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Viscous streaming flows generated by objects of constant curvature (circular cylinders,
infinite plates) have been well understood. Yet, characterization and understanding
of such flows when multiple body length scales are involved has not been looked
into in rigorous detail. We propose a simplified setting to understand and explore the
effect of multiple body curvatures on streaming flows, analysing the system through
the lens of bifurcation theory. Our set-up consists of periodic, regular lattices of
cylinders characterized by two distinct radii, so as to inject discrete curvatures into
the system, which in turn affect the streaming field generated due to an oscillatory
background flow. We demonstrate that our understanding based on this system, and
in particular the role of bifurcations in determining the local flow topology, can be
then generalized to a variety of individual convex shapes presenting a spectrum of
curvatures, explaining prior experimental and computational observations. Thus, this
study illustrates a route towards the rational manipulation of viscous streaming flow
topology, through regulated variation of object geometry.

Key words: microfluidics, bifurcation, general fluid mechanics

1. Introduction
This paper investigates the role of body curvature in two-dimensional viscous

streaming phenomena. Viscous streaming refers to the time-averaged steady flow
that arises when an immersed body of characteristic length scale D undergoes
small-amplitude oscillations (compared to D) in a viscous fluid. Viscous streaming has
been well explored and characterized theoretically, experimentally and computationally,
for constant curvature shapes which include oscillating individual circular cylinders
(Holtsmark et al. 1954; Riley 2001; Lutz, Chen & Schwartz 2005; Coenen 2013;
Vishwanathan & Juarez 2019), infinite flat plates (Glauert 1956; Yoshizawa 1974)
and spheres (Lane 1955; Riley 1966; Kotas, Yoda & Rogers 2007). However, little
is known beyond these simple objects, in particular when multiple curvatures in
complex shapes are involved. Efforts have been made in this direction by considering
individual oscillating ellipses (Badr 1994), spheroids (Kotas et al. 2007), triangle and
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square cylinders (Tatsuno 1974, 1975), sharp edges (Nama et al. 2014; Ovchinnikov,
Zhou & Yalamanchili 2014) as well as multiple identical cylinders (Yan, Ingham &
Morton 1994; Coenen 2013, 2016). Yet, our understanding of how streaming flow
features and topology are affected by multiple body length scales remains largely
incomplete.

Our motivation to understand these relations stems from the broad range of
applications of viscous streaming in microfluidic flow manipulation, particle trapping,
scalar transport and passive swimming (Liu et al. 2002; Lutz, Chen & Schwartz
2003; Marmottant & Hilgenfeldt 2004; Nair & Kanso 2007; Chung & Cho 2009;
Tchieu, Crowdy & Leonard 2010; Wang, Jalikop & Hilgenfeldt 2011; Chong et al.
2013; Klotsa et al. 2015; Thameem, Rallabandi & Hilgenfeldt 2016, 2017) which
can benefit from an expanded flow design space based on geometrical variations.
Additionally, we are motivated by the emergence of artificial and biohybrid mini-bots
operating in fluids (Williams et al. 2014; Park et al. 2016; Ceylan et al. 2017; Aydin
et al. 2019; Huang et al. 2019). Indeed, these bots operate across flow regimes where
streaming effects can be important, and may be usefully leveraged, opening new
opportunities for micro-robotics in manufacturing or medicine (Ceylan et al. 2017).
For example, in a recent study (Parthasarathy, Chan & Gazzola 2019), we showed
that streaming can enhance the contactless transport of passive inertial particles (drug
payload) by moving cylindrical mini-bots. There, we also highlighted that morphing
a circular cylinder to a suitably sculpted shape that combines asymmetry and high
rear curvature, can further improve transport. We attributed this enhancement to a
favourable re-arrangement of the streaming flow topology. This raises the question
– how do changes in geometry from a circular cylinder translate into streaming
flow topology organization? Can we rigorously predict and manipulate topological
transitions through shape variations for flow design purposes?

In this work, we attempt to answer these questions by first understanding and
characterizing streaming flow topology in a simplified setting in which circular
cylinders of different radii (i.e. curvatures) are arranged in periodic, regular lattices.
This allows us to inject multiple curvatures in a discrete fashion into our system,
enabling a systematic study of their effects. We analyse the different flow topologies
that arise as we vary the cylinders’ curvature ratios and the frequency of the
background oscillatory flow, and characterize their transitions via bifurcation theory.
Finally, we demonstrate that our understanding can be extended to generalized,
individual bodies, aided by comparison against prior experiments (Tatsuno 1974,
1975) and computations (Parthasarathy et al. 2019). Overall, this study elucidates
the mechanisms at play when streaming flow topology is manipulated via regulated
variations of shape geometry, thus providing a rational design approach and physical
intuition.

The work is organized as follows: governing equations and numerical method are
recapped in § 2; streaming physics is described in § 3; lattice set-up, investigation of
different flow topologies and corresponding transitions are presented in § 4; extension
to the design of arbitrary geometries and comparison against experiments are discussed
in § 5; finally, our findings are summarized and discussed in § 6.

