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The main goal of this paper is to provide insights into swash flow dynamics, generated
by a non-breaking solitary wave on a steep slope. Both laboratory experiments and
numerical simulations are conducted to investigate the details of runup and rundown
processes. Special attention is given to the evolution of the bottom boundary layer
over the slope in terms of flow separation, vortex formation and the development of a
hydraulic jump during the rundown phase. Laboratory experiments were performed to
measure the flow velocity fields by means of high-speed particle image velocimetry
(HSPIV). Detailed pathline patterns of the swash flows and free-surface profiles were
also visualized. Highly resolved computational fluid dynamics (CFD) simulations
were carried out. Numerical results are compared with laboratory measurements
with a focus on the velocities inside the boundary layer. The overall agreement is
excellent during the initial stage of the runup process. However, discrepancies in the
model/data comparison grow as time advances because the numerical model does not
simulate the shoreline dynamics accurately. Introducing small temporal and spatial
shifts in the comparison yields adequate agreement during the entire rundown process.
Highly resolved numerical solutions are used to study physical variables that are not
measured in laboratory experiments (e.g. pressure field and bottom shear stress). It
is shown that the main mechanism for vortex shedding is correlated with the large
pressure gradient along the slope as the rundown flow transitions from supercritical to
subcritical, under the developing hydraulic jump. Furthermore, the bottom shear stress
analysis indicates that the largest values occur at the shoreline and that the relatively
large bottom shear stress also takes place within the supercritical flow region, being
associated with the backwash vortex system rather than the plunging wave. It is
clearly demonstrated that the combination of laboratory observations and numerical
simulations have indeed provided significant insights into the swash flow processes.
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1. Introduction
The swash zone is the region where the sea meets the land. In particular, a

portion of the swash zone can be dry at one instant when an ocean wave is
retreating and then be flooded as the next wave rushes in. The swash flows can be
characterized as unsteady, shallow-depth flows with a moving boundary (shoreline).
When wave breaking occurs, swash flows could contain certain levels of turbulence
and air bubbles (Masselink & Puleo 2006). Swash flows and wave breaking are the
main drivers for sediment transport in the coastal zone (Elfrink & Baldock 2002).
The mobilized sediment in the swash flow can be transported in both longshore
and cross-shore directions by coastal current systems. The swash zone plays a
significant role in the coastal sediment transport system and, hence, in coastal
hydrodynamics/morphodynamics.

There has been notable progress in studying swash zone physical processes over
the past decades, as reviewed in Masselink & Puleo (2006). Significant advances have
also been made in the past 10 years in understanding the hydrodynamic processes that
swash flows encompass, as reviewed in Chardón-Maldonado, Pintado-Patiño & Puleo
(2016).

Early studies on swash flow can be traced back to Keller, Levine & Whitman
(1960), who solved the shallow water equations numerically to describe the motion
of a bore over a sloping beach. Analytical studies, using the shallow water equations,
were presented by Ho & Meyer (1962) and Shen & Meyer (1963), in which the
evolution of a bore on a plane beach was examined, providing the mathematical
argument for the formation of a ‘hydraulic jump’. The hydraulic jump is often kept
in place by strong offshore moving velocities and may eventually overturn, causing
onshore breaking (Peregrine 1974; Brenninkmeyer 1976). Decades after, Gupta (1993)
obtained an exact analytical solution for the bore propagation problem, which fits the
results in Keller et al. (1960).

Regarding laboratory research, most of the experiments were conducted for swash
flows generated by periodic waves with different beach slopes. Matsunaga & Honji
(1980) were the first to present a set of images of a ‘backwash vortex’ underneath
the hydraulic jump generated by the collision of rundown flows from the present
wave and the next incoming wave. Even though results are qualitative, they gave
a clear indication that sediment particles can be lifted up from the bottom by the
‘backwash vortex’, and not by the plunging wave. Additional footage for a similar
experimental set-up supporting this observation can be found in Sumer et al. (2013,
§ 5.2, figure 20). Moreover, quantitative analysis indicates that the vortex induces
significant ‘sheet-flow suspension-mode sediment transport’ in the offshore direction.
The vortex also generates an upward pressure gradient, which lifts up the sediment,
developing a sediment ‘plume’ (Sumer et al. 2013).

Alternatively, dam-break systems have also been used to generate swash flows in
the laboratory. Barnes et al. (2009) obtained measurements of bed shear with a shear
plate and concluded that the maximum bed shear stress takes place at the leading edge
of the shoreline. O’Donoghue, Pokrajak & Hondebrink (2010) also performed a set
of dam-break experiments on a steep beach (1 : 10), comparing results with smooth
and rough beach surface conditions. They found that velocity profiles are closer to
depth-uniform for the smooth beach, while under rough conditions the velocity profiles
have a distinct ‘forward-leaning’ shape, with velocity decreasing monotonically from
a maximum at the free surface to zero at the bed (O’Donoghue et al. 2010).

Matsunaga & Honji (1980) used a rudimentary but effective tracing system based
on sawdust and a light projector. Most recent works that characterize the flow features
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in the swash zone employ particle image velocimetry (PIV), a technique with which
flow velocity and free-surface elevation data can be obtained (Cowen et al. 2003; Sou,
Cowen & Liu 2010). Lo, Park & Liu (2013) studied backwash processes and flow
evolution of single and double solitary waves using PIV and found that the backwash
breaking process of the first wave and the reflected waves were strongly affected
by wave-to-wave interaction. Lin et al. (2014, 2015a,b) applied a state-of-the-art
high-speed PIV (HSPIV) system to visualize the flow patterns and flow velocities of
solitary waves running up slopes ranging from 1 : 3 to 1 : 20 (V : H). However, their
experimental observations alone are not sufficient to fully understand the processes
that initiate flow separation and vortex generation. Sumer et al. (2011, 2013) studied
the evolution and runup of solitary waves and the flow and sediment transport
induced by regular waves, respectively. The laboratory set-up consisted of a 1 : 14
slope, on which waves broke as plungers. Bed shear stresses were measured, and it
was concluded that the mean shear stress value during the runup and rundown stages
increased up to eight times compared to that in the approaching wave boundary
layer. Most recently, Smith, Jensen & Pedersen (2017) analysed the velocity profiles
and runup evolution for breaking waves on a 5◦ slope (1 : 11.4), and calculated the
length and velocity of the air bubbles trapped during breaking. They reported an
excellent agreement between the experimental data and a numerical solution based
on the boundary integral model (BIM) except near the shoreline, resulting in large
discrepancies in runup.

Swash flows have also been studied numerically. Puleo et al. (2002) presented
numerical experiments of monochromatic waves, similar to those in Matsunaga &
Honji (1980). They used a two-dimensional (2D) Navier–Stokes equation solver with
a VOF (volume of fluid) model to track the free surface. Free-surface elevation and
shear stress results were successfully replicated. However, the numerical resolution
was not high enough to obtain detailed physical insights. Torres-Freyermuth & Puleo
(2013) applied a similar RANS (Reynolds-averaged Navier–Stokes) 2D model to
simulate dam-break-driven swash flows. They investigated the effects of slope and
roughness on the swash processes and bed shear stresses. They also examined the
boundary layer during different phases of swash flows. More recently, Briganti
et al. (2016) reviewed several widely used phase-resolving models, comparing their
performance for dam-break flows over a 1 : 10 slope. Model typologies range from
depth-averaged to depth-resolving, and numerical results include three-dimensional
(3D) data. The main conclusions are that a depth-resolving model is required to obtain
an accurate flow description during the backwash phase and that significant differences
exist in small-scale processes (e.g. air flow, turbulence evolution) between the 2D
and 3D approaches. Another important aspect that has been studied numerically is
the permeability of the beach. Pintado-Patiño et al. (2015) evaluated the differences
on the boundary layer dynamics between a porous and impermeable beach with the
model used in Torres-Freyermuth & Puleo (2013).

In spite of the extensive literature available on swash flows, a detailed description
of the dynamic process in the entire swash flow region is still lacking. To achieve
this, highly resolved (temporally and spatially) analysis must be performed. More
specifically, it is of great interest to understand the development of transient boundary
layer flows (Sumer et al. 2011, 2013) and flow separation under the runup flows. It
is also desirable to understand why and how the flow separation and vortex shedding,
initially visualized in Matsunaga & Honji (1980) and later described in Lin et al.
(2015a), for periodic and solitary waves, respectively, initiate at certain locations
under the hydraulic jump.
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In this paper we attempt to answer the aforementioned questions from a fundamental
point of view using both experimental and numerical approaches. Laboratory
experiments are invaluable in discovering the physics based on observable flow
features. However, the measurement techniques employed are either point measurements
(e.g. wave gauge) or 2D field measurements over a limited area (e.g. PIV), which
could not provide highly resolved spatial and temporal realization of the physical
process throughout the entire domain of interest. Numerical simulations could
overcome some of these challenges. Both the spatial resolution of the numerical
mesh and the time step can be made as small as desired. The only limitation is
the computational power and time available to obtain the results. Having said that,
numerical solutions are only meaningful if and when the numerical model includes
all the important physics, and numerical algorithms can integrate the mathematical
formulation truthfully.

