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The effect of inertia on the time period of
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We calculate the leading-order correction to the time period of rotation of a neutrally
buoyant spheroid of arbitrary aspect ratio, in a simple shear flow (u∞ = γ̇ y11; 11

is the unit vector in the flow direction, y being the coordinate along the gradient
direction), in its long-time orbit set up by the weak fluid inertial drift at O(Re). Here,
Re is the microscale Reynolds number, a dimensionless measure of the fluid inertial
effects on the length scale of the spheroid, and is defined as Re = γ̇L2ρ/µ, where
L is the semimajor axis of the spheroid, µ and ρ are respectively the viscosity and
density of the fluid, and γ̇ is the shear rate. This long-time orbit is the tumbling
orbit for prolate spheroids; for oblate spheroids, it is the spinning orbit for aspect
ratios greater than 0.137, and can be either the tumbling or the spinning orbit for
oblate spheroids of aspect ratios less than 0.137. We also calculate the leading-order
correction to the time period of rotation of a neutrally buoyant triaxial ellipsoid
in a simple shear flow, rotating with its intermediate principal axis aligned along
the vorticity of the flow; the latter calculation is in light of recent evidence, by
way of numerical simulations (Rosen, PhD dissertation, 2016, Stockholm), of the
aforementioned rotation being stabilized by weak inertia. The correction to the
time period for arbitrary Re is expressed as a volume integral using a generalized
reciprocal theorem formulation. For Re� 1, it is shown that the correction at O(Re)
is zero for spheroids (with aspect ratios of order unity) as well as triaxial ellipsoids
in their long-time orbits. The first correction to the time period therefore occurs at
O(Re3/2), and has a singular origin, arising from fluid inertial effects in the outer
region (distances from the spheroid or triaxial ellipsoid of the order of the inertial
screening length of O(LRe−1/2)), where the leading-order Stokes approximation
ceases to be valid. Since the correction comes from the effects of inertia in the far
field, the rotating spheroid (triaxial ellipsoid) is approximated as a time-dependent
point-force-dipole singularity, allowing for the reciprocal theorem integral to be
evaluated in Fourier space. It is shown for all relevant cases that fluid inertia at
O(Re3/2) leads to an increase in the time period of rotation compared with that in
the Stokes limit, consistent with the results of recent numerical simulations at finite
Re. Finally, combination of the O(Re3/2) correction derived here with the O(Re)
correction derived earlier by Dabade et al. (J. Fluid Mech., vol. 791, 2016, 631703)
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yields a uniformly valid description of the first effects of inertia for spheroids of all
aspect ratios, including prediction of the arrest of rotation for extreme-aspect-ratio
spheroids.

Key words: low-Reynolds-number flows, multiphase and particle-laden flows, suspensions

1. Introduction
In the Stokes limit, it is well known that, in simple shear flow, a spheroid rotates

in any of a one-parameter family of orbits (Jeffery 1922), eponymously called
the Jeffery orbits. The generic Jeffery orbit is a spherical ellipse corresponding to
a time-dependent three-dimensional precessional motion of the orientation vector
about the vorticity axis. The limiting members of the aforementioned family are
the tumbling orbit, a great circle in the flow–gradient plane, and the spinning orbit,
where the angular velocity vector is time-independent and aligned with the ambient
vorticity (see figure 1a,b,d). In the Stokes limit, a spheroid will continue to rotate
in a Jeffery orbit determined by its initial orientation for all time. It was shown
recently that weak inertia in the suspending fluid and that of the particle, at O(Re)
and O(St) respectively, stabilize either the spinning or the tumbling orbit (Einarsson
et al. 2015; Dabade, Marath & Subramanian 2016; Marath, Dwivedi & Subramanian
2017). Here, Re and St are the Reynolds and Stokes numbers, with Re = γ̇L2ρ/µ
and St = γ̇L2ρp/µ, where γ̇ is the shear rate corresponding to the ambient flow
given by u∞ = γ̇ y11 (see figure 1a), L is the length of the semimajor axis of the
spheroid, µ is the viscosity of the fluid, and ρ and ρp are the densities of the
fluid and particle respectively. Marath et al. (2017), in particular, showed that the
orientation dynamics in the presence of both inertia and rotary Brownian motion
allows for an elegant thermodynamic interpretation which has similarities to the
coil–stretch transition described in the polymer physics literature (De Gennes 1974;
Hinch 1974). In Dabade et al. (2016), it was pointed out that weak inertial effects
at O(Re) and O(St) do not alter the time period of rotation from its leading-order
Stokesian value given by Tjeff = 2πγ̇ −1(κ + 1/κ) and Tjeff = 4π respectively for the
tumbling and spinning orbits. Here, κ = L/b(b/L) is the aspect ratio of the prolate
(oblate) spheroid, where b is the semiminor axis of the spheroid. As shown later, for
a spheroid rotating in the tumbling orbit, the aforementioned vanishing of the O(Re)
correction is true only for spheroids with aspect ratios of order unity.

Dabade et al. (2016) also calculated the O(St2) correction to the tumbling period,
a simpler calculation due to its regular nature, and showed that the time period
decreases from the aforementioned Jeffery value at the said order. This decrease is
on account of the inertial persistence of the angular velocity maximum in the vicinity
of the gradient–vorticity plane for a prolate spheroid (the flow–vorticity plane for an
oblate one). On account of being a singular perturbation problem, the correction due
to fluid inertia, which comes at O(Re3/2) for spheroids with order-unity aspect ratios,
needs a more elaborate analysis and was not investigated in Dabade et al. (2016). A
recent simulation effort (Mao & Alexeev 2014) has shown that, in contrast to particle
inertia, fluid inertia increases the time period of rotation in the stable orbits from
its leading-order Jeffery value, although the simulations largely explored Re values
of order unity and only aspect ratios of 0.5, 0.8, 1.2 and 2; the small-Re regime,
characterizing the first effects of inertia, has not been systematically investigated. In
this paper, we calculate the first effects of fluid inertia at O(Re3/2) on the time period
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FIGURE 1. (Colour online) (a) The orientation vector (red) defined by the angles θj and φj
in the space-fixed coordinate system XYZ. The X, Y and Z axes correspond to the flow, the
gradient and the vorticity directions of the simple shear flow. (b) Jeffery orbits (blue) for
an oblate spheroid of aspect ratio 0.05 for different initial conditions. The limiting orbits,
that is the tumbling and spinning modes, are indicated. (c) The repeller (red) for an oblate
spheroid of aspect ratio 0.05, which divides the unit hemisphere into two distinct basins
of attractions. The trajectories of the spheroid due to fluid inertial drift at O(Re), starting
from either side of the repeller and ending at the attractors of the corresponding basins,
are shown as purple and green curves. (d) Jeffery orbits (blue) for a prolate spheroid of
aspect ratio 2. (e) The O(Re) inertial trajectory (purple), which ends in the tumbling orbit,
for the same prolate spheroid.

of rotation as a function of the aspect ratio for both prolate and oblate spheroids,
and for triaxial ellipsoids over a restricted range of two-axis ratios which includes
the value examined in a recent numerical investigation (Rosen 2016). Towards the
end of the paper, the O(Re3/2) analysis is combined with the O(Re) analysis given in
Dabade et al. (2016). The latter continues to predict the critical Reynolds number for
the arrest of rotation of extreme-aspect-ratio spheroids (both slender fibres and flat
disks). The critical Reynolds number is O(κ) for flat disks and O(ln κ/κ) for slender
fibres, the latter being the same as that originally predicted by Subramanian & Koch
(2005) based on slender-body theory.

In a simple shear flow, the O(Re3/2) correction arises due to fluid inertia becoming
important in a region of the order of and beyond the inertial screening length, defined
as LRe−1/2 (Re� 1). In this so-called outer region, the Stokes approximation breaks
down and inertial forces balance viscous forces at leading order. The aforementioned
inertial screening length can be obtained from this balance as follows: the Stokes
disturbance field due to a freely rotating spheroid in simple shear flow decays as
O(1/r2). Here, r is the distance (scaled with L) from the centre of the spheroid. The
inertial terms, for instance Γ · r ·∇u, would scale as Re/r2 and the viscous term would
scale as 1/r4; a balance gives r∼ Re−1/2 (Γ is the non-dimensional velocity gradient
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tensor for simple shear, and u is the spheroid disturbance velocity field). Calculation
of the effects of fluid inertia based on an analysis of the outer region is non-trivial.
Saffman was one of the first to use an analysis based on the outer region to calculate
the lift force on a translating sphere ‘slipping’ past an ambient simple shear flow
(Saffman 1965). The Fourier-space analysis in Saffman (1965) was earlier employed
by Childress (1964) in the context of estimating the correction to the well-known
Stokes drag formula for the slow translation of a sphere along the axis of rotation of a
rotating ambient flow. In the rheological context, Lin, Peery & Schowalter (1970) (see
also Stone, Brady & Lovalenti 2000) analysed the effects of fluid inertia to O(Re3/2)

in order to characterize the O(φ) rheology of a dilute suspension of rigid neutrally
buoyant spheres; here, φ is the volume fraction of the suspended spheres. Specifically,
in Lin et al. (1970), a matched asymptotic expansion approach was used to determine
both the normal stress differences at O(φRe) and O(φRe3/2), and the correction to the
suspension shear viscosity that appears at the latter order; the inertial correction to
the viscosity contributes to a shear thickening rheology. Stone et al. (2000) performed
the O(φRe3/2) calculation again using a concise Fourier-space formulation based on
a reciprocal theorem formulation by treating the sphere as a force-dipole singularity.
The concise formulation was used by Subramanian et al. (2011) to characterize the
complete non-Newtonian rheology of an emulsion to O(φRe3/2) for arbitrary ratios of
the disperse (drop) to continuous phase viscosities, including the O(φRe3/2) Reynolds
stress contributions neglected by earlier authors.

In all of the cases mentioned above, the disturbance velocity field due to the particle
is steady on account of its spherical shape. This steady velocity field may also be
used to determine the inertial correction to the angular velocity of a freely rotating
sphere. The absence of a regular correction at O(Re), in simple shear flow, is easily
seen. Such a correction would have to be quadratic in the shear rate, and, being a
pseudovector, would have to be proportional to ω · E , where E and ω are the rate-of-
strain tensor and the vorticity vector in the ambient simple shear respectively. Since ω
is perpendicular to the plane of the flow, ω ·E=0. This remains true in the absence of
ambient vortex stretching, and, therefore, for the one-parameter family of planar linear
flows (Subramanian & Koch 2006b). It should be noted that, for linear flows other
than simple shear, the sphere will deviate from the fluid streamlines at finite Re due to
an inertial lag, but the angular velocity correction is unchanged at leading order since
the velocity gradient tensor is a constant. The first effects of inertia therefore appear at
O(Re3/2), Re being defined based on the sphere radius, and the inertial correction has
been found to be −0.054Re3/2 (Stone et al. 2000; Subramanian et al. 2011). Thus, for
small but finite Re, the time period of rotation of a sphere increases by 1.355Re3/2.

The disturbance velocity field for a spheroid in a spinning orbit is steady, and
therefore the scaling of the inertial correction to the angular velocity would be similar
to that of a sphere. Indeed, as shown in a later section, the detailed calculation is
easily carried out based on the O(Re3/2) Fourier-space formulation, and predicts
slowing down of the spinning spheroid due to inertial effects. The inertial correction
to the spin is, in fact, proportional to the correction for a sphere, the multiplicative
constant being given by a function of the aspect ratio. The O(Re3/2) correction in the
spinning orbit has recently been determined using the traditional matched asymptotic
expansion approach (Meibohm et al. 2016), and we validate our calculation with
this result. In the tumbling orbit, however, the disturbance velocity field due to
the spheroid is unsteady, and the torque-free spheroid acts as a time-dependent
force-dipole singularity in the outer region. This dependence, when represented
in frequency space, is an infinite Fourier series, and this makes evaluation of the
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O(Re3/2) correction to the angular velocity, as a function of the instantaneous spheroid
orientation, a difficult proposition. However, as is shown later, if one only has to
evaluate the time period correction at O(Re3/2), one only needs the Jeffery-averaged
angular velocity correction. The relevant infinite series then reduces to three terms,
allowing one to determine the correction without the need for truncation.

The correctness of the angular velocity correction, predicted at O(Re3/2) for a
sphere, and the associated increase in time period have been confirmed in a numerical
investigation by Mikulencak & Morris (2004). These authors extended the results for
the inertial correction to Re values of order unity, with inertia continuing to slow
down the rotation. As mentioned earlier, Mao & Alexeev (2014) have recently
investigated the effect of inertia on the time period of rotation of spheroids with
different aspect ratios using the lattice Boltzmann method. This work concluded that
the time period of rotation increases with the Reynolds number, but the authors
found the scaling for the inertial correction to be O(Re) for small Reynolds numbers.
However, based on the O(Re) correction of the angular velocity derived in Einarsson
et al. (2015) and Dabade et al. (2016), it can be easily seen that the correction to
the time period at this order is zero for spheroids with order-unity aspect ratios. This
apparent contradiction might arise due to the bounded domain used in the simulations.
An accurate estimation of the O(Re3/2) inertial correction, in a numerical effort, is
not easy since the correction originates in the outer region and requires that the outer
boundary for the computational domain be much farther away than the (large) inertial
screening length.

It is of interest to note that the arguments leading to the O(Re3/2) scaling for the
angular velocity correction remain valid even for a general triaxial ellipsoid provided
that one of its principal axes remains aligned with the ambient vorticity. It is known
that for Re= 0, and for sufficiently long times, the orientation dynamics of a triaxial
ellipsoid differs significantly from that of a spheroid even for small departures from
axisymmetry. For a general triaxial ellipsoid, quasiperiodic and chaotic trajectories
coexist in orientation space, and an ellipsoid may exhibit dynamics of either type
depending on its initial orientation. Nearly axisymmetric ellipsoids, and those with
moderate aspect ratios, exhibit a quasiperiodic orientation dynamics for the most
part, as shown originally by Hinch & Leal (1979); on the other hand, the orientation
dynamics is largely chaotic for slender ellipsoids (Yarin, Gottlieb & Roisman 1997).
It has been shown very recently, using Lattice Boltzmann simulations (Rosen 2016),
that the first effects of inertia render the rotation about the intermediate axis stable
for certain values of the axis ratios (κ1= b/a= 1/3 and κ2= c/a= 1/4), where 2a, 2b
and 2c are the lengths of the three axes of the triaxial ellipsoid, with a> b> c (the
analogous rotation in the Stokesian limit is neutrally stable). The natural question
to ask is with regard to the time period of rotation in this inertially stabilized
configuration. We show that the correction to the time period for a triaxial ellipsoid
in this configuration again arises at O(Re3/2), and evaluate the correction. Assuming
stability of the intermediate-axis-aligned rotation, we also examine a sequence of
triaxial ellipsoids approaching a tumbling ellipse, and characterize the divergence of
the time period in this limit.

The inertial correction above remains O(Re3/2) provided that the inertial screening
length of O(Re−1/2) is much larger than any of the principal axes. At the other
extreme, when the largest axis is much larger than the inertial screening length (which
is still much larger than the other two axes), and is in addition parallel to the ambient
vorticity, the determination of the inertial correction reduces to a two-dimensional
scenario involving a freely rotating elliptic cylinder in simple shear flow. The inertial
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correction is now larger, being O(Re), due to the more gradual O(1/r) decay of
the force-dipole velocity field in two dimensions. An analytical determination of the
O(Re) angular velocity correction has been carried out for a circular cylinder by
Robertson & Acrivos (1970); the analogous scaling for an elliptic cylinder has been
verified in computations by Mikulencak & Morris (2004).

