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Abstract. Let f be a [-10.5pc]C2 diffeomorphism on a compact manifold. Ledrappier and

Young introduced entropies along unstable foliations for an ergodic measure µ. We relate

those entropies to covering numbers in order to give a new upper bound on the metric

entropy of µ in terms of Lyapunov exponents and topological entropy or volume growth

of sub-manifolds. We also discuss extensions to the C1+α , α > 0, case.
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1. Introduction
Entropy is a fundamental invariant in dynamics. It can be defined in the topological,

ergodic or differentiable categories and quantifies the dynamical complexity. The classical

result on the connection between entropy and Lyapunov exponents is the Margulis–Ruelle

inequality [17]. It states that for a C1 map f on a compact manifold M and an ergodic

invariant Borel probability measure µ,

h(f , µ) ≤

u∑

i=1

λi(f , µ) · dim Ei ,

where λi(f , µ), 1 ≤ i ≤ u, are the positive Lyapunov exponents and Ei , 1 ≤ i ≤ u, are

the corresponding Oseledec’s vector bundles. As perhaps first observed by Katok, this

inequality implies that measures with positive entropy of surface diffeomorphisms are

hyperbolic, i.e., without zero Lyapunov exponents. Katok [6] was then able to analyze

such dynamics using Pesin theory in the C1+α setting.

Also using Pesin theory, Newhouse [12] proved another bound for the entropy of

an ergodic measure by the volume growth of sub-manifolds which are transverse to its

stable manifolds. In the C1 setting with dominated splitting, without using Pesin theory,
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Saghin [18] and Guo et al [5] bounded above the metric entropy by a mixture between

the positive Lyapunov exponents and the volume growth of some sub-manifold. By using

Ledrappier and Young’s result [11], Cogswell [3] proved that the volume growth of

local unstable manifolds is larger than the metric entropy. Cogswell’s proof assumes C2

smoothness since this is required in Ledrappier and Young’s work. On the topological side,

for C1+α diffeomorphisms, Przytycki [14] proved that the topological entropy is bounded

above by the growth rate of some differential forms. Later Kozlovski [8] showed that it is

an equality if the system is C∞.

In this paper, we generalize Cogswell’s idea from [3] to establish a more general upper

bound for C2 systems without assuming dominated splitting. We bound the entropy of a

measure by a combination of Lyapunov exponents (as in Ruelle’s inequality) and various

growths of unstable manifolds such as volume growth (as in Newhouse’s inequality [12]).

In a forthcoming work, we will use this new bound to extend the previously mentioned

Katok’s hyperbolicity argument beyond dimension two.

Our proof is a combination of Ledrappier and Young’s entropy formula [11] and Pesin

theory. We also discuss some extensions for hyperbolic measures in the C1+α case.

MAIN THEOREM. Let f be a C2 diffeomorphism on a compact manifold M and let µ

be any ergodic, invariant probability measure. Consider its positive Lyapunov exponents
λ1 > · · · > λu and the corresponding ith local unstable manifolds W i

loc(x) for almost
every x ∈ M and i = 1, . . . , u.

Then the entropy h(f , µ) is bounded, for any index 1 ≤ i ≤ u, by the sum of the
almost everywhere volume growth of W i

loc(x) and the transverse Lyapunov exponents
λi+1, . . . , λu, repeated according to multiplicity.

In this inequality, the volume growth can be replaced by fibered entropy or topological
entropy of W i

loc(x).

We give complete and precise statements in the next section after introducing the

required notions. See in particular Theorem B.

1.1. Definitions. Let f be a C1+α (α > 0) diffeomorphism on a compact manifold M ,

that is, f is differentiable and its differential is Hölder-continuous with some positive

exponent α. Let µ be an ergodic probability measure. Oseledec’s theorem [13] states that

there are an invariant measurable subset Rµ with full measure, an invariant measurable

decomposition TRµM = E1 ⊕ E2 ⊕ · · · ⊕ El and finitely many numbers λ1 > λ2 >

· · · > λl such that for any x ∈ Rµ and any non-zero vector v ∈ E
j
x , we have

lim
n→±∞

1

n
log‖Df n

x (v)‖ = λj .

We list the positive Lyapunov exponents as λ1 > λ2 > · · · > λu. By Pesin theory, for

1 ≤ i ≤ u and for any x ∈ Rµ, the ith global unstable manifold

W i(x) ,

{
y ∈ M

∣∣∣∣ lim sup
n→+∞

1

n
log d(f −n(x), f −n(y)) ≤ −λi

}

is a C1+α immersed sub-manifold.
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We define the ith local unstable manifold,

W i
ρ(x) , connected part of W i(x) ∩ B(x, ρ) containing x,

where B(x, ρ) is the ball centered at x with radius ρ. At each x ∈ Rµ, we fix a positive

number r(x) such that W i
r(x)

(x) is an embedded sub-manifold. We remark that by Pesin

theory (see [4, Theorem 16, p. 195]), the function r : Rµ → (0, +∞) can be chosen in a

measurable way.