The methodology applied in this work is as follows. Experimentally, we shall
analyse PIV and free-surface tracking results. Experimental data and theoretical
formulations are then employed to check and validate the numerical model. The
numerical model is used to extend the experimental database, obtaining high-resolution
information not available directly from the experiments (e.g. pressure and shear stress)
to gain further insights.

To make the problem more tractable for understanding some of the fundamental
processes in swash flows, some simplifications will be made in this study. For
example, a non-breaking solitary-wave-induced swash flow will be the target of
investigation. This will allow focusing on the essential physics driving the swash
flows without being interfered with by any previous or subsequent events, as in the
case of periodic waves. The set-up features a 1 : 3 slope, a steep configuration in
which the solitary wave does not break before runup, thus avoiding the complex,
highly 3D and highly nonlinear processes associated with wave breaking during the
initial phase of the test. Clearly, with these simplifications, this study will examine in
depth the development of boundary layer flows during the runup and rundown phases
on a slope. Other features can be added to this fundamental process in future studies.

This paper is structured as follows. In the following section, we first describe
the laboratory set-up and the HSPIV data acquisition and processing techniques.
The experimental observations for the temporal and spatial evolution of free-surface
profile and velocity field are presented. In § 3 we highlight the numerical model (a
3D Navier–Stokes solver based on OpenFOAMr) and its limitations. The numerical
model set-up is then discussed, followed by comparing numerical results with the
experiments. In § 4, numerical results are used to gain further insights on the swash
flow processes. Finally, we discuss the advantages and limitations of the experiments
and the numerical model, and present the conclusions of this work.

2. Laboratory experiments and observations
This section first describes the laboratory set-up for studying swash flows generated

by a solitary wave. After briefly outlining the data acquisition and analysis techniques,
a general description of the observed swash flow processes will be presented.

2.1. Laboratory set-up
Laboratory experiments were carried out in a wave flume situated at the Department
of Civil Engineering, National Chung Hsing University, Taichung, Taiwan. The wave
flume is 14.00 m long, 0.25 m wide and 0.50 m deep, and has a horizontal glass
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Wave maker
Incident wave Wave gauges Shoaling wave
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FIGURE 1. (Colour online) Schematic diagram of the experimental set-up in the wave
flume with a 1 : 3 sloping bottom.

bottom and two vertical glass sidewalls. A piston-type wavemaker, driven by a
programmable servo-motor, is mounted at one end of the flume.

A 1 : 3 sloping bottom was installed at the other end of the wave flume. The slope
was made of acrylic (2.0 m long, 24.5 cm wide and 1.5 cm thick) and was positioned
at 9.0 m from the wave generator. The contact face at the toe of the acrylic sheet was
manufactured into a bevelled surface so that the slope could be flush-mounted over
the horizontal glass bottom, using a thin layer of silicone. A schematic diagram of
the experimental set-up is illustrated in figure 1.

Two Cartesian coordinate systems, defined in figure 1, will be used in this paper.
The origins of both coordinate systems are located at the toe of the sloping bottom
along the centreline of the wave flume. The x-axis is the horizontal coordinate in
the longitudinal direction, pointing positively in the direction of wave propagation.
The y-axis is the spanwise horizontal coordinate and is perpendicular to the x-axis.
Finally, the z-axis is the vertical coordinate, pointing upwards and measuring from
the horizontal bottom. The second coordinate system (X, Y, Z) is obtained by rotating
(x, y, z) by an angle of 18.43◦ on the x–z plane so that the positive X-axis is
oriented shorewards along the surface of the sloping bottom. Therefore, the Z-axis is
perpendicular to the slope, pointing up into the water body. As shown in figure 1,
η denotes the instantaneous free-surface elevation in the (x, y, z) coordinate system.
h and h′ are the still-water depth in the (x, y, z) coordinate system and the total
water depth in the coordinate system (X, Y, Z), respectively. Finally, the associated
velocity components defined in the (x, y, z) and (X, Y, Z) coordinates are (u, v, w)
and (U,V,W). Herein, t denotes time and the corresponding non-dimensional time is
defined as T = t

√
g/h0, where h0 is the still-water depth in the constant-depth region

(see figure 1). We remark here that in the experiments t = 0 s (also T = 0) denotes
the instant when the crest of the solitary wave is above the toe of the sloping bottom,
i.e. at x= 0 (also at X = 0).

The free-surface elevations were measured with capacitance-type wave gauges. The
first gauge was located at x = −1.50 m and the second at x = 0.00 m (the toe of
the slope) along the centreline of the flume. A third wave gauge at x = −0.86 m
was also available for some experimental runs. The first wave gauge is sufficiently
far away from the wave maker and the slope, therefore, the measured time series
of free-surface elevation η0(t) and the wave height H0 are viewed as the incident
solitary wave propagating over horizontal bottom. The voltage output of this gauge
was also used as a reference signal to trigger the HSPIV (high speed particle image
velocimetry) for velocity measurements. The second wave gauge is used to set the
initial time t= 0 s.
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FIGURE 2. (Colour online) Reference sketch for the fields of view (FOV) for flow feature
visualization and HSPIV. Units are in cm. Exact FOV locations are referenced in table 1.

FOV Location (cm) Resolution

L2 x: [10.54, 20.49] z: [3.58, 9.80] 16.1
L3 x: [11.33, 29.27] z: [2.90, 14.12] 8.9
L4 x: [−2.20, 18.28] z: [−0.74, 12.06] 7.8
S0 X: [−1.61, 1.90] Z: [−0.23, 1.96] 45.6
S1 X: [23.15, 26.65] Z: [−0.25, 1.94] 45.7
S2 X: [16.60, 19.45] Z: [−0.25, 1.51] 56.1

TABLE 1. Locations of the FOVs shown in figure 2. Resolution in number of velocity
measurements per cm.

The solitary wave was generated according to Goring (1978). The wave height of
H0 = 2.9 cm was produced in a constant water depth of h0 = 8.0 cm, resulting in a
nonlinearity of H0/h0 = 0.363.

2.2. Flow visualization technique
A flow visualization technique, using the particle trajectory method, was employed in
this study. The aims are to explore temporal and spatial variations of the free-surface
profile, and to visualize the flow structure underneath the free surface during the runup
and rundown phases. Titanium dioxide (TiO2) particles with a refractive index of 2.6
and a mean diameter of 1.8 µm were used as seeding particles. The fall velocity (or
settling velocity) of these particles was 4.5× 10−4 cm s−1, estimated by Stokes’ law.

A high-speed digital camera was employed to capture particle motions. This camera
(Phantom M310, Vision Research) has the ability to capture images with a maximum
framing rate of 3260 Hz under the largest resolution of 1280 pixel× 800 pixel with
a 12-bit dynamic range.

A laser light sheet was used to illuminate the 2D motion of suspended particles
in a vertical plane. An argon-ion laser head (Innova-300, Coherent Inc.) with 7 W
maximum energy output was used as a light source. A combination of reflection
mirrors and optical lenses was deployed to divert the laser beam into a fan-shaped
light sheet with a thickness of approximately 1.5 mm. The laser light sheet was then
projected upwards through the centreline of glass bottom of the wave flume (see
figure 1).

To track the rapid variation in the free-surface profile, the camera was operated
at a framing rate of 2000 Hz for the fields of view L2–L4 shown in figure 2. The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.321


192 P. Higuera, P. L.-F. Liu, C. Lin, W.-Y. Wong and M.-J. Kao

spatial resolution varies between 7.77×10−3 cm pixel−1 and 14.02×10−3 cm pixel−1,
or between 128.64 pixel cm−1 and 62.5 pixel cm−1. As the free surface acts like a
mirror, reflecting the laser light sheet projected from below the flume bottom, the
location of the free surface is obtained by manually fitting a curve to the bright profile
in the images.

Alternatively, to explore the ‘pathline’ pattern of the flow structure under the free
surface, the sampling rate of the camera was set at 200 Hz–500 Hz, depending on the
size of the observation area needed. Since the shutter speed of the camera is relatively
low, the particles reflecting the bright laser light imprint the pathlines contrasting with
the dark background. Particles moving faster trace longer curves, while those with
velocities close to zero appear as points. Therefore, the flow visualization technique
can be applied to identify flow features and to measure their length scales.

2.3. Velocity measurements by HSPIV
The laser head, detailed deployment of reflection mirrors and optical lens, and the
seeding particles used for the HSPIV system are the same as those employed in the
flow visualization technique described above. To allow high image resolution and
appropriate magnification of the measuring area, a Nikon 200 mm lens (f/4.0D AF
Micro-Nikkor) was fitted to the camera. The images of flow fields characterized by
the movement of suspended particles are continuously recorded by using the camera
with a controlled exposure time between 10 µs and 47 000 µs. To ensure a high
time-resolved HSPIV algorithm, a framing rate of 2000 Hz for the camera was set
while capturing the images of the velocity fields.

To investigate the time variation of the velocity field over the sloping bottom, six
fields of view (shown in figure 2) were employed. The widest FOVs (L3 and L4)
provide a resolution of 14.02× 10−3 cm pixel−1 in the x and z directions, while L2
provides a resolution of 7.77× 10−3 cm pixel−1. For measuring the detailed velocity
field close to the sloping bottom, the FOVs S0 and S1 provide a higher resolution of
2.51 × 10−3 cm pixel−1 in the x and z directions, and FOV S2 provides the highest
resolution of 2.22× 10−3 cm pixel−1.

