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FAST SENSITIVITY COMPUTATIONS FOR MONTE CARLO VALUATION 
OF PENSION FUNDS

BY

MARK JOSHI AND DAVID PITT

ABSTRACT

Sensitivity analysis, or so-called ‘stress-testing’, has long been part of the actu-
arial contribution to pricing, reserving and management of capital levels in both 
life and non-life assurance. Recent developments in the area of derivatives pricing 
have seen the application of adjoint methods to the calculation of option price 
sensitivities including the well-known ‘Greeks’ or partial derivatives of option 
prices with respect to model parameters. These methods have been the founda-
tion for effi cient and simple calculations of a vast number of sensitivities to 
model parameters in fi nancial mathematics. This methodology has yet to be 
applied to actuarial problems in insurance or in pensions. In this paper we con-
sider a model for a defi ned benefi t pension scheme and use adjoint methods to 
illustrate the sensitivity of fund valuation results to key inputs such as mortality 
rates, interest rates and levels of salary rate infl ation. The method of adjoints is 
illustrated in the paper and numerical results are presented. Effi cient calculation 
of the sensitivity of key valuation results to model inputs is useful information 
for practising actuaries as it provides guidance as to the relative ultimate impor-
tance of various judgments made in the formation of a liability valuation basis.
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1. INTRODUCTION

Adjoint methods have recently become popular for computing sensitivities to 
model parameters when doing derivatives pricing. These methods are an off-
shoot of the theory of automatic differentiation. This theory shows that if  a 
model has n state variables, then it is possible to compute sensitivities to the 
initial values of these variables in a fi xed fi nite multiple (which is independent 
of n) of the time taken to compute the original number. The proof is construc-
tive and relies on decomposing algorithms into simple arithmetic operations 
which can be trivially, and, in fact, automatically, differentiated. We refer the 
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656 M. JOSHI AND D. PITT

reader to Griewank (2000) for the general theory. In particular, Giles and 
Glasserman (2006) demonstrated massive speed-ups for the computation of 
price sensitivities in LIBOR market models for pricing exotic interest rate 
derivatives.

Adjoint techniques are applicable to sensitivity computation for any algorithm 
where the outputs vary smoothly with the initial inputs and parameters. Thus 
far they have not been applied to actuarial applications. Booth et al. (1999) 
describe the importance of sensitivity analysis: it focuses attention on a range 
of  possible outcomes thus eliminating the possibility of  holding too great 
confi dence in the results of a single projection, it informs the user of the level 
of doubt associated with deterministic projections and it allows the actuary to 
determine which assumptions are most critical to the outcome of the analysis. 
Brender (1988) discusses the use of sensitivity analysis in the dynamic solvency 
testing of life offi ces. Sensitivity analysis is now part of the requirements for 
life and non-life assurance offi ces in their fi nancial condition reports in Australia, 
the UK and in Canada. 

In this paper, we demonstrate the power of adjoints in computing sensi-
tivities by studying the problem of valuing a defi ned benefi t pension fund with 
interest rate and infl ation components. We work in the context of  a model 
described in Neill (1977). In particular, we show that it is possible to compute 
hundreds of sensitivities and a central estimate of the liability in a couple of 
seconds, when computing the value alone takes about a second. Actuaries 
involved in the valuation of  pension funds or the pricing of  life assurance 
products will fi nd considerable value in this methodology. The relative magnitudes 
of  sensitivities of  calculated outputs, such as premium rates or assurance/
pension liabilities to key input assumptions serve as a useful indicator of the 
relative importance of making accurate assumptions. Drawing on a number 
of potential actuarial applications of the methodology, sensitivities of valuation 
results to levels of assumed investment returns, mortality and morbidity rates, 
pension or assurance scheme withdrawal rates, expense, profi t or prudential 
margins can all be quantifi ed using the method given here. 

Our analysis here is focused here on model sensitivities, that is sensitivities 
to the changes of model parameters. We remark that often it is market sensi-
tivities that are required. We refer the reader to Joshi-Kwon (2010) for discussion 
of how one might carry out the translation in a similar context. 

