−1 with a goodness of fit R2 = 0.99832.
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Another objective is to obtain free-surface waveforms over an oscillation period.
This was accomplished using a Canon Vixia HF G10 high-definition camcorder to
capture the free-surface waveform over a segment approximately 1.5 m in length
(∼3λbar) near the left end of the tank where the grid 2 is scribed. To enable
automated extraction of the interface shapes from the video stills, the water was
dyed deep red to create strong contrast with the white background above the water
surface obtained by backlighting a frosted plastic plate using a 12′′× 60′′ Fawoo LED
light panel. A series of still frames corresponding to two or three oscillation periods
was saved from the video. Each frame was analysed using a MATLAB program,
which returned the x–y coordinates of the interface. The horizontal resolution of this
procedure was one pixel and the interface between water (red) and air (white) was
discerned by sampling pixel intensities along vertical columns one pixel wide, with a
carefully defined threshold intensity value. The interface data were then numerically
smoothed to remove discontinuities due to finite pixel size and inaccuracies of
assigning individual pixels to either water or air using the threshold.

After construction of the apparatus, initial experimentation with wire conductance
probes borrowed from Woods Hole was carried out. We observed some measurement
sensitivity to the change in contact angle of the meniscus as the wave changed
direction. Thus, to improve measurement accuracy, we switched to the sensitive
PASCO pressure sensors in 2010. After an initial series of measurements taken in
June/July 2011, careful measurements were taken during August/September 2011
(Data Set 1) and in January 2012 (Data Set 2). Owing to an outlier in the amplitude
ratio measured using the pressure probes, a final set of measurements was made
using capacitance probes in July 2013 (Data Set 3).

The experimental procedure for Data Set 1 was as follows. After adding water,
measurements of a liquid level (±0.3 mm) were made from bedform crests at
opposite ends of the tank using a millimetre steel ruler and adjustments were made
to attain the desired liquid depth. With the pressure probes immersed 2 cm below
the quiescent free surface, the tank was set into motion to determine the mode 1
resonance frequency visually so the probes could be set at appropriate waveform
crests. A period of some minutes was required for the temperature of the brass tubes
to equilibrate with the water temperature. The effect of the temperature inequality
was reflected in a gradual change in pressure monitored on a laptop.

As the motor warmed, its frequency increased ever so slowly. With the motor drive
frequency set just below the nominal Bragg resonance frequency, the pressure signal
rose to its maximum, at which point 20–30 s time series for each probe were recorded
simultaneously. The same procedure was followed for all other water depths and for
Data Sets 2 and 3 in both configurations.

For Data Set 3, however, a malfunction in one of the ship-to-shore electronics
systems left us with just one probe. Therefore, at each fluid depth, a resonance
amplitude time series was recorded at a prescribed crest, the motor was stopped,
and the probe was moved to the other crest position. The motor was restarted and
the second resonance time series was recorded, endeavouring to set the frequency as
close as possible to the resonance frequency. Then frequencies for the two data sets
were, on average, within 0.03 %, with some differences being as large as 0.05 %.

4. Presentation of results
4.1. Frequencies

As a preliminary test on the behaviour of the system (using the original motor),
we measured several odd-mode frequencies for our flat-bottom tank of length
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FIGURE 3. Measured odd normal mode frequencies fe in the flat-bottom tank with
L = 487.7 cm at water depth h = 10 cm plotted against the theoretical frequencies fm
for m = 3 (square), 5 (circle), 7 (up triangle), 9 (pentagon), 11 (down triangle) and
13 (diamond). The theoretical frequencies fm are computed using (4.1) and the diagonal
line for exact agreement is shown for comparison.

L = 487.7 cm at water depth h = 10 cm. Standard potential theory (Milne-Thomson
1962) gives the theoretical frequencies fm (in Hertz)

fm =
√

g km tanh(kmh)/2π, (4.1)

where g = 980 cm s−2 and km = mπ/L for m = 1, 3, 5, . . . . Measurements were
obtained by gently sweeping though the expected resonance frequency with the drive
motor system and noting the frequency at which the largest amplitude of standing
wave motion was observed. The results presented here represent an average of three
such measurements for each mode m. Experimentally we find that the windows for
these resonance frequencies are quite sharp, so the measured frequencies can be
obtained to considerable accuracy.

The experimentally measured values fe for modes 3, 5, 7, 9, 11 and 13 of the flat-
bottom tank are plotted against the theoretical values fm in figure 3; in this presentation
the diagonal gives exact correspondence between measurement and theory. The lowest-
frequency mode f1 = 0.1015 Hz was not accessible using the original motor, which
had a top speed four times faster than the gear reduction motor used for all other
experiments reported here. Analysis of the data shows that the mean value of the
absolute difference between measured and theoretical frequencies is 0.37 %.

