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ABSTRACT
Previous studies demonstrated that laminar separation bubbles (LSBs) in the absence of external
disturbances or forcing are intrinsically unstable with respect to a three-dimensional instability
of centrifugal nature. This instability produces topological modifications of the recirculation
region with the introduction of streamwise vorticity in an otherwise purely two-dimensional
time-averaged flows. Concurrently, the existence of spanwise inhomogeneities in LSBs have
been reported in experiments in which the amplification of convective instability waves
dominates the physics. The co-existence of the two instability mechanisms is investigated
herein by means of three-dimensional parabolised stability equations. The spanwise waviness of
the LSB on account of the primary instability is found to modify the amplification of incoming
disturbance waves in the linear regime, resulting in a remarkable enhancement of the amplitude
growth and a three-dimensional arrangement of the disturbance waves in the aft portion of the
bubble. Present findings suggest that the oblique transition scenario should be expected in LSBs
dominated by the convective instability, unless high-amplitude disturbances are imposed.
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NOMENCLATURE
LSB laminar separation bubble
L, R discretised linear operators
N disturbance wave amplification factor
q vector of fluid variables
PSE parabolised stability equations
p pressure
Stθ Strouhal number based on the momentum thickness at separation
x, y, z streamwise, wall-normal, and spanwise co-ordinates
u, v, w streamwise, wall-normal, and spanwise velocity components
urev peak reversed flow

Superscripts

– base flow
' fluctuation

̆ fourier mode
∼ PSE shape function
^ Eigenfunction

Greek symbol

α streamwise wavenumber
β spanwise wavenumber
βc critical spanwise wavenumber for the primary instability
δmax peak displacement thickness in boundary-layer units
φ obliqueness angle of waves with respect to the x-axis
λx streamwise wavelength
λz spanwise wavelength
μ transformed eigenvalue
σ shift parameter
θs momentum thickness at separation
ω circular frequency
ωz spanwise vorticity
Ω cross-stream computational domain

1.0 INTRODUCTION
The formation of laminar separation bubbles (LSBs) is an usual phenomenon on aerodynamic
surfaces that takes place when strong enough adverse-pressure-gradients are present. They are
associated with a potentially severe detrimental impact on the lift, drag and pitching
momentum, reason that has motivated continuous research since the works of Gault(1)

and McCullough and Gault(2). The characteristics of the flow after separation, the eventual
reattachment and its effect on the aerodynamics are governed primarily by the laminar-
turbulent transition process and the details of the flow instabilities triggering it.
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Laminar separation bubbles have the potential to amplify external disturbances in a dra-
matic manner: the orders-of-magnitude amplitude growth resulting from convective
instability mechanisms typically leads to strong non-linear phenomena and transition to
turbulence even at low excitation levels(3–6). Most works agree that the fundamental
mechanism is the amplification of Tollmien–Schlichting (T–S) waves pre-existing within the
boundary-layer upstream of the separation, by the inflectional instability within the separated
shear layer. Spanwise vortices are then formed and shed. Some researchers investigated the
origin of three-dimensionality under these circumstances, attributing it to secondary
instabilities of the spanwise vortices(6,7). On the other hand, Rist and Maucher(8) investigated
the non-linear interactions occurring when two oblique T–S waves were excited, finding that
the transition occurred in an abrupt manner (which they termed oblique breakdown) more
similar to the experimental observations of unforced LSBs, than under other forcing condi-
tions in which the dominant component was 2D and very coherent spanwise vortices were
realised.

The prominent amplifier behaviour manifested by LSBs does not suffice, however, to
explain the very rich and involved physics observed both in experiments and numerical
simulations, suggesting that other instability mechanisms must be at play. In this context,
Rodríguez et al.(9) considered theoretically the instability of LSBs in the absence of externally
imposed disturbances. It was demonstrated that a 3D global instability of centrifugal nature,
first found by Theofilis et al.(10) becomes active for LSBs that are significantly weaker than
required for the onset of self-sustained two-dimensional oscillations. The strength of the
LSBs was quantified using the percentage of the peak reversed flow over the free-stream
velocity, urev, and it was shown that urev∼ 7–8% was enough for 3D instability to set in. This
value contrasts with the generally accepted threshold for the self-sustain oscillator, which
requires urev∼ 16–20%(3,7). As a consequence of the centrifugal instability, LSBs develop a
spanwise modulation of their properties (recirculation, streamwise and wall-normal extent).
The ensuing non-linear evolution leads to the saturation of this primary centrifugal instability
and results in fully three-dimensional flow fields(11,12).

