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Abstract We show that Ringrose’s diagonal ideals are primitive ideals in a nest algebra (subject to the
continuum hypothesis). This answers an old question of Lance and provides for the first time concrete
descriptions of enough primitive ideals to obtain the Jacobson radical as their intersection. Separately,
we provide a standard form for all left ideals of a nest algebra, which leads to insights into the maximal
left ideals. In the case of atomic nest algebras, we show how primitive ideals can be categorized by their
behaviour on the diagonal and provide concrete examples of all types.

Keywords: nest algebra; primitive ideals; nets; continuum hypothesis

2010 Mathematics subject classifications: Primary 47L35
Secondary 16N20

1. Introduction

The Jacobson radical has been a frequent object of study in non-self-adjoint algebras,
and considerable effort has been expended to identify the radical in the context of various
classes of non-self-adjoint algebras, e.g. [4,5,8,9,12,16,22,23]. Why is this? At first
glance it might seem that since many non-self-adjoint algebras are modelled more or less
on the algebra of finite-dimensional upper triangular matrices, the desire is to obtain
Wedderburn-type structure theorems for the algebras. In fact, however, the Jacobson
radical is rarely the correct ideal for such a decomposition, if it is even possible. The
Jacobson radical is often too small, and indeed in some cases non-self-adjoint algebras
are even semisimple [8,9,16]. Thus, knowledge about the Jacobson radical rather points
towards more general structural information about the algebra and, in particular, when
the radical is small, indicates the presence of a rich supply of irreducible representations,
even in algebras which have a strong heuristic connection with the upper triangular
matrix algebra.
The nest algebras are one such case. Indeed, the main result of Ringrose’s paper [23],

which introduced the class of nest algebras, was to describe the Jacobson radical RN
of a nest algebra T (N ) (see § 2 below for precise definitions of terms). However, except
in the trivial case of a finite nest, there is no Wedderburn-type decomposition T (N ) =
D(N )⊕RN as the sum of the diagonal algebra and the Jacobson radical. In fact, by [18,
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Theorem 4.1], a decomposition T (N ) = D(N )⊕R for some ideal R is only possible if R
is Larson’s ideal R∞

N [14], and then only if the nest has no continuous part. At issue here
is the fact that unless the nest is finite, R∞

N is much bigger than the Jacobson radical.
In the case of upper triangular matrixes on �2(N), R∞

N is the collection of all strictly
upper triangular operators, while RN is the set of compact strictly upper triangular
operators. Thus, the comparatively small Jacobson radical in nest algebras indicates that
there must be many irreducible representations other than the trivial ones obtained as
the compression to an atom of the nest.
However, up to now, the only other primitive ideals which could be identified explic-

itly were the maximal two-sided ideals. (Maximal two-sided ideals are primitive; see
Remark 3.1 for a review of this and other ring-theoretic facts.) In [17] we described
the maximal two-sided ideals of a continuous nest algebra, and in [20] we extended the
description to cover all nest algebras. (It should be noted these results rest on deep
foundations; between them, they require the similarity theory of nests and the paving
theorem.) Even so, however, these ideals alone do not account for the small Jacobson
radical. Their intersection, called the strong radical, is similar in character to R∞

N , and
in fact the two coincide when the nest is atomic.
The goal of this paper is to identify enough examples of primitive ideals of nest algebras

to account for the small Jacobson radical, by which we mean that their intersection should
equal the Jacobson radical. The key examples have been in plain view all along; they are
the ‘diagonal ideals’ which Ringrose used in his original description of the radical [23,
Theorem 5.3]. We shall show in Theorem 3.7 that the diagonal ideals are primitive.
This answers an old open question of Chris Lance [13, § 5] (repeated by Davidson in [2]).
Interestingly, this result relies on assuming a positive answer to the continuum hypothesis.
See the excellent survey paper [24] for other recent results in operator algebras which
make use of non-standard foundational considerations.
After this, we turn to an analysis of the left ideals of nest algebras in § 4. We establish

a standard form for all left ideals, and also a stronger form which holds for many norm-
closed left ideals, including the maximal left ideals. In § 5 we explore the primitive ideals
of atomic nest algebras in more depth. We identify three classes of primitive ideals (the
smallest, the largest and the intermediate ones), and we show that they are distinguished
by their behaviour on the diagonal. Section 6 focuses on the infinite upper triangular
matrices, where we can give concrete examples of all types of primitive ideals, and also
applications to quasitriangular algebras.

2. Preliminaries

Throughout this paper, the underlying Hilbert spaces are always assumed to be separable.
A nest is a set of projections on a Hilbert space which is linearly ordered, contains 0 and
I, and is weakly closed (or, equivalently, order-complete). The nest algebra, T (N ), of a
nest N is the set of bounded operators leaving invariant the ranges of N . The diagonal
algebra, D(N ), is the set of operators having the ranges of projections in N as reducing
subspaces (equivalently, the commutant of N ). An interval of N is the difference N −M
of two projections N > M in N . Minimal intervals are called atoms, and the atoms (if
there are any) are pairwise orthogonal. If the join of the atoms is I the nest is called
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atomic; if there are no atoms it is called continuous. For N ∈ N , define

N− :=
∨

{M ∈ N : M < N} and N+ :=
∧

{M ∈ N : M > N}.

Conventionally, 0− = 0 and I+ = I. If N > N− then N −N− is an atom of N , and all
atoms are of this form. Conversely, if N = N− > 0 then there is a strictly increasing
sequence of projections in N which converge to N . Similar remarks apply for N+. We
shall make continual use of the fact that the rank-one operator x �→ 〈x, f〉e, which we
write as ef∗, belongs to T (N ) if and only if there is an N ∈ N such that e ∈ ran(N+)
and f ∈ ran(N⊥). See [2] for further properties of nest algebras.

Example 2.1. Let H := �2(N) and let {ei}∞i=1 be the standard basis. For n ∈ N, let Nn

be the projection onto the span of {e1, . . . , en} and let N := {Nn : n ∈ N} ∪ {I}. This
is a nest, and T (N ) is the nest algebra of all infinite upper triangular operators with
respect to the standard basis. By slight abuse of notation, we write T (N) for this algebra.

We now recall Ringrose’s description of the Jacobson radical of a nest algebra, in terms
of diagonal seminorms and diagonal ideals.

Definition 2.2. Let N be a nest and fix N < I in N . The diagonal seminorm function
i+N (X) is defined for X ∈ T (N ) by

i+N (X) := inf{‖(M −N)X(M −N)‖ : M > N in N}.

Likewise, for N > 0, the diagonal seminorm function i−N (X) is

i−N (X) := inf{‖(N −M)X(N −M)‖ : M < N in N}.

It is straightforward to see that the functions i±N are submultiplicative seminorms on
T (N ) and dominated by the norm, and so their kernels are norm-closed two-sided ideals
of T (N ).

Definition 2.3. Let N be a nest. The diagonal ideals are the ideals

I+
N := {X ∈ T (N ) : i+N (X) = 0} (for N < I)

and

I−
N := {X ∈ T (N ) : i−N (X) = 0} (for N > 0).

The diagonal ideals can be viewed as generalizations of those ideals of upper triangular
n× n matrices consisting of all the matrices which vanish at a particular diagonal entry.
Indeed, if N > N− then

I−
N = {X ∈ T (N ) : (N −N−)X(N −N−) = 0}. (2.1)

However, if N = N− then I−N is the set of operators asymptotically vanishing close to N
(from below). More precisely, in the case of T (N), I−

N is of the form (2.1) for all N < I
and I−I is the compact operators of T (N). See § 6 for a detailed discussion of the primitive
ideals in this algebra.
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Ringrose gave the following description of the Jacobson radical in terms of these
diagonal ideals.

Theorem 2.4 (see [23, Theorem 5.3]). The Jacobson radical of T (N ) is the
intersection of the diagonal ideals of T (N ).

A key point to bear in mind is that although the diagonal ideals are related to the
primitive ideals, as the next result quoted shows, they were not known to be primitive.
Lance [13] asked whether the diagonal ideals were primitive and, in his study of the
diagonal ideals and their quotients, proved a number of results which are entailed by
primitivity. In Theorem 3.7 we show that the diagonal ideals are in fact primitive ideals.

The following useful result shows that each primitive ideal of a nest algebra is associated
with a unique diagonal ideal.

Theorem 2.5 (see [23, Theorem 4.9]). Every primitive ideal of T (N ) contains
exactly one diagonal ideal.

Based on this result, we adopt the following notation.

Definition 2.6. If P is a primitive ideal of the nest algebra T (N ), write IP for the
unique diagonal ideal contained in P.

Finally, we close the section by recalling Larson’s ideal [14], R∞
N .

Definition 2.7. Let R∞
N be the set of X ∈ T (N ) such that, given ε > 0, we can find

a collection {Ni −Mi : i ∈ N} of pairwise orthogonal intervals of N which sum to I and
such that ‖(Ni −Mi)X(Ni −Mi)‖ < ε.