We now turn to the Bragg resonant normal mode frequencies. The standing wave
frequencies were measured at each water depth in both configurations. Figure 4
displays the variation with depth of the experimentally measured frequencies fe from
Data Set 1 compared with the theoretical predictions ft. The frequencies of the
corresponding flat-bottom mode f9 are also shown. For both configurations f9 > ft > fe.
Analysis of these data shows that, on average, the experimental frequencies are 1.29 %
below theory for configuration 1 and 1.60 % below theory for configuration 2. The
theoretical frequencies ft of the corrugated-bottom tank remain fairly close to the
flat-bottom frequencies f9, both of which vary linearly with depth. For configuration 1
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FIGURE 4. Depth variation of the Bragg resonant normal mode frequencies: experimental
measurements fe (open circles) and theoretical predictions ft (solid triangles) are shown for
(a) configuration 1 and (b) configuration 2. The flat-bottom normal mode frequencies f9
(solid squares) computed using (4.1) are shown for comparison.

the difference between f9 and ft decreases from 2.89 % at h = 8 cm to 1.52 %
at h = 14 cm, whilst for configuration 2 the difference decreases from 3.84 % at
h= 8 cm to 1.74 % at h= 14 cm. Since the effect of bottom corrugations abates as
the water depth increases, it is anticipated that the difference between ft and f9 will
continue to decrease with increasing liquid depth.

4.2. Time traces
In each configuration the probes were located to maximize the difference between
the oscillation amplitudes but also to avoid placing the probes close to the endwalls.
The probes were located at the experimentally determined antinodes and the data
were typically collected over 20–30 s intervals. Probes 1 and 2 were always placed
on the left and right sides of the tank, respectively. We henceforth denote a1(t) as
the larger-amplitude time series measured at one probe position and a2(t) as the
smaller-amplitude time series measured at another probe location. It is important
to understand that these amplitudes are measured by different probes in the two
configurations. In configuration 1, the larger-amplitude time series is recorded
by probe 1 and the smaller-amplitude time series is recorded by probe 2; in
configuration 2, the opposite is true.

Time-series data, simultaneously recorded for both probes using pressure sensors,
were obtained at h= 8, 10, 12, 14 cm. Comparison with theoretical results are given
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FIGURE 5. Sample large-amplitude a1(t) and small-amplitude a2(t) time series from Data
Set 1 for configuration 1: (a) h= 8 cm, fe= 0.798 Hz, ft = 0.812 Hz; (b) h= 10 cm, fe=
0.884 Hz, ft= 0.895 Hz; (c) h= 12 cm, fe= 0.948 Hz, ft= 0.962 Hz; (d) h= 14 cm, fe=
1.006 Hz, ft = 1.018 Hz. Solid lines, experimental measurements; dashed lines, theoretical
comparisons.

in figure 5 for configuration 1 and in figure 6 for configuration 2. The solid lines in
figure 5 for configuration 1 show the out-of-phase time series for probes separated
by 2.5λe, while those in figure 6 for configuration 2 show in-phase time series for
probes separated by 2λe. Here λe is the mean surface wavelength as defined in the
following section. The theoretical sinusoidal time series (dashed lines) are compared
to the experimental time series in the following manner.
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FIGURE 6. Sample large-amplitude a1(t) and small-amplitude a2(t) time series from Data
Set 1 for configuration 2: (a) h= 8 cm, fe= 0.811 Hz, ft = 0.826 Hz; (b) h= 10 cm, fe=
0.900 Hz, ft= 0.913 Hz; (c) h= 12 cm, fe= 0.973 Hz, ft= 0.983 Hz; (d) h= 14 cm, fe=
1.026 Hz, ft = 1.004 Hz. Solid lines, experimental measurements; dashed lines, theoretical
comparisons.

The amplitude of the free-surface waves for the given horizontal displacement
of the tank cannot be determined from the linear theory outlined in § 2. Thus, the
theoretical amplitude was set equal to the larger experimental amplitude a1(t) and
aligned in phase at t' 0. Then the smaller theoretical amplitude was calculated from
the theoretical amplitude ratio (cf. figure 8 introduced in the next section) and these
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FIGURE 7. Mean free-surface wavelengths as a function of water depth. For
configuration 1: experimental measurements λe (open circles) and theoretical estimate λt
(dashed line). For configuration 2: experimental measurements λe (open diamonds) and
theoretical estimate λt (dash-dot-dash line). The solid line is 2λbar.

time series were then evolved forwards in time at the theoretical frequency ft. In both
configurations, figure 4 shows that ft is slightly greater than fe.

4.3. Mean wavelengths and amplitude ratios
The resonant surface waves are not sinusoidal in x over the corrugated-bottom
topography, in contrast to the flat-bottom case. For Bragg resonant waves, they are
not even spatially periodic because of the slow exponential modulation in the wave
amplitude. Strictly speaking, these waves have no wavelengths. For Bragg resonant
normal modes, i.e. those with frequencies falling into the resonance tongues, the
eigenfunctions will look locally much like standing waves (apart from the immediate
neighbourhood of the endwalls), but with amplitudes varying along the tank. The
‘wavelengths’ of such standing waves may be defined as some kind of average
distance between surface nodes.