This paper considers the possible situation in which the two instability mechanisms,
namely the self-excited centrifugal instability and the convective amplification of disturbance
waves originated upstream in the boundary layer, co-exist. The spanwise velocity gradients
associated with the centrifugal instability increase remarkably the peak recirculation at some
locations and introduce cross-plane shear components, which is known to have the potential
to enhance the inviscid instability of the separated shear layer(13,14). Additionally, the LSB
three-dimensionality can distort the disturbance waves by introducing streamwise vorticity,
replacing the formation of spanwise vortices by more involved three-dimensional vortical
structures. In this respect, it is worth noting that experimental and numerical studies observed
the spontaneous appearance of stationary streamwise streaks(15,16) or three-dimensionality(4)

underlying the dominant convective instability and without explicitly imposing them. Inci-
dentally, recent experimental visualisations using particle image velocimetry reported the
formation and shedding of spanwise-modulated vortices from separation bubbles without the
application of any explicit forcing.

The rest of the paper is organised as follows. Section 2 recapitulates the precedent studies
on the self-excited instability and describes the resulting steady three-dimensional LSBs.
These flow fields will be subject to linear stability analysis in the subsequent sections. An
extension of the parabolised stability equations (PSE), sometimes referred to as 3D-PSE(17,18),
that considers three-dimensional base flows with a strong dependence on the cross-stream
plane and slowly divergent on the streamwise direction, is described in Section 3.
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Subsequently 3D-PSE is used to study the linear amplification of initially plane T–S waves by
the LSBs. The results of the analyses are described in Section 4. Finally, some concluding
remarks are given in Section 5.

2.0 THREE-DIMENSIONAL LAMINAR SEPARATION
BUBBLES RESULTING FROM THE SELF-EXCITED
PRIMARY INSTABILITY

Figure 1 illustrates the problem geometry. The streamwise, wall-normal and spanwise co-
ordinates are denoted by x, y and z, respectively, and the corresponding velocity components
by u, v and w. Following our previous works(9,11,12), a family of LSBs on a flat-plate
boundary layer is considered. Baseline LSBs are computed using an inverse non-similar
boundary-layer formulation in which a streamwise distribution of the displacement thickness
is prescribed, circumventing Goldstein’s singularity and allowing for the recovery of separated
flows. For a bounded streamwise extent, the displacement thickness is smoothly increased over
the corresponding value for a zero-pressure-gradient boundary layer. The streamwise extent of
the displacement thickness increase is fixed, and different decelerated flows are computed by
varying the peak displacement thickness δmax. Fully laminar, two-dimensional and steady flows
with a closed recirculation region are computed in this manner, and are subject to analysis and
denoted by q0= (u0, v0, 0, p0)

T in what follows. The main characteristics of these baseline LSBs
make them comparable to other LSBs reported in the literature: the Reynolds number based on
free-stream velocity and length of the separated region is ReL= 37,000–40,500; the Reynolds
number based on momentum thickness and free-stream velocity at the separation location is
Reθs = 208�212; and the peak reversed flow u0, rev= 5–12%.

The dimensionless form used in this work is defined with the free-stream velocity at the inlet
section. The boundary-layer displacement thickness at a location upstream of the deceleration,
where the flow corresponds to a zero-pressure-gradient, is used to scale distances. The Reynolds
number based on this displacement thickness is 450, and the corresponding streamwise co-
ordinate is x= 152. This choice of non-dimensionalisation is done to ease the computations, as
it remains the same for all the baseline LSBs.

Global eigenmode analyses, considering modal perturbations of the form bqðx; yÞ
exp½i ðβz�ωtÞ�, show that the three-dimensional centrifugal instability is the only self-excited
linear mechanism active in the present baseline LSBs. Figure 2(a) shows the neutral curve
(solid line) and the dominant spanwise wavenumber β (dashed line) as a function of u0, rev.

Figure 1. Problem geometry and computational domain.
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The main characteristics of this instability are (i) its frequency ω= 0; (ii) it is not active for
two-dimensional perturbations; (iii) it has a preferential wavenumber βc≈ 0.166 for the
present LSBs, corresponding to a spanwise wavenumber λz/θs≈ 76, where θs is the
momentum thickness at separation and λz= 2π/βc; and (iv) it becomes active for reversed flow
larger than u0, rev≈ 6.98% (δmax � 6:6). Detailed information on the primary instability
analyses can be found elsewhere(9).