2. Governing equations and numerical method

We briefly recap the governing equations and the numerical solution technique. We
consider incompressible viscous flows in a periodic or unbounded domain Σ . In this
fluid domain, immersed solid bodies perform simple harmonic oscillations. The bodies
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are density matched and have support Ω and boundary ∂Ω respectively. The flow can
then be described using the incompressible Navier–Stokes equations (2.1)

∇ · u= 0;
∂u
∂t
+ (u · ∇)u=−

∇P
ρ
+ ν∇2u, x ∈Σ \Ω, (2.1)

where ρ, P, u and ν are the fluid density, pressure, velocity and kinematic viscosity,
respectively. The dynamics of the fluid–solid system is coupled via the no-slip
boundary condition u = us, where us is the solid body velocity. The system of
equations is then solved using a velocity–vorticity formulation with a combination
of remeshed vortex methods and Brinkmann penalization (Gazzola et al. 2011). This
method has been validated across a range of flow–structure interaction problems, from
flow past bluff bodies to biological swimming (Gazzola et al. 2011, 2012a; Gazzola,
Van Rees & Koumoutsakos 2012b; Gazzola, Hejazialhosseini & Koumoutsakos
2014; Gazzola et al. 2016). Recently, it has also been shown to effectively capture
spatio-temporal scales related to viscous streaming (Parthasarathy et al. 2019).

3. Streaming: physics and flow topology
3.1. Streaming physics: classical case of a circular cylinder

We first characterize streaming in the simple, classical setting of a circular cylinder
undergoing oscillations. We consider a cylinder of constant curvature κ (radius
r = 1/κ), in quiescent flow, with an imposed small-amplitude oscillatory motion
x(t)= x(0)+ A sin(ωt) where A and ω are the dimensional amplitude and the angular
frequency, respectively. These small amplitude oscillations (Aκ � 1) generate a
Stokes layer of thickness δAC ∼ O(

√
ν/ω) around the cylinder, also known as the

AC boundary layer. The velocity that persists at the edge of this AC layer then
drives a viscous streaming response in the surrounding fluid (Batchelor 2000). This
streaming response is depicted in figure 1(a,b) as clockwise (blue) and anti-clockwise
(orange) vortical flow structures around the cylinder. We characterize these flow
structures using the streaming Reynolds number Rs = A2ω/ν (Stuart 1966; Riley
2001). Figure 1(a) shows a flow representative of Rs � 1. Such low Rs indicates
dominant viscous effects, and indeed the steady streaming flow is Stokes like, with
characteristic slow velocity decay and recirculating regions extending practically to
infinity. Figure 1(b) is representative of larger Rs ∼ O(1)−O(10), where the interplay
of inertial and viscous effects leads to the formation of a well-defined boundary layer
of thickness δDC, also known as the DC boundary layer, which drives the fluid in
the bulk. The normalized DC layer thickness δDCκ and the AC layer thickness δACκ ,
can be directly related as illustrated in figure 1(c) (Bertelsen, Svardal & Tjøtta 1973;
Lutz et al. 2005). Then, in the classical constant curvature setting of a single cylinder,
specifying δACκ is sufficient to characterize the streaming flow field and its topology.
This picture breaks down when more complex shapes are considered, and a more
generic approach to characterize streaming flows becomes necessary.

3.2. Streaming flow topology: a dynamical systems view
We propose to characterize the streaming flow topologies generated by complex shape
bodies via dynamical systems theory. First, we identify critical points in the flow
field, i.e. points where the velocity is zero. These points offer a sparse yet complete
representation of the flow field and its underlying dynamics (Perry & Chong 1987).
Critical points can be classified into saddles and centres (depending on the local
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FIGURE 1. Streaming characterization in classical circular cylinder setting. Comparison of
time-averaged streamline patterns in (a) Stokes-like (δACκ = 0.22) and (b) finite-thickness
DC layer (δACκ = 0.14) regimes, respectively, with the corresponding critical points.
Centres and saddles (half-saddles on solid boundaries) are denoted as black diamonds and
green circles, respectively. (c) Comparison of normalized DC boundary layer thickness
δDCκ vs. normalized AC boundary layer thickness δACκ of our simulations (red) against
experiments (blue, Lutz et al. 2005) and theory (black, Bertelsen et al. 1973) in the finite
DC layer thickness regime. Flow topology: illustrations showing (d) a heteroclinic orbit
and (e) a homoclinic orbit. Simulation details: domain [0, 1]2 m2, uniform grid spacing
h= 1/2048 m, penalization factor λ= 104, mollification length εmoll = 2

√
2h, Lagrangian

Courant–Friedrichs–Lewy number = 0.01, with viscosity ν and oscillation frequency ω
set according to prescribed streaming Reynolds number (Rs). The above values are used
throughout the text, unless stated otherwise. Refer to Gazzola et al. (2011) for details on
these parameters.

flow properties i.e. eigenvalues of the associated Jacobian), and the appearance and
disappearance of their connecting streamlines shape the flow and its transitions.
Figure 1(d,e) illustrates two cases of importance in our context: heteroclinic orbits
defined as streamlines connecting two saddles, and homoclinic orbits defined as
streamlines that connect a saddle to itself, thus forming an enclosed flow region.
Parametric changes (shape symmetry, body curvature, background flow) lead to the
displacement of critical points, which can cause the breaking, merging or collapsing
of these orbits, and a consequent topological rearrangement.