In the experiments, the mean surface wavelengths λe were measured directly for
each configuration at the various water depths. This was accomplished by measuring
the horizontal distance between well-defined widely separated nodes and backing out
the average wavelength over that distance. The depth variation of the measured mean
wavelengths λe are plotted in figure 7. It should be pointed out that the node near
the right endwall for configuration 2 is never stationary – it moved to and fro about
1–1.5 cm depending on water depth.

The theoretical prediction of mean wavelength can be accurately determined from
the waveforms computed, but a simpler approach can be taken, as follows. For
a flat-bottom tank, the wavelength of the mth normal mode is 2L/m, where L is
the total tank length. Although this is not quite appropriate for our tank with a
corrugated bottom, it nevertheless can be adopted to obtain a simple, yet adequate,
estimate of the mean wavelength, considering that the frequency of the normal
mode is not significantly perturbed by the corrugations (cf. figure 4), and that
the spatial modulation is slow. For our tank, it is the ninth mode that is Bragg
resonant. Thus, for configuration 1, L = 458.2 cm gives a theoretical estimate of
the mean wavelength λt = 2 × 458.2/9 = 101.8 cm, whilst for configuration 2,
L = 445.1 cm gives λt = 98.9 cm. These mean wavelength estimates are compared
with the experimental data in figure 7.
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FIGURE 8. Amplitude ratios as a function of water depth: Data Sets 1 (open triangles),
2 (open squares) and 3 (open diamonds) and theoretical predictions (solid circles) for
(a) configuration 1 with probe separation distance 2.5λe and (b) configuration 2 with
effective probe separation distance 1.5λe The error bars on the pressure sensor data come
from the analysis in appendix A.

The experimental amplitude ratios were determined as the ratio of the peak-to-peak
values of a1(t) recorded at one tank location to the peak-to-peak values of a2(t)
recorded at another well-separated location. Note that in figures 5(a) and 6(a),
where the signals are not sinusoidal, the peak-to-peak amplitude is taken as the true
maximum minus the true minimum of the time series. The amplitude ratios for both
configurations obtained from Data Sets 1, 2 and 3 are compared with theoretical
estimates in figure 8. The error bars on the pressure probe data from Data Sets 1
and 2 are taken from the analysis in appendix A. The rather large amplitude ratio
obtained from Data Set 2 at h = 9 cm in configuration 1 provided the motivation
to repeat the experiment using the capacitance probe. It is seen that the h = 9 cm
data point from capacitance probe Data Set 3 is indeed in good agreement with the
corresponding measurement from Data Set 1 and with theory. A possible explanation
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FIGURE 9. Surface waveforms for Bragg resonant normal modes. (a) Configuration 1 at
depth h= 14 cm for which fe= 1.0076 Hz and ft= 1.0182 Hz. Experimental data given at:
t= 0 s (circles), 0.1666 s (up triangles), 0.333 s (down triangles), 0.50 s (diamonds) and
0.963 s (open circles). (b) Configuration 2 at depth h= 10 cm for which fe = 0.9042 Hz
and ft = 0.9133 Hz. Experimental data given at: t= 0 s (circles), 0.1666 s (up triangles),
0.30 s (down triangles), 0.50 s (diamonds) and 0.996 s (open circles). The corresponding
theoretical waveforms are plotted as solid lines.

for the outlier in Data Set 2 is that a small water drop was still lodged in one of
the brass tubes. It is reassuring in figure 8 to find that the measurements obtained
using the capacitance probe (diamonds) are in fundamental agreement with the
measurements obtained using the PASCO pressure sensors (triangles and squares).

When assessing the variation of the amplitude ratios with depth presented
in figure 8, we realized, post factum, that our placement of the left probe for
configuration 2 was not optimum – in all cases the left probe was placed at the
first antinode to the left of the centre of the tank. Since the centre of the tank for
configuration 2 is a node, this means that the left probe was placed (1/4)λe to the
left of centre. Thus the wave amplitude decreased from the left probe to the tank
centre and then increased towards the right probe placed 2λe away. By symmetry we
may assume that the left probe measured the same amplitude as if it were placed
(1/4)λe to the right of centre, where the waveform is increasing towards the right
endwall. Thus the effective separation between the probes from the point of view of
amplitude growth is only 1.5λe. This goes a long way to explain why the variation
of the amplitude ratio a1/a2 is much smaller for configuration 2 compared to that for
configuration 1.

4.4. Free-surface waveforms
Waveforms a(x) near the left endwall obtained from video frames are compared
with theoretical predictions in figure 9. The experimental data were searched to find
the largest waveform amplitude and this was identified as the t = 0 data set. The
theoretical surface elevations were obtained as follows. The theoretical waveform was
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first aligned to be in phase with the experimental data. Then the theoretical amplitude
was scaled to best match the two middle maxima in the experimental data. Having
set the phase and amplitude at t = 0, the theoretical waveforms are calculated at
successive experimental times without any further adjustment.