The PIV analysis is performed with an in-house code. Before performing the
cross-correlation calculation for the velocity field, the Laplacian edge-enhancement
technique (Adrian & Westerweel 2011) and the hybrid digital particle-tracking
velocimetry technique (Cowen & Monismith 1997) are adopted for the contrast
enhancement of particle-laden images captured by the high-speed camera. The images
obtained are then subtracted from the background images to remove any constant noise
source. The multi-pass PIV algorithm calculates the instantaneous velocity field from
a pair of images starting from the interrogation window size of 64 pixels× 64 pixels,
ending with a smaller window size of 8 pixels × 8 pixels with a 50 % overlap for
the FOV. Both global range and median filters are used to remove spurious vectors.
Consequential missing vectors are then interpolated to construct the whole-field
velocity vectors. Under these conditions the spatial resolution for velocity vectors
ranges from 0.18 mm to 1.1 mm, depending on the FOV, as shown in table 1.

The magnitude of errors for the HSPIV technique is estimated with the following
method (Chang & Liu 2000; Lin et al. 2012, 2015b). The largest velocity gradients
near the sloping bottom measured in FOV L2 are 72.4 cm s−1 cm−1 (for a free-stream
velocity of 38.0 cm s−1, at t = 0.18 s and x = 19.0 cm) and 241.1 cm s−1 cm−1

(for a free-stream velocity of 106.0 cm s−1, at t = 1.05 s and x = 19.0 cm),
for the runup and rundown phases of the solitary wave, respectively. Since the
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framing rate was set to 2000 Hz, the corresponding uncertainties are approximately
0.080 pixel and 0.205 pixel, respectively (Keane & Adrian 1992). The estimated
errors of the horizontal component of velocity (u) are equal to 1.25 cm s−1

[=0.080 pixel × 0.0078 cm pixel−1
× 2000 s−1] and 3.20 cm s−1 [=0.205 pixel ×

0.0078 cm pixel−1
× 2000 s−1] for the runup and rundown phases. In both cases,

the relative errors in terms of the free-stream velocities near the free surface are
approximately 3 %.

Similarly, the largest velocity gradients measured in the boundary layer of FOV
S1 are 88.0 cm s−1 cm−1 (for a free-stream velocity of 45.0 cm s−1, at t = 0.18 s
and x= 24.0 cm) and 171.8 cm s−1 cm−1 (for a free-stream velocity of 88.0 cm s−1,
at t = 0.96 s and x= 22.5 cm) for the runup and rundown phases. The uncertainties
are approximately 0.070 pixel and 0.100 pixel, for a framing rate of 3000 Hz in
this case. The estimated errors in u for FOV S1 are 0.57 cm s−1 [=0.070 pixel ×
0.0027 cm pixel−1

×3000 s−1] and 0.81 cm s−1 [=0.100 pixel×0.0027 cm pixel−1
×

3000 s−1] for the runup and rundown phases, respectively. The relative errors in terms
of the free-stream velocities at the edge of the boundary layer are below 1.3 %.

In this study HSPIV and laser Doppler velocimetry (LDV) measurements of
the horizontal velocity profile for the solitary wave in a constant depth were also
compared. The LDV data compare very well with the HSPIV measurements at several
different times (or phases) inside and outside the bottom boundary layer. In this paper
we shall report only the HSPIV measurements.

2.4. Experimental observations
During the experiments the free-surface elevation profile measured in the constant-
water-depth region (x = −1.50 m) was found to match reasonably well with the
theoretical solitary wave profile in Boussinesq (1872). Moreover, the solitary wave
did not break during the shoaling and runup phases. This observation is in agreement
with the wave breaking criteria for solitary waves, based on numerical experiments
by Grilli, Svendsen & Subramanya (1997).

A total of 10 repeated runs were performed to assess repeatability for the free-
surface profile and HSPIV measurements. All 10 repetitions yield virtually identical
free-surface profiles and velocities. The analysis of 17 transects yields minimum and
maximum standard deviations for free-surface elevations of 0 pixel and 0.98 pixel.
Since the resolution of the images (FOVs L3 and L4) is 14.02 × 10−3 cm pixel−1,
the global mean of the standard deviations is 7 × 10−3 cm (0.55 pixel). Repeated
runs were averaged to eliminate small fluctuations from the velocity time series, on
the order of 1 %–3 % of the free-stream velocity, which may arise from the HSPIV
measurement errors. Therefore, from here on, the experimental results presented in this
paper are an ensemble average of 10 runs.

The measured and calculated values of wave celerity, c0, defined as
√

g(H0 + h0),
are 102.0 cm s−1 and 103.4 cm s−1, respectively, yielding a relative error smaller
than 1.4 %. Note that the non-dimensional form of the measured wave celerity is
c0/
√

g(H0 + h0), and is equal to 0.99.
The Reynolds number for a solitary wave (applicable in the uprush phase) can

be defined as (Sumer et al. 2010): Reu = a(u∞)max/ν, in which ν is the kinematic
viscosity of water, a is the amplitude (or half of the stroke) of the water particle
displacement in the free-stream region and (u∞)max is the maximum free-stream
velocity. For the present case with H0/h0 = 0.363, the maximum Reynolds number
at the slope during the runup phase (wave-driven flow) can be calculated as 11 000,
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Experiments

Numerical
simulation

Shoaling Runup Rundown

and

Shoaling Runup Rundown

Flow separation

Location at Location at

Incipient
breaking

Hydraulic jump
Wave crest

t (s)0 0.5 1.0 1.5

0.27 0.65 0.92 1.01 1.22

0.29 0.65 0.81 0.97 1.32

FIGURE 3. (Colour online) Timeline for the different physical processes (e.g. shoaling,
runup, rundown, flow separation) in the swash flow generated by a non-breaking solitary
wave (H0/h0 = 0.363) on a steep (1 : 3) slope. Top part: experiments. Bottom part:
numerical simulation. The dashed lines link the time of occurrence of the physical
processes in the experiment/simulation. Locations of the physical processes (if applicable)
are provided in the text boxes. Experimental times have been rounded to the closest
1/100 s to match the output time rate of the numerical simulation.

which is within the laminar flow regime (Sumer et al. 2010). During rundown, the
flow is gravity-driven, therefore it is assimilated with open channel flow and the
Reynolds number is calculated with the hydraulic radius instead: Red = rh (u∞)max/ν.
(The hydraulic radius (rh) is defined as two times the cross-sectional area of the flow
divided by the wetted perimeter of the cross-section. During the later rundown phase
the flow is very shallow compared to the width of the flume, therefore rh ' h′.) The
downrush flow is initially laminar (Red < 500), since this phase starts from a near-rest
situation. As rundown progresses, the flow at the slope accelerates and transitions
from a laminar to a turbulent regime. The maximum Reynolds number obtained during
rundown is 30 000 along the thin downrush flow before the hydraulic jump overturns,
which is already turbulent (Red > 12 500). Scaling up the physical dimension of the
present case to a field condition by a factor of 100 (the still-water depth becomes
8 m) would increase the Reynolds number by three orders of magnitude, which will
be far beyond the laminar and low-turbulence regime studied in this paper. Therefore,
we stress that the present study focuses only on the swash flow at a laboratory scale.

2.4.1. Time evolution of free-surface profiles
Based on the experimental observations, the timeline of evolution of a non-breaking

solitary wave (H0/h0= 0.363) propagating over a 1 in 3 slope is displayed in figure 3.
The swash of a solitary wave comprises four phases: wave shoaling, runup flow,
rundown flow and hydraulic jump, included in the timeline. Only the experimental
(top) timeline will be discussed next. The numerical simulation timeline is slightly
different from the experimental one and will be addressed in §§ 3.4 and 4.

At time t = 0 s, the wave crest was located at the toe of the slope. During the
time interval, −0.473 s< t< 0.654 s, the solitary wave first shoaled and soon started
the runup phase. The snapshots of observed free-surface profiles at five instants are
plotted in figure 4(a). During the shoaling phase (−0.473 s< t< 0.271 s), the wave
crest can be identified, while in the runup phase the vertical elevation of the moving
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FIGURE 4. (Colour online) Snapshots of laboratory observed free-surface profiles during
runup and rundown phases of a solitary wave with H0/h0 = 0.363 and h0 = 8 cm.
(a) Runup. (b) Rundown.

shoreline (runup height) was the highest elevation of the entire flow domain. The
shoreline moved continuously upwards on the slope, forming a thin layer of swash
flow. Near the shoreline the free surface bent into the direction normal to the slope,
displaying the meniscus. The maximum runup height was reached at t= 0.654 s, and
afterwards the shoreline started to retreat, as shown in figure 4(b).

