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(The Bride's Chairj>

NICK LORD, JOHN RIGBY and DOUGLAS QUADLING

Nick's problem
This story begins in Nick Lord's workshop session at the Joined Up

Mathematics conference at Keele in April 2008. He had decided to talk
about Figure I and the results concerning it featured in [I]. He was also
having an interesting e-mail exchange with Douglas Rogers, who pointed
out that iterating such constructions twice produced a triangle homothetic to
the original. The exchange focused on the analogous iterated Vecten
configuration which John Mason recently discussed in [2]; but Nick could
not see a similarly quick argument for the results in [1], which he thus set as
a 'homework problem' for the workshop participants.
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FIGURE I

Figure I shows a triangle ABC and squares BCXP, CAYQ, ABZR drawn
outwards on the sides, as in Euclid's proof of Pythagoras's theorem; but the
triangle is not necessarily right-angled. This is the figure sometimes called
the Bride's Chair. (Roger Webster, in the Note which first set this hare
running [3], lists several other aliases: the Franciscan's cowl, the peacock's
tail and the windmill.) The comers of adjacent squares YR, ZP, XQ are then
joined, and these joins are produced to form a triangle DEF. We have called
this the square tangent triangle of l:J.ABC, and its sides are the square
tangent lines.

The focus of discussion was how I::.DEF is related to I::.ABC. In
particular, Nick's homework problem was to show that, if the process is
repeated by constructing the square tangent triangle I::.IJK of l:J.DEF, then
the triangles I::.ABC and I::.IJK are homothetic; that is, they are similar with
their corresponding sides parallel.

A property of homothetic figures is that the lines joining corresponding
points are concurrent in a centre of perspective. This is illustrated for
homothetic triangles in Figure 2, for the cases where the triangles are the
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same way up and opposite ways up. Nick asked the supplementary
question: can the centre of perspective of t:.ABC and t:.lJK be identified as
one of the known 'centres' of t:.ABC?

FIGURE 2

After the conference Brian Trustrum, John and Douglas sent proofs to
Nick. Brian's proof was trigonometrical, Douglas used a method involving
scalar and vector triple products, whilst John devised a proof using the
methods of pure geometry which depended on the following lemma.

Lemma: The square tangent lines of t:.ABC are perpendicular to the
medians.

We offer two proofs of this: John's proof using transformations and an
algebraic proof using an Argand diagram.

Proof using transformations: Figure 3 shows t:.ABC and the squares ACQY
and BARZ drawn outwards on the sides AC and BA. Complete the
parallelograms AYSR and CART.
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FIGURE 3

The idea of the proof is to show that (with t:.ABC lettered in the positive
sense) a positive quarter-turn about 0, the centre of square ACQY, takes the
parallelogram AYSR to CABT. This follows by combining the following
observations.
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• A positive quarter-tum about 0 takes Y to A and A to C.
• A positive quarter-tum about A takes the directed line segment

~ ---+
AR toAB.
~ ---+ ----;.

• YS is equal and parallel to AR, and CT is equal and parallel to~
AB.

~ ~ ---+
It follows that a positive quarter-tum about 0 takes YS to AB and AR to

-~
CT. It therefore takes the parallelogram AYSR to CART.

So the diagonal YR is perpendicular to AT; and AT passes through L, the
midpoint of Be. Therefore YR,which lies along the square tangent line EF,
is perpendicular to the median AL.

Proof using an Argand diagram: Let A, B, .,. represent the complex
---7

numbers a, b, ... . Then, in Figure I, the displacement AC corresponds to---+ ---+ ---+
c - a, AY corresponds to i (c - a), BA corresponds to a - band AR
corresponds to i (a - b). Therefore

y = a + i(c - a), r = a + i(a - b),
~

so r - y = i (2a - b - c), which corresponds to YR.
~

But 1= !(b + c), so AL corresponds to 1- a = !(b + c - 2a). Therefore

I - a = !i(r - y).
~ ~

That is, AL is perpendicular to YR, and half its length.

The problem generalised
This lemma casts a new light on Nick's problem. For the main result

(though not the supplementary question) is only about the shape and
orientation of the triangles ABC and lJK, not their size or location. So
Nick's problem is a particular case of a more general conjecture.

General conjecture: If the sides of t::.DEFare perpendicular to the medians
of t::.ABC,and the sides of t::.lJK are perpendicular to the medians of t::.DEF,
then ABC and lJ K are homothetic.

(A neat way of stating this is:
If the sides of t::.DEFare perpendicular to the medians of t::.ABC,
then the sides of t::.ABCare perpendicular to the medians of t::.DEF.)

We are not yet home, but John drew our attention to a comparable
known result in which the word 'perpendicular' is replaced by 'parallel' (see
[4, section 473]).
Known result: If the sides of t::.PQRare parallel to the medians of t::.ABC,
and the sides of t::.UVW are parallel to the medians of t::.PQR, then t::.ABC
and t::.UVW are homothetic.
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Again we offer two proofs.