This paper is organized as follows. After this introduction, Section 2 out-
lines the pension model employed in the paper. Section 3 gives the method for 
fi nding sensitivities of valuation results to state variables or initial assumptions 
regarding levels of key economic variables. Section 4 provides the method for 
assessing valuation result sensitivities to model parameters. Section 5 considers 
the sensitivity of valuation results to changes in the nature of the benefi ts pro-
vided to members in the pension scheme. Numerical results of our analysis are 
presented in Section 6. Section 7 compares the method of adjoints with that of 
fi nite differencing. We examine the scope of the adjoint method in Section 8. 
Section 9 concludes the paper. 
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 COMPUTATIONS FOR MONTE CARLO VALUATION OF PENSION FUNDS 657

2. THE MODEL

Following Booth et al (1999), we use a discrete-time extended Vasicek process 
with time-dependent parameters for each of interest rates, i, and infl ation, f. 
We thus have

 jj ( )i i k , , ,j i j i i1 m s- = ++ ,-ij j j W  (2.1)

 ,j j f( )f f k f, ,j f f j1 m s- = - ++ jj j ,Z  (2.2)

with Wj , Zj standard normal random variables. We assume that Wj and Zj are 
binormal with correlation coeffi cient r and that steps are independent of each 
other.

The parameters ki, j , mi, j , si, j , kf, j , mf, j and sf, j can be used to calibrate the 
model. This results in 6N parameters with N the number of time steps from 
the date of valuation until the death of the pension fund member. We also 
have the inputs i0, f0 and r.

The infl ation and interest rates are used to evolve the retail price index, RPI, 
and discretely compounding money market account used for discounting. Thus 
we have also 

 + jRPI RPI ( ),fj j1 =+ 1  (2.3)

 
j
.i1j

j
1 =

++

D
D  (2.4)

We will take RPI0 = 1, D0 = 1, since we are interested in relative infl ation and 
discounting. Our model therefore has 4 state-variables. When carrying out 
valuation, we evolve these variables across N years (with N typically 90) work 
out the cash-fl ows and discount these using Dj as they arrive.

3. ADJOINT CALCULATIONS FOR STATE-VARIABLES

Suppose our product generates a cash-fl ow each each year which is a function 
of the prevailing state-variables, as well as possible product parameters, and 
indirectly model parameters.

First, we discuss how to compute sensitivities to the model variables,

 , RPI .X i f0 0 0 0= 0, D,_ i

Whilst in practice, we will not want sensitivities to the last two because these 
are just benchmark starting values for our price index and our discount factor, 
we will obtain a more coherent framework by allowing them.
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Our discounted cash-fl ow at time j is some function gj of  Xj  . For example, 
it might be 

RPIj Dj Sj Pj C0 ,

with Sj the survival probability for time j and Pj the payment fraction of salary 
at time j, and C0 the initial salary. Our estimate of the value on path s, which 
we denote by Values (0), is the sum of these discounted cash-fl ows. Our esti-
mate of the value based on M paths is then 

 Value(0) Value ( ) .M
1 0s

s

M

1
=

=

/  (3.1)

Our objective is compute 

 k

k 0

2
X2
g/

for each path of the simulation. We can write 

 ( , ), for 0,F jj j j j1= - >X X A  (3.2)

with Aj a pair of independent standard normals, and where Fj is the map taking
the state-variables from one time to the next. The derivative j

j 12

2

-X
X

 is therefore 
the Jacobian of the map Fj  .

We can therefore write 

 X X
X

X
k

k

k

k

k

k

k

0 1 2

1

0

1
2
2

2
2

2
2

2
2

f 2
2

=
- -

-g g
X X

X X
. (3.3)

There are many ways to evaluate this equation which lead to the same fi nal 
answer but yield vastly differing computational speeds. The fi rst method is 
simply to compute all the entries of all the Jacobians, multiply the Jacobians 
together and then multiply by the derivative of g . We then have to carry out k 
matrix multiplications each of which takes 43 multiplications.