The experimental data at five different times are compared to the theoretical
waveforms for h = 14 cm in figure 9(a) for configuration 1 and for h = 10 cm in
figure 9(b) for configuration 2.

4.5. Frequency response curves
To elucidate the behaviour of the system near resonance, measurements of the
oscillation amplitude a as a function of frequency f were taken in both configurations
at depths h= 10, 12 and 14 cm. In all six cases, one of the pressure probes was fixed
at an experimentally determined position of a local maximum of surface oscillation.
Amplitude data were then recorded while gradually sweeping frequencies through the
resonance frequency from below.

The experimental results are plotted in figure 10. Each data set was fitted by
trial and error with a single-peak Lorentzian function, suggested by the standard
theory of resonance for a forced, damped, harmonic oscillator. The particular form of
the Lorentzian employed for these fits corresponds to the case when the forcing is
imparted by periodic displacement of the support to which the oscillator is attached,
in accordance with the experimental procedure described in § 3.1, viz.

a(f )= a0f 2√
(f 2 − f 2

res)
2 + γ 2f 2

. (4.2)

While γ is a measure of the damping relative to the inertia of the system for an actual
mass–spring–dashpot simple harmonic oscillator, here it is effectively just a fitting
parameter in (4.2). In fact the maximum response in (4.2) does not occur exactly at
fres, but it is very nearly so when γ /fres � 1, which is found to hold in all cases
of interest here. For the amplitude curve in (4.2), the full width at half-maximum
(FWHM) is

√
3γ . Clearly the fits thus obtained are heuristic, as a tank partially filled

with water is very different from a simple mass–spring oscillator. Nevertheless, the
response curves do give a clear indication that the frequencies of the Bragg resonant
normal modes can be accurately determined experimentally by adjusting parameters
a0 and γ , and that they exhibit the usual Lorentzian shape. Fits of this kind could be
made near any of the resonances of the system, but it is only those in which Bragg
reflection plays an important role that are of interest in this paper.

5. Summary, discussion and conclusion
An experimental investigation has been carried out to study Bragg resonant standing

waves (normal modes) in a long rectangular water tank with a sinusoidal bottom
corrugation. One of the main objectives was to test some theoretical predictions of
Howard & Yu (2007), in particular that normal modes with frequencies close to the
Bragg resonance frequency have amplitudes modulated over the length of the tank,
with the details of this modulation depending sensitively on the phase of bottom
corrugations at each endwall. Two cases were tested: configuration 1 corresponding
to monotonic exponential growth from the right endwall to the left; and configuration
2 corresponding to amplitudes increasing from the centre towards each endwall.
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FIGURE 10. Frequency response curves at h= 10 cm (squares), h= 12 cm (circles) and
h= 14 cm (triangles) for (a) configuration 1 and (b) configuration 2.

The only difference between the two configurations is a quarter bottom corrugation
wavelength shift of the right endwall. Experimental data for each configuration were
gathered at seven mean water depths ranging from 8 to 14 cm. We now assess the
quality of agreement between measurements and theoretical predictions and comment
on the results.

5.1. Time traces

In both cases, the time series become less sinusoidal as the water depth decreases,
losing the crest–trough symmetry, even with the appearance of secondary peaks at
the troughs of the signals (cf. figures 5(a) and 6(a) for h= 8 cm). We do not know
precisely what has caused the secondary crests at low depth. These features may
have similarity to nonlinear Stokes waves, a problem studied in some detail by Kirby
(1986b), but that is not at all clear. Quadratic nonlinearity can give rise to standing
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FIGURE 11. (Colour online) Comparison of the small-amplitude time series a2(t) (solid
line) in figure 6(b) for configuration 2 at h= 8 cm with the fitted time series (dashed line)
given in (5.1) for a0 = 3 cm, δ = 0, b0 = 0.12 and ω = 5.0876 rad s−1 as obtained from
an FFT of the measured time series. The fitted curve can be viewed as the dashed line
(red online).

surface wave structure of the form

a(t)= a0 cos(ωt)+ b0 cos(2ωt+ δ). (5.1)

The largest deviation from sinusoidal behaviour occurs for the smaller-amplitude
trace a2(t) in figure 6(a) corresponding to configuration 2. To produce a fitted curve
of the form (5.1), we took a fast Fourier transform (FFT) of this time series and
found that virtually all of the energy is contained in two dominant frequencies,
ω1 = 5.0876 rad s−1 (0.80972 Hz) and ω2 = 2ω1. As expected, the fundamental
frequency is very close to the measured resonant frequency fe = 0.811 Hz. After
aligning (5.1) with the first maximum of a2(t), we find that a0 = 0.3 cm, δ = 0,
b0 = 0.12 cm give a remarkably good fit to the measured time series using the FFT
frequency 5.0876 rad s−1, as shown in figure 11. Thus, one might conclude that
lowering the water depth brings quadratic nonlinearity to the system. However, for
both configurations the standard measure a/h of nonlinearity is quite small, decreasing
monotonically from a/h ∼ 0.08 at h = 14 cm to a/h ∼ 0.06 at h = 8 cm. Note that,
as a/h decreases, the relative importance of dissipation in the system increases,
in qualitative agreement with the variation of the fitting parameter γ observed in
figure 10; see § 4.5.