As an illustrative example, we consider again the classical case of a single circular
cylinder. Figure 1(a,b) depicts the critical points in the streaming flow field for
Stokes-like and finite-thickness DC layer regimes, respectively. For reference, centres
(vorticity dominated) are denoted as diamonds and saddles (shear dominated) as
circles in figure 1(a–e). Compared to the Stokes-like regime, the finite-thickness DC
layer regime presents four additional saddles (on the horizontal and vertical axes),
that lie at a distance δDC from the cylinder surface (figure 1c). Heteroclinic orbits
between these saddles form a continuous circular streamline that cleanly separates the
DC layer from the driven fluid, thus helping us to topologically distinguish the flows.

The above characterization allows us to investigate flow topology transitions using
bifurcation theory. Since the two-dimensional streaming flow in our setting is time
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FIGURE 2. Curvature variation set-up. Illustrations of (a) computational domain and
regular lattice with periodic boundary conditions. (b) A repeating unit cell of the lattice
system with cylinders of two curvatures κmax and κmin and the fixed centre-to-centre
spacing s= 12.5/κmax.

independent (streamlines ≡ pathlines) and incompressible (i.e. a streamfunction exists),
our system can be equivalently represented as an autonomous Hamiltonian system
with H ≡ Ψ , where H and Ψ correspond to the Hamiltonian and time-averaged
streamfunction, respectively (Dam et al. 2017). Due to the H≡Ψ equivalence, orbits
of streaming fluid particles (iso-contours of Ψ ) can be interpreted as iso-contours
of H, enabling us to describe the local flow topology using the scalar function
H(x, y) alone (which is conserved along a streamline or fluid orbit). We exploit this
equivalence to map the transitions seen in our lattice system (§ 4) to well-studied
bifurcations in Hamiltonian systems. Once such a bifurcation is identified, we borrow
the corresponding reduced Hamiltonian form H(x, y), which mathematically captures
topology changes near bifurcating critical points (Bosschaert & Hanßmann 2013;
Strogatz 2018). This allows us to predict how the flow evolves upon perturbing shape
curvature and/or background flow conditions. Moreover, the analysis of the reduced
Hamiltonian form provides insight into the physical mechanisms at play, and guides
our intuition of how to manipulate these systems.

4. Lattice system: set-up, phase space and flow bifurcations
4.1. Curvature variation set-up: cylinders in an infinite, regular lattice

We systematically study body curvature effects via a system consisting of staggered
circular cylinders of two radii, 1/κmax and 1/κmin, assembled into a periodic
regular lattice (figure 2a), with κmax kept constant as a reference length scale.
Throughout the study, the centre-to-centre distance s between these cylinders is
kept constant as 12.5/κmax, which allows us to vary the curvature ratio (κmax/κmin)
from 1 to 6. We note here that we performed cursory phase space explorations for
different values of s (shown in the supplementary information available online at
https://doi.org/10.1017/jfm.2020.404), and observed that the qualitative nature of the
emerging streaming fields is preserved, although the boundaries between different
topological phases (see next sections) shift quantitatively. The oscillatory amplitude A
for all the cylinders in the lattice is kept constant (Aκmax = 0.1).

A variation of κmax/κmin in the system manifests as a variation in the local
dimensionless AC layer thickness (δACκmax = Aκmax/

√
Rs and δACκmin = Aκmin/

√
Rs),
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FIGURE 3. Lattice phase space. The time-averaged streamline patterns depicted in (a–g)
are classified into different phases depending on their flow topology. Defining connections
and corresponding saddles (green circles) are highlighted in (a–g). (h) Phase space as
a function of δACκmax and κmax/κmin. Black lines indicate transition boundaries between
phases. The bold line indicates the existence of a hidden phase, which is characterized
later.

and thus in the DC layer thickness, with both affecting flow topology. With κmax/κmin

capturing all geometric variation, and δACκmax capturing all background flow variation
(§ 3.1), we set to map the corresponding phase space. We hypothesize that the flow
dynamics underlying this two discrete-curvatures set-up will generalize to individual,
complex shapes with a range of curvatures.

4.2. Lattice system: phase space

We proceed with the systematic variation of δACκmax and κmax/κmin, and span the phase
space shown in figure 3(h). Here, we classify the observed flow topological patterns
into distinct phases, based on critical points and orbits. We observe seven main phases.
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4.2.1. Phase I
Figure 3(a) shows a representative flow pattern of Phase I. The flow around each

cylinder is perfectly repeating due to constant curvature (κmax/κmin= 1) and symmetry,
and presents only the DC layers around the cylinder. This is a direct generalization
of figure 1(a) to multiple, identical cylinders.