Rodríguez et al(11). studied the non-linear evolution subsequent to the onset of the three-
dimensional instability using direct numerical simulations, and determined that it corresponds
to a supercritical pitchfork bifurcation: the non-linear interactions involving the fundamental
wavenumber βc, its harmonics and the “mean flow distortion” (in this case the spanwise-
uniform component β= 0) result in the saturation of the disturbance growth and the formation
of fully three-dimensional yet steady flows. The three-dimensional flows at saturated
conditions are denoted by q3D in what follows, while q2D refers to their spanwise average.
Figure 2(b) shows the bifurcation diagram: the peak reversed flow in the undisturbed baseline
LSB u0, rev, the three-dimensional saturated flow u3D, rev and its spanwise average u2D, rev, as a
function of the peak displacement thickness in boundary-layer units, δmax. While the cen-
trifugal instability reduces the mean bubble recirculation, the spanwise modulation of the
separated shear layer results in localised peak reversed flow greater than u3D, rev= 10%. As
shown by Saxena et al.(14) and Kawahara et al.(13), the spanwise modulation of shear layers
can enhance the inviscid Kelvin–Helmholtz instability mechanism. This is of particular
interest to the LSBs, because it can impact the convective amplification of T–S waves within
the boundary layer as they travel through the separated shear layer.

3.0 METHODOLOGY
3.1 Three-dimensional PSEs

The total flow field is separated into a time-independent base flow and temporal fluctuations
q(x,t)= q(x) + q′(x,t), where x= (x,y,z)T is the vector of co-ordinates in a Cartesian reference
system, t is the time and q= (u,v,w,p)T is a vector comprising the velocity components and
pressure p. The time-independence of the base flow allows for the introduction of Fourier

6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

6.5 6.6 6.7 6.8 6.9 7
6

8

10

12

14

16
(b)(a)

Figure 2. (a) Neutral curve for the primary instability eigenmode (solid line) and spanwise wavenumber of
maximum growth rate (dashed line). (b) Bifurcation diagram of the primary instability, corresponding to the
saturation of the three-dimensional instability. Peak reversed flow of the baseline LSB (u0,rev, solid line
without symbols), the saturated three-dimensional flow (u3D,rev, squares) and the spanwise-averaged

saturated flow (u2D,rev, circles).
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modes for the circular frequency ω, as

q0ðx; tÞ=
X
ω

q
^

ωðxÞe�iωt + c:c …(1)

where c.c. stands for the complex conjugate.
Based on the multiple-scales approach and originally devised for the study of Tollmien–

Schlichting waves on transitional boundary layers, PSE accounts for a slow divergence of the
mean flow properties and has been shown to deliver results comparable to direct numerical
simulations for convectively unstable laminar and transitional flows(19,20). The fluctuations
q
^

ω xð Þ are decomposed into a shape function q
^

ω, which is also slowly varying along the
streamwise direction x, and a rapidly varying wave-like part

q
^

ω =AωðxÞ ~qωðx; y; zÞ=Aωðx0Þ exp i

ðx
x0

αωðξÞdξ
� �

~qωðx; y; zÞ …(2)

The complex quantity αω= αr + iαi is a streamwise wavenumber, for which a slow variation
with x is assumed as well. The streamwise co-ordinate x0 is the location where the PSE
integration is initialised. Upon substitution of (2) in the linearised incompressible Navier–
Stokes and continuity equations, and neglecting terms involving second-order derivatives of
the fluctuations on x, one arrives at the system of equations

L
∂~qω
∂x

=R~qω; ::: …(3)

where the linear operators L and R depend on the mean flow quantities and their first spatial
derivatives, wavenumber α, frequency ω, Reynolds number Re and spatial differentiation
operators on the cross-stream directions: Dy;Dz;Dyy, and Dzz.

The decomposition (2) and the governing equations (3) do not define uniquely the solution,
as the spatial wave growth can be absorbed into the shape function or the complex amplitude.
Following Herbert(18), the following normalisation condition is imposed in order to eliminate
the exponential dependence from ~qω:ðð

Ω

v�ω
∂~vω
∂x

dydz= 0; ::: …(4)

where * denotes complex conjugation and Ω is the cross-stream domain.
PSEs (3) constitute a downstream-marching problem. Consequently, they require condi-

tions for the shape functions ~qω and wavenumber αω at some inlet location x0. Common
practice is to derive a locally parallel linear stability analysis, consistent with the PSE
matrices, and employ its results in the determination of the inlet conditions.