Proof using the intercept theorem: We begin by finding two particular
triangles with sides parallel to the medians of f1ABC and f1PQR.

In Figure 4, G is the centroid of f1ABC; AG is produced to X so that
GL = LX. Then AG = 2GL = GX and AM = MC, so XC is parallel to
GM. The sides of f1CGX are therefore parallel to the medians of f1ABC. It
follows that f1CGX and f1PQR are homothetic.

A A

B B c

X

FlGURE4

X

FIGURE 5

Now let Y and Z be the points of trisection of CB (see Figure 5). Then
CY = iCL, so that Y is the centroid of f1CGX, and YL = LZ. Figure 5
therefore contains a diagram like Figure 4, but with f1CGX and f1XYZ in
place of f1ABC and f1CGX. It follows that the sides of f1XYZ are parallel to
the medians of f1CGX, and therefore of f1PQR; so f1XYZ and f1UVW are
homothetic.

But, in Figure 5, AL = 3LX, BL = 3LY and CL = 3LZ. So f1ABC and
f1XYZ are homothetic, with L as centre of perspective. Therefore f1ABC and
f1UVWare homothetic.

Proof using vectors: Since we are concerned only with shape and
orientation, not with location, it is best to use free vectors. In Figure 6,
~ ~ ----+
BC = x, CA = y and AB = z, where x + y + Z = O. Then
---+ ~ ---+ ~----+
AL = AB + BL = Z + tx. and similarly BM = x + ty, CN = Y + tz.
Therefore, if QR, RP, PQ are parallel to AL, BM, CN respectively,

"QR = It(z + ~x), liP = It(x + h), PQ = It(Y + ~z)
for some scalar It.

Repeating this process,

VW v(PQ + t"QR) = vlt(y + tz + Hz + ~x))
= vu (y + z + !x) = -~VItX = -~vltiiC
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for some scalar v, since x + y + Z = O. Similarly WU -~v.ucAand
YJV = -~v~. Therefore t:.ABC and t:.UVW are homothetic. (Note the
minus signs, which show that, if the directions of the medians are chosen in
a consistent manner, then the two triangles will be opposite ways up.)
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AGURE6

This result is about shape and orientation, but not size and location, so it
is helpful to use the notation {t:.ABC} to describe the set of all triangles in
the plane which are homothetic with t:.ABC. Then if M denotes the
operation which transforms a triangle into another triangle whose sides are
parallel to the medians of the first, we can write

{t:.ABC} ~ {t:.PQR} ~ {t:.UVW}.

What has been proved is that the sets {t:.ABC} and {t:.UVW} are the same,
so that M2 = I, the identity transformation.

The 'general conjecture' can be considered in the same way, but the
sides of t:.DEF are perpendicular (rather than parallel) to the medians of
t:.ABC, and the sides of t:.lJK are perpendicular to the medians of t:.DEF.
So to get from t:.ABC to t:.DEF, and from t:.DEF to MJK, the
transformation M must be combined with a quarter-turn Q, so that

{t:.ABC} ~ {t:.DEF} ~ {t:.lJK}.

The general conjecture states that the sets {t:.ABC} and {t:.lJ K} are the
same, so (QM)2 = I.

Two observations are sufficient to complete the proof.

• The transformations Q and M commute. It makes no difference
to the shape or orientation whether we first construct a triangle
parallel to the medians and then rotate it through a right angle,
or first rotate the triangle and then construct a new triangle
parallel to the medians. That is, QM = MQ, so that
(QM)2 = Q2M2.

• After two quarter-turns each line is transformed into a parallel
line, so that any triangle is transformed into a homothetic
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triangle (the opposite way up). This means that. as a
transformation between sets of homothetic triangles, Q2 = I.

Therefore (QM)2 = Q2M2 = II = I. This proves the general conjecture,
and in particular solves Nick's original problem.

There remains Nick's supplementary question, to identify the centre of
perspective for the double square tangent triangle transformation. Since
Nick's construction is just one of any number of possibilities covered by the
general conjecture, it is unlikely that Nick's centre coincides with any of the
known triangle centres. Indeed. Tony Robin kindly used computer algebra
on the standard reference triangle to confirm that it is not in Kimberling's list
of triangle centres [5].

Scale factors
Tony also alerted us to the fact that, in some cases, the scale factors of

the homotheties involved may be of interest. This will be illustrated with
two special cases ofthe general conjecture.

Before describing these we prove the existence of triangles whose sides
are parallel and equal to the medians of a triangle ABC, and we establish
some results relati~ their side-lengths and area to those of t:>ABC. In
Figure 4. GX = 2GL = tAt. XC = 2GM = tBM. CG = tCiV. Hence
any triangle homothetic to t:>CGX and I! times its linear size has its sides
parallel and equal to the medians of t:>ABC. Such a triangle (e.g. t:>PQR in
Figure 6 if the scale factor f1 = I) is called a triangle of medians of t:>ABC.