4.2.2. Phase II
The flow is perfectly repeating around each cylinder on account of the constant

curvature (κmax/κmin = 1) and symmetry, and presents both the driven flow regions
(separated by heteroclinic orbits) and the DC layers around the cylinder (figure 3b).
This is a direct generalization of figure 1(b) to multiple, identical cylinders.

4.2.3. Phase III
The DC layers of the smaller cylinders interact with each other, while those of the

larger cylinders do not (figure 3c). This leads to the formation of a homoclinic orbit
which joins the saddle at the centre of the unit cell to itself.

4.2.4. Phase IV
The driven flow regions of the larger cylinders interact with each other (while those

of the smaller cylinders do not), forming a homoclinic orbit which joins the saddle
at the centre of the unit cell to itself (figure 3d). Additionally, around the smaller
cylinders only the DC layers are observed.

4.2.5. Phase V
The interaction of the driven flow regions of the larger cylinders forms a homoclinic

orbit (figure 3e). Additionally, new driven flow regions are observed around the
smaller cylinders. These buffer regions are separated from the smaller cylinders’ DC
layers and the homoclinic orbit regions via heteroclinic orbits.

4.2.6. Phase VI
The driven flow regions of the larger cylinders merge to form a single vortical

flow region (no homoclinic orbit), while only the DC layers are observed around the
smaller cylinders (figure 3f ).

4.2.7. Phase VII
Along with the merging of the driven flow regions of larger cylinders (no

homoclinic orbit), around the smaller cylinders both the buffer driven flow regions
(separated by heteroclinic orbits) and the DC layers are observed (figure 3g).

4.2.8. Hidden phase
Besides the main seven phases reported above, we encounter a hidden phase along

the I → II, IV → V and VI → VII boundaries. In our lattice set-up, this phase is
a very narrow sliver characterized by fine flow structures. Since this phase would be
hardly visible in our phase space, we indicate it as a marked bold line, and postpone
its characterization when the corresponding flow transitions are analysed in § 4.3.4.
Nonetheless, this phase is important and becomes more prominent when shapes other
than circular cylinders are considered, as demonstrated in § 5.
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FIGURE 4. Phase II → V: heteroclinic orbit bifurcation. (a) The transition is highlighted
on the phase space and the corresponding reduced Hamiltonian form is reported. (b,c)
Flows representative of Phases II and V, respectively. (d,e) Bifurcations captured as
contours of the reduced Hamiltonian form.

4.2.9. Jetting regime
Finally, we note the presence of a jetting regime (bottom-right corner of the phase

space), characterized by unsteady jets developing from the cylinder surface along
the oscillation direction. This phenomenon is well known (Davidson & Riley 1972;
Bertelsen 1974) and is captured by our solver (Parthasarathy 2018). However, the
current study focuses on steady streaming phenomena and we will not be looking at
jetting here.

In summary, we observe that curvature variations give rise to rich dynamics. This
manifests in a variety of flow topologies that are not merely the superposition of
streaming fields of the individual cylinders (Phases I and II), but also emerge from
their nonlinear interactions as a collective behaviour response.

4.3. Lattice system: flow bifurcations
Next, we characterize the topological transitions between phases from a dynamical
systems perspective, using bifurcation theory.

4.3.1. Phase II → V: heteroclinic orbit bifurcation
We first consider the phase transition II → V in figure 4(a). We draw attention

to the presence of heteroclinic orbits in Phase II (figure 4b) and their absence in
Phase V (figure 4c). The simplest Hamiltonian form that captures this transition, in
terms of critical points, orbits and symmetry before and after, can be expressed as
H(x, y) = xy2

+ ax + βy with a < 0 (Kuznetsov 2013). Here βy is the unfolding
term, which is added to the mathematical representation of the dynamical system to
investigate its behaviour upon a perturbation (Murdock 2006). As can be seen, if
β = 0 the Hamiltonian is perfectly symmetric about the horizontal and vertical axes
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FIGURE 5. Phase V → VII: supercritical pitchfork bifurcation. (a) The transition is
highlighted on the phase space and the corresponding reduced Hamiltonian form is
reported. (b–d) Flows representative of Phase V, Phase V approaching the transition
and Phase VII, respectively. (e–g) Bifurcations captured as contours of the reduced
Hamiltonian form. This bifurcation can also be triggered by varying the background
oscillatory flow (i.e. by increasing δAC, illustrated with a dashed vertical arrow in a), which
is reflected in the phase space as an inclined transition boundary.

(x= y= 0, located in the middle of figure 4d) and exhibits two saddles connected by a
heteroclinic orbit. As the unfolding term deviates from zero (β 6= 0) the orbit breaks
up (figure 4e) and the system undergoes a heteroclinic orbit bifurcation (Kuznetsov
2013), as observed in figure 4(c) and reflected in Phase V. The identification of the
bifurcation type in mathematical terms provides insight into the mechanisms at play.
Indeed, β 6= 0 is physically interpreted as introducing asymmetry in the system, which
we achieve through curvature variation (κmax/κmin > 1). Nonetheless, symmetry can be
broken in any number of ways, leading to the same flow topology rearrangement. As
a demonstration (shown in the supplementary information), we recover the same orbit
bifurcation by keeping κmax/κmin = 1, while breaking symmetry via a slow uniform
background flow.