Definition 1.1. Let f be a C1+α diffeomorphism on a compact manifold M and let µ be

an invariant measure. For 1 ≤ i ≤ u, we say that a measurable partition ξ i is subordinate
to W i if for µ-almost every x:

• ξ i(x) ⊂ W i(x);

• ξ i(x) contains an open neighborhood of x with respect to the intrinsic topology on

W i(x).

Remark 1.2.

• We refer to [15] for background on measurable partitions and associated systems of

conditional measures.

• Lemma 9.1.1 in [11] shows the existence of increasing subordinate measurable

partitions. Here a partition η is called increasing if η(x) ⊂ f (η(f −1(x))) for µ-almost

every x.

From now on, we fix a family of measurable partitions {ξ i}1≤i≤u subordinate to

{W i}1≤i≤u. For 1 ≤ i ≤ u, let {µi
x} be the family of conditional measures with respect

to the measurable partition ξ i . Ledrappier and Young [11] have defined the entropy along
the ith unstable foliation hi(f , µ) (for more detail, see Proposition 2.6) by a fibered version

of Brin and Katok’s formula, namely:

hi(f , µ) , lim
τ→0

lim inf
n→+∞

−
1

n
log µi

x(V
i(x, n, τ)),

where

V i(x, n, τ) , {y ∈ W i
r(x)(x)| d(f j (x), f j (y)) ≤ τ , 0 ≤ j ≤ n − 1}.

We remark that here in the definition of the dynamical ball V i(x, n, τ), we use the

global metric d on M , unlike the definition in [11] that uses the intrinsic metric on the

sub-manifold W i(x). But since we only consider the case when τ → 0, our definition of

hi(f , µ) coincides with theirs.

The volume of a sub-manifold γ ⊂ M of constant dimension is denoted by Vol(γ ). The

lower volume growth of such a sub-manifold γ ⊂ M with Vol(γ ) < ∞ is

v(f , γ ) , lim inf
n→∞

1

n
log+ Vol(f n(γ )),

where log+ a = max{0, log a}.

We now introduce the key concepts of our results. They are well defined by Lemma 2.1

in §2.

https://doi.org/10.1017/etds.2021.2 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.2


Entropies and volume growth of unstable manifolds 1579

Definition 1.3. Given 1 ≤ i ≤ u, the µ-almost everywhere lower volume growth rate of
W i is the µ-almost everywhere value of

vi(f , µ) , inf
ρ

v(f , W i
ρ(x)).

Let E(n, ε, γ ) denote a maximal (n, ε) separated subset of a C1 sub-manifold γ . For

the definitions of separated subset and some other basic concepts in ergodic theory, see the

book [19].

Definition 1.4. Given 1 ≤ i ≤ u, the µ-almost everywhere lower topological entropy of
W i is the µ-almost everywhere value of

hi
top(f , µ) , inf

ρ
lim
ε→0

lim inf
n→+∞

1

n
log #E(n, ε, W i

ρ(x)).

Remark 1.5. Recall that the topological entropy of W i
ρ(x) is

htop(f , W i
ρ(x)) , lim

ε→0
lim sup
n→+∞

1

n
log #E(n, ε, W i

ρ(x)).

Hence we have hi
top(f , µ) ≤ infρ htop(f , W i

ρ(x)) for any x ∈ Rµ. Note that infρ htop

(f , W i
ρ(x)) is also µ-almost everywhere constant.

For 1 ≤ i ≤ u, x ∈ Rµ and λ > 0, define

Nλ(µi
x , n, ε) , min

{
#C ⊂ Rµ : µi

x

( ⋃

y∈C

V i(y, n, ε)

)
≥ λ

}
.

Definition 1.6. Given 1 ≤ i ≤ u, the upper fibered Katok entropy of W i is the µ-almost

everywhere value of

h
K

i (f , µ) , inf
λ

lim
ε→0

lim sup
n→+∞

1

n
log Nλ(µi

x , n, ε).

Similarly, the lower fibered Katok entropy of W i is the µ-almost everywhere value of

hK
i (f , µ) , inf

λ

lim
ε→0

lim inf
n→+∞

1

n
log Nλ(µi

x , n, ε).

Remark 1.7. The above definition is analogous to the formula of Katok in [6], expressing

the metric entropy as the growth rate of the cardinality of maximal separated sets.