Ringrose [23, Theorem 5.4] provides an alternative description of the Jacobson radical
which is formally very similar to Larson’s ideal. The only difference is the requirement
that the collections of pairwise orthogonal intervals must be finite. However, this makes
an enormous difference to the size of the ideal, as the following example shows.

Example 2.8. Let N be the canonical nest on �2(N). Then RN is the set of zero-
diagonal compact operators in T (N) and R∞

N is the set of all zero-diagonal operators
in T (N). Note in particular that T (N) = D(N)⊕R∞

N but that T (N) 
= D(N)⊕RN (for
example, the right-hand side fails to contain the unilateral backward shift).

3. The diagonal ideals are primitive

The main result of this section is Theorem 3.7, in which we prove that the diagonal ideals
of a nest algebra are primitive. We start by recalling some basic facts about primitive
ideals which can be found in many standard texts on ring theory or Banach algebras; see,
e.g. [1, Chapter III].

Remark 3.1. Let A be a unital Banach algebra. The (left) primitive ideals of A
are the annihilators of left A-modules, or, equivalently, the kernels of the irreducible
representations of A. If P is any primitive ideal of A then there is a maximal left ideal L
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of A such that P is the kernel of the left regular representation of A on A/L. Thus, P is
the largest two-sided ideal of A contained in L and is equal to

{x ∈ A : xA ⊆ L}.

From this, together with the maximality of L, it follows easily that x 
∈ P if and only if
there are a, b ∈ A such that e− axb ∈ L (where e is the unit of A). Finally, of course,
the Jacobson radical is, by definition, the intersection of all the primitive ideals of A.
Analogously, the right primitive ideals are the kernels of right A-modules, and each right
primitive ideal is the kernel of the right module action of A on the quotient A/R of A by
some maximal right ideal. The intersection of the maximal right primitive ideals is also
the (same) Jacobson radical.

Lemma 3.3 will enable us to convert arbitrary upper triangular operators to block
diagonal form. It relies on the following useful technical lemma, which we quote in full.

Lemma 3.2 (see [19, Lemma 2.2]). Let X ∈ B(H) and let Pn, Qn (n ∈ N) be
sequences of projections such that dist(PnXQn,F4n−4) > 1 for all n, where Fk denotes
the set of operators of rank not greater than k. Then there are orthonormal sequences
xi ∈ PiH and yi ∈ QiH such that 〈xi, Xyj〉 = 0 for all i 
= j, and 〈xi, Xyi〉 is real and
greater than 1 for all i ∈ N.

Lemma 3.3. SupposeX ∈ T (N ) butX 
∈ I−
N for some N = N− > 0 in N . Then there

are A,B ∈ T (N ) and a sequence Nk of nest projections strictly increasing to N such that

AXB =

∞∑
k=1

(Nk −Nk−1)AXB(Nk −Nk−1),

and each of the terms (Nk −Nk−1)AXB(Nk −Nk−1) has norm greater than 1.

Proof. Rescaling if necessary, assume i−N (X) > 1. Choose a sequence Nk ∈ N which
increases strictly to N . We shall inductively construct a subsequence Nkn

such that
dist((Nkn

−Nkn−1
)X(Nkn

−Nkn−1
),F4n−4) > 1 for all k, and the result will follow from

an easy application of Lemma 3.2. Take k1 := 1 and suppose k1 < k2 < · · · < kn−1 to
have been chosen with the desired property.
Suppose for a contradiction that dist((Nk −Nkn−1

)X(Nk −Nkn−1
),F4n−4) ≤ 1 for all

k > kn−1. Fix an a with 1 < a < i−N (X) and for each k ≥ kn−1 find Fk ∈ F4n−4 such that

‖(Nk −Nkn−1
)X(Nk −Nkn−1

)− Fk‖ < a.

The sequence Fk is norm-bounded and so has a w∗-convergent subsequence, Fmj
→ F .

But F ∈ F4n−4 since F4n−4 is w∗-closed and, by the lower semicontinuity of the norm,

i−N (X) ≤ ‖(N −Nkn−1
)X(N −Nkn−1

)− F‖
≤ lim inf

j→∞
‖(Nmj

−Nkn−1
)X(Nmj

−Nkn−1
)− Fmj

‖

≤ a,

which is a contradiction. Thus, we find kn > kn−1 with which to continue the induction.
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With Nkn
chosen, apply Lemma 3.2 to obtain unit vectors xn, yn in the range of

Nkn
−Nkn−1

such that 〈xm, Xyn〉 = 0 for all m 
= n, and 〈xm, Xym〉 > 1 for all m ∈ N.
Set

A :=

∞∑
n=1

x3nx
∗
3n+1 and B :=

∞∑
n=1

y3n+1y
∗
3n+2.

Then A,B ∈ T (N ), since the terms of both sums are of the form Nkm
RN⊥

km
, and AXB =∑∞

n=1〈x3n+1, Xy3n+1〉x3ny
∗
3n+2, so that AXB =

∑∞
n=1(Nk3n+2

−Nk3n−1
)AXB(Nk3n+2

−
Nk3n−1

) and each of the terms of the sum has norm greater than 1. �

The following, unfortunately rather technical, definition is central to our analysis in
this section.

Definition 3.4. Fix a nest N and a projection N ∈ N . Say that a set S of operators in
B(H) are of Type-S if there exists a strictly increasing sequence Nn in N which converges
to N , and a sequence of unit vectors xn = (Nn −Nn−1)xn such that for each X ∈ S both
Xxn → 0 and X∗xn → 0.

Clearly, if S ⊆ T (N ) is of Type-S, then it lies in both a proper left ideal of T (N ) and a
proper right ideal of T (N ). Note, however, that it need not lie in a proper two-sided ideal;
for example, consider the singleton {I − U} where U is the unilateral backward shift on

�2(N). This is Type-S with respect to the sequences N2n and xn := 2(1−n)/2
∑2n−1

i=2n−1 ei
but does not lie in a proper two-sided ideal of T (N). In fact, this example is the prototype
of the analysis which follows, and an analogous sequence is at the heart of the proof of
the next lemma. Note also that, strictly speaking, ‘Type-S’ is a property which a set has
with respect to a particular N and N ∈ N . In the following arguments these will always
be easily discerned from the context.

Lemma 3.5. Fix a nest N and a projection N = N− > 0 in N , and let {Xi : i ∈ N}
be a set of Type-S. Let X ∈ T (N ) but X 
∈ I−

N . Then there are A,B ∈ T (N ) such that
{I −AXB} ∪ {Xi : i ∈ N} is also of Type-S.

Proof. Take a sequence Nn ∈ N which increases strictly to N , and unit vectors
xn = (Nn −Nn−1)xn such that Xixn, X

∗
i xn → 0 for all i ∈ N.

By Lemma 3.3 there are A,B in T (N ) and a sequence of nest projections strictly
increasing to N such that AXB is block diagonal with respect to these projections and
each of the blocks has norm greater than 1. Since Nk and xk demonstrate the Type-
S property, so does any subsequence of theirs; so, replacing Nk with a subsequence,
we may assume that each interval Nk −Nk−1 dominates a block of AXB. Multiplying
AXB by a diagonal projection to select only those blocks which are dominated by an
Nk −Nk−1 and have norm greater than 1, and replacing X with the resulting operator,
we may now assume that X is block diagonal with respect to Nk, and that all the blocks
(Nk −Nk−1)X(Nk −Nk−1) have norm greater than 1.
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We shall inductively construct a new sequence of unit vectors yn = (Nkn
−Nkn−1

)yn
for a subsequence (kn), together with contractions

An = (Nkn
−Nkn−1

)An(Nkn
−Nkn−1

)

and

Bn = (Nkn
−Nkn−1

)Bn(Nkn
−Nkn−1

)

in T (N ) such that

max{‖(I −AnXBn)yn‖, ‖(I −AnXBn)
∗yn‖} < 1/n

and max{‖Xiyn‖, ‖X∗
i yn‖} < 1/n for all 1 ≤ i ≤ n. The result will then follow by taking

A :=
∑∞

n=1 An and B :=
∑∞

n=1 Bn.
To perform the induction, fix n and suppose km, ym, Am and Bm have been chosen for

all m < n. (To start the induction when n = 1, define k0 := 0 and observe that no other
features of the preceding steps are used in the induction step which follows.)
Note that for all sufficiently large m,

max{‖Xixm‖, ‖X∗
i xm‖} < 1/(2n2)

for all 1 ≤ i ≤ n. Thus, taking N = 4n2, we can pick m1 < m2 < · · · < mN such
that m1 > kn−1 + 1, each mj > mj−1 + 1, and for all 1 ≤ i ≤ n and 1 ≤ j ≤ N ,
max{‖Xixmj

‖, ‖X∗
i xmj

‖} < 1/(2n2).