A faster method is to multiply from left to right. The associativity of matrix 
multiplication guarantees that the same answer is obtained but at each stage 
we are multiplying a vector by a matrix so we have 42 multiplications per step 
instead of 43. Thus we set 

k
k

k
2
2

= X
g

,V

and 

k j k j
k j

k j
1

12

2
=- - -

-

-

X
X

-
V .V
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 COMPUTATIONS FOR MONTE CARLO VALUATION OF PENSION FUNDS 659

For a particular model, by studying the particular structure of Fk  –  j one can 
do better. For our model, most of the entries of the Jacobian are zero. One can 
explicitly compute the relationships between the entries of Vk  –  j  –  1 and Vk  –  j  . 
Before doing so, we observe that ij depends only on ij  –  1, fj on fj  –  1, RPIj on fj  –  1 
and RPIj  –  1, and Dj on Dj  –  1 and ij  –  1. This means that 

 ,j-k 2,j-
-

- RPI
V i

i
V i,k j k

k j

k j

k j

k j
1 0 0

1 12

2

2

2
=- -

- - -

-
+V , (3.4)

 ,k j 1-- V V, ,k j
k j

k j
k j

k j

k j
1 1

1
3

12

2

2

2
= +-

- -

-

-
- -

-f D
,fV f  (3.5)

 ,k j 2-- RPI
RPI

V,k j
k j

1 2
12

2
=-

- -

k j- ,V  (3.6)

 
-

- .V, ,k j k j
k j

k j
1 3 3

12

2
=- - -

-

D
DV  (3.7)

We only have six multiplications per step once the partial derivatives have been 
computed.

The partial derivatives are all straightforward:

 m

m 1-
( )i

i
,i m 12

2
= -1 k+ , (3.8)

 
m

m

1-
( ),f m 12

2
= -1 k+ ,f

f
 (3.9)

 RPI
RPI

( )
m

m
m

1
12

2
=

-
-1 f+ , (3.10)

 
RPI

RPI
m

m

12
2

=
-

m 1- ,f  (3.11)

 i1
1

m

m

m1 12
2

=
+- -D

D
, (3.12)

 2( )i1m

m m

1

1
2
2

= -
+-

-

m 1-

.
D D
i  (3.13)

To compute the sensitivities to state variables, on each path we therefore fi rst 
evolve forward in time computing all the cash-fl ows generated and storing the 
values of the partial derivatives of the state variables as we go. We then go 
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back along each path computing VN  –  j recursively for all j . Since the adjoint 
calculation for each gk is the same except for the number of steps, we add on 
the derivative of  gk when doing step k. Thus we only need to perform the 
adjoint multiplications once per step for each path.

This yields the derivatives of the discounted cash-fl ows with respect to the 
initial values of the state variables for each path. The overall derivative estimate 
is their average across many paths. In addition to fi nding the sensitivity to say 
the initial values of state variables, it is often necessary to analyse the effect of 
a change in a model parameter, such as an assumed age-specifi c mortality rate 
or set of mortality rates, at some future time. Quick calculations of such sen-
sitivities, using the method of adjoints, are given in the following section.

4. ADJOINT CALCULATIONS FOR MODEL PARAMETERS

In section 3, we studied the problem of computing sensitivities to the initial 
values of the state variables. However, we will also want sensitivities to the 
model’s parameters. In particular, if  we allow different parameters for each 
time step then we have 6N parameters. We will see in this section how to com-
pute all these sensitivities with only a small amount of additional effort.

Let q be a parameter of the evolution of Xj  –  1 to Xj  . Varying q will only 
affect the values of discounted cash-fl ows which depend on Xl for l  ≥  j . We can 
write the sensitivity for a given path as 

 
j

j

X
l

l j 2
2

2

2
=q q

$

g
.

X
W /

We can write 

 j .V
2

2
=q

j

q
X

W

The term Vj has already been computed for the state-variable sensitivity so the 
additional work is small.