The effect of bottom corrugation amplitude abar at low depths must also be
considered. The ratio h/abar = 5.59 at h = 14 cm monotonically decreases to
h/abar = 3.20 at h = 8 cm. Note that in the region −1 < h/abar < 1 the fluid is
completely contained in eight separate ‘sinusoidal’ basins in which Bragg resonance
cannot occur – sloshing in the individual basins is the only possible motion. Therefore,
Bragg resonance can only exist for liquid depths h/abar > 1. Indeed, for values of
h/abar only slightly greater than unity, the motion is likely to be dominated by
whatever motion (quiescent or sloshing) exists in the separate basins. Thus the
appearance of the lobes in figure 11 is likely to depend sensitively on h/abar.
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Nonlinear analyses of horizontally extended wave motion over sinusoidal bottom
topography have been reported by Kirby (1986b), Sammarco, Mei & Trulsen (1994)
and Liu & Yue (1998), and very recently by Xu, Zhiliang & Liao (2015), among
others. Unfortunately, only the paper by Sammarco et al. (1994) provides actual
waveforms, while the other studies only report reflection coefficients; moreover, none
of these studies relate to the current investigation of Bragg resonance in a bounded
tank. Consequently, the role of nonlinearity in our system must be viewed as a
subject for future study. All we can say at present is that the degeneration of linear
sinusoidal Bragg waves, at the fixed forcing in our experiment, depends on both
h/abar (waves directly interacting with the bottom corrugations) and a/h (nonlinear
effects).

5.2. Frequencies
Good agreement is observed between the measured resonant frequencies fe and the
theoretical frequencies ft at all water depths, though the experimental values always
lie slightly below the theoretical predictions; the correspondence comes into better
agreement as the liquid depth increases. As is anticipated (cf. § 2.2), the frequency
of the normal mode is slightly altered by the presence of bottom corrugations, and
here again ft comes into closer agreement with f9 as the liquid depth increases.

5.3. Wavelengths

The mean wavelength comparison is very good. Slightly greater deviation of λe from
λt is observed for configuration 2. This is attributed to the difficulty in determining the
position of the fluctuating node near the right endwall used for making measurements
of λe. For both configurations, the mean wavelengths of the resonant normal modes
are bounded from above by 2λbar, which is the wavelength of a flat-bottom wave
having Bragg frequency ωB (i.e. the resonant wavelength predicted as the amplitude
parameter ε→ 0). For finite ε, we have arranged things so that both configurations
have a normal mode with frequency in the ‘resonance tongue’ (cf. § 2.2); but it is a
matter of detailed computation to see which configuration has the higher frequency
(or mean wavelength) and how they are related to the flat-bottom Bragg frequency
ωB. For the experimental conditions reported here and plotted in figure 7, λe for
configuration 2 lie below λe for configuration 1 which are themselves below 2λbar.
However, it cannot be expected that this arrangement will always prevail.

5.4. Amplitude ratios
Unlike the smooth variations of measured frequencies with fluid depth, figure 8
exhibits considerable scatter in the measured amplitude ratios relative to the theoretical
predictions in both configurations, even taking into account error estimates for
measurements made using the pressure sensors. It should be noted that the error
analysis for amplitude ratio measurement in appendix A only pertains to operation of
the pressure sensor and does not include other sources of error such as the slightly
drifting frequency during the time of measurement, the slight bowing of the tank
walls, and the slight bending of the bottom surface of the tank due to the three-point
suspension system. It is also noted that the differences between data taken from the
first and second series of measurements using pressure sensors, and those taken using
the capacitance probe, give a measure of the overall amplitude ratio error in the
system.
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Despite the scatter, there is qualitative agreement between the theory and experiment
– the ratio of oscillation amplitudes decreases as the water depth increases, as expected.
At larger depths, the surface wave motion is less affected by the bottom that is further
away. Thus, the effects of Bragg resonance should be reduced as the water depth
increases, with the surface oscillations becoming increasingly similar to ordinary
standing waves. This is consistent with the measurements in figure 8, which shows
the amplitude ratio tending to unity (without spatial modulation) as h increases. It is
worth pointing out that, even at the relatively large depth h= 14 cm (kBh= 0.8394),
the amplitude ratio increases as h decreases by a factor ∼1.5 over a distance of
2.5 mean wavelengths for configuration 1, and by a factor ∼1.25 over an effective
distance of 1.5 mean wavelengths for configuration 2, as a result of Bragg resonance.
At the shallow depth h= 8 cm (kBh= 0.4796), the amplitude ratio can be as large as
2.8 for configuration 1 and 1.5 for configuration 2.