Set kn := mN and yn := N−1/2
∑N

j=1 xmj
, which is a unit vector since the xmj

are
pairwise orthogonal. For each 1 < j ≤ N , the interval Nmj−1 −Nmj−1

dominates a diag-
onal block of X which has norm greater than 1. Thus, we can choose vectors ej and fj
in Nmj−1 −Nmj−1

with ‖ej‖ ≥ ‖fj‖ = 1 and ej = Xfj , and set

An :=

N∑
j=2

‖ej‖−1 xmj−1
e∗j and Bn :=

N∑
j=2

‖ej‖−1 fjx
∗
mj

.

Since

xmj−1
e∗j = Nmj−1

(xmj−1
e∗j )N

⊥
mj−1

and fjx
∗
mj

= Nmj−1(fjx
∗
mj

)N⊥
mj−1,

each of the terms of the sums are in T (N ), and the ranges and cokernels of the terms
are pairwise orthogonal, so that both sums converge strongly. Now, clearly, for each 1 ≤
i ≤ n, ‖Xiyn‖ ≤ N−1/2

∑N
j=1 ‖Xixmj

‖ < N1/2/2n2 = 1/n and, likewise, ‖X∗
i yn‖ < 1/n.

Further, AnXBn =
∑N

j=2 xmj−1
x∗
mj

, so that

‖(I −AnXBn)yn‖ = N−1/2

∥∥∥∥
N∑
j=1

xmj
−

N∑
j=2

xmj−1

∥∥∥∥ = N−1/2 < 1/n,

and (AnXBn)
∗ =

∑N
j=2 xmj

x∗
mj−1

=
∑N−1

j=1 xmj+1
x∗
mj

, so that

‖(I −AnXBn)
∗yn‖ = N−1/2

∥∥∥∥
N∑
j=1

xmj
−

N−1∑
j=1

xmj+1

∥∥∥∥ = N−1/2 < 1/n.
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Note also that each of the ej , fj , xmj
for 1 ≤ j ≤ N , lie in the range of NmN

−
Nm1−1 ≤ Nkn

−Nkn−1
. Thus, An = (Nkn

−Nkn−1
)An(Nkn

−Nkn−1
), Bn = (Nkn

−
Nkn−1

)Bn(Nkn
−Nkn−1

) and yn = (Nkn
−Nkn−1

)yn.
Having met all the requirements, the induction proceeds as stated, and we let A :=∑∞
n=1 An and B :=

∑∞
n=1 Bn. Clearly, for any fixed i ∈ N,

max{‖Xiyn‖, ‖X∗
i yn‖} < 1/n

for all sufficiently large n and so Xiyn, X
∗
i yn → 0. Moreover, since A and B are block

diagonal with respect to Nnk
, as is X, it follows that (I −AXB)yn = (I −AnXBn)yn →

0 and (I −AXB)∗yn = (I −AnXBn)
∗yn → 0, and we are done. �

Lemma 3.6. Fix a nest N and a projection N ∈ N , and let Si (i ∈ N) be a countable
collection of countable sets of Type-S which form a chain (i.e. for any i, j, either Si ⊆ Sj

or Sj ⊆ Si). Then
⋃

i∈N
Si is also of Type-S.

Proof. The proof is a routine countability argument. Recall that the strong operator
topology on N is metrizable; let d be a metric for it. Enumerate

⋃
i∈N

Si and let the sets
Cn (n ∈ N) consist of the first n terms of that enumeration. Fix n and suppose Nm and xm

have been chosen for m < n so that N1 < N2 < · · · < Nn−1 < N , xm = (Nm −Nm−1)xm

and max{‖Xxm‖, ‖X∗xm‖} < 1/m for all X ∈ Cm. Each X ∈ Cn belongs to some Si

and, since Cn is finite and {Si} is a chain, Cn is contained in some Si. Therefore, Cn is
of Type-S. Using this fact, we can find Nn−1 < Nn < N with d(Nn, N) < 1/n and xn =
(Nn −Nn−1)xn such that max{‖Xxn‖, ‖X∗xn‖} < 1/n for all X ∈ Cn. Continue this
inductively to construct a strictly increasing sequence Nn → N and xn = (Nn −Nn−1)
for all n ∈ N such that max{‖Xxn‖, ‖X∗xn‖} < 1/n for all X ∈ Cn (taking k0 = 0 to
start the induction). Each X ∈

⋃
i∈N

Si belongs to Cn for all sufficiently large n, and so
the result follows with the vectors so chosen. �

Theorem 3.7. Assume the continuum hypothesis and let N be a nest. Then the
diagonal ideals of T (N ) are primitive ideals.

Proof. The result is trivial when the diagonal ideal is of type I−
N with N− < N or

I+
N with N+ > N ; in either case, the diagonal ideal is the kernel of the representation

X �→ EX|EH, where E is an atom of N , whose range is therefore all of B(EH) and so is
irreducible. For the remainder of the proof, consider only diagonal ideals which are not
of this type.
Next, let I be a diagonal ideal of T (N ) and suppose that I = I−

N for some N =
N− > 0 in N . It is enough to construct operators AX , BX ∈ T (N ) for each operator
X ∈ T (N ) \ I−

N , such that the collection {I −AXXBX : X ∈ T (N ) \ I−
N} generates a

proper left ideal of T (N ). Then, there is a maximal left ideal L which contains this
family of operators, and the kernel of the left regular representation of T (N ) on T (N )/L
is a primitive ideal, P, which by Remark 3.1 must exclude all X 
∈ I−

N . Thus, P ⊆ I−
N .

Since every primitive ideal contains a diagonal ideal [23, Theorem 4.9], and the distinct
diagonal ideals are incomparable [23, Lemma 4.7], it follows that I−

N = P and so is
primitive.
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Now consider the case when I = I+
N for some N = N+ < I in N . By the same rea-

soning, it is enough to find AX , BX ∈ T (N ) such that {I −AXXBX : P ∈ T (N ) \ I+
N}

is contained in a proper left ideal of T (N ). To do this, we take adjoints and seek
AX , BX ∈ T (N )∗ = T (N⊥) such that {I −AXXBX : X ∈ T (N⊥) \ I−

N⊥} is contained

in a proper right ideal of T (N⊥). Since N is an arbitrary nest, we can replace N⊥ with
N to recast this as a second problem about I−

N in T (N ), namely, to find AX , BX ∈ T (N )
for each X ∈ T (N ) \ I−

N such that {I −AXXBX : X ∈ T (N ) \ I−
N} generates a proper

right ideal of T (N ). We shall show in fact that the choice can be made so that the same
set of operators {I −AXXBX} serves to generate both a proper left ideal and a proper
right ideal. We shall construct these operators using transfinite recursion.
The cardinality of T (N ) \ I−

N is equal to the cardinality of the continuum, since every
operator can be represented as a countable array of complex numbers. Since we are
assuming the continuum hypothesis, T (N ) \ I−

N has cardinality ℵ1 and so it can be put
in bijective correspondence with the set of ordinals a < ω1 (where ω1 denotes the first
uncountable ordinal). Write this correspondence as Xa (a < ω1). To run the transfinite
recursion, we suppose that for some a < ω1 we have operators Ab, Bb in T (N ) for all
b < a, and describe how to obtain Aa, Ba. First, if the set {I −AbXbBb : b < a} is of
Type-S, observe that {I −AbXbBb : b < a} is a countable collection and use Lemma 3.5
to find Aa, Ba ∈ T (N ) such that {I −AbXbBb : b ≤ a} is also of Type-S. On the other
hand, if it happens that {I −AbPbBb : b < a} is not of Type-S, set Aa = Ba = 0. (This
is a sink terminal state which, as we shall prove momentarily, is never in fact reached.)
Note that, formally, Lemma 3.5 assumes a countably infinite collection of predecessors.

However, the case of finite a, or even a = 1, can be covered by padding the collection
of predecessors with countably many repeated zeros. Note also that the recursion step
involves an arbitrary choice of operators, which can easily be resolved using the axiom of
choice.
Having described a rule to construct Aa, Ba with (Ab, Bb)b<a given, we apply the

principle of transfinite recursion to obtain (Aa, Ba)a<ω1
, where the transition rule from

the previous paragraph applies for every a < ω1. We next note that for every a < ω1,
Sa := {I −AbXbBb : b ≤ a} is of Type-S; if this were not true, then we could find the least
a such that Sa is not Type-S. Thus, for each of the countably many b < a, Sb is countable
and of Type-S and so, by Lemma 3.6,

⋃
b<a Sb is Type-S. But

⋃
b<a Sb = {I −AbXbBb :

b < a} and so, by the recursion step, Sa = {I −AbXbBb : b ≤ a} is also Type-S. Thus, by
contradiction, each Sa is of Type-S and, in particular, generates a proper left ideal of T (N )
and a proper right ideal of T (N ). Now, in general, the union of any chain of sets, each
of which generates a proper left (respectively, right) ideal, will also generate a proper left
(respectively, right) ideal. Thus, {I −AaXaBa : a < ω1} =

⋃
a<ω1

Sa generates a proper
left ideal and a proper right ideal, and the result follows. �

Corollary 3.8. Assuming the continuum hypothesis, the diagonal ideals of T (N ) are
also right primitive ideals, that is to say, the annihilators of simple right modules.