Computation of the terms j

2

2

q

X
, are straight-forward. For the coeffi cients 

of the extended Vasicek processes, we have 

 k i
,

,
i

i2

2
m= -j 1-

j
j 1- ,

i

1j -
 (4.1)

 
j

k ,
j

i
12

2
= -

-

i

,im j 1- , (4.2)

 ,Wj 12

2
= -

ji

,is j 1-
 (4.3)
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 -
,

,
f

j
j f12

2
m= -f ,

f
k j 1-

j 1-
 (4.4)

 k
,

,
f

j
f2

2
= - ,

f
j 1m -

j 1-
 (4.5)

 j 1- .Z
,f

j

2

2
=

f

j 1-s  (4.6)

Note that RPI j and Dj do not have direct parameter dependence, since they 
are evolved as functions of  their previous value and ij and fj . They do, of 
course, have indirect dependence via the effects of parameters on ij and fj  .

The dependence on r is a little more interesting. Our random number 
generator will yield two independent random normals per step, A1, j and A2, j  . 
We typically set 

 A ,j j1= ,W  (4.7)

 Ar - .A1, ,j j j1 2r= + 2Z  (4.8)

We then have that the evolution of ij does not depend on r, but that the evolu-
tion of fj does. In particular,

 .A A
1

, ,j j1 22

2

r r

r
= -

-

j

2

Z

And so,

 1 .A A
1

, , ,
j

f j j j1 2 22

2

r r

r
-

-
-=

f
s f p  (4.9)

Since we are using the same r parameter for all steps, we obtain that the over-
all r sensitivity is 

 j .
j

j

2

2

r
X

V/

So far our analysis has produced sensitivities of valuation results to changes in 
the values of state variables and to changes in the values of model parameters. 
We can also investigate how our valuation result changes when more basic 
product design changes are made. The calculation of these sensitivities, using 
the method of adjoints, is discussed in the next section.
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5. PAY-OFF SENSITIVITIES

As well considering sensitivities to changes in our model state variables and 
parameters, we may also wish to know how changing the specifi cation of our 
product changes its value. In this section, we address the problem of computing 
sensitivities to the pay-off specifi cation. If  we are using deterministic survival 
probabilities, it is also more effective from a computational perspective to 
consider them as part of the product specifi cation. Thus our product pays a 
sequence of discounted cash-fl ows (possibly positive or negative),

 fl ( , )g lX

and we want to know the derivatives of the expected pay-off with respect to f. 
In fact, provided the functions gl are Lipschitz continuous we can simply dif-
ferentiate the pay-offs and compute 

 
r

l

l

N

1 2
2g

=
f/

for each path and average.
For example, if  

gl   =   RPIl Dl Sl Pl C0 ,

then we would have 

 llRPIC D S Pl
l l

02
2

= ,
g

 (5.1)

 lRPI D P C,
k

l
l k l l 02

2
d= ,S

g
 (5.2)

 RPI D S C,
k

l
l k l l l 02

2
d=P ,

g
 (5.3)

where dl, k equals 1 if  l  =  k, and zero otherwise.

6. EXAMPLE

Consider a defi ned benefi t superannuation fund. Our model for the value of 
this fund follows those described in Neill (1977). The member joins at age 20 
and remains a contributing member to the fund until age 60 or earlier death. 
Contributions to the fund are a percentage of  annual salary taken for this 
example to be 5%. Beyond age 60, the member withdraws money from the fund 
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equal to some proportion of the member’s fi nal average salary each year con-
tingent on survival. This salary withdrawal rate is again taken to be 5% per 
annum for this example. Salary increases in line with infl ation where infl ation 
is modeled using (2.2). We have chosen f0  =  0.05, mf, j  =  0.05, kf, j  =  –  0.3 and 
sf, j  =  0.01. Survival probabilities for the member are set equal to those in the 
2000-2002 Australian life tables. The cash infl ows and outfl ows from the fund 
are discounted back to the fund opening date using an annual effective rate of 
interest modeled using (2.1). We have chosen i0  =  0.05, mi, j  =  0.05, ki, j  =  –  0.3 
and si, j  =  0.01. This present value is a measure of the fi nancial viability of the 
fund as it indicates the ability of the fund to meet its future fi nancial obligations. 
We study the sensitivity of this present value to changes in: the current level 
of interest rates, the current level of infl ation, the annual salary contribution per-
centage made during the working life of the member, the percentage of fi nal 
average salary withdrawn from the fund during retirement and a decrease in 
the annual force of mortality across all ages. These sensitivities are either an 
immediate output of the methodology presented in Sections 3, 4 and 5 or are 
obtained as simple linear combinations of sensitivity outputs obtained in those 
sections.