This paper is organized as follows. In § 2, we derive the expression for the
inertial correction to the angular velocity of a spheroid using a reciprocal theorem
formulation. We express the reciprocal theorem in terms of Fourier-space integrals
similarly to Stone et al. (2000) and Subramanian et al. (2011). In § 3, we summarize
the Stokesian scenario and the results of the O(Re) calculation made in Dabade et al.
(2016). Aside from determining the O(Re) drift across orbits, this latter calculation
shows that the time period correction vanishes at O(Re) in the stabilized (spinning
or tumbling) orbits. We then consider the simpler case of the spinning spheroid
in § 4, and show that the Fourier-space integral for the O(Re3/2) angular velocity
correction reduces to that of the sphere, as given in Stone et al. (2000). A numerical
evaluation of this integral yields the spinning correction over the relevant range of
aspect ratios. As mentioned above, this is expected since a torque-free spinning
spheroid acts as a time-independent force-dipole singularity. In § 5, we evaluate the
reciprocal theorem integral for the more involved case of the tumbling orbit, the
difficulty arising from the time-dependent nature of the force-dipole singularity. The
inertial correction to the tumbling time period reduces to a sum of a three- and a
four-dimensional integral. These integrals are evaluated numerically and the results
are presented in § 6. In § 7, we calculate the time period correction for a triaxial
ellipsoid rotating about its intermediate principal axis for a restricted set of axis-ratio
pairs. In § 8, we first summarize our results. Then, we combine the findings of the
O(Re) analysis in Dabade et al. (2016) and the current one, to present a description
of the effects of weak inertia valid for all aspect ratios. In particular, we show that
the O(Re3/2) inertial terms do not affect the leading-order estimate of the critical
Reynolds number (based on the O(Re) inertial correction) required for arrest of the
rotation of extreme-aspect-ratio spheroids.

2. Formulation for the time period: the reciprocal theorem

In this section, we derive the formal expression for the correction to the time period
of rotation of a spheroid, in a simple shear flow, for small Re. The time period is
related to the angular velocity of the spheroid, and the latter can be evaluated using
a generalized reciprocal theorem. The reciprocal theorem relates the velocity and
stress fields of two problems, the first being the problem of interest and the second
being a simpler test problem with a known solution. The flow physics in the two
problems can be different; however, the configuration, size and shape of the particle,
a spheroid in an unbounded fluid domain, are the same (Leal 1979; Subramanian &
Koch 2005, 2006a; Dabade et al. 2016). The problem of interest here is a torque-free
spheroid rotating in a simple shear flow, accounting for the inertial acceleration of
the fluid in an unbounded domain. The objective is to relate its angular velocity,
Ω1, to the time period of rotation, for small Re, and thereby determine the latter to
O(Re3/2). The test problem corresponds to the Stokesian rotation of a spheroid in
a quiescent ambient with an angular velocity Ω2, and with the same instantaneous
orientation as that of the spheroid in the problem of interest. The velocity and stress
fields in the problem of interest are denoted by u(1) and σ (1), and those in the test
problem are u(2) and σ (2). The reciprocal theorem is formulated in terms of the scaled
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disturbance fields (both stress and velocity) in the problem of interest, which are given
by σ ′(1) = σ (1) − 2E and u′(1) = u(1) − Γ · x, where Γ · x is the ambient simple shear
defined in a coordinate system whose origin is at the centre of the spheroid. The
space-fixed coordinate system has its X, Y and Z axes along the flow, gradient and
vorticity directions respectively of the ambient simple shear (see figure 1), with the
unit vectors in the X, Y and Z directions being 11, 12 and 13 respectively. The
disturbance velocity and stress fields are scaled with γ̇L and µγ̇L. Thus, Γ = 1112
and E = (1112 + 1211)/2 are the transpose of the non-dimensional velocity gradient
and the rate-of-strain tensors respectively. The expression for the inertial angular
velocity has already been derived in Dabade et al. (2016) (equation (2.19)), using
a reciprocal theorem formulation, and takes the following form in non-dimensional
terms:

Ω1 ·L2 = Γ :

∫
Sp

x(σ (2) · n) dS+ St
d
dt
(Ip ·Ω1) ·Ω2

+Re
∫

V

[
∂u′(1)

∂t
+ (Γ · x) · ∇u′(1) + Γ · u′(1) + u′(1) · ∇u′(1)

]
· u(2) dV,

(2.1)

where Ω1 and L2 are respectively the angular velocity of the spheroid in the problem
of interest and the torque acting on the spheroid in the test problem. The latter is
given by L2 = −8π(XCpp + YC(I − pp)) ·Ω2, p here being the orientation vector of
the spheroid, and the torque coefficients being given by XC = 4(ξ 2

0 − 1)/(3ξ 3
0 (2ξ0 −

2(ξ 2
0 − 1) coth−1 ξ0)) and YC= 4(2ξ 2

0 − 1)/(3ξ 3
0 (2(ξ

2
0 + 1) coth−1 ξ0− 2ξ0)) for a prolate

spheroid (Kim & Karrila 1991), where ξ0 is the inverse of the eccentricity of the
spheroid (ξ0 = 1/

√
1− 1/κ2 for a prolate spheroid). The expressions for XC and YC,

for an oblate spheroid, can be obtained by using the transformation ξ0 = i
√
ξ 2

0 − 1
and d = −id (d is the interfocal distance) in the dimensional forms of the prolate
torque coefficients (ξ0 = 1/

√
1− κ2 for an oblate spheroid). The term proportional

to St in (2.1), where St is the Stokes number defined as ρpγ̇L2/µ and Ip is the
moment of inertia of the spheroid, gives the contribution to the angular velocity due
to particle inertia. For a neutrally buoyant spheroid, the case considered here, St =
Re. The volume integral on the right-hand side of (2.1) gives the contribution to the
angular velocity due to fluid inertia, the domain of integration being the unbounded
fluid volume outside the spheroid. The leading-order contribution due to fluid inertia,
at O(Re), can be obtained by replacing u′(1) with the disturbance velocity field in the
Stokes limit (u′(s)) in the integral. The resulting integral is convergent, implying the
regular nature of the O(Re) correction. This correction has been evaluated in Einarsson
et al. (2015) and Dabade et al. (2016), and it stabilizes certain Stokesian orbits of
the spheroid. Specifically, while, at Re= 0, the spheroid may rotate in any of a one-
parameter family of precessional orbits known as Jeffery orbits (Jeffery 1922), for
finite Re, only the limiting members of this family (the tumbling and the spinning
modes; see figure 1b) are rendered stable by the drift induced by inertia at O(Re).
As shown in § 3, the O(Re) correction to the angular velocity of a spheroid rotating
in either of the asymptotic states above does not change the time period of rotation
from its leading-order value given in non-dimensional terms by Tjeff = 2π(κ2

+ 1)/κ .
However, as mentioned in § 1, numerical simulations have shown a change in the time
period in the presence of fluid inertia (Mao & Alexeev 2014), although the scaling for
this change has not been rigorously characterized in the limit Re� 1. Thus, there is
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a need to characterize the first correction to the time period. As shown later in this
section, this comes at O(Re3/2).

To calculate the O(Re3/2) correction, we first examine the assumptions made when
replacing u′(1) with u′(s) to obtain the O(Re) correction. The equation governing u′(1)
is given by

∇
2u′(1) −∇p= Re

(
∂u′(1)

∂t
+ u′(1) · ∇u′(1) + (Γ · x) · ∇u′(1) + Γ · u′(1)

)
. (2.2)

This equation is obtained by taking the difference of the governing equations for
the full velocity field u(1) and the ambient Γ · x. By neglecting the inertial terms
proportional to Re in (2.2), one gets the Stokes equations whose solution is u′(s). It
is well known that u′(s) is not a uniformly valid approximation for the velocity field
throughout the unbounded domain outside the spheroid. The inertial terms on the
right-hand side decay as 1/r2, and cannot be neglected when r ≈ Re−1/2, the inertial
screening length, and the Stokes solution ceases to be a good approximation to the
disturbance velocity field at distances of the order of and beyond this length. The
region around the sphere can therefore be divided into two, depending on whether
the inertial terms can be neglected compared with the viscous terms: the inner region
(r ∼ 1) and the outer region (r ∼ O(Re−1/2)). The Stokes velocity field is a good
approximation to the actual disturbance velocity field only in the inner region. The
leading-order velocity field in the outer region should be obtained by solving the
linearized version of (2.2). The velocity fields in the inner (uinner) and outer (uouter)
regions, however, reduce to the same functional form (umatch) in a matching region
(1� r� Re−1/2). To calculate the O(Re3/2) correction to the angular velocity, u′(1) is
written, formally, as the following uniformly valid expansion (Hinch 1991):

u′(1) = uinner
+ uouter

− umatch. (2.3)

Next, defining uf
= uouter

− umatch, the reciprocal theorem in (2.1) becomes

Ω1 ·L2 = Γ :

∫
Sp

x(σ (2) · n) dS+ Re
d
dt
(Ip ·Ω1) ·Ω2

+Re
∫

V

[
∂uinner

∂t
+ (Γ · x) · ∇uinner

+ Γ · uinner
+ uinner

· ∇uinner

]
· u(2) dV

+Re
∫

V

[
∂uf

∂t
+ (Γ · x) · ∇uf

+ Γ · uf
+ uf
· ∇uf

]
· u(2) dV

+Re
∫

V

[
uf
· ∇uinner

+ uinner
· ∇uf

]
· u(2) dV. (2.4)

In the inner region, uf comes at a higher order, and in the outer region, the
nonlinear cross terms, uf · ∇uinner and uinner · ∇uf , decay faster than the linear terms,
and therefore the integrals involving the cross terms in (2.4) contribute at a higher
order. The third term on the right-hand side in (2.4) gives the O(Re) correction to the
angular velocity (Ω1), arising from the inner region with uinner

=u′(s), and is evaluated
in Dabade et al. (2016). The fourth term on the right-hand side is the contribution to
the angular velocity from the outer region. To explicitly see the scaling with respect
to Re for this contribution, the velocity fields in the fourth term are written in terms
of a rescaled coordinate defined as ρ = Re1/2r. The rescaled coordinate is O(1) when
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r is of the order of the inertial screening length, and is therefore appropriate for the
outer region. The radial vector and the differential volume can be expressed in the
outer coordinate as ρ = Re1/2x, dVρ = Re3/2 dV . Since the neutrally buoyant spheroid
acts as a force-dipole singularity for r � 1, the disturbance velocity fields in the
problem of interest as well as the test problem decay as 1/r2 when 1� r� Re−1/2,
and can be written as ufρ = Re−1uf and u(2ρ ) = Re−1u(2). It should be noted that, as
defined, ufρ = (uouterρ

− umatchρ), the superscript ρ indicating that these velocity fields
are now expressed in the outer coordinate ρ. The reciprocal theorem statement in
(2.4), with the fourth term on the right-hand side expressed in terms of the rescaled
outer coordinate, is given by

Ω1 ·L2 = Γ :

∫
Sp

x(σ (2) · n) dS+ Re
d
dt
(Ip ·Ω1) ·Ω2

+Re
∫

V

[
∂uinner

∂t
+ (Γ · x) · ∇uinner

+ Γ · uinner
+ uinner

· ∇uinner

]
· u(2) dV,

+Re3/2
∫

Vρ

[
∂ufρ

∂t
+ (Γ · ρ) · ∇ufρ + Γ · ufρ

]
· u(2ρ ) dVρ . (2.5)

It should be noted that the nonlinear term uf · ∇uf in the fourth term in (2.4),
when expressed in terms of the outer coordinate, contributes at a higher order, and
is neglected in the fourth term on the right-hand side of (2.5). It is evident from
(2.5) that the correction from the outer region comes at O(Re3/2). The volume of the
spheroid expressed in outer variables is O(Re3/2), and its omission only leads to an
error of O(Re3). The omission is equivalent to treating the spheroid as an equivalent
point-force-dipole singularity. Thus, the outer integral in (2.5) may be extended right
until the origin, and the resulting calculation is then more conveniently performed in
Fourier space. The convolution theorem (Arfken, Weber & Harris 2011) is applied to
the O(Re3/2) integral in (2.5) to obtain∫

Vρ

[
∂ufρ

∂t
+ (Γ · ρ) · ∇ufρ + Γ · ufρ

]
· u(2ρ ) dVρ

=

∫ [
∂ûf

∂t
− (Γ †

· k) · ∇kûf
+ Γ · ûf

]
· û(2)(−k) dk, (2.6)

where the hatted variables denote the Fourier transformed fields, the transform
being defined as f̂ (k)=

∫
f (r)e−i2πk·r dr. In (2.6), û(2)(−k) and ûf

(k) are the Fourier
transforms of the test velocity field u(2ρ ) and the velocity field in the problem of
interest ufρ . The ambient simple shear flow takes the form û∞ = −k112 (Γ †

= 1211)
in Fourier space. Here, k1 is the component of the wavevector k in the X direction.

To evaluate (2.6), we need to find ûf
(k) and û(2)(k). The governing equation for

u(2ρ ) is

∇
2u(2ρ) −∇p(2ρ) = S(2) ·

∂δ(ρ)

∂ρ
, (2.7)

where S(2) is the time-dependent force-dipole singularity corresponding to a spheroid
rotating in a quiescent fluid. The term S(2) is given by

S(2) = B1 ((Ω
(2)
∧ p)p+ p(Ω (2)

∧ p))+ B2 ((Ω
(2)
· p)ε · p)+ B3(ε ·Ω

(2)), (2.8)

where p is the spheroid orientation vector and the constants B1, B2 and B3 for a prolate
spheroid are given by
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B1 =
8π

ξ 3
0 (−3ξ0 + 3 coth−1 ξ0(1+ ξ 2

0 ))
, (2.9)

B2 =
8π(2+ 3ξ0(−coth−1ξ0 + ξ0(−1+ ξ0 coth−1 ξ0)))

3ξ 2
0 (−coth−1

[ξ0]
2 + ξ 2

0 (−1+ ξ0 coth−1 ξ0)2)
, (2.10)

B3 =
8π(1− 2ξ 2

0 )

ξ 3
0 (−3ξ0 + 3 coth−1 ξ0(1+ ξ 2

0 ))
. (2.11)

The terms proportional to B2 and B3 correspond to the rotlet singularities and the one
multiplying B1 corresponds to the stresslet induced by the rotating spheroid. In the
limit ξ0→∞, that is for a sphere, B3=−4π, and B1 and B2 are O(1/ξ 2

0 ), consistent
with a rotating sphere acting as a pure rotlet singularity. As before, the constants for
an oblate spheroid can be obtained using the transformation ξ0 = i

√
ξ 2

0 − 1 and d =
−id, mentioned below (2.1) (alternatively, see Kim & Karrila (1991)). The Fourier
transform of (2.7) gives

û(2)(−k)=
i S(2) · k

2πk2
·

(
I −

kk
k2

)
. (2.12)

To evaluate ûf , we need the equation governing ufρ , which can be derived from the
equations governing uouterρ and umatchρ , given by

∇
2uouterρ

−∇pouterρ
= S ·

∂δ(ρ)

∂ρ
+

(
∂uouterρ

∂t
+ (Γ · x) · ∇uouterρ

+ Γ · uouterρ

)
(2.13)

and

∇
2umatchρ

−∇pmatchρ
= S ·

∂δ(ρ)

∂ρ
(2.14)

respectively. Equation (2.13) is the far-field approximation of (2.2), where the
boundary conditions on the surface of the freely rotating spheroid are replaced
by a singular forcing at the origin. Here, to the order of approximation desired, S is
the time-dependent force-dipole singularity corresponding to a torque-free spheroid in
a simple shear flow at Re= 0, given by

S = A1
3
2
(E : pp)

(
pp−

I

3

)
+ A2((I − pp) · E · pp+ pp · E · (I − pp))

+A3

(
(I − pp) · E · (I − pp)+ (I − pp)

(E : pp)
2

)
. (2.15)

To understand S in more detail, we note that the Stokesian disturbance field induced
in an ambient linear flow can be split into five component flows corresponding to
the five degrees of freedom of the rate-of-strain tensor. These may conveniently be
regarded as an axisymmetric extensional flow and pairs of planar extensional flows in
the longitudinal (containing p) and transverse (orthogonal to p) planes (Dabade et al.
2016), with the component amplitude dependent on the spheroid orientation. Due to its
axisymmetry, a spheroid responds identically to the two extensions in the longitudinal
and transverse planes. Therefore, the stresslet singularity in (2.15) can be written as
a sum of only three terms, with the terms proportional to A1, A2 and A3 being the
stresslets induced by the axisymmetric extension and the longitudinal and transverse
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planar extensional flows respectively. The constants for a prolate spheroid (Kim &
Karrila 1991) are

A1 =−
16π

9ξ 3
0

(
−3ξ0 + coth−1 ξ0

(
−1+ 3ξ 2

0

)) , (2.16)

A2 =
16π

(
−1+ ξ 2

0

)
3ξ 2

0

(
−1+ 2ξ 2

0

) (
2− 3ξ 2

0 + 3 coth−1 ξ0ξ0
(
−1+ ξ 2

0

)) , (2.17)

A3 =−
32π

(
−1+ ξ 2

0

)
3ξ 3

0

(
5ξ0 − 3ξ 3

0 + 3 coth−1 ξ0
(
−1+ ξ 2

0

)
2
) . (2.18)

For a sphere, all three constants equal −20π/3, so that limξ0→∞ S = −(20π/3)E ,
corresponding to the well-known stresslet singularity of a freely rotating sphere
(n limξ0→∞ S yields the well-known Einstein correction). The equation governing ufρ

is derived using (2.13) and (2.14), and is given by

∇
2ufρ
−∇pfρ

=
∂ufρ

∂t
+ (Γ · x) · ∇ufρ

+ Γ · ufρ

+
∂umatchρ

∂t
+ (Γ · x) · ∇umatchρ

+ Γ · umatchρ . (2.19)

The bracketed term on the right-hand side of (2.6) is obtained by taking the Fourier
transform of (2.19), and is given by

∂ûf

∂t
− (Γ †

· k) · ∇kûf
+ Γ · ûf

= −4π2k2ûf
− i2πkp̂f

−

(
∂ûmatch

∂t
− (Γ †

· k) · ∇kûmatch
+ Γ · ûmatch

)
.