1.2. Main results. From now on, when we mention a C1+α diffeomorphism, we always

assume that α > 0.

THEOREM A. Let f be a C1+α diffeomorphism on a compact manifold M . Let µ be an
ergodic measure. List the positive Lyapunov exponents of µ as λ1 > λ2 > · · · > λu > 0.
Then, for 1 ≤ i ≤ u, the entropy along the ith unstable foliation satisfies:

(1) hi(f , µ) = hK
i (f , µ) = h

K

i (f , µ);
(2) hi(f , µ) ≤ hi

top(f , µ);
(3) hi(f , µ) ≤ vi(f , µ).
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Let h(f , µ) be the entropy of µ. When f is C2, Ledrappier and Young have shown the

following entropy formula [11, Theorem C]: for any 1 ≤ i ≤ u,

h(f , µ) = hi(f , µ) +

u∑

j=i+1

λj · γj ,

where γ1, . . . , γu are some transverse dimensions satisfying γj ≤ dim Ej . Therefore,

Theorem A immediately implies the following result.

THEOREM B. Let f be a C2 diffeomorphism on a compact manifold M . Let µ be an
ergodic measure. List the positive Lyapunov exponents of µ as λ1 > λ2 > · · · > λu. Then,
for 1 ≤ i ≤ u,

h(f , µ) = hK
i (f , µ) +

u∑

j=i+1

λj · γj ,

h(f , µ) ≤ hi
top(f , µ) +

u∑

j=i+1

λj · γj ,

h(f , µ) ≤ vi(f , µ) +

u∑

j=i+1

λj · γj .

The above contains the Main Theorem from the introduction.

When the measure µ is hyperbolic, i.e., when µ has no zero Lyapunov exponents, the

result in Theorem B is true for i = u without the C2 assumption.

THEOREM C. Let f be a C1+α diffeomorphism on a compact manifold M . Let µ be an
ergodic measure. If µ is hyperbolic, then

hu(f , µ) = h(f , µ).

Remark 1.8. As a consequence of Theorems A and C,

h(f , µ) = hK
u (f , µ) = h

K

u (f , µ).

Moreover, this quantity is bounded above both by hu
top(f , µ) and by vu(f , µ).

1.3. Remarks. Let us explain our motivation beyond the desire to prove natural

inequalities.

Theorem B will be used in a forthcoming work to study some entropy-hyperbolic

diffeomorphisms (as suggested by Buzzi [2]). More precisely, we will find a non-empty

C∞ open set of diffeomorphisms which are not uniformly hyperbolic but whose ergodic

measures of entropy close to the topological entropy are nevertheless hyperbolic and of

given index.

Theorem C extends by a simple argument the Ledrappier–Young entropy formula in the

C1+α setting assuming hyperbolicity. This is used in some ongoing work by other authors

(J. Buzzi, S. Crovisier and O. Sarig).

Note that Brown [1] gave this C1+α generalization without the hyperbolicity assump-

tion. More precisely, he gave a proof of a uniform bi-Lipschitz property of the stable
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holonomies inside center-unstable manifolds. However, his argument is technical and only

a preprint at the time we are writing this. Hence we believe that our simple, half-page

argument has some interest.

2. Basic properties
In this section, we list some basic results that will be used later.

LEMMA 2.1. Let f be a C1+α diffeomorphism on a compact manifold M . Let µ be an
ergodic measure. Then the following four functions are constant almost everywhere.

inf
ρ

v(f , W i
ρ(x)),

inf
ρ

lim
ε→0

lim inf
n→+∞

1

n
log #E(n, ε, W i

ρ(x)),

inf
λ

lim
ε→0

lim sup
n→+∞

1

n
log Nλ(µi

x , n, ε),

inf
λ

lim
ε→0

lim inf
n→+∞

1

n
log Nλ(µi

x , n, ε).

Proof. We first explain the measurability of these functions.

Since the infimum or the limit of a sequence of measurable functions is also measurable,

it is enough to check that Vol(f n(W i
ρ(x))), E(n, ε, W i

ρ(x)), Nλ(µi
x , n, ε) are measurable

with respect to x.

Recall that a result of Pesin theory gives that the ith local unstable manifold W i
ρ(x)

varies measurably with respect to x (see [4, Theorem 16, p. 195]). This gives the

measurability of Vol(f n(W i
ρ(x))) and E(n, ε, W i

ρ(x)) by noting that the composition of

measurable functions is still measurable. Since the family of conditional measures µi
x of µ

(with respect to measurable subordinate partitions; see Definition 1.1) varies measurably

with respect to x, one can get that Nλ(µi
x , n, ε) is also measurable.