The rundown phase covered the time interval 0.654 s< t < 1.217 s (see figure 3).
During this period the water depth in the entire swash zone decreased monotonically.
It is pointed out here that the free-surface elevation at x = 13 cm remained more
or less constant (near the still-water level) for 0.654 s < t < 1.056 s (see figure 4b).
The rundown flows were driven by gravity and the accelerating flow ran into a large
and almost stationary water body. This flow condition led to the development of a
hydraulic jump at t = 1.007 s, when the free surface became almost vertical at x =
14.6 cm. The free surface eventually curled over towards the shore (as shown by the
profile at t= 1.056 s in figure 4) and impinged on the fast incoming (downrush) flow.
A significant amount of air bubbles were entrained into the water body.
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FIGURE 5. (Colour online) Snapshots of free-surface elevation (red dashed line) and
measured velocity fields for −1 cm< x< 28 cm and 0 s< t< 0.271 s, during the shoaling
phase. The vertical dashed line indicates the location of the wave crest. Experimental data
have been downsampled to 1 and 2 arrows cm−1 in the horizontal and vertical directions,
respectively. (a) t= 0 s, (b) t= 0.090 s and (c) t= 0.271 s.

2.4.2. Time evolution of velocity field
The time evolution of the velocity field is analysed in figures 5–9. The number of

velocity vectors has been downsampled in the x and z directions from the original
values (see table 1) for visual clarity, as indicated in the captions.

In figure 5 snapshots of measured velocity fields for 0 s< t < 0.271 s, during the
shoaling phase, are shown for the window −1 cm< x< 28 cm. The vertical dashed
line indicates the location of wave crest at the specified instant. During the shoaling
phase, the wave crest can be identified and the velocities in the water column are
all moving shoreward. Figure 6 shows the velocity field in the same window during
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FIGURE 6. (Colour online) Velocity field measured for −1 cm < x < 28 cm and
0.361 s< t< 0.632 s, during the runup phase. The dotted curves trace the zero horizontal
velocity locations. These curves divide the shoreward flow field and seaward flow field.
Experimental data have been downsampled to 1 and 2 arrows cm−1 in the horizontal and
vertical directions, respectively. (a) t= 0.361 s, (b) t= 0.452 s and (c) t= 0.632 s.

the runup process for 0.361 s < t < 0.632 s. In this figure a dotted curve, tracing
the zero horizontal velocity locations, divides the shoreward flow field and seaward
flow field. During the final stage of the runup process a thin layer of flow trailed
the moving shoreline while the water body on the slope had already begun to move
seaward because of gravitational pull.

To take a closer look at the velocity field in this flow reversal process, we
zoom into a smaller window (FOV S1 in figure 2, 23.4 cm < X < 26.1 cm), for
0.361 s< t < 0.632 s in figure 7. Velocity vectors have been downsampled in the X
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FIGURE 7. (Colour online) The zoom-in view of velocity fields for 23.4 cm < X <
26.1 cm and 0.361 s < t < 0.632 s, during the flow reversal course throughout the
runup phase. The dotted curves trace the zero horizontal velocity locations, dividing the
shoreward flow field and seaward flow field. Experimental data have been downsampled
in the horizontal direction only, to 5 arrows cm−1. (a) t = 0.361 s, (b) t = 0.406 s,
(c) t= 0.452 s, (d) t= 0.474 s, (e) t= 0.542 s and ( f ) t= 0.632 s.

direction only, from 45.7 to 5 arrows cm−1. The resolution in the Z direction is that
provided by the experimental results (45.7 arrows cm−1). During this lapse of time
the water depth in this window was decreasing. The spatial gradient of free-surface
elevation induced an adverse pressure gradient (pointing in the offshore direction) that
eventually overcomes the positive (shorewards) momentum, starting from the bottom,
where velocities are smaller, and propagating upwards throughout the water depth.
As a result, the velocity field changes very drastically in space and time, reversing
its direction. For instance, at t= 0.361 s the flow in the entire water column moved
shorewards, with a noticeable positive gradient in the X-direction velocity component.
The direction of the velocities near the bottom presents some spatial variability
due to uncertainties in the measurements or postprocessing techniques, which yield
noticeable downwards velocity components in the region 25 cm < X < 26 cm. A
small fraction of second later, at t= 0.406 s, while a major portion of water column
was still moving in the shoreward direction, a very thin layer (approximately 0.5
mm, delimited by the dotted line) of return flows developed along the slope. This
situation continued at t = 0.452 s, when the return flow region grew larger and
developed a profile with a maximum in the central part of the flow reversal area. The
free-stream velocities continued to decrease, revealing a small vertical (Z direction)
negative component, which increased away from the slope. Only 0.022 seconds later,
at t = 0.474 s, almost the entire velocity field had changed to the seaward direction.
Only the reduced portion enclosed by the zero horizontal velocity line continued
to be shoreward. A strong boundary layer overshoot flow persisted along the slope,
vanishing as the free-stream velocity gained momentum (t= 0.632 s). The maximum
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FIGURE 8. (Colour online) Measured velocity fields for −1 cm < x < 28 cm and
0.722 s < t < 0.957 s, during the rundown phase. Experimental data have been
downsampled to 1 and 2 arrows cm−1 in the horizontal and vertical directions, respectively.
(a) t= 0.722 s, (b) t= 0.813 s and (c) t= 0.957 s.

runup height was reached at t= 0.654 s, when the entire swash flow started to move
in the seaward direction.

During the rundown phase (0.654 s< t< 1.217 s) the swash flows were driven by
gravity and the rundown velocity accelerated down the slope. Figure 8 shows velocity
fields at three instants, t= 0.722 s, 0.813 s and 0.957 s, respectively, for −1 cm< x<
28 cm. The water depth closer to the shoreline decreased rapidly and the rundown
flow accelerated in the seaward direction. However, the water depth in the offshore
region (x < 14 cm) remained uniform and increased only slightly during this period.
Eventually the rundown flow in the shallower water region became supercritical, while
flow remained subcritical in the offshore region.
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FIGURE 9. (Colour online) Measured velocity fields for 11.75 cm < x < 20 cm and
1.011 s< t<1.111 s, during the rundown phase. A hydraulic jump occurred at t=1.011 s.
Experimental data have been downsampled to 3.25 and 10 arrows cm−1 in the horizontal
and vertical directions, respectively. Vortices are marked with triangles, indicating the
direction of rotation, and tagged with letters. (a) t = 1.011 s, (b) t = 1.075 s and
(c) t= 1.111 s.

In figure 9 several snapshots of free-surface profiles and velocity fields for
1.011 s < t < 1.111 s are presented. A hydraulic jump with a nearly vertical free
surface occurred at t = 1.011 s. The free surface eventually curled over towards the
shore (as shown by the profiles at t= 1.075 s in figure 9) and impinged on the fast
incoming rundown flow (at t = 1.111 s). A well-organized vortex structure (A) was
first observed on the shoreward side of the hydraulic jump, 15.5 cm < x < 17.5 cm
(see t = 1.011 s in figure 9). The vortex rotated in the counter-clockwise direction
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FIGURE 10. (Colour online) Flow visualization snapshot from the experiments for FOV
S2 at t= 1.01 s. X–Z reference frame. Vortices are marked with triangles, indicating the
direction of rotation, and tagged with letters.

and was advected by the rundown flow in the offshore direction. Additional vortices
(B and C) were generated as the impinging jet reached the water surface.

Figure 10 shows a flow visualization snapshot from the experiments for FOV
S2 at t = 1.01 s. This picture corresponds to (almost) the same instant and to a
zoom-in region of figure 9(a), therefore it provides higher resolution. The free
surface can be distinguished as a brighter line, as explained before. The figure shows
the main vortex (A, anti-clockwise) induced by the fast rundown flow in the vicinity
of the hydraulic jump, with dimensions approximately 1.2 cm long and 4 mm high,
centred at X = 17.05 cm and Z = 0.25 cm. Since the local water depth in the Z
direction at X= 17.05 cm is 1.2 cm, this flow feature represents an obstruction to the
flow of approximately one-third of the water depth. A quiescent area can be found
upstream (X > 18 cm, Z < 1 mm), causing a smooth transition between the flow
reversal point at the slope surface (outside the view presented) and the flow above
the main vortex. In the transition between both areas, a smaller clockwise vortex (B)
appears (X = 17.85 cm).

3. Numerical modelling
In this section we introduce the numerical model and its limitations. Afterwards, we

describe the set-up of the simulation, including the computational mesh, and boundary
and initial conditions. Finally, we check the numerical results with experimental
observations.

3.1. Numerical model governing equations
The numerical model (https://github.com/phicau/olaFlow) employed in this paper is
a modification of the open source code OpenFOAMr (Weller et al. 1998). The
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modifications have been previously checked against experimental data and other
existing numerical results (Higuera, Lara & Losada 2013a,b, 2014). For completeness,
some of the essential elements of the numerical model are summarized next.

This numerical model solves the 3D Reynolds-averaged Navier–Stokes (RANS)
equations for two incompressible phases (water and air). The free surface between
water and air is captured with the volume of fluid (VOF) technique (Hirt & Nichols
1981).

The RANS equations adopted by the model are expressed as

∇ · (ρ U)= 0, (3.1)
∂ρU
∂t
+∇ · (ρUU)=−∇p∗ − g · r∇ρ +∇ · (µ∇U− ρU′U′)+ σκ∇α, (3.2)

in which ρ is the fluid density, U is the Reynolds-averaged velocity vector, and ∇ is
the gradient vector (∂/∂x, ∂/∂y, ∂/∂z). Time is denoted by t, p∗ = p − ρ g · r is the
dynamic pressure, and p is the total pressure; g is the acceleration due to gravity and
r is the position vector.