(2.20)

The Fourier transformed matching velocity field (ûmatch) in (2.20) is obtained by taking
the Fourier transform of (2.14), and is given by

ûmatch
(k)=−

i S · k
2πk2

·

(
I −

kk
k2

)
, (2.21)

with S given by (2.15). By substituting (2.12) and (2.20) into (2.6), the reciprocal
theorem relation in (2.5) becomes

Ω1 ·L2 = Γ :

∫
Sp

x(σ (2) · n) dS+ Re
d
dt
(Ip ·Ω1) ·Ω2

+Re
∫

V

[
∂uinner

∂t
+ (Γ · x) · ∇uinner

+ Γ · uinner
+ uinner

· ∇uinner

]
· u(2) dV

−Re3/2
∫ [

4π2k2ûf
+
∂ûmatch

∂t
− (Γ †

· k) · ∇kûmatch
+ Γ · ûmatch

]

·

(
iS(2) · k
2πk2

·

(
I −

kk
k2

))
dk. (2.22)

It should be noted that the term containing the Fourier transformed pressure field
in (2.20), which is proportional to k, vanishes when contracted with û(2)(−k), and,
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therefore, does not appear in (2.22). For the test problem, we define two second-order
tensors L2 and U2, and two third-order tensors Σ (2) and S2t, such that L2 = L2 ·Ω2
(L2 is defined below (2.1)), u(2) = U2 ·Ω2, σ (2) =Σ (2) ·Ω2 (see Dabade et al. 2016)
and S(2) = S2t

·Ω2 (S(2) is defined in (2.8)). In terms of these newly defined tensors,
the relation (2.22) becomes independent of the angular velocity of the test spheroid
(Ω2).

Next, the angular velocity in the problem of interest (Ω1) is expanded as Ωjeff +

ReΩc1 + Re3/2Ωc2, and substitution of the expansion as well as the newly defined
tensors in (2.22) leads to

Ωjeff · L2 = Γ :

∫
Sp

x(Σ (2)
· n) dS, (2.23)

Ωc1 · L2 =

∫
V

[
∂u′(s)

∂t
+ (Γ · x) · ∇u′(s) + Γ · u′(s) + u′(s) · ∇u′(s)

]
· U2 dV

+
d
dt
(Ip ·Ω1), (2.24)

and

Ωc2 · L2 = −

∫ [
4π2k2ûf

+
∂ûmatch

∂t
− (Γ †

· k) · ∇kûmatch
+ Γ · ûmatch

]

·

(
iS(2t)
· k

2πk2
·

(
I −

kk
k2

))
dk (2.25)

at successive orders. The detailed expression for u′(s), obtained using a spheroidal
harmonics formalism, has already been used to evaluate Ωc1 in Dabade et al. (2016).
To evaluate the O(Re3/2) correction, Ωc2, using (2.25), one needs ûf , which can be
obtained by solving (2.20). This is a rather elaborate calculation, and is presented later
in §§ 4 and 5.

3. Summary: time period at leading order and at O(Re)

The leading-order angular velocity Ωjeff in (2.23) may be expressed in terms of the
rates of change of the polar and azimuthal angles θj and φj (Jeffery 1922), defined in
figure 1(a), and these are given by

φ̇jeff =−
1
2
+

κ2
− 1

2(κ2 + 1)
cos 2φj, (3.1)

θ̇jeff =
κ2
− 1

4(κ2 + 1)
sin 2θj sin 2φj. (3.2)

There is an additional spin component given by ψ̇ =−cos θj/2− φ̇jeff cos θj. As is well
known, the solution of (3.1) and (3.2) shows that the spheroid rotates in any of a one-
parameter family of closed orbits (figure 1b), the particular orbit being determined by
its initial orientation. The parameter is the orbit constant C, which takes values from 0
to ∞. The orbital or so-called natural coordinates (C, τ ) were originally introduced by
Leal & Hinch (1971), with the constant-C lines being Jeffery orbits and the constant-τ
lines (τ being the phase along the Jeffery orbit) being the constant-φ lines on the
unit sphere. In these coordinates, the aforementioned rates of change take on a much
simpler form, namely dC/dt= 0 and dτ/dt= κ/(κ2

+ 1).
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If a spheroid is initially aligned with the ambient vorticity axis, it will continue to
spin in that orientation. This particular orbit with C= 0(θj= 0) is called a log-rolling
(spinning) orbit for a prolate (oblate) spheroid. At leading order, the angular velocity
of the spinning spheroid is a constant, and is therefore independent of the aspect ratio
and equal to −(1/2)13. The disturbance velocity field is steady in this orbit, just like a
sphere, and the time period of rotation is 4π. If the initial orientation of the spheroid
is in the flow–gradient plane, the orbit is a unit circle in this plane and is called a
tumbling orbit (θj=π/2,C=∞). The rotation in a Jeffery orbit is not uniform for any
orbits other than the log-rolling (spinning) orbit. The disturbance velocity field due to
a spheroid in these orbits, including the tumbling one in particular, is unsteady. The
Stokesian disturbance field due to a spheroid rotating in any of these orbits exhibits a
periodic dependence on time. The time period of rotation may be obtained based on
φ̇jeff , and is given by Tjeff = 2π(κ2

+ 1)/κ . It should be noted that the period is the
same for all orbits because φ̇jeff is independent of θj. Further, the disturbance velocity
field in the tumbling orbit has a period of Tjeff /2, due to the p↔−p symmetry.

As mentioned in § 2, the correction to the angular velocity at O(Re), Ωc1, given
in (2.24), is evaluated in Dabade et al. (2016). The angular velocity components
expressed in terms of the angles defined above are of the form

˙θc1 = sin θj cos θj
[
Fn

1(ξ0)+ Fn
2(ξ0) cos 2φj + Fn

3(ξ0) cos 2θj + Fn
4(ξ0) cos 4φj

+Fn
5(ξ0) cos(2θj − 4φj)+ Fn

6(ξ0) cos(2θj + 4φj)
]
, (3.3)

φ̇c1 = sin φj cos φj
[
Gn

1(ξ0)+Gn
2(ξ0) cos 2θj +Gn

3(ξ0) cos 2φj

+Gn
4(ξ0) cos(2θj) cos(2φj)

]
. (3.4)

For a neutrally buoyant spheroid, the functions Fn
i and Gn

i are defined as Fn
i =Fp

i +Ff
i

and Gn
i =Gp

i +Gf
i , with Fp

i , Ff
i , Gp

i and Gf
i defined for a prolate spheroid in Dabade

et al. (2016); the corresponding functions for an oblate spheroid are obtained using
the transformation defined in § 2. The superscripts ‘f ’ and ‘p’ correspond to fluid and
particle inertia contributions respectively. The rates of change defined in (3.3) and
(3.4) lead to an inertial drift across Jeffery orbits. The orbital drift, defined as the
average change in C over one complete rotation of the spheroid, can be obtained from
a multiple time scale analysis and has been used to analyse the effect of inertia at
O(Re) in planar linear flows (Subramanian & Koch 2005, 2006a; Dabade et al. 2016;
Marath & Subramanian 2017; Marath et al. 2017). For simple shear flow, in particular,
it has been found that on time scales of O(Re−1), a neutrally buoyant prolate spheroid
of any aspect ratio settles into the tumbling orbit, and a neutrally buoyant oblate
spheroid with aspect ratio κ in the range 0.137 < κ < 1 asymptotes to the spinning
orbit. For neutrally buoyant oblate spheroids with κ < 0.137, a repeller exists on the
unit sphere (see the red curve in figure 1c), dividing the orientation hemisphere into
two basins of attraction, with the attractors being the spinning and tumbling orbits,
and, in the absence of stochastic fluctuations, the spheroid can settle into either of
these depending on its initial orientation. In the analysis below, we focus on the effect
of inertia on the time periods of rotation of both prolate and oblate spheroids, in the
orbits into which they settle for times longer than O(Re−1), due to the aforementioned
O(Re) drift.

The correction to the spinning period is zero at O(Re). The argument leading to
an analogous conclusion for a sphere has already been given in the introduction.
The argument remains unchanged for a spheroid since ω and p are coincident in the
spinning mode. In the tumbling orbit, φ̇j is not a constant, and depends on p, which
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is orthogonal to ω. The tumbling time period is given by

1T tumb
=

∫
−π

π

dφj

φ̇jeff + Re φ̇c1 + Re3/2 φ̇c2

=

∫
−π

π

1
φ̇jeff

dφj − Re
∫
−π

π

φ̇c1

φ̇2
jeff

dφj +O(Re3/2), (3.5)

where the expansion is valid for κ ∼ O(1), when φ̇c1Re � φ̇jeff . The leading-order
integral on the right-hand side evaluates to 2π(κ2

+ 1)/κ , which is, of course, the
Jeffery period. The O(Re) integral in the above equation evaluates to zero after
substituting for φ̇jeff and φ̇c1 from (3.1) and (3.4) respectively. The vanishing of this
integral can also be seen by noting that the O(Re) correction to the angular velocity
given in (3.4) is antisymmetric about the gradient axis (φj = π/2). Therefore, the
contribution to the integral from the first quadrant (φj varies from 0 to π/2) cancels
the contribution from the second quadrant (φj varies from π/2 to π) (this symmetry
follows from the Stokesian velocity field due to the regular nature of the correction).

The correction to the time period due to fluid inertia arises at O(Re3/2) for both
the tumbling and the spinning orbits. As mentioned in the introduction, the O(Re3/2)
correction for a rigid sphere is evaluated in Stone et al. (2000) and Subramanian et al.
(2011). The evaluation of the correction for a spheroid in the spinning orbit is simpler
in that it follows that for a sphere, and is presented in § 4. The correction for a
tumbling spheroid is more involved, in having to account for the unsteadiness of the
disturbance velocity field, and is presented in § 5.

4. Evaluation: time period – spinning orbit
In this section, we focus on the effect of fluid inertia on spinning spheroids. The

spinning mode is the only steady-state orbit for oblate spheroids with aspect ratios
larger than 0.137, and one of two for oblate spheroids with aspect ratio less than
0.137. The leading-order spin is −(1/2)13. Defining the correction to the spin, at
O(Re3/2), as ψ̇c213, ψ̇c2 being independent of the spin angle ψ due to symmetry, one
obtains

1T spin
= 8πRe3/2ψ̇c2. (4.1)

Here, ψ̇c2 can be obtained by contracting (2.25) with 13, and is given by

ψ̇c2 =
1

8πXC

∫
[4π2k2ûf

− (Γ †
· k) · ∇kûmatch

+ Γ · ûmatch
]

·

{
i(S(2t)

· k) · 13

2πk2
·

(
I −

kk
k2

)}
dk, (4.2)

where all of the terms in the integrand are evaluated at θj = 0, corresponding to
the spinning orbit, and XC is the torque coefficient corresponding to spinning
motion, defined in § 2. The Fourier transformed velocity fields ûmatch and ûf are
now independent of time. The integral for the time period in (4.1) then becomes

1T spin
= −

Re3/2

XC

∫
[−4π2k2ûf

+ (Γ †
· k) · ∇kûmatch

− Γ · ûmatch
]

·

{
i(S(2t)

· k) · 13

2πk2
·

(
I −

kk
k2

)}
dk. (4.3)
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The term within braces above is again independent of time, and simplifies to

i(S(2t)
· k) · 13

2πk2
·

(
I −

kk
k2

)
= Tspin

1 =
i(B2 + B3)

2k2π
(k2 11 − k1 12) (4.4)

using (2.8), and, to within a constant of proportionality, is just the Fourier transformed
rotlet field. For a sphere, B2 + B3 above reduces to −4π, which equals half of the
torque exerted by a unit sphere rotating with a unit non-dimensional angular velocity.

The singularity S in the actual problem takes the form S = A3E , and, therefore,
ûmatch

(k) is −iA3E · k/(2πk2) · (I − kk/k2) from (2.21), which is the Fourier
transformed stresslet velocity field, but with a ξ0-dependent coefficient (A3=−20π/3
for a sphere). The inertial terms in (4.3) involving ûmatch take the form

(Γ †
· k) · ∇kûmatch

− Γ · ûmatch
=Rspin

1 , (4.5)

where Rspin
1 is given by

Rspin
1 =

A3

2k6π

(
ik3

1

(
k2
− 4k2

2

)
11 + ik2

1k2
(
3k2
− 4k2

2

)
12 + ik2

1

(
k2
− 4k2

2

)
k3 13

)
. (4.6)

The Fourier transformed velocity field ûf in (4.3) is governed by (2.20). After
eliminating the pressure term, (2.20) reduces, for the spinning case, to

−(Γ †
· k) · ∇kûf

+ Γ · ûf
·

(
I − 2

kk
k2

)
+ 4π2k2ûf

=Rspin
1 ·

(
I −

kk
k2

)
=Qspin

=
A3

k6π

(
−ik3

1k2
211 + ik2

1k2
(
k2

1 + k2
3

)
12 − ik2

1k2
2k313

)
. (4.7)

The components of (4.7) in a space-fixed coordinate system are given as

∂ ûf
1

∂k2
− 4π2k2 ûf

1

k1
−

(
1−

2k2
1

k2

)
ûf

2

k1
=−

Qspin
1

k1
, (4.8)

∂ ûf
2

∂k2
− 4π2k2 ûf

2

k1
+

(
2k1k2

k2

)
ûf

2

k1
=−

Qspin
2

k1
, (4.9)

∂ ûf
3

∂k2
− 4π2k2 ûf

3

k1
+

(
2k1k3

k2

)
ûf

2

k1
=−

Qspin
3

k1
, (4.10)

where the subscripts 1, 2 and 3 denote the components along the X, Y and Z axes.
While the components along the flow (ûf

1) and the vorticity (ûf
3) axes are coupled to

the one along the gradient axis (ûf
2), the equation governing the latter is independent

of the other two, and is therefore solved first. In (4.8)–(4.10), one can identify a
simple shear flow in Fourier space, given by û∗∞(k) = −k112, orthogonal to the
one in physical space, (u∞(x) = x211), convecting the Fourier transformed velocity
field. The orthogonality arises because the wavevector is oriented normal to the
wavefronts, the latter being turned by the simple shear flow in physical space (see
figure 2). The components of the Fourier transformed velocity field are convected
by the Fourier-space simple shear flow. This convection has the effect that ûf