3.2 Locally parallel linear stability analysis

A locally parallel stability eigenvalue problem (EVP) is obtained from the matrix operators in
the PSE approximation by simply setting dα/dx= 0 and ∂q^w = ∂x= iαq

^

ω
(21). From this

approximation, one arrives at the following EVP:

iαq̂ω =Rq̂ω …(5)

Operators R and L are the same as in (3) but particularised for α= dα/dx= 0. For a given
cross-stream plane x0 and real frequency ω, the solution of (5) delivers a set of complex
eigenvalues αn and their corresponding eigenfunctions q̂n y; zð Þ. For boundary layer flows like
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the present ones, classical theory(22,23) shows the existence of continuous branches, related to
the uniform flow outside the boundary layer, in addition to an indefinite number of discrete
eigenmodes associated with the localised base flow shear. The least stable/most unstable
discrete eigenmodes correspond to Tollmien–Schlichting waves.

3.3 Numerical methods

Numerical solution of both the PSE (3) and local stability EVP (5) requires the spatial
discretisation of the two-dimensional linear operators R and L in the cross-stream (y,z) planes.
It is well known that the computational cost associated with the memory storage and the
operational time of these multi-dimensional operators becomes prohibitive if standard
methods for one-dimensional problems are used(24). Based on our own previous experi-
ences(25), we developed a new stability code that combines variable-stencil high-order finite
differences and sparse algebra, exploiting the banded structure of the differentiation matrices.
In this work, a 7-points stencil is used, which results in the optimal balance between con-
vergence of results and computational cost(26).

A rectangular domain is considered for the cross-stream planes Ω= [0,y∞] × [ − Lz/2,Lz/2].
A co-ordinate transformation is used to concentrate points at the wall. The Cartesian
co-ordinate system allows for the use of standard finite differences for the independent
differentiation on y and z, resulting in the differentiation matrices Dy and Dz for first-order
derivatives and Dyy and Dzz for second-order derivatives. The same stencil is used for first-
and second-order differentiation matrices, which allows for the control of the matrix structure,
improving the efficiency of the sparse implementation.

After discretisation of the linear operators, the EVP (5) is solved using a sparse in-house
implementation of the shift-and-invert Arnoldi’s algorithm(27). First, the EVP is formally
transformed into

ðR�iσLÞ�1Lq̂= μq̂; ::: (6)

where μ= − i(α − σ) − 1 and the subscript ω dropped for simplicity of notation. The shift
parameter σ is used to control the center of the eigenvalue window, such that the eigenvalues
closer to σ are the first to converge. Arnoldi’s algorithm requires the solution of a number of
linear problems, which is done using the package MUMPS(28).

The spatial discretisation of the linear operators describing the PSE (3) is identical to the
one for the EVP. PSE are integrated along the streamwise direction using an implicit Euler
scheme. This solution technique is known to present convergence problems due to the
residual ellipticity of PSE, associated with the upstream-propagating wave solutions in the
operators(29). In practice, this limits the minimum step size that can be used to obtain stable
solutions. The stabilisation procedure proposed by Andersson et al.(30) is used here to
overcome this difficulty, and a fixed step size Δx is used for the computations for all
frequencies.

The solution ~qi + 1 at the axial step xi + 1 is obtained from the solution at a previous station
~qi by solving the linear system

Li + 1
~qi + 1�~qi

Δx

� �
=Ri+ 1 ~qi+ 1; ::: (7)

where Δx= xi + 1 − xi. Since operators R and L depend on the mean flow quantities, they also
depend on the streamwise station. The linear systems (7) are also solved using MUMPS. In
order to adjust the value of αi + 1 so that the normalization condition (4) is satisfied, the
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solution of the linear system is iterated together with

αðk + 1Þi + 1 = αðkÞi + 1�
i

Δx

Ð Ð
Ω
~v�i + 1ð~vi + 1�~viÞdydzÐ Ð
Ω
~v�i + 1~vi + 1dydz

; ::: (8)

where k is the iteration index, until α is converged up to a tolerance of 10 − 5.

4.0 RESULTS
Three-dimensional PSE computations are carried out to study the amplification of externally
imposed boundary-layer disturbances by laminar separation bubbles. The three-dimensional
separation bubbles q3D resulting from the saturation of the primary self-excited instability
described in Section 2, and the baseline two-dimensional LSBs q0 are taken as the base flows
q in the analyses. A relatively narrow range of reversed flow magnitudes around the critical
conditions for the self-excited primary instability is considered: u0, rev≈ 6.85–7.55%,
δmax = 6:5�7:0 (cf. Fig. 2). For higher reversed flows, an absolute instability of Kelvin–
Helmholtz waves gives rise to self-excited oscillations for the three-dimensional LSBs(11),
and analysing the convective instability is no longer meaningful. These base flows have
boundary-layer separation at xs≈ 220–222 and reattachment at xr≈ 320–325, which corre-
sponds to ReL≈ 37,600–38,200.