In the viscous term in (3.2), µ represents the molecular dynamic viscosity of
the fluid, and ρU′U′ denotes the Reynolds stresses, with the overbar denoting the
ensemble average. Using the gradient hypothesis, the Reynolds stress can be modelled
as a gradient of the averaged velocity with a dynamic turbulent viscosity (µt), which
is modelled by different turbulence closure models. Finally, the viscous term can
be written as ∇ · (µeff∇U) with the effective dynamic viscosity µeff , comprising the
molecular and turbulent components.

The last term in (3.2) represents the surface tension force. The continuum surface
force (CSF) method (Brackbill, Kothe & Zemach 1992) transforms the actual surface
force into a body force, which acts at the interface between fluids. σ is the surface
tension coefficient; κ is the curvature of the free surface, being calculated as
∇ · (∇α/|∇α|), where the volume of fluid (VOF) indicator function α represents
the amount of water per unit volume in a computational cell. Thus, α = 1 marks a
pure water cell, α = 0 denotes a pure air cell, and 0<α < 1 represent the interfacial
cells. In order to obtain a physically meaningful solution, α needs to be conservative,
strictly bounded between 0 and 1, and maintain a sharp interface. Fluid properties
such as density (ρ) and kinematic and dynamic viscosities (ν, µ) are calculated as a
weighted average between water and air, e.g.

ρ = α ρw + (1− α) ρa, (3.3)

where subscripts w and a denote water and air, respectively.
The evolution of the VOF (α) is prescribed by a conservative advection equation

derived from the conservation of mass expression (Hirt & Nichols 1981). In this
interface capturing method, the free surface is not explicitly reconstructed at any stage.
Since numerical solutions of an advection equation typically suffer from diffusion, an
artificial compression (i.e. anti-diffusion) term acting only at the interface (0<α< 1),
intended to prevent the excessive smearing of the fluid interface, is added (Berberovic
et al. 2009):

∂α

∂t
+∇ · (αU)+∇ · [α(1− α)Uc] = 0. (3.4)

Here, Uc is a compression velocity oriented in the normal direction to the interface
(∇α/|∇α|). The magnitude of Uc is calculated as the minimum between cα|U| and
the maximum velocity magnitude throughout the domain, to avoid creating artificial
high velocities. The factor cα is a constant for compression enhancement, normally
taking a value of 1 (Gopala & van Wachem 2008).
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3.2. Numerical model limitations
Navier–Stokes equations provide substantial benefits due to their small number of
underlying assumptions. Nevertheless, numerical models possess limitations inherent
to the numerical methods implemented in them. There are several shortcomings of
the numerical model used in this paper, concerning primarily with the VOF method
and the surface tension force.

The VOF implementation in OpenFOAMr is an algebraic interface capturing
method. Low computational cost and strict mass conservation are significant
advantages of this method. However, the main disadvantages of the method are
diffusivity and that the calculation of the curvature of the interface is not accurate.

The diffusivity of the advection equation causes the transition between phases
(water and air) not to be perfectly sharp, as observed physically. After adopting
the artificial compression term, equation (3.4), the numerically obtained interface is
smeared only over a few cells. Algebraic interface capturing methods are also known
to generate non-physical flows at the interface, called spurious velocities or parasitic
currents (Deshpande, Anumolu & Trujillo 2012). Francois et al. (2006) identified
the main causes as inaccuracies in the interface curvature calculation and a lack
of a discrete force balance between the pressure gradient and surface tension. This
means that parasitic currents derive both from the low-order VOF technique and the
application of the CSF method (Brackbill et al. 1992).

The effects of spurious velocities are not a major issue for inertia-dominated flows
(Deshpande et al. 2012). Nevertheless, their magnitude increases at smaller scales (i.e.
capillary flows) (Lafaurie et al. 1994), because the capillary number (the capillary
number is defined as µU/σ , in which U is a characteristic velocity, µ is dynamic
viscosity and σ is the surface tension coefficient), which measures the relative effect
of viscous forces versus surface tension forces, decreases proportionally with the scale.

In view of these misgivings, the numerical model might have limited applicability
to simulate flows in which the free surface presents a strong curvature or significant
surface tension. In the present study, the quality of numerical results is guaranteed for
the largest portion of the computational domain, since the effective wavelength of the
solitary wave is close to 1 m, within the gravity-waves regime. Under these conditions,
surface tension effects are four orders of magnitude smaller than gravity (Holthuijsen
2010). There is only a small area in which surface tension dominates: the meniscus
at the moving shoreline. The effects of parasitic currents in the simulation over this
area are later analysed in figure 12. Fortunately, the meniscus effects appear to be
extremely limited, as the region of influence is quite small when compared with the
entire swash zone. Therefore, the numerical model is capable of capturing the details
of bottom boundary layer velocity structure and the vortex generation during the runup
and rundown phases.

Several numerical techniques that can remedy the numerical model limitations are
discussed in § 5.

3.3. Numerical set-up of the case
3.3.1. Mesh

A 3D mesh, representing the physical wave flume described in § 2.1, has been
created. The final mesh has been produced after several iterations and mesh sensitivity
analyses. The aim is to obtain high resolution and high-quality results in the areas of
interest, while minimizing the number of cells elsewhere to reduce the computational
cost. When cell size gradation is introduced, it has been performed by means of a
geometric progression. A side view of the final mesh is presented in figure 11.
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FIGURE 11. (Colour online) A sketch of the vertical plane view of the mesh used in the
numerical model. Each circle provides a zoom-in view of the actual cells.
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FIGURE 12. (Colour online) Evolution of the time derivative of free-surface elevation in
space and time. Units in m s−1.

Special emphasis has been put in obtaining a high-quality characterization of
the flow within the bottom boundary layer (BL), where flow separation and vortex
generation take place (see figure 7). Although the BL thickness changes throughout
the swash flow process, it can be roughly estimated using the Blasius boundary layer
solution (Schlichting 1979). For the present wave conditions, the BL thickness can be
estimated as 4.5 mm–6.5 mm (laminar solution). Thus, a structured grid extending
20 mm in the vertical direction has been created in the BL area, adjacent to the
bottom. In the BL, the vertical gradients are expected to be larger than the horizontal
gradients. Hence, the vertical resolution of cells at the bottom has been enhanced to
0.1 mm, higher than the one that the PIV experiments provided for the most detailed
field of view. The vertical cell size increases up to 1 mm, 20 mm away from the
bottom. The cells in the BL over the slope are aligned with the sloping bottom and
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with the vertical direction (z-axis); thereby, a slight non-orthogonality exists among
the centre-to-centre line of adjacent cells and the normal vector to the face that they
share. In OpenFOAMr the non-orthogonality error is corrected by means of the
over-relaxed approach (Jasak 1996) to preserve second-order accuracy in space.

The wave generation and propagation region (i.e. constant-water-depth area) is
1.5 m long and 0.203 m high, much shorter than that in the actual wave flume,
but its length does not impact the wave shape (i.e. the wave is free of influences
from the wave generation boundary). The mesh in the constant-water-depth region is
structured and cells are orthogonal. Cell size gradation in both vertical and horizontal
directions has been introduced. In the longitudinal direction, cells are 5 mm long at
the wave generation boundary, decreasing to 1 mm towards the toe of the slope. In
the vertical direction, cells outside the BL are 1 mm high below the still-water level
(z = 0.08 m). At this resolution the wave height (2.9 cm) is discretized by 29 cells,
which is enough to obtain excellent detail. Finally, cell height grows to 5 mm at the
top boundary.

The flow region above the slope constitutes the area of primary interest. This zone
spans 0.55 m horizontally and 0.203 m vertically, and includes a sloping bottom
(1 : 3). The horizontal discretization is kept constant and equal to 1 mm throughout
the area. Above the BL, the mesh is non-structured and the vertical cell size increases
from 1 mm to 5 mm, matching that in the constant-water-depth region (see figure
11). Since VOF advection is known to produce less diffusion for hexahedral cells
(Deshpande et al. 2012), the meshing procedure produces a majority of this type of
cells versus triangular prisms.

The 3D mesh has been created by lateral extrusion (y-direction) of the mesh shown
in figure 11, over half of the experimental flume width (125 mm). Each of the 63
slices has a constant width close to 2 mm. The 3D mesh is formed predominantly
by quadrilateral prisms (hexahedra), totalling 8.8 million cells. The simulation of the
4.5 s laboratory experiment takes 169 h in 24 cores of an Intel Xeon (2.50 GHz)
workstation.

A 2D mesh (single slice) was also tested. No noticeable differences in free-surface
elevation and velocity were found before the onset of wave breaking, when fully
3D flow patterns develop. However, the 3D simulation shows a much higher degree
of energy dissipation after wave breaking, with the 2D simulation presenting more
agitation (i.e. larger velocities).