The rather weak variation of amplitude ratios with fluid depth for configuration
2 compared to that for configuration 1 is clearly due to the fact that the probe
separation in the former case (∼1.5λe) is much shorter than that (∼2.5λe) in the
latter case. Assuming for the sake of argument that, over these relatively short
distances, the growth rates are linear and equal for the two configurations, then the
data for configuration 2 would be increased by a factor of 5/3 to realize the same
2.5λe separation as for configuration 1. This would place all the theoretical values
in figure 8(b) within 24 % of those in figure 8(a). While the spatial growth rates
are indeed weakly exponential, this simple argument helps to understand the large
difference between the amplitude ratio variations with depth in the two configurations.

There are some clear differences in figure 8 between experiment and theory.
For configuration 1, the good agreement between theory and measurement at low
depths deteriorates as h increases. For configuration 2, the opposite is true: the good
agreement between theory and measurement at high depths deteriorates as h decreases.
The discrepancy between theory and experiment in the latter case is due, to a great
extent, to our definition of the peak-to-peak amplitude that includes the secondary
crests at the troughs apparent in figure 6(a). However, we have no explanation for
the ∼10–15 % overshoot in measurement relative to theory for the configuration 1
data at large depths.

Finally, we comment on two sets of measurements visibly different from theoretical
prediction. The average of the three experimental points for h= 10 cm in figure 8(a)
lie 13 % above theory while the average of the three experimental points for h= 9 cm
in figure 8(b) lie 20 % below theory. The close grouping of the experimental data
suggests that this is a real effect not accounted for by linear theory. In the final
analysis, one must bear in mind that the theoretical corrugation profile is only an
approximation to the true sinusoidal profile used in the experiment (cf. figure 1) and
these differences may have significant effects at low water depths.

5.5. Spatial waveforms
General agreement in the spatial variation of the waves over (slightly more than) one
wavelength is observed. In figure 9(a) for configuration 1 at h= 14 cm it is clear that
the nodal points are stationary. At this depth, theoretical and measured waveforms are
in good agreement except on the left side closest to the left endwall. In figure 9(b) for
configuration 2 at h= 10 cm, the node on the right is again stationary, but the nodal
point on the left sways to and fro. This is consistent with the observed vascillation of
the nodal point near the right endwall for configuration 2, as pointed out in § 4.3. Here
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the measured waveforms compare less favourably to the theoretical calculations. This
is due, in part, to the smaller depth where wave distortion starts to become apparent
in the time traces shown in figure 6.

In assessing the quality of the comparisons, one must bear in mind a fundamental
difference between the theory and experiment: the former is for an inviscid fluid
while the latter is viscous. Another fundamental difference is that the theory applies
to a stationary tank while in the experiment the tank undergoes small sinusoidal
oscillations. If one considers a coordinate system attached to the moving tank, then
it can be considered inertial with an extra horizontal body force/unit mass X0ω

2sinωt,
where X0 is the amplitude of the tank oscillation. However, since observations reveal
that the nodal lines near the two endwalls are not stationary, the system deviates
from expected inertial behaviour. Thus both viscous effects and the horizontal body
force/unit mass need to be considered when comparing experimental and theoretical
waveforms near endwalls.

5.6. Frequency response curves
The normal mode resonant frequency curves for the two configurations displayed in
figure 10 are qualitatively similar – in both cases the peaks decrease as the depths
increase. This could be due to the effect of bottom friction, which is expected to
become more significant at shallower depths. However, the rate of growth of the
peaks with increasing fluid depth is different. Defining A(h) = amax(h) we find for
configuration 1 that A(12)/A(10)= 1.32 and A(14)/A(10)= 2.20. On the other hand,
for configuration 2 we find A(12)/A(10) = 1.14 and A(14)/A(10) = 1.97. Thus the
normalized amplitude of the resonance peaks increases more rapidly with depth for
configuration 1 compared to configuration 2.

It is clear in both configurations that, while the peak resonance amplitudes increase
with liquid depth, the FWHM always decreases with depth. This is consistent with a
decreasing dissipation rate (dissipation per unit mass). The decreasing experimental
values of FWHM at higher water fills imply, by our heuristic analogy, that the
overall dissipation due to the free-surface motions should decrease with h. This
trend may be qualitatively explained by noting that the ratio of the dissipation in
viscous boundary layers (proportional to the wetted surface area) to the inertia in the
system (proportional to liquid volume) decreases with increasing liquid depth. Such
an analysis for the present system is well beyond the goals of the present study.