The spanwise domain size is adjusted to be one wavelength of the primary instability, i.e.
Lz= λz= 2π/βc, and periodicity is imposed on this direction. The maximum wall-normal co-
ordinate is fixed as y∞= 70, and a mapping is used that clusters the discretisation points
towards the wall. Half of the discretisation points are contained in the 0≤ y≤ 5 interval. No-
slip boundary conditions are prescribed at the wall, while vanishing of the disturbances is
imposed at y= y∞. The cross plane is discretised using Ny ×Nz= 201 × 100 points. This spatial
discretisation is found to be enough to converge the spatial growth rates up to four significant
decimal places.

The spatial local stability EVP described in Section 3.2 is applied to determine the initial
conditions for the PSE integration. The arbitrary cross-section x0= 100 is chosen as inlet,
which is located in the zero-pressure-gradient region well upstream of the separation. The
complex wavenumber α and shape function q̂ corresponding to the plane (β= 0) T–S wave
for each ω are imposed as inlet conditions. Streamwise marching of the equations is done with
a fixed step size Δx= 3.5 until x= 450, a cross-plane downstream of the reattachment.

The convective amplification of the disturbance waves is quantified by the N-factor

Nðx;ωÞ= ln
AðxÞω
AðxnÞω

����
����

� �
=�

ðx
xn

αiðξ;ωÞdξ; ::: (9)

where xn is the co-ordinate for the neutral conditions (αi= 0), different for each frequency ω.
Figure 3 shows contours of the N-factor as a function of the streamwise co-ordinate and the
frequency for three representative cases. The first of them corresponds to the two-dimensional
LSB q0 with u0, rev= 6.99%, for which the primary instability is already active. The second
case corresponds to the three-dimensional LSB q3D for the same reversed flow. The third case
is the three-dimensional LSB corresponding to u0, rev= 7.14%. As the PSE marching is
initiated in the region of zero-pressure-gradient at sub-critical conditions for T–S waves, all
disturbances are initially damped. Neutral conditions are identified by the left-most boundary
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of the black region in the figure. The range of amplified frequencies broadens remarkably in
the separated flow region, a behaviour typical of Kelvin–Helmholtz instability consistently
observed in the literature(5,8,10). The figures also show the location of the maximum spatial
growth rate (i.e. minimum αi, denoted by circles in the figures), that takes place upstream and
at higher frequencies than the maximum amplitude (maximum N-factor, denoted by a square).

Table 1 summarises the 3D PSE computations. For each base flow considered, the con-
ditions for the maximum amplitude and maximum growth rates are given, comprising the
frequency ω, the streamwise location x and the streamwise wavenumber αr, and their
respective Nmax and αi. PSE computations diverged towards large negative values of αi for the
three-dimensional LSBs with larger reversed flows, for the range of frequencies ω≈ 0.14–
0.15, indicating the proximity of an absolute instability. The table shows the conditions for
zero group velocity, identified as saddle points in the complex α-plane(31). These saddle
points correspond to small-amplitude negative values of ωi (not shown), denoting absolutely
stable conditions but close to the critical conditions for absolute instability. As a consequence
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Figure 3. (Colour online) Convective amplification of plane T–S waves: contours of the N-factor on the (x,ω)
plane. White regions correspond to stable waves. The circles correspond to the location of the maximum
growth rate and the squares to the maximum amplitude. Base flows are (a) and (b) baseline LSB q0 and
three-dimensional LSB q3D for u0,rev=6.99%; and (c) three-dimensional LSB q3D for u0,rev= 7.14%. The

arrows show the spanwise-averaged location of the separation and reattachement points.
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of this, the PSE integration ‘jumps’ from the downstream propagating disturbance wave to the
upstream propagating one as it marches towards the saddle-point, and the results are mean-
ingless. For u0, rev≥ 7.75%, the three-dimensional LSBs become absolutely unstable giving
rise to self-sustained oscillations;(11) those cases are not of relevance for the present study. In
the rest of the paper, only convectively unstable cases are discussed.