Proof. The conjugate-linear anti-isomorphism X �→ X∗ maps T (N ) to T (N⊥), maps
diagonal ideals to diagonal ideals and converts left modules into right modules. �
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We remark in passing that Theorem 3.7 provides a new proof of Ringrose’s character-
ization of the Jacobson radical of a nest algebra; in view of Theorem 2.5,⋂

I diagonal

I ⊆
⋂

P primitive

P,

and the reverse inclusion follows from Theorem 3.7. Insofar as our result assumes the
continuum hypothesis and also assumes H is separable, this is, of course, substantially
less general than Ringrose’s original proof.

4. The left ideals of a nest algebra

In this section, we study the left ideals of nest algebras. Definition 4.1 gives a method of
specifying left ideals, and in Theorem 4.4 we shall see that every left ideal can be specified
in this way. We then introduce a stronger property (Definition 4.7) which specifies many
closed left ideals, including the maximal left ideals. This leads to insights into the structure
of left ideals (Proposition 4.18), which we apply in the following sections.

Definition 4.1. Let L be a left ideal of T (N ). We say that L is constructible if there
is a net indexed by a directed set A consisting of pairs (Nα, xα) of projections Nα ∈ N
and vectors xα ∈ H such that

L = {X ∈ T (N ) : lim
α∈A

‖(I −Nα)Xxα‖ = 0}

for every X ∈ T (N ).

Lemma 4.2. T (N ) is itself a constructible ideal and, in general, the constructible
ideal L, specified by the net (Nα, xα)α∈A, is equal to T (N ) if and only if limα N⊥

α xα = 0.

Proof. If N⊥
α xα → 0 then for any fixed X ∈ T (N ), ‖N⊥

α Xxα‖ = ‖N⊥
α XN⊥

α xα‖ ≤
‖X‖‖N⊥

α xα‖ and so X ∈ L. Conversely, if N⊥
α xα 
→ 0, then I 
∈ L and so L is proper. �

Note that if (Nα, xα)α∈A is a net in N ×H and X ∈ T (N ), then N⊥
α Xxα =

N⊥
α XN⊥

α xα, for all α, and so without loss we can always assume that xα = N⊥
α xα.

The following interpolation result of Katsoulis, Moore and Trent enables us to see that
all left ideals are constructible. In this context, we remark that the results of [11] have
a precursor in Lance’s [13, Theorem 2.3], introduced to study the radical and diagonal
ideals.

Theorem 4.3 (see [11, Theorem 4]). Let X1, . . . , Xn and Y be in T (N ). Then
there are A1, . . . , An in T (N ) such that

Y =

n∑
i=1

AiXi

if and only if

sup

{
‖N⊥Y x‖2∑n

i=1 ‖N⊥Xix‖2
: N ∈ N , x ∈ H

}
< ∞ (4.1)

(where 0/0 is interpreted as 0).
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Theorem 4.4. Every left ideal of a nest algebra is constructible.

Proof. Let L be a fixed left ideal of the nest algebra T (N ) and take A to be the
set of all 4-tuples (F, ε,N, x) where F is a finite subset of L, ε > 0, N ∈ N and x ∈ H,
subject to the constraint that ‖N⊥Xx‖ < ε for all X ∈ F . This is a directed set if we say
(F, ε,N, x) ≤ (F ′, ε′, N ′, x′) when F ⊆ F ′ and ε ≥ ε′, as the relation is clearly reflexive and
transitive, and any pair of members of A, (F, ε,N, x) and (F ′, ε′, N ′, x′), is dominated by
(F ∪ F ′,min{ε, ε′}, 0, 0). Define a net on A with values in N ×H by the mapping which
takes α := (F, ε,N, x) ∈ A to (Nα, xα) where Nα := N , and xα := x. We shall see that
this net specifies L exactly.
On the one hand, trivially, if X ∈ L then for any ε > 0, the tuple α0 := ({X}, ε, 0, 0)

belongs to A and so for any α ≥ α0, ‖N⊥
α Xxα‖ < ε. Next, suppose on the other hand

that Y ∈ T (N ) \ L.
Let an arbitrary α0 := ({X1, . . . , Xn}, ε,M, x) in A be given. Since Y 
∈ L, there do

not exist any A1, . . . , An in T (N ) such that
∑n

i=1 AiXi = Y . Thus, by Theorem 4.3, the
supremum (4.1) is infinite, and so we can find N ∈ N and y ∈ H such that

‖N⊥Xiy‖ < ε‖N⊥Y y‖

for each i = 1, . . . , n. Rescaling y, we obtain N and y such that ‖N⊥Xiy‖ < ε and
‖N⊥Y y‖ = 1. Thus, β := ({X1, . . . , Xn}, ε,N, y) is in A, and we have β ≥ α0 and
‖N⊥

β Y xβ‖ = 1. In other words, the net ‖N⊥
α Y xα‖ is frequently equal to 1, and so

‖N⊥
α Y xα‖ 
→ 0. �

Example 4.5. The set FN of finite-rank operators in T (N ) is a two-sided ideal of
T (N ) but is not norm-closed. We can specify this with the following net. Let A consist
of the set of pairs (F, x), where F is a finite-dimensional subspace of H and x is a
vector which is orthogonal to F . For α = (F, x) ∈ A, define xα := x and Nα = 0. Say
(F, x) ≤ (G, y) in A if F ⊆ G. Clearly, T ∈ T (N ) belongs to FN if and only if there is a
finite-dimensional space F such that T vanishes on F⊥. Since the vectors in the pairs are
unbounded, the condition ‖N⊥

α Txα‖ < 1 for all α ≥ (F, 0) is equivalent to T vanishing
on F⊥.

Example 4.6. The set KN of compact operators in T (N ) is a norm-closed two-sided
ideal of T (N ). We can specify it with the following net, which is similar to the previous
example. Let A consist of the set of pairs (F, x), where F is a finite-dimensional subspace
of H and x is a unit vector which is orthogonal to F . Again, for α = (F, x) ∈ A, define
xα := x and Nα = 0, and say (F, x) ≤ (G, y) in A if F ⊆ G. By spectral theory, an oper-
ator T ∈ T (N ) belongs to KN if and only if for any ε > 0 there is a finite-dimensional
space F such that ‖T |F⊥‖ < ε, which is readily seen to be equivalent to ‖N⊥

α Txα‖ → 0.

The contrast between the last two examples, in which the net was unbounded in one
case and bounded in the other, motivates the following definition.

Definition 4.7. Let L be a left ideal of T (N ). We say that L is strongly constructible
if it is constructible and a net (Nα, xα)α∈A specifying L can be found in which all the
vectors xα = N⊥

α xα have norm 1.
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Proposition 4.8. Strongly constructible ideals are norm-closed.

Proof. Let L be strongly constructible and specified by (Nα, xα)α∈A, where ‖xα‖ = 1
for all α ∈ A. Suppose the sequence of Xn ∈ L converges in norm to X ∈ T (N ). Given
ε > 0, find a fixed n ∈ N such that ‖X −Xn‖ < ε/2, and α0 ∈ A such that ‖N⊥

α Xnxα‖ <
ε/2 for all α ≥ α0. Then

‖N⊥
α Xxα‖ ≤ ‖X −Xn‖‖xα‖+ ‖N⊥

α Xnxα‖, < ε. �

Proposition 4.9. The maximal left ideals of T (N ) are strongly constructible.

Proof. Let L be a maximal left ideal which we suppose to be specified by the net
(Nα, xα)α∈A. Without loss, assume that each xα = N⊥

α xα. By Lemma 4.2, xα 
→ 0, and so
there is an ε0 > 0 such that ‖xα‖ is frequently at least ε0. Let A

′ := {α ∈ A : ‖xα‖ ≥ ε0}
and x′

α = xα/‖xα‖ for α ∈ A′. Now A′ is a directed set and (Nα, x
′
α) is a net on it.

Again, by Lemma 4.2, the net (Nα, x
′
α)α∈A′ specifies a proper ideal; furthermore, this

ideal contains L, as for X ∈ L,

‖N⊥
α Xx′

α‖ ≤ 1

ε0
‖N⊥

α Xxα‖

for all α ∈ A′, and the net on the right converges to zero since (Nα, xα)α∈A′ is a subnet
of (Nα, xα)α∈A. By maximality, the ideal which (Nα, x

′
α)α∈A′ specifies must equal L. �

Proposition 4.10. Arbitrary intersections of strongly constructible ideals are strongly
constructible.

The proof is a consequence of the following simple result about nets.