(k), for
a given k, has contributions from all wavevectors turned onto k from orientations
further upstream. The viscous term, proportional to 4π2k2 in (4.8)–(4.10), causes an
exponential decay in amplitude with an argument that involves an integral over the
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FIGURE 2. (Colour online) The red lines denote the wavefronts. Here, k is the wavevector
which gets turned due to a simple shear flow of the form u∞(x)= x211. This is equivalent
to a convection by a simple shear flow of the form û∗∞(k)=−k112 in the Fourier space.

square of the changing wavevector over this ‘turning’ period. Defining the streamlines
of the Fourier-space simple shear flow as k′2 = k2 + k1s, s being a time-like variable,
the solutions for the individual components ûfβ

2 , ûf
1 and ûf

3 may be written as follows:

ûf
2(k) =

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
×

(
1
k2

)
ik2

1(k2 + k1s)
(
k2

1 + k2
3

)
A3

k′4π
ds, (4.11)

ûf
1(k) =

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
×

(
−

ik3
1(k2 + k1s)2A3

k′6π
−

(
1−

2k2
1

k′2

)
ûf

2(k
′)

)
ds (4.12)

and

ûf
3(k) =

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
×

(
−

ik2
1(k2 + k1s)2k3A3

k′6π
+

2k1k3

k′2
ûf

2(k
′)

)
ds, (4.13)

where the components in the flow and vorticity directions are coupled to the
component in the gradient direction through the term ûf

2(k
′). Here, k′ = (k111 +

(k2 + k1s)12 + k313) and k′ = |k′|, and ûf
2(k
′) in (4.12) and (4.13) is given by

ûf
2(k
′) =

∫
∞

0
exp

(
−4π2

(
k′2s′ + k1(k2 + k1s)s′2 +

k2
1s′3

3

))
×

(
1

k′2

)
ik2

1k′′2
(
k2

1 + k2
3

)
A3

k′′4π
ds′, (4.14)

where k′′ = (k111 + (k2 + k1(s + s′))12 + k313), k′′ = |k′′| and k′′2 = (k2 + k1(s + s′)).
Thus, ûf

1(k
′) and ûf

3(k
′) given in (4.11) and (4.13) include a one-dimensional and a two-

dimensional integral, whereas ûf
2(k
′) given in (4.12) consists of only a one-dimensional

integral.
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The Fourier transformed test velocity field given in (4.4), the inertial terms involving
ûmatch given by (4.5)–(4.6) and ûf given by (4.11)–(4.13) are now substituted in (4.3)
to obtain

1T spin
=−

Re3/2

Xc

∫
[−4π2k2(ûf

111 + ûf
212 + ûf

313)+Rspin
1 ] · T

spin
1 dk. (4.15)

The different terms in the integral above can be expressed in a spherical coordinate
system with k1= k sin θ cos φ, k2= k sin θ sin φ, k3= k cos θ and dk= k2 sin θ dk dθ dφ
as ∫

(−4π2k2 ûf
1(k) 11 · T

spin
1 ) dk=

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2 ik3

1k′22 A3

k′6π

[
i(B2 + B3)k2

2k2π

]}
×

∫
∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
dk ds sin θ dθ dφ

+

∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0

{
4π2k2

[
i(B2 + B3)k2

2k2π

] (
1−

2k2
1

k′2

)
ik2

1k′′2(k
2
1 + k2

3)A3

k′′4k′2π

}
×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
× exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
k2 dk ds′ ds sin θ dθ dφ, (4.16)∫

(−4π2k2 ûf
2(k) 12 · T

spin
1 ) dk

=−

∫
4π2

{[
−i(B2 + B3)k1

2π

]
ik2

1(k2 + k1s)
(
k2

1 + k2
3

)
A3

k2k′4π

}

×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
k2 dk ds sin θ dθ dφ, (4.17)

∫
(−4π2k2 ûf

3(k) 13 · T
spin
1 ) dk= 0 (4.18)

and ∫
Rspin

1 · T
spin
1 dk =

∫ 2π

0

∫ π

0

∫
∞

0

{
−

A3k3
1(k

2
− 4k2

2)

πk6

(B2 + B3)k2

4π

+
A3k2

1k2(3k2
− 4k2

2)

k6π

(B2 + B3)k1

4π

}
dk sin θ dθ dφ, (4.19)

where we have retained the Cartesian notation for the wavevector components for
brevity, and the terms grouped within the braces are such that they are independent
of k. The test velocity field does not have a vorticity component, and therefore the
contribution to (4.15) due to the term proportional to ûf

3 is zero.
The right-hand side of (4.16) is sum of a four-dimensional and a five-dimensional

integral, whereas that of (4.17) is a single four-dimensional integral. In the
four-dimensional integrals, the integration over k gives a term proportional to 1/s3/2,
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which is divergent in the integration over s as s→ 0, as follows:∫
∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
dk

=

∫
∞

0
k2 exp

(
−4π2k2

(
s+ sin2 θ cos φ sin φs2

+
sin2 θ cos2 φs3

3

))
dk

=
1

32π5/2(s+ sin2 θ cos φ sin φs2 + sin2 θ cos2 φs3/3)3/2
. (4.20)

The three-dimensional integral on the right-hand side of (4.19) diverges in the limit
k→∞. Although, individually, the abovementioned integrals are divergent, the sum is
nevertheless convergent. This divergence arises because, while deriving the expression
for the angular velocity in (2.22), we had rewritten the three terms proportional to ûf

in (2.6) as a sum of a term proportional to k2ûf and three terms proportional to ûmatch,
and each of these four terms is divergent in the limit of k→∞ (the original terms
were convergent with ûf decaying as 1/k3, the scaling obtained from the large-k limit
of (4.11)–(4.13)). To eliminate the divergence, an additional integral over a dummy
variable s is introduced in (4.19) as follows:∫

Rspin
1 · T

spin
1 dk=

∫ 2π

0

∫ π

0

∫
∞

0

{
−A3k3

1(k
2
− 4k2

2)

πk6

(B2 + B3)k2

4π

+
A3k2

1k2(3k2
− 4k2

2)

k6π

(B2 + B3)k1

4π

}∫
∞

0
4π2k2e−4π2k2s ds dk sin θ dθ dφ.

(4.21)

It should be noted that
∫
∞

0 4π2k2 exp(−4π2k2s) ds= 1. The additional integral, when
integrated over k, gives a term proportional to 1/s3/2, and (4.21) takes the form∫

Rspin
1 · T

spin
1 dk=

∫ 2π

0

∫ π

0

∫
∞

0

{
−A3k3

1(k
2
− 4k2

2)

πk6

(B2 + B3)k2

4π

+
A3k2

1k2(3k2
− 4k2

2)

k6π

(B2 + B3)k1

4π

}
1

8
√

πs3/2
ds sin θ dθ dφ. (4.22)

The integration over k in the five-dimensional integral in (4.16) gives∫
∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
dk

=

∫
k2 exp

(
−4π2k2 s′

12

(
3
(
4+ s2

− s2 cos 2θ + 2s sin2 θ(s cos 2φ + 2 sin 2φ)
)

+ 4 cos φ sin2 θs′
(
3 sin φ + cos φ

(
3s+ s′

))) )
× exp

(
−4π2k2

(
s+ sin2 θ cos φ sin φs2

+
sin2 θ cos2 φs3

3

))
dk

=
1

32π5/2( f exp(s, s′, θ, φ))3/2
, (4.23)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.534


Inertial effects on the time period of rotation of anisotropic particles 183

where f exp is the function that multiplies −4π2k2 in the exponent of the integrand. It
should be noted that there is no divergence for the five-dimensional integral in the
limit of s→ 0 or s′→ 0. The integration over k for the four-dimensional integrals
given in (4.16) and (4.17) is substituted from (4.20), and the sum of the resulting
three-dimensional integral together with the matching term contribution given in (4.22)
is convergent in the limit of s→ 0. This sum, which is a three-dimensional integral
(over s, θ , φ) and a four-dimensional integral (over s, s′, θ , φ) obtained from the
five-dimensional ones in (4.16) and (4.17), after substituting from (4.23), is evaluated
numerically using Gaussian quadrature to give the time period correction as

1T spin
= Re3/2 A3(B2 + B3)

XC
0.00516. (4.24)

The angular velocity correction at O(Re3/2) can be obtained by using (4.1) and is given
by 1T spin/(8π), which leads to

ψ̇ =−
1
2
+ Re3/2 A3(B2 + B3)

8πXC
0.00516. (4.25)

For an oblate spheroid, A3(B2 + B3)/Xc = 128π2/(9 cosec−1ξ0ξ
5
0 − 6ξ0

√
−1+ ξ 2

0 −

9ξ 3
0

√
−1+ ξ 2

0 ). For a sphere, A3(B2 + B3)/Xc = 80π2/3 and the angular velocity
reduces to that obtained by Stone et al. (2000) and Subramanian et al. (2011). The
reason for the absence of the O(Re) correction in (4.25) has already been pointed
out in §§ 1 and 3. The correction given in (4.25) matches with that derived using a
matched asymptotic expansion approach in Meibohm et al. (2016). The plot of the
correction to the time period in (4.24) against eccentricity is given in § 6.

The correction derived in (4.24) is also valid for a spinning prolate spheroid, with
A3(B2 + B3)/Xc = 128π2(ξ 2

0 − 1)/(3ξ 3
0 (−3ξ 3

0 + 3(ξ 2
0 − 1)2 coth−1 ξ0 + 5ξ0)). Although

not relevant to inertial correction in three dimensions, consideration of this mode
allows one to connect to the effect of inertia in the two-dimensional scenario. As
mentioned in the introduction, the inertial correction for a circular cylinder arises
at O(Re), as shown by Robertson & Acrivos (1970). This scaling emerges from the
O(Re3/2) correction for a spinning prolate spheroid in the limit of κ→∞. To see this,
one first writes (4.24) in terms of the Reynolds number based on the spheroid minor
axis (R̃e), yielding 1T spin

= R̃e
3/2
κ3A3(B2 + B3)/Xc, which in the large-aspect-ratio

limit is proportional to R̃e
3/2
κ . As expected, the transition from O(Re3/2) to the

two-dimensional O(Re) scaling occurs when κ is O(R̃e
−1/2

).

5. Evaluation: time period – tumbling orbit
In this section, we focus on the tumbling orbit, which is the long-time orbit for

prolate spheroids of any aspect ratio and one of two for oblate spheroids with aspect
ratios less than 0.137. The inertial correction to the tumbling time period may be
obtained by considering the explicit form of the O(Re3/2) term in (3.5), and is given
by

1T tumb
=−Re3/2

∫
−π

π

φ̇c2

φ̇2
jeff

dφj =−Re3/2
∫ Tjeff

0

φ̇c2

φ̇jeff
dt. (5.1)

In (5.1), we have changed the variable of integration back to time based on dφj/dt=
φ̇jeff , since the error affects the time period only at O(Re5/2). The angular velocity of
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the tumbling spheroid, at O(Re3/2), φ̇c2, may be obtained by contracting (2.25) with
13, which gives

φ̇c2 =
1

8πYC

∫ [
4π2k2ûf

+
∂ûmatch

∂t
− (Γ †

· k) · ∇kûmatch
+ Γ · ûmatch

]

·

{
i(S(2t)

· k) · 13

2πk2
·

(
I −

kk
k2

)}
dk, (5.2)

where all of the terms in the integrand are evaluated at θj = π/2 (tumbling orbit),
and Yc, the torque coefficient corresponding to transverse rotation, is defined in § 2.
Substitution of (5.2) into (5.1) leads to the O(Re3/2) correction to the time period,
given by

1T tumb
=

Re3/2

8πYc

∫ ∫ Tjeff

0

[
−4π2k2ûf

−
∂ûmatch

∂t
+ (Γ †

· k) · ∇kûmatch
− Γ · ûmatch

]

·

{
i(S(2t)

· k) · 13

2πk2 φ̇jeff
·

(
I −

kk
k2

)}
dt dk. (5.3)

The integral above is evaluated in the space-fixed coordinate system (XYZ in
figure 1a) and the details are presented in §§ 5.1–5.4 below. The reciprocal theorem
restricts the orientation of the spheroid in the test problem to be the same as that
of the spheroid in the problem of interest. Therefore, in the tumbling orbit, the
velocity field is unsteady in the test problem too. The singularities corresponding
to both problems are time-dependent point-force-dipole singularities (a stresslet in
the actual problem and both a stresslet and a rotlet in the test problem), the time
dependence arising from the motion of p along the tumbling orbit. The time-dependent
p determines S(2t), S and thence ûmatch and ûf via (2.21) and (2.20). Thus, the term
involving the test velocity field, given within braces in (5.3), and the inertial terms
in the problem of interest, given in square brackets, are functions of time.

To evaluate the integral in (5.3), in § 5.1, the term within braces is expressed
in the aforementioned coordinate system as a Fourier time series which involves
a combination of three Fourier modes, namely the mode independent of time
that is already present for a sphere, and modes proportional to cos(4πt/Tjeff ) and
sin(4πt/Tjeff ), Tjeff being the Jeffery period. The combination S(2t)/φ̇jeff leads to a
finite Fourier series, a fact crucial to the evaluation of the time period correction; the
time dependence of S(2t) alone, for instance, would have led to an infinite Fourier
time series. The two time-dependent modes have a frequency that is twice the
Jeffery frequency (ωg = 2π/Tjeff ), this being due to the fore–aft symmetry of the
spheroid, which leads to the same disturbance field for orientations p and −p. In
(5.3), since one is only interested in the integration over a time period, only the terms
corresponding to these three Fourier modes in the Fourier expansion of the inertial
acceleration terms will lead to non-zero contributions. The expansions for the inertial
terms involving ûmatch are made in § 5.2, and that for the inertial term proportional to
ûf is made in § 5.3. The details of the evaluation of the integral are presented in § 5.4.

5.1. The term proportional to the singularity in the test problem
In the tumbling orbit, p has the form cos φj11 + sin φj12, with tan φj = 1/(κ tan(ωgt)),
which is the solution of the Jeffery equations (3.1)–(3.2). This relation is used for
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both the orientation in the test problem and that in the problem of interest. The term
corresponding to the test velocity field in braces, in (5.3), simplifies to

i(S(2t)
· k) · 13

2πk2φ̇jeff
·

(
I −

kk
k2

)
= Ttumb

1 + Ttumb
2 cos(2ωgt)+ Ttumb

3 sin(2ωgt)

=−T1
(κ2
+ 1)2

2κ2
+ T2

(1− κ4)

2κ2
+

(
T1
(κ4
− 1)

2κ2
+ T2

(κ2
+ 1)2

2κ2

)
× cos(2ωgt)− T3

κ2
+ 1
κ

sin(2ωgt), (5.4)

with ωg = 2π/Tjeff . The vectors T1, T2 and T3 above are given by

T1 =

(
ik2

2k2π
11 −

ik1

2k2π
12

)
B3, (5.5)

T2 =

(
i(k2
− 2k2

1)k2

2k4π
11 +

ik1(k2
− 2k2

2)

2k4π
12 −

ik1k2k3

k4π
13

)
B1, (5.6)

T3 =

(
−

i(k2
− k2

1 + k2
2)k1

2k4π
11 +

ik2(k2
+ k2

1 − k2
2)

2k4π
12 +

i(k2
1 − k2

2)k3

2k4π
13

)
B1. (5.7)

The constants B1 and B3 above are defined in (2.9) and (2.11) for a prolate spheroid.
In the tumbling mode, one need not consider the axial spin singularity corresponding
to B2, since the orientation vector is perpendicular to the angular velocity and, thus,
equation (5.4) is independent of B2. As is evident in (5.4), there are only three Fourier
modes for an arbitrary-aspect-ratio spheroid. In the limiting case of a sphere (κ→ 1),
B1→ 0, and therefore Ttumb

2 , Ttumb
3 → 0, and only the time-independent mode survives.