The maximum N-factor computed for each separation bubble is shown in Fig. 4(a). The
maximum amplification for the two-dimensional bubbles rises moderately from N= 9.57 (u0,
rev= 6.85%) to N= 9.86 (u0, rev= 7.55%). Conversely, a remarkable increase in the maximum
amplification follows from the three-dimensionality of the separation bubble, reaching values
N≈ 12.5 for the base flow q3D corresponding to u0, rev= 7.29%. This amounts to a 18-fold
enhancement of the total disturbance amplification compared to the baseline two-dimensional

Table 1
Conditions for the maximum amplitude and growth rate for the different two-

and three-dimensional LSBs analysed using 3D PSE: frequency ω,
streamwise location x and real part of the wavenumber αr, for the conditions
of maximum amplitude (Nmax), and for maximum growth rate (− αi). The cases
denoted by * correspond to conditions near absolute instability in which the

PSE integration fails; the values given correspond to the saddle-point
location for these cases

Two-dimensional LSBs q0
Maximum amplitude Maximum growth rate

u0,rev (%) ω x Nmax αr ω x αr αi

6.85 0.1277 330.38 9.565 0.2918 0.1537 265.35 0.3198 −0.1414
6.98 0.1284 328.53 9.627 0.2995 0.1540 264.91 0.3196 − 0.1423
6.99 0.1285 328.40 9.633 0.3001 0.1541 264.91 0.3195 − 0.1424
7.02 0.1286 328.18 9.645 0.3011 0.1544 264.90 0.3189 − 0.1426
7.06 0.1287 328.18 9.657 0.3013 0.1544 264.69 0.3189 − 0.1427
7.14 0.1290 327.96 9.688 0.3027 0.1547 264.47 0.3188 − 0.1432
7.29 0.1295 327.52 9.747 0.3054 0.1549 264.25 0.3187 − 0.1440
7.43 0.1300 327.29 9.805 0.3073 0.1560 263.37 0.3186 − 0.1449
7.55 0.1304 327.07 9.862 0.3090 0.1564 262.93 0.3179 − 0.1457

Three-dimensional LSBs q3D
Maximum amplitude Maximum growth rate

u0,rev (%) ω x Nmax αr ω x αr αi

6.98 0.1284 328.53 9.627 0.2995 0.1540 264.91 0.3196 − 0.1423
6.99 0.1264 342.29 10.451 0.2540 0.1431 272.61 0.3132 − 0.1538
7.02 0.1300 326.63 10.893 0.2310 0.1426 273.06 0.3210 − 0.1664
7.06 0.1313 325.53 11.175 0.2264 0.1426 273.07 0.3257 − 0.1755
7.14 0.1339 324.21 11.691 0.2221 0.1427 273.15 0.3327 − 0.1948
7.29 0.1390 323.55 12.495 0.2143 0.1448 273.29 0.3408 − 0.2538
7.43* – – – – 0.1439 283.45 0.4161 − 0.3254
7.55* – – – – 0.1438 283.55 0.4225 − 0.3223
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bubble. Figure 4(b) shows the dependence of the maximum growth rate on the reversed flow
for two- and three-dimensional base flows. Similar to the N-factors, the moderate increase in
the growth rate for the two-dimensional LSBs contrasts with the strong increase in the growth
rate for three-dimensional bubbles.

The linear approach employed here does not provide conclusive information on the
development of non-linear interactions, but they should be expected on account of the relative
high N-factors, even for the two-dimensional bubbles. It is reasonable to assume that
important non-linear effects will set in within the parameter range between the maximum
growth rate and the maximum amplitude. Table 1 compares the streamwise location, fre-
quency and streamwise wavenumber corresponding to the maximum growth rate and max-
imum amplitude, for the two-dimensional and three-dimensional LSBs. The frequency for the
maximum amplitude is always lower than that of the maximum growth rate. The streamwise
wavenumber is also lower; however, the difference is relatively small for two-dimensional
flows. Three-dimensional LSBs present streamwise wavenumbers significantly lower for the
maximum amplitude conditions, while they remain comparable to those of the two-
dimensional LSBs for the maximum growth rate conditions. On the other hand, the fre-
quencies for maximum growth rate and amplitude are significantly closer than for the two-
dimensional bubbles. This seems to be a result of the reduction of the frequency for the
maximum growth rate conditions on account of flow three-dimensionality.

The spatial structure of the disturbance waves corresponding to the maximum amplitude
conditions is discussed next. Three-dimensional bubbles with u0, rev= 6.99–7.29% and the
two-dimensional LSB with higher reversed flow, u0, rev= 7.55% (δmax = 7), are shown in Fig.
5. The disturbance field q′ corresponding to an individual frequency is reconstructed from the
PSE computations using Equations (1) and (2). The PSE formulation used considers the
velocity components, from which the spanwise disturbance vorticity field ω′z is computed
and then normalised with its maximum value. The figures show instantaneous realisations of
the ω′z= ±0.1 surfaces. Three spanwise periods are shown in the figure, to ease the visua-
lisation of the peak and valley structures. Note that, as a result of the large spatial amplifi-
cation, disturbance waves are not visible upstream of the separation bubble with the present
choice of surface level. Figure 5 also shows the u0= 0 and 0.5 streamwise velocity contours
of the respective base flows.