5.7. Closing remarks
The experimental approach presented here, developed over the course of extensive
study based on three different measuring techniques (resistance wire, new pressure
wave gauges and capacitance probes), can now be readily extended to study nonlinear
waves and waves over bottom topographies of arbitrary shape. The latter problem
is of practical interest for beach erosion prevention, as shore bars are rarely purely
sinusoidal (see the review of relevant literature in HY2007). Yu & Howard (2012)
proposed recently a linear Floquet theory for any periodic bed, and the present study
effectively provides a template for experimental testing of their theoretical results.

We remind the reader that an a posteriori benefit of the current work is the
development of a new type of wave gauge based on sensing submerged pressures,
which, as noted in appendix A, has a distinct advantage over existing pressure wave
gauge sensors. The advantage is that it does not depend on knowledge of the wave
system, be it linear or nonlinear.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

31
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.318


Standing waves in a rectangular tank with a corrugated bed 145

With two notable exceptions in the data for the amplitude ratios, our experimental
results agree well with the theory of Howard & Yu (2007) for waves growing
exponentially either from one end of the tank to the other (configuration 1), or
from the middle of the tank to the endwalls (configuration 2). There are significant
differences in waveforms in regions near the endwalls and, more significantly, the
linear sinusoidal time series evolves into two-frequency motion as the depth decreases.
These new and unanticipated phenomena, absent in the theory, strongly suggest
nonlinear effects, and call for further experimental investigation beyond the scope of
the present work. It is anticipated that the remaining challenges and open questions,
particularly in regard to the role of nonlinearities, will motivate future studies of
Bragg resonance in fluid systems.
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Appendix A. Pressure probe calibration and error analysis
The fact that the water in the tubes acts against a relatively small trapped air volume

is fundamental to understanding the operation of the PASCO sensors. Weidman &
Kliakhandler (2014) (hereafter referred to as W&K) studied the unsteady gravitational
oscillations of a liquid interface in a capped liquid–air column. We use a similar
analysis here to analyse the steady variation of air pressure and liquid level in the
tube as a function of its level outside the tube.

Consider a vertical tube of length L capped at the top and immersed in a liquid bath.
We follow closely the notation of W&K. The vertical coordinates measured from the
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bottom of the immersed tube are Y for the liquid outside and Z for the liquid inside.
At equilibrium the air pressure in the tube is P0, not necessarily equal to the ambient
air pressure Pa outside the tube. The tube is immersed into the liquid to depth H for
arbitrary P0.

The pressure Pb at the bottom of the tube is given by

Pb = Pa + ρgY = P+ ρgZ, (A 1)

where ρ is the liquid density. Initially P= P0 and Y =H, so solution of (A 1) gives
the initial liquid rise in the tube as

Z0 =H + Pa − P0

ρg
. (A 2)

For small displacements from equilibrium, W&K have shown that the compression
process is isothermal, not adiabatic. Therefore the pressure P of the air trapped in a
constant-area tube calculated using Boyle’s law is

P=
(

L− Z0

L− Z

)
P0. (A 3)

Using (A 1)–(A 3) and normalizing lengths with H furnishes the equation

y− z=
(

L/H − z0

L/H − z

)
P0

ρgH
− Pa

ρgH
, (A 4)

where the lower-case coordinates y and z are dimensionless. The control parameters
α = (L − h)/H and β = P0/ρgH used in W&K are adopted, and a new parameter
σ = Pa/ρgH is introduced. Then (A 2) takes the non-dimensional form

z0 = 1+ σ − β. (A 5)

Equation (A 4) provides a quadratic equation for z(y),

z2 − (α + σ + 1+ y)z+ (α + 1)(y+ σ − β)+ βz0 = 0, (A 6)

and from (A 3) the dimensional pressure differential in the tube is

P− P0 =
(

z− z0

α + 1− z

)
P0. (A 7)

As noted in figure 2, the brass tubes are connected by tygon tubing to the PASCO
pressure sensors. Trapped air resides in the brass tube, in the tygon tube connection
and in the PASCO sensor. Storing the volume of all this available air into the
constant-area brass tube defines the effective brass tube lengths L for use in the
theory, those being L1 =̇ 79.346 cm for probe 1 and L2 =̇ 80.072 cm for probe 2.
Recall in the experiment that the connection to the PASCO sensors was made after
immersion of the brass tubes in the water. When the air and water are initially at the
same temperature, P0 = Pa. Since the brass tubes were blown dry to remove water
droplets, they became undercooled relative to the water upon immersion; this implies
that the air temperature in a tube rose over time to equilibrate with the ambient water
temperature in the tank.
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The gravitational constant at the latitude 40.02◦N and altitude 2423 m of the
experimental site is g= 9.794 m s−2, where the ambient pressure P= 75 408 Pa. We
take ρ = 999.1 kg m−3 for the average water density over the temperature range
14–17 ◦C of the experiment.

Using the above data, (A 6) and (A 7) are solved for the rise height and
pressure differential in the liquid column, respectively. In spite of the fact that
(A 7) is quadratic, the pressure and liquid displacement exhibit remarkably constant
slopes. The rise heights have average slopes 1Z/1Y = 0.090922 for probe 1 and
1Z/1Y = 0.091697 for probe 2. This gives the rather unexpected result that for every
1 cm rise in water outside the tube, the water rises only 0.9 mm inside the tube.