The results of this sensitivity analysis are given in Table 1. Immediate from 
these results is that assumptions relating to salary, both rate of contribution 
and rate withdrawn during retirement have the most signifi cant effect on the 
valuation result. The valuation result here is positive when we project that the 
retirement benefi t commitments of  the fund will be able to be met by the 
accumulated value of salary contributions. We note also that the impact of 
higher investment returns leads to an increased ability of the fund to meet its 
commitments, however the sensitivity of the valuation result in this instance 
is materially lower than in the case of salary rate contributions. Positive infl ation, 
which is applied to the salary levels in our model, affects the ability of the fund 
to meet its commitments adversely, as shown by the negative sensitivity result 
in Table 1. Finally, the impact of a reduction in the mortality rate levels across 
all ages reduces the ability of the fund to meet its commitments due to the 
resulting longer period of  retirement benefi t payments. Mortality rates 
improvement of 1% has the lowest impact on our valuation result. It would 
be worth noting that mortality rates have been shown, using empirical studies, 

TABLE 1

PARAMETER SENSITIVITIES FOR THE PENSION FUND VALUE

Change to Actuarial Basis Sensitivity FD sensitivity

Interest Rates: +1% – 0.0223 – 0.0223

Infl ation Rate: +1%  0.0223  0.0223

Salary contribution: +1%  0.3927  0.3927

Force of mortality: – 1% – 0.0042 – 0.0042

Salary withdrawal: +1% – 0.2099 – 0.2099
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for example Lee and Carter (1992), to have different rates of improvement at 
different ages. The sensitivity of a valuation result to differing mortality rate 
improvement levels at different ages can be calculated using the adjoint meth-
odology given here. 

In Table 1, we also present a comparison against numbers computed using 
fi nite differencing labelled “FD”. As expected, these numbers are identical 
showing that the use of the adjoint method has caused no change in accuracy. 
We will discuss this comparison further in Section 7. 

Results providing information on the relative importance of assumptions 
and other model parameters can be found very quickly. The sensitivity of valu-
ation results to multiple changes in the model parameters or actuarial basis 
can be determined as linear combinations of the sensitivities reported above. 

7. ADJOINTS VERSUS FINITE DIFFERENCING

The obvious naive method to compute sensitivities is to bump a parameter a 
small amount, recompute the price and compute the fi nite difference sum. 
Thus if  our parameter is q, we compute 

 
Value(0, ) Value(0, )

.h
hq q+ -

If  the estimate of the value on path s is Values (0, q) then we can write our 
fi nite difference estimate of the sensitivity using M paths as 

 Value ( ) Value ( )Mh
1

s
s

M

s
s

M

1 1= =

, ,h0 0q q+ - ,e o/ /

which equals 

 s sValue (0, ) Value (0, ) .Mh h1
s

M

1
q q+ -

=
^ h/

Provided the Values (0, q), is twice continuously differentiable as a function of 
q, then this is equal to O

 0,s O
Value

( ) ( ) .M
1

s

M

1 2
2

q +
=

hq/

For h small this means that the fi nite difference estimate will agree with the 
path-wise adjoint method on every path except for a very small discretization 
bias. This has two immediate consequences. First, when testing the implemen-
tation the fact that the two methods agree on every path means that errors are 
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easy to discover. Second, the standard error of the Monte Carlo simulation 
for estimating the path-wise sensitivity will have almost the same standard 
error as that for the fi nite differencing. We therefore do not lose (or gain) 
anything in terms of convergence rate as a function of the number of paths 
by using the adjoint method.