Once we get the measurability, one can check that these functions are f -invariant.

Hence, by ergodicity, they are constant almost everywhere.

Recall that r(x) > 0, x ∈ Rµ is such that W i
r(x)

(x) is an embedded sub-manifold.

Indeed, by Pesin theory, we can assume for any x ∈ Rµ, r(x) is such that

lim
n→+∞

1

n
log r(f n(x)) = 0.

In light of this, we introduce in the following a collection of results in classical Pesin

theory. For more detail, see [11, §8] and [9, Proposition 3.3] (which originates from Part I

in [7]).

LEMMA 2.2. Let f be a C1+α diffeomorphism on a compact manifold M and let µ be
an ergodic measure. List the positive Lyapunov exponents of µ as λ1 > λ2 > · · · > λu.
For any ε > 0, we can find an increasing sequence of measurable sets 3ε

1 ⊂ 3ε
2 ⊂ · · · ⊂

3ε
k · · · ⊂ Rµ and a sequence of numbers {rk}k≥1 with 0 < rk < 1 and rk → 0 such that:

•

⋃
k 3ε

k = Rµ;
• f n(3ε

k) ⊂ 3ε
k+n for all k, n ≥ 1;

https://doi.org/10.1017/etds.2021.2 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.2


1582 Y. Zang

• for any x ∈ 3ε
k , rk ≤ r(x) and any y ∈ W i

rk
(x), 1 ≤ i ≤ u,

d(f −n(x), f −n(y)) ≤ r−1
k e−n(λi−ε)d(x, y) for all n ≥ 0;

• there is a constant K such that for k ≥ 1, x ∈ 3ε
k , ρ ≤ rk and 1 ≤ i ≤ u,

Vol(W i
ρ(x)) ≤ K · ρ

∑i
j=1 dim Ej

;

• e−ε ≤ rk+1/rk ≤ eε for all k ≥ 1.

Remark 2.3.

• Here, for example, one can choose rk = e−εk .

• Note that W i(x) is tangent to
∑i

l=1 dim El
x at x. These small numbers {rk}k≥1 indicate

the size of Pesin charts. When W i
ρ(x) is in the Pesin chart of x, we can assume that

it is contained in a small cone around x and therefore its volume is determined by its

radius up to a uniform constant K .

A result of standard Pesin theory (e.g., remarks below Lemma 2.2.3 in [10]) shows the

following lemma.

LEMMA 2.4. Let f be a C1+α diffeomorphism on a compact manifold M and let µ be
a hyperbolic ergodic measure. Given ε > 0 and x ∈ Rµ, assume that x ∈ 3ε

k for some k.
Then

Scu(x) ⊂ Wu(x) where Scu(x) , {y ∈ M | d(f −n(x), f −n(y))

≤ rke
−nε for all n ≥ 0}.

Remark 2.5. Roughly speaking, Scu(x) above is just the set of points whose backward

trajectory always stays in the same Pesin chart of the backward trajectory of x. Hence,

in general, Scu(x) is the local center unstable manifold of x. But, when the measure is

hyperbolic, the above lemma says that Scu(x) reduces to the local unstable manifold.

For two measurable partitions ξ and η, ξ ∨ η denotes the partition {ξ(x) ∩ η(x)}x∈Rµ

and ξ+ = ∨+∞
n=0f

nξ . Let Hµ(ξ |η) denote the mean conditional entropy and let hµ(f , ξ)

denote the entropy of ξ with respect to f (i.e., hµ(f , ξ) , Hµ(ξ |f (ξ+))). We note that

if ξ is an increasing partition (i.e., ξ(x) ⊂ f (ξ(f −1(x))) for µ-almost every x), we have

hµ(f , ξ) = Hµ(ξ |f ξ).

The following result of Ledrappier and Young justifies the definition of the entropies

along unstable foliations.

PROPOSITION 2.6. [11, Proposition 7.2.1] Let f be a C1+α diffeomorphism on a compact
manifold M and let µ be an ergodic measure. For 1 ≤ i ≤ u and for any increasing
partition ξ i subordinate to W i and for µ-almost every point x,

hi(f , µ) , lim
τ→0

lim inf
n→+∞

−
1

n
log µi

x(V
i(x, n, τ))

= lim
τ→0

lim sup
n→+∞

−
1

n
log µi

x(V
i(x, n, τ)) = Hµ(ξ i |f ξ i).
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Remark 2.7.

• Note that the functions of x that appear in Proposition 2.6 are f -invariant and therefore

constant µ-almost everywhere. They do not depend on the choice of the subordinate

partition ξ i . So it is proper to denote them by hi(f , µ). See Lemma 3.12 in [10] for

more detail.