Figure 12 shows the dimensional pressure drop 1P = P − P0 as a function of
dimensional height Y −H for probe 1 calculated from (A 5). The curve is linear with
slope 0.08896 kPa cm−1. The maximum experimental amplitude range (MEAR) in our
Bragg experiment is indicated. The corresponding result for probe 2 gives a linear
curve with slope 0.08888 kPa cm−1. These theoretical results are used to convert
pressure measurements using the PASCO sensor into free-surface displacements Y
reported in figures 5, 6, 8 and 10.

The effect of an initial overpressure in the tube is now assessed. After blowing dry
with compressed air, the brass tubes were mounted in their holders and connected to
the PASCO sensors. This procedure took about 5 min, during which time, in the worst-
case scenario, it is assumed that the cooled brass tube reduced the air temperature
in it and the connecting tygon tubing to the brass tube temperature by conduction.
Subsequently, the brass tubes were immersed 2 cm into the water after which the air
in the tube warms up owing to the higher temperature of the ambient water and air
relative to the undercooled brass tube.

An experiment was performed using a General model IRT205 infrared thermometer.
The ambient air temperature measured with the Zoo-Med thermometer was T1 =
297.59 K, assumed equal to the water temperature in the tank. Five minutes
after blowing air through the brass tube, its wall temperature was measured at
T2 = 294.04 K. It is then assumed that the trapped air warms to the ambient water
and surrounding air temperature while the PASCO pressure sensor settles to a constant
reading. Using P1T1 = P2T2 gives an overpressure P2 = 1.0121P1. With little error,
we take P1= Pa = 75 408 kPa, in which case the overpressure is taken to be P0= P2.
The resulting pressure drop calculated for probe 1 using (A 7) is plotted in figure 12
as the dashed line. The straight line has slope 0.088099 kPa cm−1, some 0.968 %
lower than that without overpressure plotted as the solid line.

We now assess the error in using the pressure probe to measure amplitude ratios.
There are four sources of error in the operation of our system: (i) accuracy in
vertical placement to the immersion depth estimated to be ±1 mm, (ii) accuracy in
the horizontal placement at an antinode estimated to be ±3 mm, (iii) accuracy due
to overpressure analysed above, and (iv) accuracy due to probe resolution.

Defining a general error in measurement of wave amplitude as

δ =±δa
a
, (A 8)

an analysis readily gives the first three errors as

δh =±0.000167, δv =±0.000178, δo = 0.009678, (A 9a−c)
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FIGURE 12. Variation of the pressure differential 1P = P − P0 with free-surface water
level Y −H for probe 1 plotted as the solid line. The maximum effect of an overpressure
is plotted as the dashed line. The MEAR for Bragg operation is noted.

in which δh is the horizontal placement error, δv is the vertical placement error and
δo is the one-sided overpressure error. Clearly the contributions from placement of the
probe are negligible compared to that from the overpressure.

In order to assess the error in the 0.005 kPa resolution of the PASCO probe, we
adopt the error in pressure measurement to be half the resolution, just as when
you use a ruler with 1 mm markings you can read the length up to ±0.5 mm.
Since the differential pressure is directly proportional to wave amplitude, we take
the measurement error due to the probe as δp = ±0.025. Since the amplitude ratio
R= a1/a2, there are error contributions from measuring both a1 and a2 and hence to
leading order

δR
R
=
√
(2δp)2 + (2δo)2 =̇ 0.052. (A 10)

These represent the error bars placed over the amplitude ratio measurements made
using the pressure probe in figure 8. Because of the high accuracy of the capacitance
probe, no error bars appear on the amplitude ratios measured using that sensor.

We close appendix A by noting that this sensor has distinct advantages over existing
pressure wave gauge sensors outlined in the review article by Massel (1996). Massel
notes that, although measuring subsurface pressure for evaluation of wave height is
practically feasible, an explicit transfer relationship between wave pressure and wave
height is needed and some controversy over the adequacy of the transfer function still
exists. Wave heights a are related to wave pressure head Hp = p/ρg. The first-order
relation between these variables is given by

a= Hp

Kp
, Kp = cosh k(h− z)

cosh kh
, (A 11)

where Kp is the pressure response factor obtained from linear wave theory in which
z is the depth of the pressure sensor under the still water level h and k is the
wavenumber. To account for the difference between theory and observation, an
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empirical correction factor, N, is usually introduced

H =N
Hp

Kp
, (A 12)

and in engineering applications a typical value of N = 1.25. However, the value of
this correction factor is still in dispute.

Both pressure wave sensors have the same error due to pressure probe resolution.
The advantage of pressure wave gauge used in the present study is that it does not
depend on knowledge of the waveform it is measuring, be it linear or nonlinear.
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