Lemma 4.11. Fix a set X and suppose that we have a family of nets in X indexed

by a set K, which we denote (x
(k)
α )a∈Ak

. Then we can find a net (xα)α∈A in X with the
property that for any E ⊆ X, (xα)α∈A is eventually in E if and only if for each k ∈ K,

(x
(k)
α )α∈Ak

is eventually in E.

Proof. Define A to be set the set of pairs (σ, k), where σ is a section map on the fibre
bundle of Ak over K (i.e. for each k ∈ K, σ(k) ∈ Ak), and k is an arbitrary member of K.
Put a relation on A by declaring (σ, k) ≤ (τ, l) if σ(i) ≤i τ(i) for all i ∈ K (the relation
≤i is the directed relation defined on Ai). This is a reflexive and transitive relation.
Moreover, if (σ, k) and (τ, l) are in A then for each i ∈ K we can find an element of Ai

which dominates both σ(i) and τ(i). By the axiom of choice, there is therefore a section
map ρ such that ρ(i) dominates both σ(i) and τ(i) for all i ∈ K. Taking an arbitrary
i ∈ K, then (ρ, i) dominates both (σ, k) and (τ, l) in A. Thus, A is a directed set, and we

define the net (x(σ,k))(σ,k)∈A by x(σ,k) := x
(k)
σ(k).

Now, on the one hand, suppose that (x(σ,k)) is eventually in E ⊆ X. Thus, there is a
(σ0, k0) ∈ A such that x(σ,k) ∈ E for all (σ, k) ≥ (σ0, k0). Fix k ∈ K and consider α0 :=
σ0(k) ∈ Ak. If α ≥k α0 then define σ(i) := σ0(i) for all i 
= k and σ(k) := α. Then (σ, k) ≥
(σ0, k0) and so x

(k)
α = x(σ,k) ∈ E. This shows that for each k ∈ K, (x

(k)
α )α∈Ak

is eventually
in E.
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Conversely, let E ⊆ X and suppose that for every k ∈ K, (x
(k)
α )α∈Ak

is eventually in E.

That is to say, for each k ∈ K, we can find an α0 ∈ Ak such that x
(k)
α ∈ E for all α ≥k α0

in Ak. Again, by the axiom of choice, we pick one such α0 for each k ∈ K and obtain

a section σ0 such that for each k ∈ K and α ≥k σ0(k) in Ak, we have x
(k)
α ∈ E. Pick

an arbitrary k0 ∈ K and then suppose (σ, k) ≥ (σ0, k0). This means that, in particular,

σ(k) ≥k σ0(k), so that x(σ,k) = x
(k)
σ(k) ∈ E. We conclude that the net (x(σ,k))(σ,k)∈A is

eventually in E. �

The proof of Proposition 4.10 now follows straightforwardly.

Proof of Proposition 4.10. Let Lk (k ∈ K) be a collection of strongly constructible
left ideals. Writing H1 for the set of unit vectors in H, for each k ∈ K there are directed

sets Ak and nets (N
(k)
α , x

(k)
α ) ∈ N ×H1 for α ∈ Ak such that an X ∈ T (N ) belongs to

Lk if and only if limα∈Ak
‖(I −N

(k)
α )Xx

(k)
α ‖ = 0.

By Lemma 4.11, find a new net (Nα, xα)α∈A in N ×H1 which is eventually in a subset

of N ×H1 if and only if each of the (N
(k)
α , x

(k)
α )α∈Ak

are eventually in that set. Fix
X ∈ T (N ) and let ε > 0 be given. Let

Eε := {(N,x) ∈ N ×H1 : ‖(I −N)Xx‖ < ε}.

Clearly, X ∈
⋂

k∈K Lk if and only if for every k ∈ K and every ε > 0, (N
(k)
α , x

(k)
α )α∈Ak

is
eventually in Eε. This happens if and only if for every ε > 0, (Nα, xα)α∈A is eventually
in Eε, which in turn happens if and only if limα∈A ‖(I −Nα)Xxα‖ = 0. Thus,

⋂
k∈K Lk

is strongly constructible. �

Corollary 4.12. Every proper left ideal L of T (N ) is contained in a smallest strongly
constructible left ideal, which we shall call the strongly constructible hull of L.

Corollary 4.13. The primitive ideals of T (N ) are strongly constructible.

Proof. Every primitive ideal is the intersection of the maximal left ideals which contain
it [1, § 24, Proposition 12 (iv)]. The result follows by Propositions 4.9 and 4.10. �

Example 4.14. In particular, the maximal two-sided ideals of T (N ), being primitive,
are strongly constructible. Recall that the strong radical of a unital algebra is the inter-
section of all its maximal two-sided ideals. In [17, Theorem 3.2], we saw that if T (N ) is
a continuous nest algebra then any norm-closed, two-sided ideal of T (N ) that contains
the strong radical is the intersection of the maximal two-sided ideals which contain it.
Thus, by Propositions 4.10 and 4.13, all such ideals are strongly constructible.

Corollary 4.15. All norm-closed, two-sided ideals of a continuous nest algebra which
contain the strong radical are strongly constructible.

Question 4.16. Is every norm-closed left ideal of a nest algebra strongly constructible?

Strongly constructible ideals are also characterized by two ostensibly weaker conditions.
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Proposition 4.17. Let L be a proper left ideal of T (N ). The following are
equivalent.

1. L is strongly constructible.

2. L can be specified by a net (Nα, xα)α∈A, where ‖xα‖ ≤ 1 for all α ∈ A.

3. L can be specified by a net (Nα, xα)α∈A, where ‖xα‖ is bounded.

Proof. Clearly, (1) ⇒ (2) ⇒ (3), and so it remains to prove (3) ⇒ (1). Suppose
(Nα, xα)α∈A specifies L and ‖xα‖ is bounded. Since L is proper, by Lemma 4.2, xα 
→ 0,
and so there is an ε0 such that ‖xα‖ is frequently at least ε0. For each k ∈ N, set

Ak := {α ∈ A : ‖xα‖ ≥ ε0/k}.

Each Ak is a directed set (with the order relation inherited from A), and the restricted
net (Nα, xα)α∈Ak

defines a left ideal Lk. Since the xα are bounded away from zero on
Ak, we can normalize and see that each Lk is strongly constructible. It remains to check
that L =

⋂
k∈N Lk, and then the result will follow by Proposition 4.10.

Clearly, since each Ak ⊆ A, also L ⊆ Lk and so L ⊆
⋂

k∈N Lk. Suppose X 
∈ L. Then
(I −Nα)Xxα 
→ 0, and so there is an ε1 > 0 such that ‖(I −Nα)Xxα‖ ≥ ε1 frequently.
Choose k > ε0‖X‖/ε1 so that then whenever ‖(I −Nα)Xxα‖ ≥ ε1 then

‖X‖‖xα‖ ≥ ‖(I −Nα)Xxα‖ ≥ ε1 > ‖X‖ε0
k
,

and thus α ∈ Ak. It follows that ‖(I −Nα)Xxα‖ ≥ ε1 frequently on Ak, and so X 
∈
Lk. �

Proposition 4.18. Let L be a maximal left ideal in T (N ) and let Pn be a sequence of
pairwise orthogonal projections in L. There is a subsequence Pnk

such that the projection∑∞
n=1 Pnk

belongs to L.

Proof. By Proposition 4.9, L is strongly constructible, say by a net (Nα, xα), where
each xα is a unit vector in the range of Nα. By Kelley’s theorem, this net has a universal
subnet, which specifies a proper ideal containing L, hence it in fact specifies L itself.
Thus, we may assume that (Nα, xα) is universal.

The proof now proceeds by means of a fairly routine diagonal argument. For any
S ⊆ N write P (S) :=

∑
n∈S Pn. Take S0 := N and split S0 into two infinite sets, S′

0

and S′′
0 . If ‖P (S′

0)xα‖ and ‖P (S′′
0 )xα‖ are each eventually greater than 1/

√
2 then

‖P (S0)xα‖2 = ‖P (S′
0)xα‖2 + ‖P (S′′

0 )xα‖2 is eventually greater than 1, which is impos-
sible. Since (Nα, xα) is universal, at least one of ‖P (S′

0)xα‖, ‖P (S′′
0 )xα‖ is eventually

no greater than 1/
√
2; without loss suppose that ‖P (S′

0)xα‖ ≤ 1/
√
2 eventually, and set

S1 := S′
0.