Disturbance waves, spanwise-homogeneous at introduction and upstream of separation, are
distorted by the spanwise-varying separation bubble. Disturbance amplitude peaks are aligned
with the spanwise planes of higher reversed flow, while the minimum disturbance amplitudes
are aligned with the spanwise planes of lesser reversed flow. In the three-dimensional steady
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Figure 4. (a) Maximum N-factor and (b) maximum growth rate − αi for baseline LSBs q0 and three-
dimensional LSBs q3D, as a function of u0,rev.
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LSBs q3D, a positive streamwise streak follows downstream of the reversed-flow peak, which
distorts the relative phases of the disturbance waves along the spanwise direction. The result
resembles pairs of oblique waves, that seemingly arise from the peak reversed-flow locations
in the figures.

Visual inspection of the 3D-PSE results indicates that the disturbance’s streamwise
wavelength changes abruptly around the reattachment location for the three-dimensional
LSBs. The maximum amplitudes are attained slightly downstream of reattachment, where the
wavelengths are longer and typical of the attached boundary layer. These wavelengths cor-
respond to the wavenumbers compiled in Table 1 for maximum N-factor conditions. Within
the reversed flow region, wavelengths are shorter and the corresponding wavenumbers
approximate the one with the maximum growth rate for each frequency. Table 2 shows the
real part of the wavenumber αr inside the reversed flow region and after reattachment for the
three-dimensional LSBs at their corresponding maximum amplitude frequency. The aspect
ratio between the spanwise and streamwise periodicity lengths, λz/λx= αr/βc, and the obli-
queness angle ϕ= tan�1ðλx = λzÞ are also shown for each case. The streamwise wavelength in
the reattached boundary layer increases with the baseline LSB’s reversed flow, consequently
reducing the aspect ratio of the oblique waves. Conversely, in the reversed flow region
downstream of the maximum wall-normal extent of the bubble, the streamwise wavenumber
only a slight variation with u0, rev, and the aspect ratio λz/λx≈ 1.93–2.1. These values are in

Figure 5. (Colour online) Baseline LSB and eigenmode corresponding to the primary instability. Grey
surfaces correspond to u0= 0 and 0.5. The surfaces correspond to instantaneous realisations of the

disturbance’s spanwise vorticity field ω′z, as computed by PSE. The frequency for the maximum N-factor is
considered for each case. The disturbance field is normalized so that ω0

z

�� ��
1=1. The surfaces shown

correspond to ω′z= ±0.1. Three-dimensional LSBs for u0,rev (a) 6.99%, (b) 7.02%, (c) 7.06%, (d) 7.14%, (e)
7.29%; and (f) two-dimensional LSB for u0,rev 7.55%.
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excellent agreement with experimental visualisations using particle image velocimetry on
LSBs formed on a flat plate(32) and on the lee-side of an aerofoil(33), in which spanwise-
modulated vortical structures were found to appear in the absence of explicit forcing.

Finally, Table 2 also shows the frequencies corresponding to maximum amplitudes in
terms of the Strouhal number defined using the momentum thickness and free-stream
velocity at separation, in order to allow for comparison with other results in literature.
This scaling was first introduced in the context of LSBs by Pauley et al.(34), and has
been used subsequently to characterise the vortex shedding frequency. The Strouhal
numbers for which the maximum amplitudes are attained lie in the range Stθ= 0.0094–
0.0104, which agrees well with the reported experimental measurements on unforced flat-
plate LSBs(32,35–37).

Present results show differences between the linear disturbance waves in the reversed-flow
region and downstream of reattachment, where the external flow acceleration increases the
phase speed, leading to a reduction in the streamwise wavelength and an increase in the
obliqueness angle. Linear instability results downstream of the reattachment are of limited
physical relevance, and only shown for completeness. The reason is that, following from the
large convective amplifications, non-linear effects are likely to become dominant already in
the reversed-flow region and give rise to intense vortical structures and turbulent transition.
These vortical structures may be expected to present, initially, the characteristics of the linear
waves in the reversed-flow region.

5.0 CONCLUSIONS
The convective amplification of disturbance waves by laminar separation bubbles under the
influence of a three-dimensional primary deformation is addressed in this paper. Specifically,
the impact of the three-dimensionalisation exerted by the self-excited primary instability of
flows with recirculation on plane Tollmien–Schlichting waves is studied by means of PSE-3D
computations. The necessity of using this relatively novel technique is dictated by the strong
coupling between velocity components in the cross-planes, while a mild dependence of the

Table 2
Streamwise wavenumber, aspect ratio λz /λx= αr /βc and obliqueness angle

ϕ=tan�1ðλx = λzÞ of the oblique disturbance waves in the reversed flow region
and just after reattachment, for the frequencies of maximum total amplitude.