• Ledrappier and Young [11] assumed C2 smoothness. But their proof of Proposition 2.6

in their §9 only uses Pesin theory and C1+α smoothness.

We say that η is finer than ξ , denoted by ξ ≤ η, if η(x) ⊂ ξ(x) for µ-almost every x.

For partitions with finite mean entropy, the finer partition has larger entropy. The following

is an extension of this property to non-finite partitions.

LEMMA 2.8. [16, Property 8.7] Let f be a homeomorphism on a compact metric space X.
Assume that µ is an f -invariant probability measure. Let ξ , η be two measurable partitions
(possibly with infinite mean entropy) with η being finer than ξ . If the mean conditional
entropy Hµ(η | f (ξ+)) is finite, then hµ(f , ξ) ≤ hµ(f , η).

Remark 2.9. Rohlin’s article [16] mainly discusses entropy theory for endomorphisms

where most definitions and properties are stated by using f −1. Since here we assume that

f is a homeomorphism, our statement is parallel to the original statement of Property 8.7

in [16].

LEMMA 2.10. Let f be a homeomorphism on a compact metric space X. Assume that µ

is an f -invariant probability measure. Let ξ , η be two increasing measurable partitions
with hµ(f , ξ) < +∞, hµ(f , η) < +∞. Then, for any integer n ≥ 1,

hµ(f , ξ ∨ η) = hµ(f , ξ ∨ f nη).

Proof. Since ξ , η are increasing, for any n ≥ 1, we have

f nξ ∨ f nη ≤ ξ ∨ f nη ≤ ξ ∨ η.

In order to apply Lemma 2.8, we note that

Hµ(ξ ∨ η | f ((ξ ∨ f nη)+)) = Hµ(ξ ∨ η | f ξ ∨ f n+1η)

= Hµ(ξ | f ξ ∨ f n+1η) + Hµ(η | ξ ∨ f n+1η)

≤ Hµ(ξ | f ξ) + Hµ(η | f n+1η)

= hµ(f , ξ) + nhµ(f , η)

< +∞.

By Lemma 2.8, we have

hµ(f , ξ ∨ f nη) ≤ hµ(f , ξ ∨ η).

To conclude, we prove the converse inequality by applying the previous one to ξ1 = f nη

and η1 = ξ , obtaining

hµ(f , ξ ∨ η) = hµ(f , f nξ ∨ f nη) ≤ hµ(f , ξ ∨ f nη).
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The following is an extension of [10, Lemma 3.1.2]. The main difference is that here we

only assume that one of the two partitions is subordinate. The proof is essentially identical

to [10, Lemma 3.1.2]. For completeness, we present it.

LEMMA 2.11. Let f be a C1+α diffeomorphism on a compact manifold M and let µ be an
ergodic measure. Let ξu be an increasing partition subordinate to Wu. Assume that β is a
measurable partition satisfying:

(1) β is increasing;
(2) for µ-almost every x, β(x) ⊂ Wu(x);

(3) for µ-almost every x, diam((f −n(β))(x)) → 0.

Then

hµ(f , ξu ∨ β) = hµ(f , β).

Proof. Since both ξu and β are increasing and their entropies with respect to f and µ are

finite, by Lemma 2.10, for any n ≥ 1, we have

hµ(f , ξu ∨ β) = hµ(f , (f nξu) ∨ β)

= Hµ((f nξu) ∨ β | (f n+1ξu) ∨ fβ)

= Hµ(β | (f n+1ξu) ∨ fβ) + Hµ(f nξu | (f n+1ξu) ∨ β)

= Hµ(β | (f n+1ξu) ∨ fβ) + Hµ(ξu | (f ξu) ∨ f −nβ).

By the third assumption on β, f −nβ tends increasingly to the partition ε into points.

Note that Hµ(ξu | (f ξu) ∨ f −nβ) ≤ Hµ(ξu | f ξu) < +∞, by [16, Property 5.11]; the

second term Hµ(ξu | (f ξu) ∨ f −nβ) above goes to Hµ(ξu | ε) = 0 as n → +∞. So it

is sufficient to prove that Hµ(β | (f n+1ξu) ∨ fβ) → H(β | fβ) = hµ(f , β). First note

that

Hµ(β | (f n+1ξu) ∨ fβ) ≤ H(β | fβ).

Write the conditional measures of µ with respect to (f n+1ξu) ∨ fβ as {µn
x}x∈M and

the conditional measures with respect to fβ as {µx}x∈M . By definition,

Hµ(β | (f n+1ξu) ∨ fβ) =

∫
−log µn

x(β(x)) dµ(x),

H(β | fβ) =

∫
−log µx(β(x)) dµ(x).