In the limit of a flat disk (κ→ 0), B1 = B3 =−16/3, and Ttumb
3 is O(κ) smaller than

both Ttumb
1 and Ttumb

2 , and can therefore be neglected. Therefore, for a flat disk, (5.4)
scales as O(1/κ2). In the limit of a slender fibre (κ→∞), B1 =−B3 = 4π/(3 log κ),
consistent with viscous slender-body theory, and Ttumb

3 is O(1/κ) smaller than both
Ttumb

1 and Ttumb
2 , and can again be neglected. Therefore, for a slender fibre, (5.4) scales

as O(κ2/log κ). The scalings for 1T tumb, for these extreme-aspect-ratio particles, are
further analysed in § 5.5.

5.2. The inertial terms with ûmatch

In this section, we expand the three terms involving ûmatch, in the integrand in (5.3),
as a Fourier series. The general Fourier expansion has an infinite number of terms,
but one only needs to retain terms corresponding to the three modes in (5.4). As for
the test velocity field, the expression for ûmatch given in (2.21) now depends on time
through the stresslet singularity coefficient S. Hence, we expand S as a Fourier series
in time and retain only the aforementioned terms. This truncated expansion takes the
form

S = −2A112 sin(2ωgt)1111 + (A120 + 2A122 cos(2ωgt))(1112 + 1211)

− 2A222 sin(2ωgt)1212 − 2A332 sin(2ωgt)1313, (5.8)

where

A112 =−

(
3A1

2
− 2A2 +

A3

2

)
κ2

(1+ κ)3
−

(
A2 −

A3 + A1

2

)
κ

(1+ κ)2
, (5.9)
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A120 =

(
A2

2
+

(
3A1

2
− 2A2 +

A3

2

)
κ

2(1+ κ)2

)
, (5.10)

A122 =−

(
3A1

2
− 2A2 +

A3

2

)
κ(1− κ)
2(1+ κ)3

, (5.11)

A222 =−

(
3A1

2
− 2A2 +

A3

2

)
κ

(1+ κ)3
−

(
A2 −

A3 + A1

2

)
κ

(1+ κ)2
, (5.12)

A332 =

(
A1 − A3

2

)
κ

(1+ κ)2
, (5.13)

where the Ai terms are defined in (2.16)–(2.18). In deriving (5.8), we have again used
the Jeffery solution for φj (see § 5.1). For a sphere, A1 = A2 = A3 = −20π/3, and
therefore S in (5.8) reduces to −10π/3(1112 + 1211) = −(20π/3)E . For a flat disk,
2A1 = A3 = −64/9 and A2 is −8πκ/3, therefore (5.8) is O(κ). For a slender fibre,
A1 =−8π/(9 log κ), A2 and A3 are O(1/κ2), and (5.8) is therefore O(1/(κ log κ)).

Using (2.21) and (5.8), the truncated Fourier expansion of the terms involving ûmatch,
to be used in (5.3), is obtained as

(Γ †
· k) · ∇kûmatch

−
∂ûmatch

∂t
− Γ · ûmatch

=Rtumb
1 +Rtumb

2 cos(2ωgt)+Rtumb
3 sin(2ωgt),

(5.14)

where Rtumb
1 , Rtumb

2 and Rtumb
3 are functions of k1, k2, k3, ωg and the Aijk terms defined

in (5.9)–(5.13), and are given by

Rtumb
1 =

iA120k3
1

(
k2
− 4k2

2

)
k6π

11 +
iA120k2

1k2
(
3k2
− 4k2

2

)
k6π

12 +
iA120k2

1

(
k2
− 4k2

2

)
k3

k6π
13,

(5.15)

Rtumb
2 =

2ik1
(
A122k2

1

(
k2
− 4k2

2

)
+ωgk2

(
A112

(
−k2
+ k2

1

)
+ A222k2

2 + A332k2
3

))
k6π

11

+
2ik2

(
A122k2

1

(
3k2
− 4k2

2

)
+ωgk2

(
A112k2

1 + A222
(
−k2
+ k2

2

)
+ A332k2

3

))
k6π

12

+
2ik3

(
A122k2

1

(
k2
− 4k2

2

)
+ωgk2

(
A112k2

1 + A222k2
2 + A332

(
−k2
+ k2

3

)))
k6π

13,

(5.16)

Rtumb
3 =

(
−

2iωgA122
(
k2
− 2k2

1

)
k2

k4π
+

iA112k2
1

(
−k2
+ 4k2

1

)
k2

k6π

+
iA222k2

(
−k2

(
k2
+ 2k2

1

)
+
(
k2
+ 4k2

1

)
k2

2

)
k6π

+
iA332

(
k2
+ 4k2

1

)
k2k2

3

k6π

)
11

+

(
−

2iωgA122k1
(
k2
− 2k2

2

)
k4π

+
iA112k3

1

(
−k2
+ 4k2

2

)
k6π

−
iA222k1 (k− k2) (k+ k2)

(
−k2
+ 4k2

2

)
k6π

−
iA332k1

(
k2
− 4k2

2

)
k2

3

k6π

)
12
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+

(
4iωgA122k1k2k3

k4π
+

4iA112k3
1k2k3

k6π
+

2iA222k1k2
(
−k2
+ 2k2

2

)
k3

k6π

+
2iA332k1k2k3

(
−k2
+ 2k2

3

)
k6π

)
13. (5.17)

Again, for a sphere, only the time-independent mode survives in (5.14). In the limit of
extreme aspect ratios, that is, for a fibre or a flat disk, one needs to consider only the
constant term and the one proportional to cos(2ωgt) in (5.14), since the test singularity
has only those two modes, as seen later in § 5.5.

5.3. The inertial term proportional to ûf

In this section, we expand the lone term proportional to ûf in the integrand in (5.3) as
a Fourier series. As in the previous section, we only need to find the coefficients of
the three modes present in (5.4). To begin with, (2.20) is contracted with (I − kk/k2)

to eliminate the pressure, leading to the following governing equation for ûf :

∂ûf

∂t
− (Γ †

· k) · ∇kûf
+ Γ · ûf

·

(
I − 2

kk
k2

)
+ 4π2k2ûf

=−

(
∂ûmatch

∂t
− (Γ †

· k) · ∇ûmatch
+ Γ · ûmatch

)
·

(
I −

kk
k2

)
. (5.18)

The expression on the right-hand side above is evaluated using (5.14) to give

∂ûf

∂t
− (Γ †

· k) · ∇ûf
+ Γ · ûf

·

(
I − 2

kk
k2

)
+ 4π2k2ûf

= (Rtumb
1 +Rtumb

2 cos(2ωgt)+Rtumb
3 sin(2ωgt)) ·

(
I −

kk
k2

)
=

∑
β∈{0,2,−2}

Qβeiβωgt, (5.19)

where Q0
=Rtumb

1 − (Rtumb
1 · k)k/k2, Q2

= ((Rtumb
2 − iRtumb

3 )/2) · (I − (kk/k2)) and Q−2
=

((Rtumb
2 + iRtumb

3 )/2) · (I − (kk/k2)). The Qβ terms for β = 0, 2 and −2 are given as
follows:

Q0
=−

2iA120k3
1k2

2

k6π
11 +

2iA120k2
1k2
(
k2
− k2

2

)
k6π

12 −
2iA120k2

1k2
2k3

k6π
13, (5.20)

Q2
=Q2Re

+ iQ2i, (5.21)
Q−2
=−Q2Re

+ iQ2i, (5.22)

Q2Re
=

(
k2
(
−k4A222 − 2ωgk2A122

(
k2
− 2k2

1

)
+ A112k2

1

(
−k2
+ 2k2

1

))
2k6π

+
k2
(
A222

(
k2
+ 2k2

1

)
k2

2 + A332
(
k2
+ 2k2

1

)
k2

3

)
2k6π

)
11
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+

(
−

k1
(
k2
− 2k2

2

)
A112k2

1

2k6π

−
k1
(
k2
− 2k2

2

) (
+A222k2

2 + A332k2
3 + k2

(
−A222 + 2A122ωg

))
2k6π

)
12

+
k1k2k3

(
2ωgk2A122 + A112k2

1 + A222k2
2 + A332

(
−k2
+ k2

3

))
k6π

13, (5.23)

Q2i
=

k1
(
−2A122k2

1k2
2 + k2

(
A112

(
−k2
+ k2

1

)
+ A222k2

2 + A332k2
3

)
ωg
)

k6π
11

+
k2
(
2A122k2

1

(
k2
− k2

2

)
+ k2

(
A112k2

1 + A222
(
−k2
+ k2

2

)
+ A332k2

3

)
ωg
)

k6π
12

+
k3
(
−2A122k2

1k2
2 + k2

(
A112k2

1 + A222k2
2 + A332

(
−k2
+ k2

3

))
ωg
)

k6π
13. (5.24)

We have written the Fourier modes in complex exponential form in (5.19) to simplify
the analysis that follows. To reiterate, the general solution for ûf would contain
a forcing on the right-hand side of (5.19) that involves an infinite Fourier series.
However, only the three terms corresponding to the values of β above (0, 2, −2)
contribute to the change in the time period of rotation.

To obtain the solution of (5.19), ûf is expanded as a complex exponential Fourier
series, given by

ûf
=

∑
β∈{0,2,−2}

ûfβeiβωgt. (5.25)

By substituting the expansion above into (5.19), the governing equations for each of
the components of the Fourier transformed velocity field may be written as

∂ ûfβ
1

∂k2
− (4π2k2

+ iωgβ)
ûfβ

1

k1
−

(
1−

2k2
1

k2

)
ûfβ

2

k1
=−

Qβ

1

k1
, (5.26)

∂ ûfβ
2

∂k2
− (4π2k2

+ iωgβ)
ûfβ

2

k1
+

(
2k1k2

k2

)
ûfβ

2

k1
=−

Qβ

2

k1
, (5.27)

∂ ûfβ
3

∂k2
− (4π2k2

+ iωgβ)
ûfβ

3

k1
+

(
2k1k3

k2

)
ûfβ

2

k1
=−

Qβ

3

k1
. (5.28)

The equations above are similar to the ones seen for the spinning case in (4.8)–(4.10)
except for an additional frequency-dependent term (involving ωg) on the left-hand
side and a frequency-dependent forcing amplitude on the right-hand side. Obtainment
of the solution to (5.26)–(5.28) therefore proceeds in a manner similar to that of
the spinning case, and the gradient component, being independent of the others, is
solved first. The solution of (5.26)–(5.28) arising from the substitution of (5.25)
corresponds to the neglect of an exponentially decaying transient, which governs the
relaxation from a general initial condition, and a restriction to the long-time dynamics
corresponding to the frequencies present in the applied forcing. The steady linear flow
ensures that there is a one-to-one correspondence between the Fourier amplitudes of
the forcing and the velocity field, with inertia determining the frequency-dependent
phase lag between the two via the terms proportional to iωg in (5.26)–(5.28). It
should be noted again that

∑
β∈{0,2,−2} Q

βeiβωgt does not determine the complete outer
velocity field, but the part that is relevant for the determination of 1T tumb.
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Again, defining k′2 = k2 + k1s, where s is a time-like variable, the solutions for the
individual components ûfβ

2 , ûfβ
1 and ûfβ

3 are written in terms of s as follows:

ûfβ
2 (k) =

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
k2
+ k2

1s2
+ 2k1k2s

k2

)
× e−iωgβsQβ

2 (k1, k2 + k1s, k3) ds, (5.29)

ûfβ
1 (k) =

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
e−iωgβsQβ

1 (k1, k2 + k1s, k3) ds

−

∫
∞

0
e−iωgβs exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
×

(
1−

2k2
1(

k2 + k2
1s2 + 2k1k2s

)) ûfβ
2 (k1, k2 + k1s, k3) ds, (5.30)

ûfβ
3 (k) =

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
e−iωgβsQβ

3 (k1, k2 + k1s, k3) ds

+

∫
∞

0
e−iωgβs exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
×

(
2k1k3

k2 + k2
1s2 + 2k1k2s

)
ûfβ

2 (k1, k2 + k1s, k3) ds. (5.31)

The solutions for ûfβ
1 and ûfβ

3 are coupled with ûfβ
2 , as expected, and are given as

a sum of a one-dimensional and a two-dimensional integral, with the latter integral
arising from the coupling with ûfβ

2 . The contributions in (5.29)–(5.31), for the different
β terms, are substituted in (5.25) to obtain the components of ûf in the space-fixed
coordinate system, and are given by

ûf
2(k)= ûf 0

2 (k1, k2, k3)+ ûft
2(k1, k2, k3, t), (5.32)

ûf
1(k)= ûf 0

1 (k1, k2, k3)+ ûft
1(k1, k2, k3, t), (5.33)

ûf
3(k)= ûf 0

3 (k1, k2, k3)+ ûft
3(k1, k2, k3, t), (5.34)

where we have written the components as a sum of a time-independent term
(superscript ‘f 0’) and time-dependent term (superscript ‘ft’). Denoting the convected
wavevector, k111 + (k2 + k1s)12 + k313, as k′ and k′ = |k′|, the time-dependent and
time-independent contributions in (5.32)–(5.34) may be conveniently expressed in the
form

ûf 0
2 (k)=

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
k2
+ k2

1s2
+ 2k1k2s

k2

)
Q0

2(k
′) ds,

(5.35)

ûft
2(k, t) =

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
k2
+ k2

1s2
+ 2k1k2s

k2

)
×
((

Q2i
2 (k
′) cos(2ωgs)−Q2Re

2 (k′) sin(2ωgs)
)

cos(2ωgt)

+
(
Q2Re

2 (k′) cos(2ωgs)+Q2i
2 (k
′) sin(2ωgs)

)
sin(2ωgt)

)
ds (5.36)

= ûftcos
2 (k, t) cos(2ωgt)+ ûftsin

2 (k, t) sin(2ωgt), (5.37)
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ûf 0
1 (k)=

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
Q0

1(k
′)−

(
1−

2k2
1

k′2

)
ûf 0

2 (k
′)

)
ds,

(5.38)

ûft
1(k) =

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
×
((

Q2i
1 (k
′) cos(2ωgs)−Q2Re

1 (k′) sin(2ωgs)
)

cos(2ωgt)

+
(
Q2Re

1 (k′) cos(2ωgs)+Q2i
1 (k
′) sin(2ωgs)

)
sin(2ωgt)

)
ds

−

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
1−

2k2
1

k′2

)
ûft

2(k
′, t) ds

(5.39)
= ûftcos

1 (k, t) cos(2ωgt)+ ûftsin
1 (k, t) sin(2ωgt), (5.40)

ûf 0
3 (k)=

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
Q0

3(k
′)+

2k1k3

k′2
ûf 0

2 (k
′)

)
ds,

(5.41)

ûft
3(k, t) =

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
×
((

Q2i
3 (k
′) cos(2ωgs)−Q2Re

3 (k′) sin(2ωgs)
)

cos(2ωgt)

+
(
Q2Re

3 (k′) cos(2ωgs)+Q2i
3 (k
′) sin(2ωgs)

)
sin(2ωgt)

)
ds

+

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
2k1k3

k′2

)
ûft

2(k
′, t) ds

(5.42)
= ûftcos

3 (k, t) cos(2ωgt)+ ûftsin
3 (k, t) sin(2ωgt), (5.43)

where the terms Q2Re
j , Q2i

j are given in (5.23)–(5.24), with ‘j’ denoting the component
along the 1, 2 and 3 directions. The coefficients of cos(2ωgt) and sin(2ωgt) in (5.36)
and (5.42) are denoted by ûftcos and ûftsin. The flow and vorticity components are
coupled to the gradient component through ûft

2(k
′, t) and ûf 0

2 (k
′), which are given by

ûft
2(k
′, t) =

∫
∞

0
i2 exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)
×
((

Q2i
2 (k
′′) cos(2ωg(s+ s′))−Q2Re

2 (k′′) sin(2ωg(s+ s′))
)

cos(2ωgt)

+
(
Q2Re

2 (k′′) cos(2ωg(s+ s′))+Q2i
2 (k
′′) sin(2ωg(s+ s′))

)
sin(2ωgt)

)
ds′

(5.44)

and

ûf 0
2 (k

′)=

∫
∞

0
exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s3

3

))(
k′2 + k2

1s2
+ 2k1k′2s

k′2

)
Q0

2(k
′′) ds

(5.45)

respectively. As defined in § 4, the primed variables in (5.44) and (5.45) are given as
k′′ = k111 + (k2 + k1(s + s′))12 + k313, k′2 = k2 + k1s and k′′ = |k′′|. The coefficients
of cos(2ωgt) and sin(2ωgt) in the time-dependent terms are defined as ûftcos

i (k, t) and
ûftsin

i (k, t) respectively. The components along the flow and vorticity directions given in
(5.38)–(5.43) are therefore sums of a one-dimensional integral and a two-dimensional
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integral. The two-dimensional integrals in (5.38)–(5.43) are coupled with the velocity
in the gradient direction and are given by (5.44) and (5.45).