This example illustrates how the phase space combined with bifurcation analysis,
can provide a set of rules to understand and manipulate streaming flow topology.

4.3.2. Phase V → VII: supercritical pitchfork bifurcation
We discuss the bifurcation Phase V → VII, as depicted in figure 5(a). We draw

attention to the presence of homoclinic orbits (with two enclosed centres and a saddle)
in Phase V (figure 5b) and their absence (only one centre) in Phase VII (figure 5d).
The simplest Hamiltonian form that captures this transition is H(x, y) = x2

+ βy2
+

y4, which corresponds to a supercritical pitchfork bifurcation (Buono, Laurent-Polz &
Montaldi 2005). Here, βy2 is the unfolding term, and represents the distance between
the centres (figure 5e–g). In our lattice system, this distance can be directly controlled
by increasing κmax/κmin, thus increasing the radii of the two opposite cylinders so as
to push the centres towards the saddle in the middle of the cell (figure 5c), causing
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FIGURE 6. Phase III → VI: subcritical pitchfork bifurcation. (a) The transition is
highlighted on the phase space and the corresponding reduced Hamiltonian form is
reported. (b–d) Flows representative of Phase III, Phase VI approaching the transition and
Phase VI, respectively. (e–g) Bifurcations captured as contours of the reduced Hamiltonian
form. This bifurcation can also be triggered by varying the background oscillatory flow
(i.e. by increasing δAC, illustrated with a dashed vertical arrow in a), which is reflected in
the phase space as an inclined transition boundary.

them to collide and destroy the homoclinic orbits (figure 5d). We observe that an
equivalent flow topology rearrangement can be triggered by varying the background
oscillatory flow. Indeed, by reducing the streaming Reynolds number Rs (i.e. δAC ↑),
we can increase the thickness δDC of the inner boundary layers around the cylinders,
which in turn push the centres to collide with the saddle. As a consequence, the
same supercritical pitchfork bifurcation is also encountered on increasing δAC (dashed
vertical arrow), explaining the fact that the boundary between Phases V and VII is
inclined.

4.3.3. Phase III → VI: subcritical pitchfork bifurcation
We now investigate the bifurcation Phase III → VI, as depicted in figure 6(a). We

draw attention to the absence of a merged driven flow region in Phase III (figure 6b)
and its presence (enclosed centre and two saddles) in Phase VI (figure 6d). The
simplest Hamiltonian form that captures this transition is H(x, y) = x2

+ βy2
− y4,

which corresponds to a subcritical pitchfork bifurcation (Buono et al. 2005). Here
βy2 is the unfolding term, which drives the appearance of the merged driven flow
region (β > 0) by modulating the distance between the saddles (figure 6e–g). In our
lattice system, this appearance can be controlled by increasing κmax/κmin, which in turn
decreases the thickness δDC of the inner boundary layers around the larger cylinders.
This pulls on the saddle in the middle (figure 6b), eventually splitting it into a centre
and two saddles (figure 6c), which are further pulled apart as the merged driven flow
grows larger (figure 6d). An equivalent flow topology rearrangement can be achieved
by modulating the background flow so as to directly decrease δAC and the thickness
δDC of the inner boundary layers, again pushing the saddles apart and causing the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

40
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.404


Shape curvature effects in viscous streaming 898 A13-11

appearance of a merged driven flow. As a consequence, the same subcritical pitchfork
bifurcation is encountered on decreasing δAC (dashed vertical arrow), explaining the
fact that the boundary between Phases III and VI is inclined.

4.3.4. Phase VI → VII: reflecting umbilic bifurcation
Here, we illustrate the bifurcation Phase VI → VII, as depicted in figure 7(a). To

identify this bifurcation we focus only on the region local to the smaller cylinder. We
note the absence of a buffer driven flow region around the smaller cylinder in Phase
VI (figure 7b) and its presence in phase VII (figure 7(k), marked in red). This flow
topology change occurs in two consecutive steps, passing through the hidden phase of
§ 4.2.8.

In the first step, we draw attention to the absence of recirculating region pairs in
Phase VI (figure 7b) and their presence in figure 7(d) (marked in red and comprising
two saddles and two centres). We note that the latter flow field corresponds to the
hidden Phase H. This phase is characterized by the presence of a narrow buffer flow
region, squeezed between the small cylinder DC layers and the outer driven flow, but
cleanly delimited by a set of heteroclinic orbits and corresponding saddles. These flow
regions exist only along one of the cylinder symmetry axes. The simplest Hamiltonian
form that captures this transition is H(x, y) = axy2

+ bx3
+ βx with ab > 0, which

corresponds to a hyperbolic reflecting umbilic bifurcation (Bosschaert & Hanßmann
2013). Here, βx is the unfolding term, that controls the appearance (going from
β > 0 to β < 0) of the recirculating region pairs and their size (figure 7e–g). In
our lattice system, the appearance and size of these regions can be controlled by
decreasing δAC, which decreases the DC layer thickness δDC of both small and large
cylinders. This pulls the streamlines adjacent to the small cylinder’s DC layers in
two opposite directions (figure 7c), forming a degenerate saddle on the vertical axis,
which eventually splits into two saddles and two centres (figure 7d). Topologically,
this manifests as a pair of counter-rotating recirculating regions. An equivalent flow
topology rearrangement can be alternatively achieved by decreasing κmax/κmin, which
increases the distance between the cylinder surfaces. This again pulls the streamlines
in the above described fashion, triggering the same bifurcation. As a consequence,
the same hyperbolic reflecting umbilic bifurcation is also encountered on decreasing
κmax/κmin (dashed horizontal arrow), explaining the fact that the transition boundary
is inclined.