Now decompose S1 = S′
1 ∪ S′′

1 in the same way as the union of infinite subsets and, as
before, we conclude that at least one of ‖P (S′

1)xα‖, ‖P (S′′
1 )xα‖ is eventually no greater

than (1/
√
2)2. Take S2 to be one of S′

1, S
′′
1 for which this holds. Proceeding in this way,

we obtain a sequence S0 ⊇ S1 ⊇ S2 ⊇ . . . of infinite subsets of N such that for each k,
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eventually ‖P (Sk)xα‖ ≤ (1/
√
2)k. Now take nk to be the kth element of Sk in order,

which is a strictly increasing sequence, and let S := {nk}. Thus, S \ Sk is finite for all k.
Finally, write P := P (S) and, given ε > 0, take k such that (1/

√
2)k < ε. For all

sufficiently large α,

‖Pxα‖ = ‖(PP (Sk) + PP (Sk)
⊥)xα‖

≤ ‖P (Sk)xα‖+ ‖P (S \ Sk)xα‖

≤ ε+
∑

n∈S\Sk

‖Pnxα‖.

But the sum in the last line is finite and so is eventually less than ε. We can conclude
that ‖N⊥

α Pxα‖ = ‖Pxα‖ → 0, so that P ∈ L. �

Corollary 4.19. Let J be a maximal right ideal in T (N ) and let Pn be a sequence of
pairwise orthogonal projections in R. There is a subsequence Pkn

such that the projection∑∞
k=1 Pkn

belongs to R.

Proof. The result follows by taking adjoints and working in T (N⊥). �

5. Atomic nest algebras

In this section we focus on atomic nest algebras and relate the character of primitive
ideals to the family of diagonal operators they contain. Observe that if P is a primitive
ideal of T (N ) then P ∩ D(N ) is a norm-closed two-sided ideal of the C∗-star algebra
D(N ) and is therefore a ∗-ideal. In many interesting cases, the nest is multiplicity-free
so that D(N ) is an abelian C∗-algebra.

Proposition 5.1. Let N be an atomic nest and J a two-sided ideal in T (N ). Then,
J is a maximal two-sided ideal if and only if J ∩ D(N ) is a maximal two-sided ideal of
D(N ).

Proof. Suppose J is maximal. Then, by [20, Theorem 3.8], J contains R∞
N . It follows

that J = (J ∩ D(N ))⊕R∞
N . If J ∩ D(N ) is not maximal then there is a larger proper

ideal D0 of D(N ). But then D0 ⊕R∞
N is a proper ideal of T (N ) and strictly larger than

J , contrary to fact.
Suppose on the other hand that J ∩ D(N ) is maximal. By [6, Theorem 10.2], R∞

N is
generated as a two-sided ideal by a generator which is the sum of three commutators
[Gi, Pi] (i = 1, 2, 3), where Gi ∈ T (N ) and Pi is a projection in the core C(N ) of T (N ).
(Recall that the core of a nest algebra is the abelian von Neumann algebra generated by
N .) Now, since J ∩ D(N ) is a maximal ideal of D(N ), and the Pi are in the centre of
D(N ), it follows that one of Pi, P

⊥
i must lie in J ∩ D(N ) for each i. Thus, in any event,

the commutators [Gi, Pi] = [Gi, P
⊥
i ] belong to J and so J contains R∞

N . Thus, again,
J = (J ∩ D(N ))⊕R∞

N . If J is not maximal then there is a larger proper ideal J0 of
T (N ). But then since J0 also contains R∞

N , J0 = (J0 ∩ D(N ))⊕R∞
N and so J0 ∩ D(N )

is a proper ideal of D(N ) and larger than J ∩ D(N ), contrary to fact. �
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The proof of Proposition 5.1 is deceptively straightforward. In fact, the result cited
from [20] depends on Marcus, Spielman and Srivastava’s proof [15] of the paving theorem.
Recall (Definition 2.6) that we write IP for the unique diagonal ideal contained by the
primitive ideal P.

Proposition 5.2. Let N be an atomic nest, let P be a primitive ideal of T (N ) and
suppose P 
= IP . Then there are non-zero projections in P \ IP .

Proof. We shall prove the result in the case when IP = I−
N for some N > 0 in N . If,

instead, IP = I+
N for some N < I then we take adjoints and apply the result to I−

N⊥ �

P∗ ⊆ T (N )∗ = T (N⊥). In this case, P is a right primitive ideal of T (N⊥) and so we shall
take care that our proof accommodates the case where P is either left or right primitive.

If P is a left primitive ideal, let J be a maximal left ideal such that P is the kernel
of the left regular module action of T (N ) on T (N )/J . In the case where P is right
primitive, let J be a maximal right ideal such that P is the kernel of the right regular
module action of T (N ) on T (N )/J .

Suppose that N− < N . Note that rank(N −N−) cannot be finite; if it were then
IP = I−

N would be a maximal ideal of T (N ) and so P = IP , contrary to hypothesis. If
rank(N −N−) = ∞ then the only proper ideal strictly containing I−

N is {X ∈ T (N ) :
(N −N−)X(N −N−) is compact}, which must therefore equal P. Any finite-rank pro-
jection of the form P = (N −N−)P (N −N−) will serve to establish the result in this
case.
For the remainder of the proof, assume that N = N− and take X ∈ P \ I−

N . By
Lemma 3.3, there are A,B ∈ T (N ) such that AXB is block diagonal with respect to
some sequence Mk of nest projections strictly increasing to N , and each of the blocks
has norm greater than 1. Replacing X with AXB we can assume X =

∑∞
k=1(Mk −

Mk−1)X(Mk −Mk−1), where the norm of each term is greater than 1.
Consider the sequence of intervals M2k+1 −M2k. These are each in I−

N and so in J .
By Proposition 4.18 and Corollary 4.19, whether J is assumed to be maximal right or
maximal left, there is a subsequence kn such that J contains

∑∞
n=1 M2kn+1 −M2kn

.
Then, for each n, find an atom N+

n −Nn ≤ M2kn+1 −M2kn
. Choose vectors en, fn, gn

such that ene
∗
n ≤ N+

n −Nn and fn and gn are in the range of M2kn+2 −M2kn+1 with
‖fn‖ > ‖gn‖ = 1 and fn = Xgn. Thus,

V :=

∞∑
n=1

ene
∗
n+1 =

( ∞∑
n=1

‖fn‖−1enf
∗
n

)
X

( ∞∑
n=1

‖fn‖−1gne
∗
n+1

)
,

where both of the sums converge strongly and are in T (N ) because

enf
∗
n = M2kn+1(enf

∗
n)M

⊥
2kn+1

and

gne
∗
n+1 = M2kn+2(gne

∗
n+1)M

⊥
2kn+1

= M2kn+2(gne
∗
n+1)M

⊥
2kn+2,

since kn+1 ≥ kn + 1.
Thus, V ∈ P. Let P :=

∑∞
k=1 e2ke

∗
2k ≤

∑∞
k=1 N

+
2k −N2k, which is dominated by a

projection in J and so is also in J . We shall show that P ∈ P.

https://doi.org/10.1017/S0013091520000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000140


On the primitive ideals of nest algebras 753

Suppose for a contradiction that P 
∈ P. It follows, as observed in Remark 3.1, that
there are A,B ∈ T (N ) such that I −APB ∈ J . We can assume that A = AP and
B = PB. Write A = A1 +A2, where

A1 :=

∞∑
k=1

N⊥
2k−1A(N

+
2k −N2k) and A2 := A−A1,

so that A2(N
+
2k −N2k) = N2k−1A(N

+
2k −N2k). Likewise, write B = B1 +B2, where

B1 :=

∞∑
k=1

(N+
2k −N2k)BN2k+1 and B2 := B −B1,

so that (N+
2k −N2k)B2 = (N+

2k −N2k)BN⊥
2k+1. The sums for A1 and B1 converge strongly

because the sequences of terms are norm-bounded and have pairwise orthogonal ranges
and cokernels.
Now set A′

2 := A2V
∗ and B′

2 := V ∗B2. From the following computations we see that
A′

2 and B′
2 are in T (N ), since the terms of the sums are in T (N ):

A′
2 = A2PV ∗ =

∞∑
k=1

A2(N
+
2k −N2k)V

∗ =
∞∑
k=1

N2k−1A(N
+
2k −N2k)V

∗N⊥
2k−1

B′
2 = V ∗PB2 =

∞∑
k=1

V ∗(N+
2k −N2k)B2 =

∞∑
k=1

N+
2k+1V

∗(N+
2k −N2k)BN⊥

2k+1.

Furthermore, since V V ∗ =
∑∞

k=1 eke
∗
k and V ∗V =

∑∞
k=1 ek+1e

∗
k+1 =

∑∞
k=2 eke

∗
k, we

have that

A2 = A2P = A2PV ∗V = A′
2V ∈ P

and

B2 = PB2 = V V ∗PB2 = V B′
2 ∈ P.