5.4. Evaluation of integrals
The integral for the tumbling time period given in (5.3) is evaluated in this section.
The inertial terms given in (5.14) along with the term involving the singularity in the
test problem in (5.4) are substituted in (5.3) to obtain the final form of the integral as

1T tumb
=

Re3/2

8πYc

×

∫ ∫ Tjeff

0
[−4π2k2(ûf

111 + ûf
212 + ûf

313)+R1 +R2 cos(2ωgt)+R3 sin(2ωgt)]

·
(
Ttumb

1 + Ttumb
2 cos(2ωgt)+ Ttumb

3 sin(2ωgt)
)

dt dk, (5.46)

where the components of ûf are given in (5.32)–(5.34). The integration over time in
(5.46) is straightforward, and leads to

1T tumb
=

Re3/2

8πYC

∫ [
2π

ωg
Ttumb

1 · (R1 − 4π2k2(ûf 0
1 11 + ûf 0

2 12 + ûf 0
3 13))

+
π

ωg
Ttumb

2 · (R2 − 4π2k2(ûftcos
1 11 + ûftcos

2 12 + ûftcos
3 13))

+
π

ωg
Ttumb

3 · (R3 − 4π2k2(ûftsin
1 11 + ûftsin

2 12 + ûftsin
3 13))

]
dk. (5.47)

The expressions for ûfi (i= ‘0’,‘cos’,‘sin’) are given in (5.35)–(5.43). Each of the terms
proportional to ûfi

1 and ûfi
3 (i= ‘0’,‘cos’,‘sin’) in (5.47) is a sum of four-dimensional

and five-dimensional integrals. The terms proportional to ûfi
2 are four-dimensional

integrals and the terms proportional to R1, R2 and R3 involve three-dimensional
integrals. The numerical evaluation of the integrals proceeds in a manner similar to
that of the spinning case in § 4. In a spherical coordinate system, the three-dimensional
and four-dimensional integrals involved in (5.47) are again seen to be divergent (after
a k integration), with the combination of the integrals nevertheless being convergent,
as explained in § 4. These integrals are evaluated numerically to obtain the time
period.

To illustrate the aforementioned simplification of (5.47) to an equation involving
convergent integrals alone, we focus on the evaluation of the integrals proportional to
ûf 0

1 , R1, R2 and R3. The simplification of the other terms in the integral follows the
same method as presented below. We present the final simplified form of the integrals
for the other terms in appendix A. We write the four-dimensional and five-dimensional
integrals for the term proportional to ûf 0

1 as follows:∫
(−4π2k2 ûf 0

1 (k) 11 · Ttumb
1 ) dk

=−

∫
4π2k2

[
−
(κ2
+ 1)2

2κ2

iB3k2

2k2π
+

iB1(k2
− 2k2

1)k2

2k4π

(1− κ4)

2κ2

]
×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
Q0

1(k
′) ds dk
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+

∫
4π2k2

[
−
(κ2
+ 1)2

2κ2

iB3k2

2k2π
+

iB1(k2
− 2k2

1)k2

2k4π

(1− κ4)

2κ2

]
×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))(
1−

2k2
1

k′2

)
×

∫
∞

0
exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)
×Q0

2(k
′′) ds′ ds dk. (5.48)

The first and second integrals on the right-hand side are respectively four-dimensional
and five-dimensional integrals. The five-dimensional integral arises due to the
coupling with the velocity component in the gradient direction. When writing the
five-dimensional integral, we have used the definition of ûf 0

2 in (5.45) and substituted
in (5.38). The term in the square brackets in (5.47) corresponds to the 11 component
of Ttumb

1 and is obtained from (5.4). The integrals in (5.47) can be expressed in a
spherical coordinate system with k1 = k sin θ cos φ, k2 = k sin θ sin φ, k3 = k cos θ
and dk = k2 sin θ dk dθ dφ. Rewriting (5.48) to isolate the k integral in the spherical
coordinate system (again, for brevity, we have retained the notation k1, k2 and k3),
one obtains∫

(−4π2k2 ûf 0
1 (k) 11 · Ttumb

1 ) dk

=−

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2Q0

1(k
′)

[
−
(κ2
+ 1)2

2κ2

iB3k2

2k2π

+
iB1(k2

− 2k2
1)k2

2k4π

(1− κ4)

2κ2

]}
×

∫
∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
dk ds sin θ dθ dφ

+

∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0

{
4π2k2

[
−
(κ2
+ 1)2

2κ2

iB3k2

2k2π
+

iB1(k2
− 2k2

1)k2

2k4π

(1− κ4)

2κ2

]
×

(
1−

2k2
1

k′2

)
Q0

2(k
′′)

(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)}
×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
× exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
k2 dk ds′ ds sin θ dθ dφ, (5.49)

where the term in the braces is independent of k because Q0
1 (the ‘1’ component of

Q0, see (5.20)) and the term in the square brackets above are proportional to 1/k. The
k integrals above are evaluated for the four-dimensional case, given by∫

∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
dk

=

∫
∞

0
k2 exp

(
−4π2k2

(
s+ sin2 θ cos φ sin φs2

+
sin2 θ cos2 φs3

3

))
dk

=
1

32π5/2(s+ sin2 θ cos φ sin φs2 + sin2 θ cos2 φs3/3)3/2
, (5.50)
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and the five-dimensional case, given by∫
∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
dk

=

∫
k2 exp

(
−4π2k2

(
s+ sin2 θ cos φ sin φs2

+
sin2 θ cos2 φs3

3

))
× exp

(
−4k2π2 sp

3

(
3(4+ s2

− s2 cos 2θ + 2s sin2 θ(s cos 2φ + 2 sin 2φ))

+ 4 cos φ sin2 θs′(3 sin φ + cos φ(3s+ s′))
))

dk

=
1

32π5/2( f exp(s, s′, θ, φ))3/2
, (5.51)

where f exp is the function that multiplies −4π2k2 in the exponent of the integrand. The
result of the k integration for the four-dimensional integral is proportional to 1/s3/2

and therefore diverges in the limit of s→ 0. The sum of all of the four-dimensional
divergent integrals in the expressions of terms proportional to ûf 0

2 , ûf 0
2 , ûfi

j ( j = 1, 2
and 3 and i= ‘t cos’,‘t sin’), given in appendix (A 1)–(A 9), as well as the one in
(5.49) for ûf 0

1 , and the three-dimensional integral presented below in (5.52), is however
convergent. The reason for the divergence has already been explained in § 4. It should
be noted that the k integrals in (A 1)–(A 9) are identical to that of (5.49).

The three-dimensional integral proportional to R1, R2 and R3 in (5.48) is∫ [
2π

ωg
Ttumb

1 · (R1)+
π

ωg
Ttumb

2 ·R2 +
π

ωg
Ttumb

3 ·R3

]
dk. (5.52)

The terms R1, R2, R3, Ttumb
1 , Ttumb

2 and Ttumb
3 (see (5.15)–(5.17) and (5.4)–(5.7)) are

proportional to (1/k), and dk is proportional to k2 dk in (5.52), making the k integral
divergent as k → ∞. The divergence here can again be isolated by introducing
an integral over a dummy variable s. Noting that

∫
∞

0 4π2k2 exp(−4π2k2s) = 1, the
integrals proportional to R1, R2 and R3 are written as

4π2
∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0

[
2π

ωg
Ttumb

1 ·R1 +
π

ωg
Ttumb

2 ·R2 +
π

ωg
Ttumb

3 ·R3

]
× k2e−4π2k2s dsk2 dk sin θ dθ dφ, (5.53)

where we have added an additional integral over s. The k integral can be readily
evaluated, and (5.53) becomes

4π2
∫ 2π

0

∫ π

0

∫
∞

0

{[
2π

ωg
Ttumb

1 ·R1 +
π

ωg
Ttumb

2 ·R2 +
π

ωg
Ttumb

3 ·R3

]
k2

}
×

1
32π5/2s3/2

ds sin θ dθ dφ, (5.54)

where the term in the braces above is independent of k.
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In (5.49) and (A 1)–(A 9), the results of the k integration from (5.50) and (5.51)
are substituted, and they are combined with (5.54), to obtain the final integral for
the time period. The final integral is evaluated numerically using Gaussian quadrature.
The numerical integration has to be carried out for each of the aspect ratios. This
is unlike the spinning case, where the aspect-ratio-dependent term factored out from
the integral (see (4.24)). However, in the limit of extreme aspect ratios (κ → 0 for
an oblate spheroid and κ →∞ for a prolate spheroid), one can again pull out the
aspect-ratio dependence and obtain the appropriate limiting forms. This is discussed
in § 5.5. The correction to the tumbling period obtained from the numerical integration
is presented in § 6.

5.5. Extreme-aspect-ratio analysis

In this section, we evaluate the scaling of the O(Re3/2) inertial correction to the
time period for spheroids with extreme aspect ratios (κ � 1 or κ � 1) rotating in
the tumbling orbit. At Re = 0, an oblate (prolate) spends a time of O(1/κ) (O(κ))
in the nearly aligned phase, and a time of O(1) in the non-aligned phase (flipping
between nearly aligned orientations). The nearly aligned phase for a thin prolate
spheroid (slender fibre) corresponds to p being close to the flow axis (φj ∼ O(1/κ),
π+O(1/κ)), while that for a thin oblate spheroid (flat disk) corresponds to p being
close to the gradient axis (φj −π/2 and φj +π/2∼O(κ)). In both cases, the Jeffery
angular velocity is asymptotically small, of O(κ2) (O(1/κ2)) for the oblate (prolate)
case. Thus, one would expect inertia to primarily alter the time period during the
nearly aligned phase. As mentioned in the introduction, for extreme aspect ratios,
the O(Re) correction can balance the slow Stokesian rotation in the aligned phase,
leading to a threshold Re beyond which the spheroid is stationary. For a fixed Re,
this places a natural restriction on the O(Re3/2) analysis for extreme aspect ratios.
The relevant aspect-ratio bounds arising from the scalings obtained here are given in
§ 8.

The integral in (5.3), when expressed in terms of φj, takes the form

1T tumb
= −Re3/2

∫
−π

π

φ̇c2

φ̇2
jeff

dφj

=

∫
−π

π

1
8πYc

∫ [
4π2k2ûf

+
∂ûmatch

∂t
− (Γ †

· k) · ∇kûmatch

+ Γ · ûmatch

]
·

{
i(S(2t)

· k) · 13

2πk2
·

(
I −

kk
k2

)}
1
φ̇2

jeff

dk dφj. (5.55)

The dominant contribution arising from the aligned phase may be seen by considering
a flat disk with κ = 0 (a slender fibre with κ =∞); it is sufficient to focus on one
of the aligned phases, since the contribution of the other phase is identical from
symmetry considerations. The angular velocity of a nearly aligned disk (slender
fibre) is O((π/2 − φj)

2) (O(φ2
j )). The term in braces in (5.55) is proportional to

T1 + T2 cos(2φj) + T3 sin(2φj), with the Ti terms given in (5.5)–(5.7), and therefore
reduces to T1 + T2 and T1 − T2 respectively, for a slender fibre and a flat disk. In
the slender-fibre limit, T1 and T2 scale as 1/log κ , and in the flat-disk limit, they are
constants of order unity. Noting that the velocity field ûf is driven by ûmatch, it can
be seen that the term in square brackets in (5.55) is proportional to ûmatch, which in
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the flat-disk limit is proportional to A2/2(1112+ 1211)+ (A1+ A3)(φj −π/2)/2 1111−

A1(φj − π/2)1212 + (A1 − A3)(φj − π/2)/2 1313. In the slender-fibre limit, the term is
proportional to A1φj 1111 − A1φj/(2) (1212 + 1313); see (2.16)–(2.18) for the definition
of the constants Ai. It should be recalled that for a slender fibre, A1 scales as 1/log κ ,
and both A2 and A3 scale as 1/κ2. For a flat disk, A2 scales as κ , whereas A1 and
A3 are constants. The integral in (5.55) therefore diverges as O(κ/(φj − π/2)3) for
a flat disk and as O(1/(φ2

j log κ)) for a slender fibre. This clearly implies that the
contribution comes from the nearly aligned phases in the two cases. The divergence
is cut off for φj of O(π/2− κ) for a flat disk and φj of O(1/κ) for a slender fibre,
leading to inertial time period estimates of O(1/κ2) and O(κ2/log κ) in the two cases.

Having estimated the scalings of the time period, we proceed to calculate the
numerical prefactor, which requires evaluation of the integral using a rescaled angular
coordinate that remains O(1) in the nearly aligned phase. For the flat disk, this
boundary layer variable is given by φ̂ = (−π/2 + φj)/κ . In terms of φ̂, one may
rewrite (5.55) in the boundary layer variable as

1T tumb
=

∫
−∞

∞

1
8πYc

∫ [
4π2k2ûf

+
∂ûmatch

∂t
− (Γ †

· k) · ∇kûmatch
+ Γ · ûmatch

]

·

{
i(S(2t)

· k) · 13

2πk2
·

(
I −

kk
k2

)}
1

κ3(φ̂2 + 1)2
dk dφ̂. (5.56)

At the leading order in κ , the term within braces in (5.56) becomes{
i(S(2t)

· k) · 13

2πk2
·

(
I −

kk
k2

)}
= T1 − T2, (5.57)

where T1 and T2 are defined in (5.5)–(5.6), with B1=B3=−16/3 in the flat-disk limit.
The term proportional to the singularity in the test problem is therefore independent
of κ . The leading-order term in ûmatch takes the form

ûmatch
=−

i
(
k2
− 2k1

2) A2k2

4k4π
11 −

ik1A2
(
k2
− 2k2

2

)
4k4π

12 +
ik1A2k2k3

2k4π
13. (5.58)

It should be recalled that A2 is the coefficient of the longitudinal extension and is
equal to −8πκ/3 in the flat-disk limit (see below (5.13)). The inertial term in the
square brackets in (5.56) is therefore proportional to κ . Although the contribution
from the inertial terms involving the singularities in the axisymmetric extension and
transverse extensions, proportional to A1 and A3, comes at O(κ), this contribution is
also proportional to the boundary layer variable φ̂, and the integration over φ̂ in (5.56)
is zero for this contribution. The evaluation of the integral in (5.56) leads to

1T tumb
= Re3/20.1763/κ2 (5.59)

for a flat disk.
The estimation of the correction for the slender-fibre case is slightly non-trivial. If

one proceeds in a manner similar to that for the flat disk given above, one can see
that the scaling of the leading-order term in (5.55), when expressed in the boundary
layer variable (φ̂ = φ/κ), is κ2/log κ . It should be noted that the scaling of 1/log κ
arises because the axisymmetric extensional flow with A1 ∝ 1/log κ is dominant in
the slender-fibre limit (Subramanian & Koch 2005). It turns out, however, that the
leading-order term is an odd function of the boundary layer variable (φ̂), and therefore
the integral over φ̂ is zero. The correction should therefore come in at a smaller order
(κ/log κ).
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6. Results: O(Re3/2) correction for spheroids
In this section, we summarize the numerical results obtained using the analytical

expressions derived in the previous two sections. The scaled correction to the tumbling
time period is plotted against the eccentricity (e) for a prolate spheroid in figure 3(a).
For a sphere (e = 0), the correction is 1.355, and it first decreases with increasing
eccentricity (increasing aspect ratio) until an e of approximately 0.75, as shown in
the inset plot, before eventually diverging in the slender-fibre limit. The correction
normalized with the Jeffery period, which diverges as O(κ) as κ →∞, is plotted
against the eccentricity in figure 3(b). As is clear from the dip in the plot for large
κ , the divergence of the inertial correction is slower than O(κ) for κ→∞. To obtain
the scaling for this divergence, we have plotted 1T tumb log κ on a log–log scale in
figure 3(c) together with a line of slope 1 (red) for purposes of comparison. The plot
suggests a scaling of O(κ/log κ), consistent with the arguments at the end of § 5.5.