The second step of the Phase VI → VII transition occurs right after further
decreasing δAC, rendering the hidden Phase H very narrow. We focus on the
highlighted saddles close to the horizontal axis in the hidden Phase H (figure 7i).
After the transition these saddles are located on the horizontal axis, thus recovering
Phase VII (figure 7k). The simplest Hamiltonian form that captures this rearrangement
is H(x, y)= axy2

+ bx3
+ βx with ab< 0, which corresponds to an elliptic reflecting

umbilic bifurcation (Bosschaert & Hanßmann 2013). Here, βx is the unfolding term,
that captures whether the saddles are present (β < 0) or absent (β > 0) on the
horizontal axis (figure 7l–n), as well as their distance. Similar to the previous step, a
decrease in δAC causes a pull on the streamlines immediately adjacent to the small
cylinder’s DC layers. This time though, we do not observe a formation of degenerate
saddles on the horizontal axis. This is due to the asymmetry resulting from the
recirculating region pairs (marked in red in figure 7i–k) generated at the previous
step. Instead, the saddles are now pushed towards the horizontal midplane, extending
the recirculating region pairs. Upon reaching the midplane, the two opposite saddles
collapse (figure 7j) and split along the horizontal axis (figure 7k). These new saddles
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FIGURE 7. Phase VI → hidden Phase H: hyperbolic reflecting umbilic bifurcation.
(a) The transition is highlighted on the phase space (with a zoomed in view) and
the corresponding reduced Hamiltonian form is reported. (b–d) Flows (coloured in a
logarithmic scale) representative of Phase VI, at the transition and hidden Phase H,
respectively. (e–g) Bifurcations captured as contours of the reduced Hamiltonian form.
(h) The transition from hidden Phase H → VII (elliptic reflecting umbilic bifurcation)
is highlighted on the phase space (with a zoomed in view) and the corresponding
reduced Hamiltonian form is reported. (i–k) Flows representative of hidden Phase H,
at the transition and Phase VII, respectively. (l–n) Bifurcations captured as contours of
the reduced Hamiltonian form. These bifurcations can also be triggered by varying the
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in the phase space as an inclined transition boundary. The newly created recirculating
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FIGURE 8. Summary of the bifurcations seen in the lattice phase space.

together with the one formed at the previous step, completely define the buffer
driven flow region around the smaller cylinder. Again, an equivalent flow topology
rearrangement can be achieved by decreasing κmax/κmin. As a consequence, the same
elliptic reflecting umbilic bifurcation is also encountered on decreasing κmax/κmin
(dashed horizontal arrow), explaining the fact that the transition boundary is inclined.

We note here that the order (upon decreasing δAC) of these transitions is robust:
first the hyperbolic and then the elliptic reflecting umbilic bifurcation. Nonetheless,
the location at which they take place may vary. In our example the recirculating pairs
are formed at the top/bottom of the cylinder, and then extend towards the horizontal
midplane. Alternatively the pairs may form on the left/right of the cylinder and then
grow towards the vertical midplane. More details can be found in the supplementary
information.

4.4. Summary of bifurcations
In the previous sections we identified all the bifurcations at play in our system,
by focusing on a few particular phase transitions. In figure 8 we classify all
phase transitions, completing our analysis. Therefore, figure 8 provides a compact
rulebook to manipulate streaming flows based on curvature (κmax/κmin) and background
oscillatory flow (δACκmax) variations.

5. Generalization to individual convex streaming bodies
We now hypothesize that the above insights generalize to convex complex shapes

immersed in an unbounded flow. When considering a given shape, we proceed as
follows: given a specific streaming condition, the global flow topology is determined
either via experiments or simulations, then we identify a local structure of interest,
map it onto our phase space, predict how it will evolve based on local body curvature
change or background flow variation and verify the outcome by comparing again with
experiments and simulations.
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FIGURE 9. Background flow variation for a triangle shaped cylinder. (a–c) Present
the reduced Hamiltonian form contours for hyperbolic reflecting umbilic bifurcation,
associated with the transition hidden Phase H → Phase VI in the lattice phase space.
A topologically equivalent transition is observed on varying δAC/a, both in experiments
(d–f ), and simulations (g–i). ( j) Mapping of the observed transition on the lattice phase
space.