Let

�n = {x | fβ(x) ⊂ f n+1ξu(x)}.

Since ξu(x) contains an open neighborhood of x in Wu(x) with respect to the sub-manifold

topology, by assumptions 2 and 3 on β, {�n} is a non-decreasing sequence and

µ(�n) → 1 as n → +∞. For x ∈ �n, by definition, (f n+1ξu)(x) ∩ (fβ)(x) = (fβ)(x).

Then one can show that this implies that

−log µn
x(β(x)) = −log µx(β(x)) for µ-almost every x ∈ �n.
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Hence the non-negative functions {−log µn
(·)(β(·))} tend pointwise to −log µ(·)(β(·)).

By Fatou’s lemma,

lim
n→+∞

Hµ(β | (f n+1ξu) ∨ fβ) ≥ H(β | fβ).

3. Proof of Theorem A
We prove the assertions in Theorem A one by one.

3.1. hi(f , µ) = hK
i (f , µ) = h

K

i (f , µ).
We first prove that hi(f , µ) ≤ hK

i (f , µ).

By Proposition 2.6 and by removing a set of zero measure from Rµ if necessary, we can

assume that

lim
ε→0

lim sup
n→+∞

−
1

n
log µi

x(V
i(x, n, ε)) = lim

ε→0
lim inf
n→+∞

−
1

n
log µi

x(V
i(x, n, ε))

= hi(f , µ) for all x ∈ Rµ.

We write hi(f , µ) as hi for short.

For any η, ε > 0, define

1ε
η ,

{
x ∈ Rµ

∣∣∣∣ lim inf
n→+∞

−
1

n
log µi

x(V
i(x, n, 2ε)) > hi − η

}
.

Then
⋃

ε>0 1ε
η = Rµ.

For j ∈ N and p ∈ 1ε
η, define

1ε
η(p, j) , {x ∈ 1ε

η| µi
p(V i(x, n, 2ε)) ≤ e−n(hi−η) for all n ≥ j}.

By definition,

1ε
η(p, j) ⊂ 1ε

η(p, j + 1), µi
p

( ⋃

j

1ε
η(p, j)

)
= µi

p(1ε
η).

Fix any λ > 0 and p ∈ Rµ. Choose ε small enough and N large enough such that

µi
p(1ε

η(p, j)) ≥ 1 −
λ

2
for all j ≥ N .

For n ∈ N, let Cn ⊂ Rµ be a subset such that #Cn = Nλ(µi
p, n, ε) and µi

p(
⋃

y∈Cn
V i(y, n,

ε)) ≥ λ. Hence we have

µi
p

(
1ε

η(p, n) ∩

( ⋃

y∈Cn

V i(y, n, ε)

))
≥

λ

2
for all n ≥ N .

Let An ⊂ Cn be such that for each y ∈ An, we have V i(y, n, ε) ∩ 1ε
η(p, n) 6= ∅. For

y ∈ An, we fix any ỹ ∈ V i(y, n, ε) ∩ 1ε
η(p, n). Then we have

V i(y, n, ε) ⊂ V i(ỹ, n, 2ε).
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Hence, for n ≥ N ,

λ

2
≤ µi

p

( ⋃

y∈An

V i(ỹ, n, 2ε)

)
≤ Nλ(µi

p, n, ε) × sup
x∈1ε

η(p,n)

µi
p(V i(x, n, 2ε))

≤ Nλ(µi
p, n, ε) × e−n(hi−η).

Therefore, for any ε small enough (depending on η) and n large enough,

Nλ(µi
p, n, ε) ≥

λ

2
· en(hi−η).

Then, by the arbitrariness of η and λ, we get

hi(f , µ) ≤ inf
λ

lim
ε→0

lim inf
n→+∞

1

n
log Nλ(µi

p, n, ε) = hK
i (f , µ).

Next we prove that hi(f , µ) ≥ h
K

i (f , µ). The arguments are similar to above.

For any η, ε > 0, define

�ε
η ,

{
x ∈ Rµ

∣∣∣∣ lim sup
n→+∞

−
1

n
log µi

x

(
V i

(
x, n,

ε

2

))
< hi + η

}
.

Then
⋃

ε>0 1ε
η = Rµ.

For j ∈ N and p ∈ 1ε
η, define

�ε
η(p, j) ,

{
x ∈ 1ε

η

∣∣∣∣ µi
p

(
V i

(
x, n,

ε

2

))
≥ e−n(hi+η) for all n ≥ j

}
.

By definition,

�ε
η(p, j) ⊂ �ε

η(p, j + 1), µi
p

( ⋃

j

�ε
η(p, j)

)
= µi

p(�ε
η).