3.3.2. Initial and boundary conditions
The solitary wave is generated at the left boundary, using an updated version of

the wave generation module presented in Higuera et al. (2013a). The target solitary
wave velocity and height profiles have been calculated according to the third-order
solution in Grimshaw (1971). The solitary wave is simulated so that the targeted
wave height is H0 = 2.9 cm in the water depth of h0 = 8.0 cm, resulting in a wave
nonlinearity of H0/h0 = 0.3625. The numerical active wave absorption (Higuera et al.
2013a) is activated; therefore, any reflections from the slope are absorbed at the
numerical wavemaker.

On the bottom boundary of the flume, the no-slip boundary condition is applied.
Since only half of the flume is discretized in the spanwise (y) direction, a symmetry
boundary condition has been set on the centreline boundary and a free-slip condition
has been set on the sidewall boundary, because resolving the boundary layer on the
lateral wall is out of the scope of this paper.
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The swash flow is wave-driven and laminar during the runup phase. During
rundown, the flow becomes gravity-driven and overcomes the laminar regime,
exceeding the 500 Reynolds number limit defined for open channel flow. Therefore,
the simulation has been run with the k–ω SST turbulence model presented in Devolder,
Rauwoens & Troch (2017). This recent version is validated and includes a buoyancy
term in the turbulent kinetic energy equation that manages adequately the turbulence
level at the free surface. A comparison between the present simulation and an
analogous one assuming laminar flow (i.e. disregarding Reynolds stress modelling)
is presented in § C of the supplementary material available at https://doi.org/10.1017/
jfm.2018.321.

The boundary conditions for turbulence variables (k and ω) provide wall function
approximations for both low- and high-Reynolds-number turbulence models. Initial
values for k and ω are very small but not zero, to avoid singularities when solving
the turbulence equations. Moreover, as the case starts from rest, the resulting initial
kinematic turbulent viscosity (νt) for the chosen values is several orders of magnitude
smaller than the molecular kinematic viscosity of water.

Because of the presence of a contact point (water–air–solid) at the shoreline, a
meniscus develops in the water phase. Since the contact angle between water and
acrylic (polymethyl methacrylate) is 73◦ (Omenyi, Smith & Neumann 1980), the
contact angle boundary condition applies the fixed zero gradient to the VOF function
α in this direction.

Initially the free surface is positioned at z= 8.0 cm, which differs slightly from the
equilibrium state position because of the meniscus at the shoreline. This difference
would generate small but noticeable waves (height approximately 1.5 mm, 5 % of
the solitary wave height) as the meniscus develops. These oscillations are dampened
during a precursor simulation in which the static equilibrium (zero velocity and fully
developed meniscus) is established. Afterwards, the simulation is restarted and the
solitary wave is generated.

3.4. Comparisons between numerical results and experimental observations
In this section, we first compare the numerical and experimental results through the
detailed study of free-surface elevation profiles and velocity fields. Additional physical
quantities, such as bottom shear stress and pressure gradients, will be discussed in the
next section.

The numerical data presented in the following sections have been averaged over
the spanwise direction, unless stated otherwise. Any spanwise variability observed is
induced by 3D flow features, which are virtually non-existent before wave breaking.
Nevertheless, the spanwise averaging helps to obtain more consistent velocity profiles
near the shoreline, where spurious velocities introduce random local variability.

The time reference system of the numerical simulations matches that of the
laboratory experiments. The zero time (t = 0 s) has been set when the crest of
the solitary wave is at the toe of the slope (x= 0 m).

3.4.1. Free-surface elevation and runup
One of the advantages of numerical simulations is the capability to produce high-

resolution solutions in space and time. An example is shown in figure 12 for the
evolution of free-surface elevations temporarily and spatially. The free surface has
been calculated as the isosurface of α = 0.5.

In figure 12 the horizontal axis is time and the vertical axis is distance covering the
full length of the numerical wave flume. The wave generation boundary is located
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FIGURE 13. (Colour online) Numerical solutions for the time series of free-surface
elevation in the constant-depth region. Experimental (dashed lines) and numerical
(continuous lines) are compared at x = −0.86 m and x = 0.0 m. Additional numerical
samplings took place along y = 0.061 m (centreline of the numerical wave flume) and
−0.70 m< x<−0.10 m with a 20 cm increment.

at x = −1.50 m, while the initial still-water shoreline is located at x = 0.234 m.
The colour bar indicates the time derivative of free-surface elevation. The positive
values represent the acceleration phase (or upward free-surface velocity), while the
negative values represent the deceleration phase (downward free-surface velocity).
Thus, individual waves can be identified by a light-to-dark colour transition.

The incoming wave becomes noticeable at approximately t=−1.80 s. As the main
solitary wave reaches its stable profile, small trailing waves, which have smaller
amplitudes and are of the same magnitude as those measured in the experiments, are
also visible. The trailing waves have smaller celerity than the solitary wave, resulting
in clear separation.

A meniscus exists at the shoreline. On closer inspection over that area, parasitic
currents appear in the air phase adjacent to the free surface. Despite being
non-physical, the spurious velocities do not have significant impact on the overall
numerical solution, since the shoreline is completely static and the meniscus is in
equilibrium before the solitary wave reaches the shoreline (t<−0.5 s). However, these
velocities cause minor high-frequency oscillations locally, which produce extremely
small waves (<1 mm, sub-cell scale) propagating offshore, and are barely noticeable
in figure 12.

The evolution of free-surface elevation during runup and rundown phases will be
studied later in greater detail. After the maximum runup height is reached the swash
flow enters the rundown phase and becomes gravity-driven. During the final period of
the rundown phase (t> 1 s), the noisy area at the top right corner (shoreline area) is
the result of the transformation of the supercritical rundown flow into the subcritical
water body, through a hydraulic jump.

The time histories of free-surface elevations at six locations in the constant-water-
depth region are shown in figure 13. Since all the locations are far away from the
wave generation boundary, no spurious boundary effects remain. The wave profiles
present a consistent shape, although wave heights decrease slightly due to frictional
dissipation in the bottom boundary layer. The wave dissipation rate has been studied
separately for a solitary wave propagating on constant depth. The results are included
in the supplementary material (§ A). Shoaling can also be noticed in the last two
numerically obtained curves, when the wave approaches the slope.
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Since the constant-depth region in the numerical domain has been shortened to
1.5 m, the first wave gauge location in the laboratory experiments that can be used for
comparison is at x=−0.86 m. The degree of accordance between the numerical and
experimental time series of free-surface elevation is very good, with a relative wave
height error of 0.7 %. Minor differences in wave shape appear in the leading edge,
with a maximum deficit in elevation of approximately 2 % in the numerical results.
Differences are more apparent in the trailing oscillations, which are significantly larger
in the experiment.

The second experimental sampling location is at x= 0.0 m (toe of the slope). The
wave height obtained from the numerical simulation agrees with the experimental data
very well (0.4 % relative error). Globally, the shape of the numerically simulated wave
is also in good agreement with experimental data. However, large discrepancies arise
around t = 0.27 s, when the incident wave starts to interact with the reflected wave
from the slope. The maximum relative error is less than 10 %. We remark that the
reflected wave height is captured accurately by the numerical model.

The wave celerity can be estimated by tracking the locations of the wave crest. The
estimated result is 1.01 m s−1, which is 1.9 % smaller than the theoretical value (c=
√

g (h0 +H0)= 1.03 m s−1, for the target wave height of H0 = 2.9 cm).
Snapshots of free-surface elevation profiles in the swash zone, obtained from

numerical simulations and laboratory experiments, are plotted in figure 14. Figure
14(a) shows the surface profiles during the runup phase, while figure 14(b) is for the
rundown phase.

During the initial phases of the runup process (t=−0.14 s and 0.06 s) the largest
discrepancy of 4 mm occurs close to the leftmost border. This effect is caused by
the slightly different shape between the numerical and experimental solitary wave
elevation profiles, which has also been commented upon in figure 13. The data/model
agreement of the next three free-surface profiles is excellent, especially away from
the moving shoreline. This comparison gives strong evidence on the numerical model
limitations in accurately simulating the physics in the neighbourhood of the shoreline.

The beginning of the rundown phase (i.e. maximum runup) takes place at virtually
the same instant in the numerical simulation and in the experiment, as noted in
figure 3. The numerical curve matches well with the thickness of the experimental
profile, however, the numerical shoreline is positioned 1.2 cm further down the slope.
Such situation continues until t= 0.96 s. Apparently, during the period, the shoreline
velocity observed in the laboratory is higher than the numerical solution. In the
offshore area, discrepancies are larger and grow with time. By the time t= 0.96 s the
experimentally observed shoreline position has caught up with that of the numerical
solution. However, the numerically obtained free surface is significantly steeper. Wave
breaking also occurs earlier in the numerical simulation, at t = 0.97 s, as compared
to t = 1.007 s in the experiments (see the timeline shown in figure 3). During the
breaking process, the hydraulic jump overturns towards the shore and traps a pocket
of air. Based on this comparison, it appears that time and space lags exist between
the numerical results and laboratory observations, especially during the rundown
phase. This could be caused by error accumulation due to the inaccurate modelling
of the shoreline dynamics in the numerical model. More detailed discussions will be
provided in the next section.