5.1. Comparison against experiments: streaming triangles and squares
We first consider an individual equilateral triangle (of side length 2a), an object
characterized by top–down asymmetry and extreme ratio of curvatures, from sharp
vertices (κmax →∞) to flat sides (κmin → 0). In the original experiments performed
by Tatsuno (1975), this geometry was subject to oscillations and three different
flow topologies were observed for increasing δAC/a, from 0.05 to 1.06 (figure 9d–f ).
In figure 9(d) we focus on the highlighted saddle and the two centres near the
horizontal edge of the triangle. This structure closely resembles the hidden Phase H
of figure 7(d,g), where the second saddle (not imaged in experiments) approaches
from infinity (figure 9a). We then map this structure onto our phase space (figure 9j)
and employ our previous analysis to predict the behaviour of these critical points as
δAC/a is increased, similar to the experiments. Based on our phase space (figure 8),
as δAC/a increases the distance between critical points reduces, bringing the saddle
within the imaged domain (figure 9b) and forming a closed recirculating region, near
the horizontal edge. Upon a further increase of δAC/a, we predict that the system will
transition to a new topology corresponding to Phase VI, via a hyperbolic reflecting
umbilic bifurcation (figure 9c). This is a consequence of the saddles and centres
moving closer and closer, eventually collapsing and vanishing. Both experiments
and simulations indicate that the system indeed behaves according to this picture,
confirming our predictions (figure 9d–i).
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We further test our understanding, this time against experiments involving an
oscillating square cylinder (of side 2a) (Tatsuno 1974). Similar to the case of
the triangle, three different flow topologies are observed for increasing δAC/a.
Figures 10(c,d) and 11(c,d) report the corresponding experimental recordings. We
first consider the case of figure 10(c,d) in which δAC/a was varied from 0.18 to 1.42.
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This case closely resembles the dynamics associated with the triangle: indeed the
highlighted saddles and centres (this time near both the top and bottom horizontal
edges) can be mapped to the hidden Phase H of figure 7(d,g) and, as δAC/a increases,
undergo the same hyperbolic reflecting umbilic bifurcation, annihilating each other.
Again, predictions, experiments and simulations agree (figure 10c–f ). We note that
the fact that identical local geometrical features affect the flow in a consistent fashion
across globally different shapes (triangles and squares) points at the robustness of
our approach. Finally, we consider the case of figure 11(c,d) of a square cylinder at
δAC/a = 0.05 and 0.18. We focus on the highlighted saddles forming a recirculation
zone near the vertical sides of the square. This structure closely resembles Phase
VII of figure 7(k,n), where the second saddle (not imaged in experiments) is located
at infinity. Thus, as δAC/a increases, we predict that the saddles near the square
will progressively move outwards, to approach the saddles at infinity and undergo
an elliptic reflecting umbilic bifurcation (figure 11b). This has the overall effect to
enlarge the recirculation zone on the sides of the square. Once again, experiments
and simulations confirm our intuition (figure 11c–f ).

We note here that in all these cases Phase H is not as narrow as in our lattice
system. This is not inconsistent: indeed we expect the phase boundaries to shift
quantitatively for globally different geometries, and our analysis holds as long as the
phase space structure is locally preserved. Although we cannot mathematically prove
that the phase space organization is retained in any generic setting, we complemented
the investigations presented here with a number of other studies (presented in the
supplementary information for brevity), and all of them were found to be consistent
with our analysis. This empirical validation underscores the practical use of our
approach for flow design and manipulation purposes, as further exemplified in the
next section.

5.2. Rational design of a streaming-enhanced transport bot
In a recent study, we illustrated how a ‘bullet’ shaped streaming bot enhances
fluid mediated transport of passive particles relative to simple circular cylinders
(Parthasarathy et al. 2019). The bullet geometry was empirically determined based on
experiments on triangles (Tatsuno 1975), from which we borrowed fore–aft asymmetry
and high rear curvature profiles. The rationale was to reproduce the closed streaming
recirculation region observed in figure 9(e,h) to effectively trap trailing particles and
favour their transport as the bot displaces forward. Here, we elucidate how that flow
topology and object geometry could have been rationally designed based on our phase
space, in a step by step fashion.

Figure 12(a) illustrates our design process of morphing a circular cylinder into
a circular–square hybrid cylinder (bullet). This hybrid cylinder presents top–down
asymmetry – the top side is a circle with constant curvature κ0, while the bottom
is a square with rounded corners of constant curvature κv. Hence specifying κv/κ0

characterizes the shape geometry – for κv/κ0 = 1 the body is a perfect circle, while
for κv/κ0 > 1 the body presents a range of curvatures ∈ [0, κv] on its bottom half. To
completely characterize this system, we capture the background flow variation using
δACκv, similar to the lattice phase space.

In the following, we break down the morphing design process in steps. Each one of
them relates a geometric or background flow variation to a corresponding local flow
topology change, for which we highlight the concerned critical points and orbits.
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observed on geometric and background flow variation, with the concerned critical points
highlighted and the predictions (reduced Hamiltonian form contours) illustrated as grey
contours.