The correction to the time period is plotted against the eccentricity, for an oblate
spheroid in the tumbling orbit, in figure 4(a). The correction starts again from that for
the sphere (e = 0) and, to begin with, decreases slightly with increasing eccentricity
(decreasing aspect ratio), as shown in the inset plot, before eventually diverging in the
limit of a flat disk. The blue circles in figure 4(a) correspond to the aspect ratios for
which the tumbling orbit is always unstable. The correction scaled with the Jeffery
period (which diverges as 1/κ as κ→ 0) is plotted in figure 4(b), and, in contrast to
the prolate case, continues to diverge in the limit κ→ 0. We have plotted the flat-disk
asymptote (red) given by (5.59) as well as the numerical results on a log–log scale in
figure 4(c); the asymptote compares well with the numerical results, and validates the
predicted O(κ−2) divergence. In figure 5, we have plotted the correction against the
eccentricity for an oblate spheroid in its spinning orbit. Starting from the sphere value
of 1.355, the scaled correction decreases with increasing eccentricity, approaching a
finite value of 0.47 for the flat disk. This is unlike the case of a prolate spheroid
in spinning mode, in which case the correction increases with increasing aspect ratio,
eventually leading to a change in the scaling from O(Re3/2) to O(R̃e), as is appropriate
for a cylinder, where R̃e is the Reynolds number based on the smallest axis of the
spheroid (see § 4).

The O(Re3/2) time period corrections for both the prolate and oblate spheroids have
been found to be positive, implying an increase in the time period of rotation due to
inertia in all relevant cases.

7. Evaluation of the O(Re3/2) time period correction for triaxial ellipsoids
In this section, we calculate the inertial correction to the time period of rotation for

a triaxial ellipsoid that is rotating in an orbit stabilized by weak inertia. In the Stokes
limit, it is known that the orientation dynamics of a triaxial ellipsoid may range from
quasiperiodic to chaotic, depending on the axis ratios and the initial orientation (Yarin
et al. 1997). For Re=0, the angular velocity of a triaxial ellipsoid rotating in a simple
shear flow can be written as (Kim & Karrila 1991)

Ω1 =Ω∞ +
1− κ2

1

1+ κ2
1
(E : pq)(p× q)+

κ2
2 − 1

1+ κ2
2
(E : pr)(r× p)+

κ2
1 − κ

2
2

κ2
1 + κ

2
2
(E : qr)(q× r).

(7.1)
In (7.1), p, q and r are respectively the unit vectors along the longest (of length
2a), intermediate (of length 2b) and shortest (of length 2c) principal axes of
the triaxial ellipsoid. Here, κ1 and κ2 are the axis ratios of the triaxial ellipsoid,
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FIGURE 3. (Colour online) (a) The O(Re3/2) inertial correction plotted against the
eccentricity (e) for a prolate spheroid in the tumbling orbit. The inset plot shows a zoomed
view of e< 0.8. (b) The O(Re3/2) inertial correction scaled with the Jeffery period plotted
as a function of the prolate spheroid eccentricity. (c) The inertial correction times log κ
is plotted on a log–log scale for large aspect ratios; the red line shown in the plot has a
slope of unity.
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FIGURE 4. (Colour online) (a) The O(Re3/2) inertial correction plotted against the
eccentricity for an oblate spheroid in the tumbling orbit. The blue points indicate the
aspect ratios for which the tumbling orbit is unstable; the black points correspond to
conditional stability (initial-orientation-dependent). The inset plot shows the zoomed view
for e< 0.8. (b) The O(Re3/2) inertial correction scaled with the Jeffery period plotted as
a function of the oblate spheroid eccentricity. (c) The inertial correction is plotted on a
log–log scale for small aspect ratios. The red line is the asymptote given in (5.59).
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FIGURE 5. (Colour online) The O(Re3/2) inertial correction is plotted against the
eccentricity for an oblate spheroid in the spinning orbit.

defined as κ1= b/a and κ2= c/a. For κ1= 1, the ellipsoid becomes an oblate spheroid
with aspect ratio κ2, and for κ1 = κ2, the ellipsoid becomes a prolate spheroid with
aspect ratio 1/κ1.

Recently, Rosen (2016) simulated the inertial orientation dynamics of a triaxial
ellipsoid in simple shear flow as a function of Re (based on the length of the
longest principal axis), using lattice Boltzmann simulations. Rosen (2016) examined
the stability of principal-axis-aligned rotations for a triaxial ellipsoid with κ1 = 1/3
and κ2 = 1/4 for Re ranging from 0 to 100. A particular result was the ability of
inertia to stabilize the intermediate-axis-aligned rotation even for small but finite
Re, an aspect that comes under the purview of the current small-Re analysis. The
triangular region in figure 6 covers all axis ratios of interest for a triaxial ellipsoid,
with one of its sides (κ1 = 1) corresponding to an oblate spheroid, the other (κ2 = 0)
corresponding to an elliptical flat disk, and the hypotenuse (κ1= κ2) corresponding to
a prolate spheroid. The analysis below can predict the time period correction for an
ellipsoid with axis ratios of order unity, provided that the ellipsoid rotates about one
of its principal axes. The particular pair of axis ratios examined by Rosen (2016) is
shown as a filled (black) circle in figure 6. We also use the analysis to predict the
time period corrections for a sequence of axis-ratio pairs approaching an elliptical
flat disk (marked using crosses in figure 6). It is known from Dabade et al. (2016)
that a circular flat disk (an infinitely thin oblate spheroid) tumbles starting from
almost any initial orientation. Therefore, it is reasonable to assume that rotation about
the intermediate axis remains stable for ellipsoids with axis ratios approaching that
of an elliptical flat disk. The stability of such a rotation needs to nevertheless be
validated using a numerical approach as given in Rosen (2016) or an O(Re) analytical
calculation. It should be noted that the assumption of stable intermediate-axis-aligned
rotation cannot be true for triaxial ellipsoids with axis ratios lying close to the blue
segment in figure 6 (corresponding to triaxial ellipsoids with axis-ratio pairs close
to that of an oblate spheroid with κ2 > 0.137). This is because as κ1→ 1, a triaxial
ellipsoid approaches the limiting oblate spheroid via the intermediate axis lengthening
to equal the longest one. Stable intermediate-axis-aligned rotation would therefore
correspond to a tumbling rather than a spinning oblate spheroid.
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FIGURE 6. (Colour online) The orbits stabilized by inertia from earlier analysis for
general triaxial ellipsoids are indicated in the figure. The filled black circle corresponds
to the ellipsoid for which the numerical simulation by Rosen (2016) has shown that the
rotation about the intermediate axis is stable. The orbits stabilized for prolate and oblate
spheroids are indicated (Dabade et al. 2016). For the ellipsoids indicated by crosses, we
assume that the inertia stabilizes the rotation about the intermediate axis.

To calculate the correction, we again use the reciprocal theorem formulation of
§ 2, with the problem of interest being a neutrally buoyant triaxial ellipsoid rotating
in a simple shear flow with its intermediate axis aligned with the ambient vorticity.
In the test problem, we consider the same triaxial ellipsoid rotating in a quiescent
fluid. The expression for the angular velocity of a triaxial ellipsoid obtained from the
reciprocal theorem is the same as that of a spheroid given in (2.24)–(2.25), with the
velocity fields and torque constants replaced with those of the ellipsoid. As for the
spheroid, the O(Re) correction to the time period for any triaxial ellipsoid rotating
in a principal-axis-aligned orientation is zero. At O(Re), the angular velocity of the
triaxial ellipsoid must be quadratic in the flow parameters (E and ω) and be invariant
under any of the transformations p↔−p, q↔−q and r↔−r. The invariance implies
that for a rotation with any of the principal axes aligned with the ambient vorticity,
the angular dependence of the time period integral at O(Re), given in (3.5), is such
that it evaluates to zero when integrated over φj. For rotation about the intermediate
axis q, φj would correspond to the angle made by the vector p with the flow axis
(the vectors p and r lie in the flow–gradient plane). Thus, the correction to the time
period of rotation about the intermediate axis arises at O(Re3/2). The calculation of
this correction follows the same steps as that for a tumbling spheroid seen in § 5. We
therefore define the singularity coefficients that completely characterize the far-field
disturbance forms in the problem of interest and the test problem, and directly state
the correction to the time period at O(Re3/2) for the ellipsoids shown in figure 6
without going into the details of the calculation.
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To calculate the O(Re3/2) correction to the time period, one has to evaluate the
integral given in (5.3). The singularity coefficient for a triaxial ellipsoid rotating with
angular velocity Ω (2) in a quiescent ambient is given by

S(2)ik =
1
2
εijk(H1(κ

2
1 + κ

2
2 )(Ω

(2)
· p)pj +H2(1+ κ2

2 )(Ω
(2)
· q)qj +H3(κ

2
1 + 1)(Ω (2)

· r)rj)

+

(
H3

2
(1− κ2

1 )(piqk + pkqi)(Ω
(2)
· (p× q))

+
H1

2
(κ2

1 − κ
2
2 )(riqk + rkqi)(Ω

(2)
· (q× r)) (7.2)

+
H2

2
(κ2

2 − 1)(pirk + pkri)(Ω
(2)
· (r× p))

)
, (7.3)

with constants Hi defined as (Kim & Karrila 1991)

H1 =
16πκ1κ2

3(κ2
1β0 + κ

2
2γ0)

, H2 =
16πκ1κ2

3(α0 + κ
2
2γ0)

, H3 =
16πκ1κ2

3(α0 + κ
2
1β0)

, (7.4a−c)

and

α0 =

∫
∞

0

κ1κ2

(1+ t)
√
(1+ t)(κ2

1 + t)(κ2
2 + t)

dt, (7.5)

β0 =

∫
∞

0

κ1κ2

(κ2
1 + t)

√
(1+ t)(κ2

1 + t)(κ2
2 + t)

dt, (7.6)

γ0 =

∫
∞

0

κ1κ2

(κ2
2 + t)

√
(1+ t)(κ2

1 + t)(κ2
2 + t)

dt. (7.7)

In the limit of a spheroid, the singularity in (7.3) reduces to that given in (2.8), with
the first three terms reducing to the rotlet proportional to B2 and B3, and the last three
terms reducing to the stresslet proportional to B1. For the particular case of rotation
about the intermediate axis, this singularity reduces to

S(2)ik =
1
2
εijk(H2(1+ κ2

2 )(Ω
(2)
· q)qj)+

(
H2

2
(κ2

2 − 1)(pirk + pkri)(Ω
2
· (r× p))

)
. (7.8)

The stresslet singularity coefficient corresponding to a triaxial ellipsoid rotating in
simple shear flow is given by

S(1)ik = J1α
′′

0 (3pipk − δik)(E : pp)+ J1β
′′

0 (3qiqk − δik)(E : qq)+ J1γ
′′

0 (3rirk − δik)(E : rr)

−
H3

2

(
α0 + β0

γ ′0
−
(1− κ2

1 )
2

(1+ κ2
1 )

)
(E : pq)(piqk + qipk)

−
H1

2

(
γ0 + β0

α′0
−
(κ2

2 − κ
2
1 )

2

(κ2
2 + κ

2
1 )

)
(E : rq)(riqk + qirk)

−
H2

2

(
γ0 + α0

β ′0
−
(κ2

2 − 1)2

(1+ κ2
1 )

)
(E : rp)(ripk + pirk), (7.9)

with the constants above defined as (Kim & Karrila 1991)

J1 =−
16πκ1κ2

9(α′′0β ′′0 + α′′0γ ′′0 + γ ′′0 β ′′0 )
, (7.10)
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α′′0 =

∫
∞

0

κ1κ2 dt

(κ2
1 + t)(κ2

2 + t)
√
(1+ t)(κ2

1 + t)(κ2
2 + t)

, (7.11)

β ′′0 =

∫
∞

0

κ1κ2 dt

(1+ t)(κ2
2 + t)

√
(1+ t)(κ2

1 + t)(κ2
2 + t)

, (7.12)

γ ′′0 =

∫
∞

0

κ1κ2 dt

(κ2
1 + t)(1+ t)

√
(1+ t)(κ2

1 + t)(κ2
2 + t)

, (7.13)

α′0 =
γ0 − β0

(κ2
1 − κ

2
2 )
, (7.14)

β ′0 =
α0 − γ0

(κ2
2 − 1)

, (7.15)

γ ′0 =
β0 − α0

(1− κ2
1 )
. (7.16)

It should be noted that, unlike the singularity for a spheroid given in (2.15),
there are six constants in (7.9), with three constants corresponding to axisymmetric
extensional flows, aligned with each of the ellipsoidal axes (first three terms in (7.9)),
and the last three corresponding to planar extensional flows in the planes formed
by the three axes (taken two at a time). The first term within the brackets of the
latter three constants in (7.9) is obtained by imposing the torque-free condition on
the ellipsoid. For the particular case of the rotation about the intermediate axis, (7.9)
reduces to

S(1)ik = J1α
′′

0 (3pipk − δik)(E : pp)+ J1γ
′′

0 (3rirk − δik)(E : rr)

−
H2

2

(
γ0 + α0

β ′0
−
(κ2

2 − 1)2

(1+ κ2
1 )

)
(E : rp)(ripk + pirk). (7.17)

The correction to the time period takes the same form as in (5.3), with the constants
Yc (the torque coefficient for the rotation about the intermediate principal axis) and
φ̇jeff (the magnitude of the leading-order angular velocity of the triaxial ellipsoid) given
by

YC =−
2κ1κ2(1+ κ2

2 )

3(α0 + κ
2
2γ0)

, (7.18)

φ̇jeff =−
1
2
+

1− κ2
2

1+ κ2
2

cos(2φj). (7.19)

The detailed calculation, for the triaxial ellipsoids indicated in figure 6, leads to
the time period corrections given in table 1. We have also listed the ratio of the
correction(1TcorrE) to the leading-order time period (Tjeff = 2π(κ2+ κ

−1
2 )) in the table.

As shown in figure 7, this ratio scales as 1/κ0.87
2 for κ2→ 0. Unlike the case of the

prolate spheroid in figure 3, where the ratio decreases with increasing aspect ratio
(slender fibres), here it increases with decreasing κ2 (thin ellipses). This increase is
similar to that seen for a tumbling oblate spheroid with decreasing aspect ratio (see
figure 4).

In principle, the analogue of the O(Re) integral given in (2.24), for a triaxial
ellipsoid, would allow one to analytically determine the stability of the principal-
axis-aligned rotations for axis ratios other than the one examined in simulations
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FIGURE 7. (Colour online) The ratio 1TcorrE/Tjeff plotted against 1/κ2 in a log–log scale.
The red line has a slope of 0.87.

κ1 κ2 Time period 1TcorrE/Tjeff

1
3

1
4

17π

2
+ 2.55 Re3/2 0.095 Re3/2

1
3

1
6

37π

3
+ 4.86 Re3/2 0.125 Re3/2

1
3

1
12

145π

6
+ 14.7 Re3/2 0.194 Re3/2

1
3

1
24

577π

12
+ 47.04 Re3/2 0.311 Re3/2

1
3

1
48

2305π

24
+ 162.68 Re3/2 0.539 Re3/2

1
3

1
96

9217π

48
+ 597.43 Re3/2 0.99 Re3/2

TABLE 1. Inertial time periods for torque-free triaxial ellipsoids in simple shear flow.

(Rosen 2016). However, the analysis involved is likely to be exceedingly complicated,
since the O(Re) correction arises from a region around the ellipsoid of the order of
its own size, and thus the Stokes velocity field required for the O(Re) computation
would involve nonlinear combinations of the ellipsoidal harmonics used by Jeffery
(1922). In contrast, the O(Re3/2) correction is insensitive to these details, and, as seen
above, one only needs the force-dipole singularity that the ellipsoids in the actual
and test problems correspond to. A calculation of the time period correction over the
entire parameter space indicated in figure 6 will, however, have to wait until a more
comprehensive investigation of inertia-induced stability of the principal-axis-aligned
rotations.