The time series of runup height is presented in figure 15. Since the numerical
simulation is three-dimensional, a small variability in water elevation exists in the
spanwise direction (y-axis). Therefore, numerically simulated runup height (continuous
line) is calculated as the spanwise-averaged height of the shoreline, defined as the
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FIGURE 14. (Colour online) The experimental/numerical comparison of free-surface
profiles during the runup and rundown phases. Numerical results are presented as
individual markers, see legend for times. The experimental observations are represented
as dashed lines. (a) Runup. (b) Rundown.

α = 0.5 contour line on the slope. Smaller isovalues, such as 0.1, yield virtually the
same results because of the small cell size. The maxima and minima of the runup
height in the spanwise direction from the numerical results are also plotted in the same
figure. The differences among the averaged values and maximum/minimum values
are negligible until wave breaking occurs. Experimental runup height measurements
were obtained at certain instants only, including those from the profiles in figure 14,
and are depicted as blue crosses.

Generally speaking, the agreement is very reasonable for the runup phase, although
differences start to arise at the last stage of this phase. The maximum runup height
observed in the laboratory is 8.4 cm, which is 4 mm (4.5 %) higher than the value
obtained from the numerical model (7.96 cm, R/H = 2.745). Despite the discrepancy
in magnitude, the instant at which maximum runup occurs is practically the same in
the simulation and the laboratory experiment (0.004 s difference). Major discrepancies
are found during rundown phase. The retreating velocity and acceleration of the
shoreline are significantly larger in the laboratory experiment. This results in an
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FIGURE 15. (Colour online) Comparison of runup height. The numerical runup height
is determined as the spanwise-averaged VOF level of α = 0.5 contour line on the slope.
Minimum and maximum bounds also plotted as dots to reflect the spanwise variability.
Experimental points are depicted as crosses.

important deviation at t = 1.15 s, when the numerical solution shows a runup value
of 3.7 cm higher than the laboratory measurement.

Using Synolakis’ (1987) runup theory for non-breaking solitary waves, which is
based on the nonlinear shallow water equations, the maximum runup height for the
present experimental condition is 11.0 cm, which is almost 50 % higher than the
observed experimental data and numerically simulated result. We note that Synolakis’
theory ignores the bottom frictional effects, which dissipate energy and hence reduce
the runup height. Liu & Cho (1994) included the viscous bottom boundary layer
effects in their numerical runup model, using the boundary integral equation method.
Their model estimates a maximum runup value of 9.0 cm for the 1:3 slope, which is
still approximately 10 % above the value shown in this work. The discrepancy could
be attributed to the fact that Liu & Cho (1994) model did not take into consideration
the meniscus in the vicinity of the moving shoreline.

3.4.2. Velocity profiles in the swash flow
In this section, the velocity profiles in the water column, including those inside

the bottom boundary layer, are shown at different phases of the swash process. Both
numerically simulated solutions and the PIV data are plotted together for comparison.
Figure 2 indicates the location of the FOVs where PIV data have been recorded. We
remark here that the smaller the FOVs, the higher resolution they yield. FOVs L2, L3
and L4 have been combined into a single plot and the numerical velocities have been
averaged in the spanwise direction.

To manage the length of this paper only a selected set of snapshots of velocity
profiles are presented in figures 16, 17 and 19–21. The following format is used
in presenting the results and comparisons. Each figure consists of model/data
comparisons at two or three instants. For each instant three sets of subpanels are
shown. The top subpanel shows a snapshot of the free-surface elevation (densely
packed dots for the numerical solutions and crosses for the experimental data) and
the numerically calculated velocity field. The short grey vertical lines along the
bottom and top of the horizontal axes indicate the location of the transects where
horizontal velocity profiles are compared in the sets of subpanels below. The lower
two sets of subpanels present the velocity profile comparisons. The middle set shows
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FIGURE 16. (Colour online) The free-surface profile and velocity field comparisons during
the shoaling phase at t= 0.00 s (a), 0.09 s (b) and 0.18 s (c), respectively. Experimental
data are plotted as crosses, numerical data as dots. Three set of subpanels are presented
at each instant. Top: numerical solutions for velocity field and free-surface elevation
along the flume. Middle: horizontal velocity profiles in the water column at several
cross-sections. Bottom: horizontal velocity profiles in the boundary layer. The resolution
of the PIV data is between 0.5 mm and 1 mm.
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FIGURE 17. (Colour online) The free-surface profile and velocity field comparisons during
the runup phase at t= 0.36 s (a), 0.54 s (b) and 0.63 s (c), respectively. The free-stream
velocities are decelerating during this period. Captions are the same as those defined in
figure 16.

the comparison of horizontal velocity in the water column at the identified transects.
Experimental data are represented by crosses and the numerical solution by dots. The
density of the points is the actual resolution of the available data in both cases. In
the numerical results, data points coincide with cell centres and in the laboratory
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experiment data points represent the output points of the HSPIV data. The bottom
set displays zoom-in velocity profiles inside the bottom boundary layer.

Figure 16 shows velocity comparisons at the instants when the wave crest is above
the toe of the slope (t= 0 s) and during the rest of the shoaling phase (−0.47 s< t<
0.29 s). The degree of accordance of the free-surface elevation is remarkable at the
three instants. The free-stream velocities are slightly overestimated by the numerical
model initially. Overall, the comparisons for velocity profiles are also good. However,
significant discrepancies in the vicinity of the shoreline (x=23.63 cm) can be detected
initially. Recall that the numerical model has most severe shortcomings in accurately
modelling the shoreline dynamics, where the effects of surface tension and meniscus
dominate.

It is known that a slight difference in the free-surface elevation can result in much
larger difference in the velocity field. This can be understood as follows. Using
the long-wave theory, the horizontal velocity can be approximately related to the
free-surface elevation as U =

√
g/h0 η. In the present laboratory experiments the

amplification factor,
√

g/h0, is approximately 11 s−1 for h0 = 8 cm. In other words,
if the free-surface elevation difference is 1 mm, the resulting difference in velocity is
approximately 1.1 cm s−1. This value must be regarded as the lower bound for error,
since h decreases and η increases on the slope because of shoaling. At time t= 0.18 s,
the free-surface elevation deviation ranges between 1 and 2 mm. The free-stream
velocities are underestimated in the numerical simulation by 1.2–2.2 cm s−1, which
is in good agreement with the estimate introduced above.

As shown in figure 16, flow reversal near the bottom is starting to develop at t=
0.18 s from offshore first, as noticeable in the leftmost subpanels (x 6 7.15 cm). The
resolution in the experiment (∼1 mm) is not sufficient to observe whether such a
process is taking place.

Figure 17 presents velocity comparisons during the deceleration phase of runup. At
t=0.36 s flow reversal is a dominating feature. Numerical solutions show a noticeable
overshoot in velocity profiles that extends to 2 mm above the bottom. The feature
appears to be missing in the experimental results. However, we remark here that the
resolution of the existing PIV data in that area is between 0.5 mm and 1 mm near the
bottom, which is too large to show the overshoot in the experimental velocity profile.

The limited resemblance continues for the next two instants. At t = 0.54 s and
0.63 s, all the sampling locations have undergone flow reversal, as the runup phase
comes to an end. Despite relevant velocity differences, free-surface elevation profiles
still present a reasonable matching in the area where experimental data are available.
However, recalling figure 14, the tip of the flow in the numerical simulation is located
further offshore compared to the experiments.

The large discrepancies during flow reversal shown in figure 17 deserve further
analysis. Figure 18 presents the evolution of flow reversal in the numerical simulation.
Only half of the velocity vectors are plotted in the horizontal direction, while the
actual mesh resolution is shown in the vertical direction. Figure 18 can be compared
with figure 7, its experimental counterpart. Note that the spatial domain represented
(23.4 cm< X < 26.1) is identical in both figures, but the instants shown are not the
same. The times in the numerical solution have been selected to compare equivalent
flow features in both figures.

Comparing figure 18(a) (t = 0.32 s) and figure 7(a) (t = 0.361 s), the velocity
profiles exhibit some differences in shape between the numerical solutions and
experimental data. The numerical results show smaller velocity gradients near the
bottom (23.5 cm < X < 24.5 cm). This feature and the fact that the equivalent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.321


214 P. Higuera, P. L.-F. Liu, C. Lin, W.-Y. Wong and M.-J. Kao

o o o o o o ooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o ooo o o o o o o o o o o o o o o o o o o o o o o o o o ooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ooo o o o o o o o o o o o o o o o o o o o o o o o o o ooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o ooo o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ooo o o o o o o o o o o oo

0

1

2

3

23.5 24.0 25.024.5 25.5 26.0
0

1

2

3

23.5 24.0 25.024.5 25.5 26.0

Z
 (

m
m

)

0

1

2

3

23.5 24.0 25.024.5 25.5 26.0
0

1

2

3

23.5 24.0 25.024.5 25.5 26.0

Z
 (

m
m

)

0

1

2

3

23.5 24.0 25.024.5 25.5 26.0
0

1

2

3

23.5 24.0 25.024.5 25.5 26.0

Z
 (

m
m

)

X (cm) X (cm)

(a) (b)

(c) (d )

(e) ( f )