The frequency is also given in terms of the Strouhal number Stθ.

After reattachment Reversed flow

u0,rev (%) ω Stθ αr λz/λx φ (deg.) αr λz/λx φ (deg.)

6.98 0.1284 0.0096 0.2995 1.804 29.00 0.3211 1.934 27.34
6.99 0.1264 0.0094 0.2540 1.530 33.17 0.3231 1.946 27.20
7.02 0.1300 0.0097 0.2310 1.392 35.69 0.3279 1.975 26.85
7.06 0.1313 0.0098 0.2264 1.364 36.25 0.3312 1.995 26.62
7.14 0.1339 0.0100 0.2221 1.338 36.77 0.3379 2.036 26.16
7.29 0.1390 0.0104 0.2143 1.291 37.76 0.3537 2.131 25.14
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base flow properties is allowed on the streamwise direction. Direct numerical simulations
could have been applied alternatively, but their higher computational cost would have
compromised the parametric study performed herein.

The primary instability sets in at reversed flows higher than u0, rev≈ 6.98% and induces a
spanwise-periodic modulation of the separation bubble in terms of size and recirculation
intensity: while the spanwise-averaged reverse flow decreases on account of non-linearity and
establishes around 6–7%, regions of increased recirculation reach peak reversed flows over
10%, which are accompanied by strong spanwise velocity gradients in the downstream half of
the bubble. The three-dimensionality of the separated shear layer impacts on the amplification
of disturbance waves originated upstream. The most amplified disturbances are shifted
slightly to higher frequencies. In terms of the Strouhal number defined with the boundary-
layer momentum thickness and free-stream velocity at separation, it changes from
Stθs = 0:0097 for the undisturbed baseline LSB q0 corresponding to u0, rev= 7.29%, to
Stθs = 0:0104 for its corresponding three-dimensional LSB. On the other hand, the total
amplification is also increased, with the maximum N-factor shifting from N= 9.747 to
N= 12.495 for the same conditions. These results are in agreement with local instability
analyses of spanwise-modulated shear layers(13,14).

Even more relevant than the enhancement of the linear amplification are the changes in the
flow structure of the disturbance waves introduced by the three-dimensional shear-layer. The
bubble’s streamwise vorticity distorts the initially two-dimensional T–S waves periodically
along the spanwise direction resulting in an arrangement that resembles pairs of oblique
waves with spanwise wavenumber ±βc. The location of the crests and troughs is determined
by the z-co-ordinates of the recirculation minima and maxima in the steady three-dimensional
LSBs, which in turn depend on the dominant spanwise wavenumber of the primary
instability. The corresponding wavelength is λz/θs≈ 76. It should be stressed that this span-
wise spacing is determined by the zero-frequency self-excited instability of the steady LSB
flows(9,10,12) and not by a secondary instability of spanwise vortices resulting from the K–H
instability, as described by most experiments and simulations(4–7), or from the preferred
amplification of oblique T–S waves in the pre-separated boundary layer as suggested by
Michelis et al.(32). Interestingly, similar spanwise wavenumbers have been reported in
experiments considering LSBs without explicit forcing(32,33). Finally, the combination of the
dominant streamwise wavenumber, determined by the convective instability of disturbance
waves, and the spanwise wavenumber associated with the self-excited centrifugal instability,
define an aspect ratio of the wavy disturbances in the aft portion of the separation bubble λz/
λx≈ 1.934–2.131, corresponding to an obliqueness angle φ≈ 25–27°, which again agree well
with those observed in unforced experiments(16,32,33).

The organised oblique wave pattern together with the strong spatial amplification suggests
an oblique transition scenario akin to that proposed by Rist & Maucher(8). They studied the
non-linear interaction of a pair of oblique waves introduced upstream of an otherwise two-
dimensional separation bubble, and observed that a very abrupt transition occurs. Present
results show that the spanwise modulation resulting from a self-excited instability present in
laminar separation bubbles has the potential of distorting initially plane T–S waves into
oblique waves, promoting the same abrupt transition scenario. Here the obliqueness angle is
determined by (i) the self-excited primary instability and (ii) the streamwise wavenumber
corresponding to the plane T–S wave most amplified by the 3D LSB. Direct numerical
simulations are currently underway to study the non-linear regimes and transition associated
with this scenario.
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