In fact, the path-wise method can be applied even when the pay-off is not 
twice-differentiable. The crucial fact required is that the evaluation of the pay-
off is Lipschitz continuous in the parameter to be differentiated. We refer the 
reader to Glasserman (2004), Section 7.2.2 for further details.

When using fi nite differencing, however, we must run an extra simulation 
for every sensitivity, and two simulations if  we choose to use centred differenc-
ing to minimize discretization bias. Thus to compute 720 sensitivities it will 
take 720 times as long as computing the price.

With the adjoint method, the time increase is very small by comparison. The 
reason being that the recursive computations used as detailed in Section 3 are very 
simple, requiring only an extra 18 multiplications for each step of very path to 
compute the state variable sensitivities. For the parameter sensitivities, each one 
only requires a small number of additional fl oating point operations per path. 

For example, a pension was priced using 216 paths with N  =  90. The simu-
lation was implemented using single-threaded C++ on a Quad-Core Xeon. 
The time taken to obtain the price was 1.32 seconds. To obtain the price and 
724 sensitivity numbers took 2.06 seconds. Thus computing all possible sensi-
tivities took less time than computing one sensitivity using fi nite differencing. 
We present the time taken to compute all sensitivities as a function of the number 
of years with 216 paths in Table 2. We see that the time taken is approximately 
linear in the number of time periods. 

We do not present comparisons of the standard errors, since as noted above 
they would be almost identical.

TABLE 2

TIME TAKEN TO COMPUTE PRICE AND ALL SENSITIVITIES

AS A FUNCTION OF THE NUMBER OF YEARS

N Time taken

10 0.252

20 0.5

30 0.688

40 0.936

50 1.124

60 1.44

70 1.624

80 1.816

90 2.064
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8. SCOPE OF THE METHOD

We have considered a case where the state variables evolve via normal incre-
ments and the cash-fl ows are continuous functions of these variables. We now 
discuss how generally the method applies. The crucial assumption is that the 
evolution of  the state variables is given by a differentiable function of  the 
previous variables and parameters of interest. Thus we must have a sequence 
of maps 

 Fj  : Xj  –  1   7   Xj

such that we can write 

 Xj   =   Fj  (Xj  –  1, qj , Zj ),

where qj are the parameters of  interest and Zj are random variables drawn 
from some fi xed distribution, with Fj a differentiable function of Xj and qj .

The results in Griewank (2000) then guarantee that is possible to carry out 
the adjoint computation in a fi xed fi nite multiple of the original time to com-
pute the value of the fund. In practice, one would decompose the maps Fj into 
simpler maps until the adjoint calculation was simple enough to make this 
straightforward. 

For example, it would be a simple extension to add an extra state-variable 
representing the value of an investment fund following a process such as 

 log  Sj  +  1   =   log  Sj  +  aj  ij  +  bj fj  +  gj  +  sj Qj

with Qj a normal random variable (or, indeed, any random variable from a 
fi xed distribution). 

In practice, Fj may represent an approximation to the true evolution; we 
are differentiating a discretization of the model, not the mathematical model 
itself. This rules out simulation techniques where a small change in parameters 
or variables can causes a jump in value. For example, acceptance-rejection methods 
are not compatible with this approach. 

Our secondary requirement is that the cash-fl ows be Lipschitz continuous: 
a cash-fl ow which jumps in value will break the method. The method can be 
extended to such cases; however, the theory becomes considerably more 
involved. We refer the reader to Chan-Joshi (2009) for a discussion of such an 
extension in a different context. 

9. CONCLUSION

This paper has applied the method of adjoints, recently used for very effi cient 
calculations of sensitivities of derivatives prices, to assessing sensitivities of 
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valuation results for pension funds. The method is extremely fast computation-
ally and enables actuaries to focus more of their time on the actuarial judg-
ments associated with selecting a valuation basis in life and non-life assurance 
as well as pensions, than on computations. We have shown that the method 
quickly produces a vast number of  sensitivities which can be combined in 
many ways to assess the effect on valuation results of a wide range of possible 
scenarios. 
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