8. Conclusions and future work

In this paper, we have evaluated the leading-order fluid inertial correction, at
O(Re3/2), to the time period of rotation a spheroid, in simple shear flow, rotating in
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the tumbling and spinning orbits. The first effects of inertia occur at O(Re), but at
this order, inertia only acts to stabilize either one of two Jeffery orbits, depending
on the spheroid aspect ratio and its initial orientation, leaving the time period of
rotation unchanged. Specifically, it has been shown by Einarsson et al. (2015) and
Dabade et al. (2016) that the stable orbit for a prolate spheroid of any aspect ratio
is the tumbling one, and is the spinning one for an oblate spheroid with κ > 0.137.
The stable orbit for an oblate spheroid with κ < 0.137 is either spinning or tumbling,
depending on the initial orientation.

The correction to the angular velocity at O(Re3/2) is formulated as an integral in
Fourier space, based on a reciprocal theorem formulation, the details of which are
given in § 2. The disturbance velocity field around a spinning spheroid is steady,
and, therefore, the correction to the angular velocity at O(Re3/2) is trivially related
to the correction to the time period through (4.1). The calculation proceeds in a
manner similar to earlier calculations for a sphere (Stone et al. 2000; Subramanian
et al. 2011), and the result is given in (4.24). The disturbance velocity field around
a spheroid is unsteady in the tumbling orbit, and the evaluation of the time period
correction is therefore not trivial. However, we show in § 5 that by expanding the
integrand in the reciprocal theorem as a Fourier series in time, one can evaluate the
correction without the need for truncation. The numerical results for the tumbling
and spinning orbits are summarized in § 6. It is shown that the time period of
rotation increases with the fluid inertia, at O(Re3/2) in both tumbling and spinning
orbits, consistent with earlier simulations. It was shown in Dabade et al. (2016) that
the particle inertia decreases the tumbling time period at O(St2). For the tumbling
neutrally buoyant spheroids considered here, St = Re, and the increase due to fluid
inertia is therefore dominant. Particle inertia plays no role for spinning spheroids.

Although not considered here, for a general spheroid orientation, the O(Re3/2)

correction should also contribute to an orbital drift. This correction is of little
consequence for the rheology of a dilute suspension of neutrally buoyant prolate
spheroids, on account of the stability, at O(Re), of the tumbling mode for all aspect
ratios. However, the O(Re3/2) correction will affect the rheology of a suspension
of oblate spheroids by altering the location of the repeller identified in Dabade
et al. (2016), and that separates the basins of attraction (on the unit hemisphere)
corresponding to the tumbling and spinning modes. The altered repeller location,
for aspect ratios lower than 0.137 (this threshold is itself subject to an O(Re1/2)

correction), will contribute to an O(Re1/2) correction to the shear viscosity. This is
in contrast to the O(Re3/2) modification expected from the direct effects of inertia
(via corrections to the stresslet integral, and the acceleration and Reynolds stresses);
see Subramanian et al. (2011). An analogous effect is expected in the presence
of weak Brownian motion, with the critical aspect ratio, corresponding to the
tumbling–spinning transition in simple shear flow, being altered by O(Re1/2) (see
Marath et al. 2017).

In § 7, we have evaluated the time period correction for the triaxial ellipsoids
indicated in figure 6. The calculation proceeds in a manner similar to that of a
tumbling spheroid, and the results are presented in § 7. In performing this calculation,
we have assumed that fluid inertia, at O(Re), stabilizes the rotation about the
intermediate principal axis for ellipsoids other than the one already analysed in
Rosen (2016). Examination of a sequence of triaxial ellipsoids asymptoting to an
elliptical disk of eccentricity (8/9)1/2, rotating in the assumed manner, leads to the
inertial correction to the time period diverging in a manner similar to the oblate
spheroid. The assumption of intermediate-axis-aligned rotation is, however, not likely
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for axis ratios close to the blue segment in figure 6. Inertial stabilization, at O(Re), of
principal-axis-aligned rotations requires a more comprehensive simulation programme
than the one given in Rosen (2016), or a small-Re analytical approach. The latter
appears to be particularly forbidding, keeping in mind the ellipsoidal harmonics
used for constructing the Stokes velocity field around an arbitrarily oriented triaxial
ellipsoid (Jeffery 1922).

The analysis of the period of rotation of a tumbling inertial spheroid has thus far
assumed an aspect ratio of order unity, and we make this estimate more precise
in the arguments that follow. An order-unity aspect ratio leads to the inertial
contributions to the angular velocity being asymptotically small in comparison with
the Stokesian one, and, as seen in (3.5), the time period may then be expanded in a
perturbative manner for small Re. This is no longer possible for extreme-aspect-ratio
spheroids. As described in § 5.5, at Re= 0, such spheroids rotate very slowly during
the aligned phase. Thus, even in the limit Re � 1, the O(Re) inertial correction
becomes comparable to the leading-order Stokesian rotation, and, as first shown by
Subramanian & Koch (2005), this leads to an arrest of rotation beyond a modest
threshold Re. To analyse this arrest for both slender fibres (κ →∞) and flat disks
(κ→ 0), we consider the asymptotic forms of the equation for φ̇j, given by

φ̇j = −φ
2
j −

1
κ2
+ Reφj

[
G∞1 −G∞2 +G∞3 −G∞4

]
+ lim

κ→∞
Re3/2φ̇c2 (8.1)

= −φ2
j −

1
κ2
+ Re

φj

15 log κ
+ lim

κ→∞
Re3/2φ̇c2 (8.2)

and

φ̇j = −φ
2
j − κ

2
− Reφj

[
G0

1 −G0
2 −G0

3 +G0
4

]
+ lim

κ→0
Re3/2φ̇c2 (8.3)

= −φj
2
− κ2
+ Re

2φj

15
+ lim

κ→0
Re3/2φ̇c2, (8.4)

for slender fibres and flat disks respectively. Here, G∞i = limκ→∞ Gn
i (ξ0), G0

i =

limκ→0 Gn
i (ξ0), and these terms are given in Dabade et al. (2016). We consider a

slender fibre to begin with; the arguments for a flat disk follow in an analogous
manner. For log κ/κ � Re � 1, the arrest of rotation for a fibre occurs when the
O(Re) term in (8.2) equals the slender-body contribution of (φ2

j ), so the orientation
of the nearly aligned stationary fibre is O(Re/log κ). At the onset of arrest, the
non-slender-body term proportional to κ−2 in (8.2) must also be of the same
order, and this leads to a threshold given by Rec = ((30 log κ)/κ), the resulting
stationary orientation being O(1/κ) (see Subramanian & Koch 2005). We now
examine the O(Re3/2) correction in order to show that the estimate for Rec above,
obtained by considering only the O(Re) contribution, is not altered at leading order.
One first needs an estimate for φ̇c2, which may be obtained from the definition
1Ttumb = Re3/2

∫ Tjeff

0 dt(φ̇c2/φ̇jeff ) and the fact that 1Ttumb ∼ O(Re3/2κ/log κ), as
shown in § 5.5. For the aligned phase, dt ∼ O(κ) and φ̇jeff ∼ O(1/κ2), and this
leads to φ̇c2 ∼ 1/(κ2 log κ). Using this, the higher-order inertial correction in (8.2)
is O(Re3/2/κ2 log κ). It should be noted that the singular origin of this contribution
implies that the angular velocity at this order remains finite even for an aligned
spheroid; this is unlike the regular O(Re) contribution, which goes to zero as O(φj),
being proportional to the instantaneous angular acceleration of the fluid elements
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(approximated based on the Stokesian field). Using the aforementioned estimate of
Rec, one finds that the O(Re3/2) correction is O[(log κ)1/2/κ7/2

] at arrest, while the
Stokesian and O(Re) inertial contributions are O(1/κ2), and, therefore, asymptotically
larger. Thus, the inclusion of the O(Re3/2) contribution only decreases Rec, relative
to its leading-order estimate, by O[(log κ)1/2/κ3/2

]. In summary, for a given Re, the
analysis in this paper predicts an O(Re3/2) inertia-induced increase in the time period
of a prolate spheroid for 1 � κ � κc, with log κc/κc ∼ Re (or κc ∼ Re log Re at
leading logarithmic order). However, the arrest of rotation for large κ values of O(κc)

is still controlled by the O(Re) inertial correction first obtained by Subramanian
& Koch (2005). For a flat disk, similar arguments show that the threshold for
arrest corresponds to Rec = 15κ , based on the O(Re) correction, and inclusion of
the O(Re3/2) contribution obtained here only decreases Rec by O(κ1/2) relative to
this estimate. This in turn implies that the O(Re3/2) analysis given here for oblate
spheroids is only valid provided that κ � O(Re). Thus, the O(Re3/2) analysis for
a spheroid is valid only for Re � κ � Re log Re. This Re-dependent aspect-ratio
interval makes the limitation of order-unity aspect ratios mentioned earlier precise.
Importantly, combination of the O(Re3/2) contribution with the O(Re) contribution
given in Dabade et al. (2016) allows one to predict the first effects of inertia for all
aspect ratios, including the arrest of rotation of extreme-aspect-ratio spheroids.

Appendix A. The integrals in (5.47)

The four-dimensional and five-dimensional integrals for the terms proportional to ûfi
1

(i= ‘0’,‘t cos’,‘t sin’), ûfi
3 (i= ‘0’,‘t cos’,‘t sin’) and the four-dimensional integral for ûfi

2
(‘t cos’,‘t sin’) in (5.47) are given below in the spherical coordinate system.

The integral proportional to ûf 0
2 is written using (5.35) and (5.4),∫

(−4π2k2 ûf 0
2 (k) 12 · Ttumb

1 ) dk

=−

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
iB3k1

2k2π

(1+ κ2)2

2κ2

+
iB1k1(k2

− 2k2
2)

2k4π

(1− κ4)

2κ2

]
k2
+ k2

1s2
+ 2k1k2s

k2
Q0

2(k
′)

}
×

∫
∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
dk ds sin θ dθ dφ. (A 1)

The integral proportional to ûf 0
3 is written using (5.41) and (5.4),∫

(−4π2k2 ûf 0
3 (k) 13 · Ttumb

1 ) dk

=−

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
−

iB1k1k2k3

k4π

(1− κ4)

2κ2

]
Q0

3(k
′)

}
×

∫
∞

0
k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
dk ds sin θ dθ dφ

−

∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0
4π2

{
k2

[
−

iB1k1k2k3

k4π

(1− κ4)

2κ2

]
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×
2k1k3

k′2

(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)
Q0

2(k
′′)

}
×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
× exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
k2 dk ds ds′ sin θ dθ dφ. (A 2)

The integral proportional to ûftcos
1 is written using (5.39) and (5.4),∫

(−4π2k2 ûftcos
1 (k) 11 · Ttumb

2 ) dk=−
∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
(κ4
− 1)

2κ2

iB3k2

2k2π

+
iB1(k2

− 2k2
1)k2

2k4π

(1+ κ2)2

2κ2

] (
Q2i

1 (k
′) cos(2ωgs)−Q2Re

1 (k′) sin(2ωgs)
)}

×

∫
∞

0
i2k2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
dk ds sin θ dθ dφ

+

∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0
4π2k2

{[
(κ4
− 1)

2κ2

iB3k2

2k2π
+

iB1(k2
− 2k2

1)k2

2k4π

(1+ κ2)2

2κ2

]
×

(
1−

2k2
1

k′2

) (
Q2i

2 (k
′′) cos(2ωg(s+ s′))−Q2Re

2 (k′′) sin(2ωg(s+ s′))
)

×

(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)}∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
× i2 exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
k2 dk ds′ ds sin θ dθ dφ. (A 3)

The integral proportional to ûftcos
2 is written using (5.36) and (5.4),∫

(−4π2k2 ûftcos
2 (k)12 · Ttumb

2 ) dk

=−

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
−iB3k1

2k2π

(κ4
− 1)

2κ2
+

iB1k1(k2
− 2k2

2)

2k4π

(1+ κ2)2

2κ2

]
×

(
k2
+ k2

1s2
+ 2k1k2s

k2

) (
Q2i

2 (k
′) cos(2ωgs)−Q2Re

2 (k′) sin(2ωgs)
)}

×

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
k2 dk ds sin θ dθ dφ. (A 4)

The integral proportional to ûftcos
3 is written using (5.42) and (5.6),∫

(−4π2k2 ûftcos
3 (k) 13 · Ttumb

2 ) dk=−
∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
−

iB1k1k2k3

k4π

(1+ κ2)2

2κ2

]
× (Q2i

3 (k
′) cos(2ωgs)−Q2Re

3 (k′) sin(2ωgs))
}

×

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
k2 dk ds sin θ dθ dφ
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−

∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0

{
4π2k2

[
−

iB1k1k2k3

k4π

(1+ κ2)2

2κ2

] (
2k1k3

k′2

)
×

(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)
× (Q2i

2 (k
′′) cos(2ωg(s+ s′))−Q2Re

2 (k′′) sin(2ωg(s+ s′)))
}

(A 5)

×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
× i2 exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
k2 dk ds′ ds sin θ dθ dφ. (A 6)

The integral proportional to ûftsin
1 is written using (5.39) and (5.4),∫

(−4π2k2 ûftsin
1 (k) 11 · Ttumb

3 ) dk

=−

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
iB1(k2

− k2
1 + k2

2)k1

2k4π

×

(
κ2
+ 1
κ

)] (
Q2Re

1 (k′) cos(2ωgs)+Q2i
1 (k
′) sin(2ωgs)

)}
×

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
k2 dk ds sin θ dθ dφ

+

∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0
4π2

{
k2

[
iB1(k2

− k2
1 + k2

2)k1

2k4π

(
κ2
+ 1
κ

)]
×

(
1−

2k2
1

k′2

)(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)
× (Q2Re

2 (k′′) cos(2ωg(s+ s′))+Q2i
2 (k
′′) sin(2ωg(s+ s′)))

}
×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
× i2 exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
k2 dk ds′ ds sin θ dθ dφ. (A 7)

The integral proportional to ûftsin
2 is written using (5.36) and (5.4),∫

(−4π2k2 ûf 0
2 (k) 12 · Ttumb

3 ) dk

=−

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
−

(
κ2
+ 1
κ

)
iB1k2(k2

+ k2
1 − k2

2)

2k4π

]
×

(
k2
+ k2

1s2
+ 2k1k2s

k2

) (
Q2Re

2 (k′) cos(2ωgs)+Q2i
2 (k
′) sin(2ωgs)

)}
×

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
k2 dk ds sin θ dθ dφ. (A 8)
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The integral proportional to ûftsin
3 is written using (5.42) and (5.4),∫

(−4π2k2 ûftsin
3 (k) 13 · Ttumb

3 ) dk

=−

∫ 2π

0

∫ π

0

∫
∞

0
4π2

{
k2

[
−

(
κ2
+ 1
κ

)
iB1(k2

1 − k2
2)k3

2k4π

]
× (Q2Re

3 (k′) cos(2ωgs)+Q2i
3 (k
′) sin(2ωgs))

}
×

∫
∞

0
i2 exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
k2 dk ds sin θ dθ dφ

−

∫ 2π

0

∫ π

0

∫
∞

0

∫
∞

0
4π2

{
k2

[
−

(
κ2
+ 1
κ

)
iB1(k2

1 − k2
2)k3

2k4π

]
×

(
2k1k3

k′2

)
(Q2Re

2 (k′′) cos(2ωg(s+ s′))+Q2i
2 (k
′′) sin(2ωg(s+ s′)))

×

(
k′2 + k2

1s′2 + 2k1k′2s′

k′2

)}
×

∫
∞

0
exp

(
−4π2

(
k2s+ k1k2s2

+
k2

1s3

3

))
× i2 exp

(
−4π2

(
k′2s′ + k1k′2s′2 +

k2
1s′3

3

))
k2 dk ds′ ds sin θ dθ dφ. (A 9)
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