Fix any λ > 0 and p ∈ Rµ. Choose ε small enough and N large enough such that

µi
p(�ε

η(p, j)) ≥ λ for all j ≥ N .

For n ∈ N, let Fn ⊂ �ε
η(p, n) be a maximal (n, ε) separated set of �ε

η(p, n) ∩ ξ i(p).

Then {V i(y, n, ε)}y∈Fn covers �ε
η(p, n) ∩ ξ i(p). Hence #Fn ≥ Nλ(µi

p, n, ε). And we

also have

y1, y2 ∈ Fn, y1 6= y2 H⇒ V i

(
y1, n,

ε

2

) ⋂
V i

(
y2, n,

ε

2

)
= ∅.

Hence, for n ≥ N ,

Nλ(µi
p, n, ε) ≤ #Fn ≤

1

supx∈�ε
η(p,n) µi

p(V i(x, n, (ε/2)))
≤ en(hi+η).

Then, by the arbitrariness of η and λ, we get

hi(f , µ) ≥ inf
λ

lim
ε→0

lim sup
n→+∞

1

n
log Nλ(µi

p, n, ε) = h
K

i (f , µ).
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3.2. hi(f , µ) ≤ hi
top(f , µ).

Since ξ i is a partition subordinate to W i , for any ρ > 0, we assume that for any x ∈ Rµ,

µi
x(W

i
ρ(x)) > 0.

For ρ, ε, η > 0, n, j ∈ N and p ∈ Rµ, let F ε
η (p, j , n) be an (n, ε)-separated subset of

1ε
η(p, j) ∩ W i

ρ(p) with maximum cardinality. It is a cover and hence we have

µi
p(1ε

η(p, j) ∩ W i
ρ(p)) ≤ µi

p

( ⋃

x∈F ε
η (p,j ,n)

V i(x, n, ε)

)

≤ #F ε
η (p, j , n) × sup

x∈1ε
η(p,j)

µi
p(V i(x, n, ε))

≤ #F ε
η (p, j , n) × e−n(hi−η) for all j , for all n ≥ j .

Hence

#F ε
η (p, j , n) ≥

µi
p(1ε

η(p, j) ∩ W i
ρ(p))

en(hi−η)
for all j , for all n ≥ j .

Choose ε small enough (depending on η) and j large enough such that µi
p(1ε

η(p, j) ∩

W i
ρ(x)) > 0. Then, taking lim infn→+∞(1/n) log on both sides, we have

lim inf
n→+∞

1

n
log #E(n, ε, W i

ρ(x)) ≥ lim inf
n→+∞

1

n
log #F ε

η (p, j , n) ≥ hi − η.

Since η and ρ are arbitrary, we get hi(f , µ) ≤ hi
top(f , µ).

3.3. hi(f , µ) ≤ vi(f , µ).
Applying Lemma 2.2 for any ε > 0, we obtain an increasing sequence of measurable

sets {3ε
k ⊂ Rµ}.

Let us first note that, for any k, n ∈ N, any x ∈ 3ε
k , any τ ≤ rke

−nε and any y with

f n(y) ∈ W i
τ (f

n(x)),

d(f n−j (x), f n−j (y)) ≤ r−1
k+ne

−j (λi−ε)d(f n(x), f n(y)) for all 0 ≤ j ≤ n.

Hence, for any k, n ∈ N, any x ∈ 3ε
k and any τ ≤ rke

−nε, f n(V i(x, n, τ)) contains an ith

local sub-manifold W i
rk+nτ (f

n(x)).

Since the function µi
p(V i(p, n, τ)) is non-decreasing with respect to τ , for any

sequence {τn} with τn → 0, we have, for p ∈ Rµ,

lim inf
n→+∞

−
1

n
log µi

p(V i(p, n, τn)) ≥ lim inf
n→+∞

−
1

n
log µi

p(V i(p, n, τ)) for all τ > 0.

Hence, in particular, for k ∈ N, p ∈ 3ε
k and x ∈ 3ε

k ∩ ξ i(p),

lim inf
n→+∞

−
1

n
log µi

p(V i(x, n, rke
−nε)) ≥ hi .

For any j ∈ N, p ∈ 3ε
k and ρ > 0 with W i

ρ(p) ⊂ ξ i(p), define

3
ε,p
k,j = {x ∈ 3ε

k ∩ W i
ρ(p) | µi

p(V i(x, n, rke
−nε)) ≤ e−n(hi−ε) for all n ≥ j}.
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By definition,

3
ε,p
k,j ⊂ 3

ε,p
k,j+1, µi

p

( ⋃

j

3
ε,p
k,j

)
= µi

p(3ε
k ∩ W i

ρ(p)).