Denote the side lengths of t:>ABC by a, b, c, its area by t:>,the length of
the median through A by mA, and the area of the triangle of medians by t:>m'

The triangle of medians theorem: (i) m~ + m~ + m~ = Ha2 + b2 + c2);
m~ + m~ + m~ a2 + b2 + c2

(ii) t:>m = ~t:>; (iii) ------ -----
t:>m t:>

Proofs:
(i) This follows immediately from Apollonius' theorem, b2 + c2 = 2m~+ 2 (!a)2,
so m~ = _*a2 + !b2 + !cZ, and similarly m~ = !a2 - *b2 + !c2, m~ = !a2 + !b2 - *c2,

(ii) In Figure 4 area (t:>LXC) = area (t:>LGB), hence area (t:>CGX) =
area (t:>CGB) = t area (t:>ABC). So the area of the triangle of medians is
m2 area (t:>CGX) = * x (tt:» = ~t:>.

(iii) is a direct consequence of (i) and (ii).

Case 1: An anti-pedal triangle
In the general conjecture, take the triangle t:>DEF to be the lines

perpendicular to the medians through the vertices of t:>ABC. Kimberling [5]
calls this the anti-pedal triangle of the centroid G of t:>ABC. It is illustrated
in Figure 7.
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FIGURE 7

The sides of t:.DEF are perpendicular to the sides of the median triangle.
Hence it is similar to the triangle of medians, so its side lengths EF, FD, DE
can be written as AmA, ArnB' Arne for some value of A. The area of t:.DEF is
then A2t:."" which by the triangle of medians theorem is equal to iA2t:..

The triangle t:.GEF has base EF = ArnA and height GA = imA' so its
area is tAm~. Similarly the areas of t:.GFD and t:.GDE are tArnh and tAmt.
So, using the triangle of medians theorem again,

area (t:.DEF) = tA (m~ + mh + mt) = !A (a2 + b2 + e2).
a2 + b2 + e2

Therefore iA2t:. = !A(a2 + b2 + e2), which gives A -----
3t:.

and the area ratio of the transformation is

area (t:.DEF) = iA2 t:. = lA2 = nk2 where k = a2 + b2 + e2

area (t:.ABC) t:. 4 I' t:.
(It can be proved that k is related to the Brocard angle w by the equation
cot w = !k. See [4, section 474] and [6].)

If you now iterate this construction to obtain the anti-pedal triangle of
id f he rati area (MIK) . -Lk,2 hthe centroi 0 t:.DEF, t e ratio ( ) IS 11 ,were

area t:.DEF

(Am f + (Am )2 + (Am)2 m2 + m2 + m2 a2 + b2 + e2
k' = ABe = ABe = ---- = k

A2t:.", t:.m t:. '
by the triangle of medians theorem. So the area ratio of the second
transformation is also ne, and area«MIK)) = (nk2(

area t:.ABC
But we know from the general conjecture that tsll K is homothetic to

t:.ABC. It follows that the linear scale factor of this homothety is nk2.
Case 2: The square tangent triangle

We can now calculate the area of t:.DEF in Figure I, by adding together
the areas of its component regions.

The central region t:.ABC and the triangles in the comers D, E, F fit
together to form a triangle congruent to the anti-pedal triangle in Figure 7,
whose area is net:..
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The triangles .b.AYR and .b.ABC are each one-half of the congruent
parallelograms AYSR and CABT in Figure 3. Hence the area of .b.AYR is .b.,
and the same is true of the areas of .b.BZP and .b.CXQ. (This property of the
Bride's Chair was the subject of Roger Webster's note [3].)

The three squares have area a2, b2 and c2. Hence the area of .b.DEF is
Tik2.b. + 3.b. + (a2 + b2 + c2) = Tik2.b. + 3.b. + kt: = Ti(k + 6i.b..

The area ratio of the transformation is therefore
area (.b.DEF) = Ti (k + 6)2.b..
area (.b.ABC) I

By the same argument as in Case I above, this is also the area ratio for
the second iteration of the square tangent triangle construction, so that

area (MJK) _ (..1.. k + 62)2
area (.6.ABC) - 12( )

And since tsllK is homothetic to .6.ABC, the linear scale factor of this
homothety is Ti (k + 6l

The quantity k = (a2 + b2 + c2) /.6. takes its least value 4'1'3 when
.b.ABC is equilateral (exercise!); there is no upper bound. So for the
repeated anti-pedal triangle construction the smallest possible linear scale
factor is 4, and for the repeated square tangent triangle construction it is
(2 + 0)2, or nearly 14. So if you want to verify Nick's problem for
yourself, you will need a large sheet of paper.
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