5.2.1. Step 1 → 2
We start by choosing a δACκmax for which the streaming flow topology for a circular

cylinder (κv/κ0 = 1) lies in the finite-thickness DC layer regime. This corresponds to
Phase II in figure 12(a). With in mind the goal of reshaping the overall flow topology
to mimic the favourable features of figure 9(e,h), the first step is to ‘open up’ the DC
layer. We then focus on the highlighted heteroclinic orbits in figure 12(b). Recalling
our observations in the lattice phase space, we predict that breaking top–down
symmetry (κv/κ0 > 1) will break these orbits via a heteroclinic orbit bifurcation
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(Phase II → V of figure 8). This is computationally confirmed in figure 12(c), and
has the effect of unfolding horizontally the two bottom recirculating regions of the
DC layer.

5.2.2. Step 2 → 3
Next, we need to prepare the conditions to form the closed flow region behind

the cylinder (similar to figure 9(d,g)). This can be achieved by collapsing the newly
generated saddles and centres. Their annihilation will cause the unfolded DC layer
pockets to merge with the top driven flow regions. This, in turn, pushes the bottom
driven flow regions against each other, compressing and aligning them vertically (and
eventually connecting them at infinity via a saddle point). We then focus on the
highlighted saddles and centres of figure 12(c), which closely resemble Phase V of
figure 5(b). We predict that a further increase in κv/κ0 will result in the saddle and
centre approaching each other and eventually colliding, leading to a saddle–centre
bifurcation (Phase V → VII of figure 8). The occurrence of this bifurcation, with
the subsequent flow topology rearrangement, is indeed numerically confirmed in
figure 12(d).

5.2.3. Step 3 → 4
Now the flow is favourably rearranged. In order to recover the useful closed flow

region of figure 9(e,h), we need to bring closer to the streaming body the saddle that
connects at infinity the bottom driven flow regions. We then focus on the highlighted
saddles and two centres near the horizontal edge of the bullet in figure 12(d), which
closely resembles the hidden Phase H of figure 7(d) (with one saddle at infinity)
or figure 9(a,d). Then a background flow variation (δAC ↑) pulls the saddle upwards,
closer to the body, as predicted (figure 12e). Additionally, we note that the flow
structure in front (top) of the streaming shape can be mapped to Phase VII of
figure 7(k). Therefore, as a side effect of the increase in δAC, the saddle in front
of the body is pushed away upwards, eventually (next step) undergoing the elliptic
reflecting bifurcation (Phase VII → hidden Phase H) observed in figure 7( j) and
figure 11(d,f ). Computations of figure 12(e) confirm this intuition.

5.2.4. Step 4 → 5
Finally, in addition to controlling the size of the closed flow region as discussed

above, we now demonstrate (for completeness) how we can further manipulate its
presence or absence. We focus on the highlighted saddles and the two centres near the
horizontal edge of the bullet (figure 12e), which closely resemble the hidden Phase
H of figure 7(d). Then a background flow variation (δAC ↑) results in the saddles
and centres approaching each other to then collapse, thus making the closed flow
region disappear. This is computationally confirmed in figure 12( f ), which validates
our prediction of a hyperbolic reflecting umbilic bifurcation (hidden phase H → Phase
VI, figures 7(b), 9( f,i) and 10(d,f )).

In summary, this section illustrates how our approach can be employed to predict
and design streaming flow topologies, in a rational fashion. We note that this
flow manipulation example, and the additional ones reported in the supplementary
information, start from an initial circular cylinder, a most natural choice given its
extensive characterization. Nonetheless, this choice does not render our analysis less
general. Indeed, we emphasize that all our flow field manipulations are guided by
transitions (bifurcations) that apply to steady state flows. These exclusively depend
on the current geometry and streaming Reynolds number Rs, and therefore are
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not affected by how these conditions were reached, i.e. by the history of previous
manipulations. As a consequence, it is always possible to recover the reported target
flow topologies given any initial shape: indeed, at the very least, if no other path
in the phase space can be devised, we can always morph our arbitrary shape into a
circular cylinder and then follow the approach presented here. In general, multiple
sequences of manipulations exist.

6. Conclusions
With the goal of extending our understanding of streaming phenomena to include

body curvature effects, we propose a simplified setting in which multiple circular
cylinders are regularly arranged in a periodic lattice. We systematically investigate this
system to construct a phase space that relates local body curvature and background
flow variations to streaming flow topology. The obtained phase space reveals rich
dynamics on account of the nonlinear, collective behaviour that stems from the
presence of multiple body length scales. The phase space is subsequently analysed
through the lens of dynamical system theory, to detect the bifurcations and physical
mechanisms at play. We then demonstrate that our understanding in the simplified
lattice system, and in particular the use of dynamical bifurcations, can be extended
to individual bodies presenting a spectrum of curvatures. Altogether these results
provide physical intuition and a rulebook to manipulate and design streaming flow
topologies, which may find useful application in microfluidics and micro-robotics.

Although our study provides a systematic prediction of flow topology transitions on
geometric and background flow variation, our understanding still remains incomplete.
How do we incorporate concave geometric features? How does our approach extend
to three-dimensional settings? How does body topology affect flow topology? These
questions are beyond the scope of the current paper, and are avenues of future
research.
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