Let F
ε,p
n,j ,k be an (n, rke

−nε)-separated subset of 3
ε,p
k,j with maximum cardinality. Then

we have

µi
p(3

ε,p
k,j ) ≤ µi

p

( ⋃

x∈F
ε,p
n,j ,k

V i(x, n, rke
−nε)

)

≤ #F
ε,p
n,j ,k × sup

x∈3
ε,p
k,j

µi
p(V i(x, n, rke

−nε)).

(∗)

Note that for any x ∈ F
ε,p
n,j ,k ⊂ W i

ρ(p), V i(x, n, rke
−nε) ⊂ W i

2ρ(p) for all n such that

rke
−nε < ρ. Since the sets {f n(V i(x, n, 1

2
rke

−nε))}x∈F
ε,p
n,j ,k

are mutually disjoint, for all

large n, we have

Vol(f n(W i
2ρ(x))) ≥

∑

x∈F
ε,p
n,j ,k

Vol

(
f n

(
V i

(
x, n,

1

2
rke

−nε

)))
.

Recall that each f n(V i(x, n, 1
2
rke

−nε)) contains an ith local unstable manifold

W i
(1/2)rk+nrke

−nε (f
n(x)). Thus

Vol(f n(W i
2ρ(x))) ≥ #F

ε,p
n,j ,k × K ×

(
1
2
rk+nrke

−nε
)∑i

l=1 dim El

, (∗∗)

where K is the constant from Lemma 2.2.

Combining (∗) and (∗∗), for all large n,

Vol(f n(W i
2ρ(x))) ≥

µi
p(3

ε,p
k,j )

supx∈3
ε,p
k,j

µi
p(V i(x, n, rke−nε))

× K ×

(
1

2
rk+nrke

−nε

)∑i
l=1 dim El

≥
µi

p(3
ε,p
k,j )

e−n(hi−ε)
× K ×

(
1

2
rk+nrke

−nε

)∑i
l=1 dim El

for all k ∈ N, for all p ∈ 3ε
k , for all j ∈ N.

Since µi
p(W i

ρ(p)) > 0, we choose k, j large enough such that µi
p(3

ε,p
k,j ) > 0. Taking

lim infn→+∞(1/n) log on both sides, we have

lim inf
n→+∞

1

n
log Vol(f n(W i

2ρ(p))) ≥ hi − ε − 2ε

i∑

l=1

dim El for all k ∈ N, for all p ∈ 3ε
k .

Hence we have

lim inf
n→+∞

1

n
log Vol(f n((W i

2ρ(p))) ≥ hi − ε − 2ε

i∑

l=1

dim El for all p ∈ Rµ.

By the arbitrariness of ε and ρ, we get the conclusion.
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4. Proof of Theorem C
We now explain how to deduce our Theorem C based on the arguments of Ledrappier and

Young in [10].

Proof. Let ξu be any increasing measurable partition subordinate to Wu. By

Proposition 2.6, hu(f , µ) = Hµ(ξu|f ξu) = hµ(f , ξu). Hence hu(f , µ) ≤ h(f , µ). So it

is sufficient to prove that hu(f , µ) ≥ h(f , µ).

In the following argument, some properties only hold for µ-almost every x. But, without

loss of generality, we assume that these properties hold for any x ∈ Rµ.

For ε > 0 and x ∈ 3ε
k , let Scu(x) be the set in Lemma 2.4. By Lemma 2.4.2 in [10],

there is a measurable partition ξ with Hµ(ξ) < +∞ such that ξ+(x) ⊂ Scu(x), x ∈ Rµ,

where ξ+ = ∨+∞
n=0f

nξ . Since Hµ(ξ) < +∞, we can assume that hµ(f , ξ) ≥ h(f , µ) − ε.

By Lemma 2.4, ξ+(x) ⊂ Wu(x), x ∈ Rµ.

We note the following facts.

• By Lemma 3.2.1 in [10], we have

hu(f , µ) = Hµ(ξu|f ξu) = hµ(f , ξu ∨ ξ+).

• Since ξ+ is increasing, ξ+(x) ⊂ Wu(x) and diam(f −n(ξ+(x))) → 0 for µ-almost

every x, Lemma 2.11 yields

hµ(f , ξu ∨ ξ+) = hµ(f , ξ+).

• Since ξ+ is increasing,

hµ(f , ξ+) = Hµ(ξ+|f (ξ+)) = Hµ(ξ ∨ f (ξ+)|f (ξ+)) = Hµ(ξ |f (ξ+)) = hµ(f , ξ).

Hence we have

hu(f , µ) = h(f , ξ) ≥ h(f , µ) − ε.

Since ε is arbitrarily small, we get the conclusion.
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