Since I − (A1 +A2)P (B1 +B2) ∈ J , it now follows that also I −A1PB1 ∈ J .
Now note that

A1PB1 =

∞∑
k=1

A1(N
+
2k −N2k)B1

=
∞∑
k=1

N⊥
2k−1A(N

+
2k −N2k)BN2k+1

=

∞∑
k=1

(N+
2k −N2k−1)A(N

+
2k −N2k)B(N2k+1 −N2k)

=

∞∑
k=1

(N+
2k −N2k−1)Ck(N2k+1 −N2k),
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where Ck := A(N+
2k −N2k)B. We can decompose A1PB1 in two ways, either as

∞∑
k=1

(N+
2k −N2k)Ck(N2k+1 −N2k) +

∞∑
k=1

(N2k −N2k−1)Ck(N2k+1 −N2k)

or as

∞∑
k=1

(N+
2k −N2k−1)Ck(N

+
2k −N2k) +

∞∑
k=1

(N+
2k −N2k−1)Ck(N2k+1 −N+

2k).

These two cases are of the form PY + Z and Y P + Z, respectively, where in both cases
Z is nilpotent. Recall that P ∈ J and so, whether J is a maximal left ideal or a maximal
right ideal, we conclude that I − Z ∈ J , which is impossible since this would be invertible
and J is proper. From this contradiction we conclude that P ∈ P. �

Theorem 5.3. Let N be an atomic nest and let P be a primitive ideal of T (N ).

1. If P ∩ D(N ) is a maximal two-sided ideal of D(N ) then P is a maximal two-sided
ideal of T (N ).

2. If P ∩ D(N ) is equal to I ∩ D(N ) for some diagonal ideal I then P is a diagonal
ideal and, in fact, P = I.

Proof. Case (1) is just Proposition 5.1. To prove Case (2), suppose that P ∩ D(N ) =
I ∩ D(N ) for some diagonal ideal I. First, observe that IP ∩ D(N ) ⊆ P ∩ D(N ) = I ∩
D(N ). Now, distinct diagonal ideals contain complementary projections (see the proof
of [23, Lemma 4.8] for this fact) and so I must equal IP . But now, if P 
= IP then by
Proposition 5.2, P contains projections which are not in IP , contrary to hypothesis. �

We can now distinguish three classes of primitive ideals based on the diagonal operators
they contain. The first class (Πmax) consists of primitive ideals for which P ∩ D(N ) is a
maximal ideal of D(N ), and this consists of the maximal two-sided ideals of T (N ). The
second class (Πmin) consists of primitive ideals for which P ∩ D(N ) = I ∩ D(N ) for some
diagonal ideal I, and this class consists of diagonal ideals. The third class (Πint) consists
of the remaining primitive ideals for which P ∩ D(N ) takes neither its minimal nor its
maximal values.
The maximal ideals of a general nest algebra were completely described in

[20, Corollary 3.10]. In particular, when N is atomic the ideals in Πmax are precisely
the ideals of the form D0 ⊕R∞

N , where D0 is a maximal two-sided ideal of D(N ). The
ideals in Πmin are the primitive ideals which are also diagonal ideals. Trivially, all ideals
of the form I−

N where N > N− (or, equivalently, I+N where N < N+) are included in this
class. (See the first paragraph of the proof of Theorem 3.7 for details.) By Theorem 3.7, if
we assume the continuum hypothesis then Πmin consists of all the diagonal ideals. With-
out the assumption of the continuum hypothesis we cannot say which diagonal ideals
belong to Πmin. The structure of Πint is more delicate. In the following section we will
see examples of representatives of all three classes.
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6. The infinite upper triangular operators

Throughout this section, let H = �2(N) and consider the algebra T (N) of all upper trian-
gular operators with respect to the standard basis of �2(N). Recall that we write {ei}∞i=1

for the standard basis and let Nn be the projection onto the span of {e1, . . . , en}, and
N := {Nn : n ∈ N} ∪ {0, I}. Then T (N) := T (N ) is the algebra of infinite upper trian-
gular operators with respect to the ei, and R∞

N is simply the ideal of infinite strictly
upper triangular operators. Moreover, the diagonal ideals of T (N) are precisely the ide-
als I1, I2, I3, . . . ; I∞, where In := I−

Nn
, for 1 ≤ n < ∞ and I∞ := I−

I . Note that I∞
coincides with the compact operators of T (N), a fact which we develop below.

6.1. The quasitriangular algebra

Let K(H) be the set of all compact operators in B(H) and write QT (N) for the
quasitriangular algebra T (N) +K(H). By [10] and, in more generality, [7], QT (N) is
a norm-closed algebra in B(H) and the canonical isomorphism between QT (N)/K(H)
and T (N)/(T (N) ∩ K(H)) is isometric.

Corollary 6.1. Assuming the continuum hypothesis, T (N)/(T (N) ∩ K(H)) is a left
(respectively, right) primitive algebra.

Proof. K(H) ∩ T (N) = I∞, which is a left primitive ideal by Theorem 3.7 and a right
primitive ideal by Corollary 3.8. �

Corollary 6.2. Assuming the continuum hypothesis, QT (N)/K(H) is a left (respec-
tively, right) primitive algebra, and K(H) is a left (respectively, right) primitive ideal in
QT (N).

6.2. A catalogue of primitive ideals

Clearly, Πmin contains {I1, I2, . . .}. Assuming the continuum hypothesis, by
Theorem 3.7,

Πmin = {I1, I2, . . .} ∪ {I∞}.
By [20, Corollary 3.10], the ideals of Πmax are precisely the ideals of the form D0 ⊕R∞

N ,
where D0 is a maximal ideal of D(N ). In this case, D(N ) is naturally identified with
�∞(N) and its maximal ideal space, with the sequences vanishing at points of C(βN).
The maximal ideals of T (N) corresponding to points of N are precisely the In, and so we
can write

Πmax = {I1, I2, . . .} ∪ {Dx ⊕R∞
N : x ∈ βN \ N},

where Dx is the maximal ideal of D(N ) corresponding to sequences in �∞(N) vanishing
at x ∈ βN.
There remains the set Πint of primitive ideals which are neither diagonal ideals nor

maximal ideals. These are the primitive ideals P where P ∩ D(N ) is a closed ideal ofD(N )
corresponding to an ideal of �∞(N) which strictly contains c0(N) and is not maximal. We
cannot give a complete catalogue of these ideals, but we can provide a rich set of examples.
Consider the following special case of a general construction of epimorphisms between

nest algebras, taken from [3, Corollary 5.3]. Let 0 ≤ mk < nk < +∞ be integers such that
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the intervals (mk, nk] are pairwise disjoint, and let U be a free ultrafilter on N. Suppose
that limk∈U nk −mk = +∞. Let Uk : �2(N) → �2(N) be the partial isometry mapping ei
to ei−mk

when mk < i ≤ nk and zero otherwise. For X ∈ T (N), define

φ(X) := lim
k∈U

UkXU∗
k ,

where convergence is in the weak operator topology and the limit always exists by weak
operator topology compactness of the unit ball. Then, by [3, Corollary 5.3], this map
is an epimorphism of T (N) onto T (N). Note also that φ is a *-homomorphism of the
diagonal of T (N) onto itself.
If φ is such an epimorphism of T (N) onto T (N) and π is an irreducible representation

of T (N) then clearly π ◦ φ is also an irreducible representation of T (N). If kerπ is in Πmax

then so is kerπ ◦ φ. However, as we shall see, if kerπ ∈ Πmin \Πmax then kerπ ◦ φ will be
in Πint, and this provides a rich supply of examples of primitive ideals in Πint.
Assuming the continuum hypothesis, I∞ ∈ Πmin \Πmax, so consider the primitive ideal

P = φ−1(I∞). Note that φ annihilates I∞ and so I∞ is the unique diagonal ideal in P.
Writing Δ(X) for the diagonal expectation

∑∞
k=1(Nnk

−Nmk
)X(Nnk

−Nmk
), observe

that kerΔ ⊆ kerφ ⊆ P and so P 
= I∞. Thus, P 
∈ Πmin. On the other hand, P 
∈ Πmax

since, by [20, Theorem 3.8], every maximal ideal of T (N) contains R∞
N , but P does

not contain the unilateral backward shift U since φ(U) = U 
∈ I∞. Thus, P 
∈ Πmin and
P 
∈ Πmax, and so P ∈ Πint.
In fact, this construction readily yields uncountably many incomparable ideals in Πint.

Fix projections Pk := Nnk
−Nmk

, where limk→+∞ nk −mk = +∞, and let U be a fixed
free ultrafilter. As is well known, we can find an uncountable collection Σ of infinite
subsets of N with the property that distinct members of Σ intersect only in finite sets.
For σ ∈ Σ, list the elements of σ in order as sk and build an ultrafilter epimorphism
φσ : T (N) → T (N) as above, this time employing the intervals Psk and the ultrafilter
U . Write Δσ(X) for the diagonal expectation

∑
k∈σ PkXPk. As before, kerΔσ ⊆ kerφσ.

Now, for any σ 
= σ′, φ−1
σ (I∞) 
= φ−1

σ′ (I∞), as otherwise

φ−1
σ (I∞) = φ−1

σ′ (I∞) ⊇ kerΔσ + kerΔσ′ + I∞ = T (N).

We can also exhibit infinite chains of ideals in Πint; since φ−1(I∞) � I∞, the ideals
Pk := φ−1(φ−1(· · ·φ−1(I∞) · · · )) form a chain of distinct ideals in Πint for any fixed
epimorphism φ : T (N ) → T (N ).

6.3. Some properties of ideals in Πint

Although the ultrafilter epimorphism construction of ideals in Πint is not represen-
tative, we can prove some properties which all ideals in Πint share with the ultrafilter
construction. These results are, however, tightly bound to the case of T (N) (especially
Proposition 6.3) and it is unclear how they might be extended.

Proposition 6.3. Let P be a primitive ideal of T (N) and suppose P � I∞. Then
there is an increasing sequence of integers nk such that P contains

{X ∈ T (N ) : (Nnk
−Nnk−1

)X(Nnk
−Nnk−1

) = 0 for all k}.
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Proof. Let L be a maximal left ideal such that P is the kernel of the left-regular
representation on T (N )/L. By Proposition 5.2, P contains a projection P 
∈ I−

I . Choose
a subsequence of nest projections Nnk

such that

rank(Nnk+1
−Nnk

)P ≥ rankNnk

for all k. We shall show that if

S := {X ∈ T (N ) : (Nn2k+2
−Nn2k

)X(Nn2k+2
−Nn2k

) = 0 for all k}

then S ⊆ P. By Remark 3.1, since S is a two-sided ideal of T (N ), if S ⊆ L then S ⊆ P,
so suppose for a contradiction that S 
⊆ L. By maximality of L, S + L = T (N ), and so
there is an X ∈ S such that I −X ∈ L. Decompose X as Y0 + Y1 where

Y0 :=

∞∑
k=1

(Nn2k+1
−Nn2k−1

)X(Nn2k+1
−Nn2k−1

)

and Y1 := X − Y0. Observe that therefore

(Nnk+2
−Nnk

)Y1(Nnk+2
−Nnk

) = 0 (6.1)

for all k.
Now take fixed arbitrary M < N < I in N and consider two cases. First, if N −M

does not dominate any Nnk+1
−Nnk

then there must be a k such that N −M ≤ Nnk+2
−

Nnk
, and so (N −M)Y1(N −M) = 0. On the other hand, if N −M does dominate some

Nnk+1
−Nnk

, take k to be the largest possible (which exists since N < I) and observe
that, by (6.1),

rank(N −M)Y1(N −M) = rankNnk
(N −M)Y1(N −M)

≤ rankNnk

≤ rank(Nnk+1
−Nnk

)P

≤ rank(N −M)P.

It follows that in either case

rank(N −M)Y1(N −M) ≤ rank(N −M)P.

Since the right-hand side is infinite if N = I, the inequality is valid for all M < N in N .
It follows immediately from [21, Theorem 2.6] that Y1 factors through P as Y1 = APB
for some A,B ∈ T (N ), and so Y1 ∈ P ⊆ L, whence I − Y0 ∈ L.
However, since X ∈ S, the terms of the sum for Y0 are

(Nn2k+1
−Nn2k−1

)X(Nn2k+1
−Nn2k−1

)

= (Nn2k
−Nn2k−1

)X(Nn2k+1
−Nn2k

)

so that Y0 is nilpotent of order 2. Thus, I − Y0 cannot belong to the proper left ideal L,
which is a contradiction. �
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Let Ei (i ∈ N) be a set of pairwise orthogonal intervals of N . For σ ⊆ N, let Pσ :=∑
i∈σ Ei and Δσ(X) :=

∑
i∈σ EiXEi. For convenience, write Δ for ΔN. The last result

shows that, at least in T (N), primitive ideals which are not in Πmin must contain kerΔ
for suitable {Ei}. The next two lemmas explore the consequences of a primitive ideal
containing kerΔ and hold for general nest algebras.

Lemma 6.4. Let P be a primitive ideal of T (N ) and suppose kerΔ ⊆ P. Then Σ :=
{σ ⊆ N : kerΔσ ⊆ P} is an ultrafilter.

Proof. Σ itself is non-empty since N ∈ Σ, and the sets in Σ are non-empty since
kerΔ∅ = T (N ). If τ ⊇ σ and σ ∈ Σ then kerΔτ ⊆ kerΔσ ⊆ P, and so τ ∈ Σ. If σ, τ ∈ Σ
then kerΔσ∩τ = kerΔσ + kerΔτ ⊆ P, and so σ ∩ τ ∈ Σ. Thus, Σ is a filter.
Let π : T (N ) → L(V ) be an irreducible representation with P = kerπ. For any σ ⊆ N

and X ∈ T (N ), PσX −XPσ ∈ kerΔ and so π(Pσ) commutes with π(T (N )). Thus,
ran(π(Pσ)) is an invariant subspace of π(T (N )), and so π(Pσ) = 0, I. Suppose that
π(Pσ) = I and so π(Pσc) = 0. Then, for any X ∈ T (N ),

X −Δσ(X)−Δσc(X) ∈ kerΔ ⊆ P,

and so

π(X) = π(Δσ(X) + Δσc(X)) = π(Δσ(X)Pσ +Δσc(X)Pσc) = π(Δσ(X)),

whence kerΔσ ⊆ P and σ ∈ Σ. Likewise, if π(Pσ) = 0, then σc ∈ Σ. Thus, Σ is an
ultrafilter. �

Lemma 6.5. Let P be a primitive ideal of T (N ) and suppose kerΔ ⊆ P. Suppose
that for each i we can decompose Ei as the sum E0

i + E1
i of intervals of N . Then P

contains one of kerΔj , where Δj(X) =
∑∞

i=1 E
j
iXEj

i .

Proof. Each Ei is decomposed into the sum of two intervals which share a common
endpoint. Let σ be the set of i for which the shared endpoint is the upper endpoint of E0

i

and the lower endpoint of E1
i . Clearly, σ

c is then the set of i for which the upper endpoint
of E1

i equals the lower endpoint of E0
i . By Lemma 6.4, P contains one of kerΔσ, kerΔσc .

Without loss of generality, assume kerΔσ ⊆ P. Let P :=
∑

i∈σ E
0
i and observe that for

each i ∈ σ there is an Ni ∈ N such that E0
i = NiEi and E1

i = N⊥
i Ei, and thus

Δσ(P
⊥XP ) =

∑
i∈σ

E1
i XE0

i =
∑
i∈σ

EiN
⊥
i XNiEi = 0.

If π is an irreducible representation with kerπ = P then π(P⊥XP ) = 0, and so the range
of π(P ) is an invariant subspace of π(T (N )), whence one of P, P⊥ ∈ P. If P ∈ P,

kerΔ1 ⊆ kerΔσ + PT (N ) ⊆ P,

while if P⊥ ∈ P,

kerΔ0 ⊆ kerΔσ + T (N )P⊥ ⊆ P. �
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Theorem 6.6. Let P ∈ Πint in T (N). Then there is a free ultrafilter U and a sequence
of pairwise orthogonal finite-rank intervals Ei such that limi∈U rankEi = +∞ and P
contains

{X ∈ T (N) : lim
i∈U

‖EiXEi‖ = 0}.

Moreover, given any decomposition of the Ei as the sums of intervals E0
i + E1

i , we can
replace {Ei} with one of {E0

i } or {E1
i }.

Proof. The existence of the intervals follows from Proposition 6.3. Let U be the
ultrafilter obtained in Lemma 6.4. If limi∈U ‖EiXEi‖ = 0 then, given ε > 0, there is a
σ ∈ U such that ‖EiXEi‖ < ε for all i ∈ σ. Thus, taking X ′ := X −Δσ(X), we see that
‖X −X ′‖ = ‖Δσ(X)‖ ≤ ε and that Δσ(X

′) = 0, whenceX ′ ∈ P. Thus,X is a limit point
of P and, since P is norm closed, X ∈ P.

Given a decomposition Ei = E0
i + E1

i , we know from Proposition 6.5 that one of kerΔj

(j = 0, 1) is in P. Without loss, suppose kerΔ0 ⊆ P. Again, by Lemma 6.4, U0 := {σ :
kerΔ0

σ ⊆ P} is an ultrafilter. Now let σ ∈ U0. Since U is an ultrafilter, one of σ, σc ∈ U .
But if σc ∈ U then

T (N) = kerΔ0
σ + kerΔσc ⊆ P,

which is impossible. Thus, σ ∈ U and so, since σ was arbitrary, U0 ⊆ U . But U0 is also
an ultrafilter, so in fact U0 = U . Thus, we may replace {Ei} with {E0

i }.
Now it follows that the limit of the ranks of the intervals must be +∞; otherwise,

after finitely many decompositions, we could conclude that P ⊇ R∞
N and so P ∈ Πmax.

Similarly, if U were not free then P would contain {X : Ei0XEi0 = 0} for some i0 ∈ N

and, after finitely many decompositions if necessary, we would see that P ⊇ In for some
n, again contrary to hypothesis. �
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