FIGURE 18. (Colour online) The zoom-in view of numerical solutions for velocity field
for 23.4 cm < X < 26.1 cm and 0.32 s < t < 0.60 s. During this runup phase, the
flow reversal occurred in the bottom boundary layer. The dotted curves traced the zero
horizontal velocity locations, dividing the shoreward flow field and seaward flow field. (a)
t= 0.32 s, (b) t= 0.36 s, (c) t= 0.42 s, (d) t= 0.46 s, (e) t= 0.50 s and ( f ) t= 0.60 s.

flow condition in the experiments took place with a 0.04 s time difference with
respect to the numerical results are an indicator that the numerical solution is
subjected to a larger adverse pressure gradient, possibly driven by a difference in
the free-surface elevation above this area. Nevertheless, both the numerical and
experimental profiles present similar features away from the bottom, such as the
slightly downwards-pointing vectors at the top of the domain (Z = 3 mm). Panels (b)
and (c) in both figures show the initiation of flow reversal, with the zero horizontal
velocity line advancing shorewards. At t = 0.36 s (t = 0.406 s in the experiments;
figure 7), there is a significant discrepancy in free-stream velocities, where the largest
difference is approximately 8 cm s−1. At t = 0.42 s (t = 0.452 s in the experiments;
figure 7), the velocity magnitude diminishes, therefore the absolute difference also
reduces to 4 cm s−1. At these two stages, the time differences between the numerical
and experimental solutions have reduced from 0.04 s to 0.03 s. In panel (d) (t=0.46 s
in the numerical results and t = 0.474 s in the experiments), the zero horizontal
velocity line is travelling away from the FOV. The most noticeable difference is that
while in the experiments the height of reverse flows is located at Z = 1.25 mm, in
the numerical solution it is located at Z = 2.0 mm. Moreover, the time difference
between equivalent flow states has reduced to close to 0.01 s. At the instants of the
panels (e) and ( f ), the flow in the water column is already moving in the offshore
direction, although the shoreline is still rushing landwards. Both instants present a
high degree of resemblance between figures 7 and 18, and again the time difference
between both is approximately 0.04 s. The inconsistent time differences between
equivalent phases in figures 7 and 18 indicates that the flow separation process takes
place at a different pace in the experiments and in the numerical solution, possibly
because of error accumulation due to slight differences in free-surface elevation.
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FIGURE 19. (Colour online) The free-surface profile and velocity field comparisons during
the rundown phase at experimental times t= 0.81 s (a) and 0.88 s (b), respectively. Time
and space shifts have been applied. Numerical simulation times are t= 0.77 s and 0.84 s,
respectively. Experimental results have been shifted −6.32 mm in the X direction (e.g.
the profile at x= 3.36 cm in the numerical simulation corresponds to x= 3.96 cm in the
experiment). Captions are the same as those defined in figure 16.

Maximum runup (t = 0.654 s) marks the instant when the dynamics of the flow
change from being wave-driven to gravity-driven. As a result, this event can be
thought of as a ‘checkpoint’ during the simulation. Maximum runup takes place
almost at the same instant in the numerical model and experiment, but a significant
spatial difference exists, resulting in different maximum runup heights, as shown in
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figure 15. Examining figure 15 closely, the differences between the location of the
shoreline increase in time, which is consistent with the effects of error accumulation.
To achieve a fair comparison in the areas away from the shoreline, we use the
hydraulic jump to re-align the experimental and simulation results in space and time.
As shown in the timelines of the swash flows (figure 3), the hydraulic jump occurs
in the numerical simulation at t = 0.97 s and x = 0.14 m, while in the laboratory
observations it occurs at t = 1.007 s and x = 0.146 m. Therefore, in the following
figures (19–21), the time reference of the experiment has been maintained, while
numerical solutions have been shifted by 0.04 s, and the experimental observations
have been slid down the slope by 6.32 mm in the X direction (i.e. equivalent to 6
mm in the x direction). The original comparisons without time and space shifts are
included in § B, figures B.1–B.3, of the supplementary material.

Figure 19 marks the initiation of the rundown phase. The overshoot in the
numerically obtained velocity profiles continues to be visible, especially for those
locations in the upper part of the slope at t= 0.81 s. This feature is evolving in time,
getting smoother as time advances (see t = 0.88 s). At both instants, the boundary
layer velocity profiles differ in numerical solutions and experimental data, especially
up the slope, although the resolution of the experimental measurements is too low
to allow detailed comparison. The agreement of the free-stream velocities and the
free-surface elevations is excellent, after making adjustments in time and space.

Figure 20 illustrates the phase when the hydraulic jump develops. At both instants,
a good agreement between numerical solutions and experimental data is obtained
after introducing the spatial and temporal adjustments. Flow reversal has just started
in the boundary layer (t= 0.96 s, x= 15.49 cm) for the numerical solution, while the
experimental resolution is too low to discern if it is present. However, the difference
in the velocity profile shape at x = 12.36 cm may indicate that flow reversal in
the numerical solution is developing ahead of the experiment. Finally, at t = 1.01 s,
incipient breaking (i.e. the vertical free surface at the hydraulic jump) takes place.

Figure 21 shows the early breaking stage. The overturning wave is projected up
the slope at the first instant (t = 1.07 s) and has trapped a significant air pocket
at t = 1.11 s. The evolution of free-surface elevation in the numerical and physical
experiments bears a reasonable resemblance, with a maximum of 4 mm difference
in the x direction at the overturning wave tip at t = 1.07 s. Vertical differences are
much smaller, with a mean of 0.2 mm throughout the domain. The agreement of
the velocity profiles is excellent in the subcritical flow area (two leftmost stations),
while significant differences are found in the central stations. The flow reversal area
adjacent to the bottom is significantly thicker in the numerical simulation (7 mm, as
compared to 1.5 mm in the experiments). There is also a noticeable difference in the
water depth below the overturning plunger, 2.7 cm versus 1.3 cm in the experiments.
These discrepancies seem to be limited locally in the vicinity of the hydraulic jump,
since the comparison at x = 15.49 cm is reasonable. The two sampling stations in
the upper part of the slope present scarce experimental points because the rundown
flow layer becomes so thin that the HSPIV system cannot capture velocities at the
current zoom level (FOV L3, see figure 2). At t = 1.11 s the pocket of air presents
some differences between the numerical and experimental solutions. In the numerical
simulation the amount of trapped air is slightly smaller and is located higher in the
water column. This fact can be observed in the sampling transect at x= 12.36 cm.

As mentioned before, additional simulations have been run assuming laminar
flow (i.e. disregarding Reynolds stress modelling), with noticeable different results
during the last stage of rundown and breaking phases. A comparison between both
numerical results and the experiments for figures 20 and 21 is included in § C of the
supplementary material.
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FIGURE 20. (Colour online) The free-surface profile and velocity field comparisons during
the formation of the hydraulic jump at experimental times t= 0.96 s (a) and 1.01 s (b),
respectively. Time and space shifts have been applied. Numerical simulation times are t=
0.92 s and 0.97 s, respectively. Experimental results have been shifted −6.32 mm in the
X direction (e.g. the profile at x = 3.36 cm in the numerical simulation corresponds to
x= 3.96 cm in the experiment). Captions are the same as those defined in figure 16.

4. Additional numerical analysis

Numerical simulations can provide additional high temporal and spatial resolution
information, leading to further insight into physical processes. Some of them are
presented in this section.
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FIGURE 21. (Colour online) The free-surface profile and velocity field comparisons during
the early wave breaking stage at experimental times t = 1.07 s (a) and 1.11 s (b),
respectively. Time and space shifts have been applied. Numerical simulation times are
t= 1.03 s and 1.07 s, respectively. Experimental results have been shifted −6.32 mm in
the X direction (e.g. the profile at x = 3.36 cm in the numerical simulation corresponds
to x= 3.96 cm in the experiment). Captions are the same as those defined in figure 16.

4.1. Froude number
The Froude number represents the ratio between the inertial and gravity forces and for
the swash flows it can be defined as Fr= |U′|/

√
g h′, where U′ is the depth-averaged

velocity (parallel to the slope) and h′ is the local water depth, both measured in
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FIGURE 22. (Colour online) Evolution in time and space of the Froude number (Fr) times
the sign of the depth-averaged velocity, averaged over the spanwise direction. The time
and location of the incipient breaking is marked by a cross. The location of Fr = 1 is
traced as a continuous line and Fr= 0 as a dashed line.

a section perpendicular to the slope (Chow 1973). We have limited Froude number
calculation to those cells with a local water depth larger than 0.1 mm (i.e. the vertical
size of the cell adjacent to the boundary), which is usually less than 1 cell away from
the shoreline (α=0.5 isoline location). In figure 22, the temporal and spatial evolution
of the spanwise-averaged Froude number times the sign of the depth-averaged velocity
(to indicate the direction of the mean flow, being positive in the onshore direction) for
the swash flow is presented with a (0.01 s× 1 mm) resolution.

At any instant during runup the largest Froude number value takes place in the
vicinity of the shoreline, where either velocity is large and/or water depth is very
shallow. Large Fr values are also obtained in the vicinity of the shoreline during the
rundown phase, since the water tongue accelerates due to gravity and gets thinner. The
supercritical flow regions (Fr > 1) are enclosed by the shoreline and the continuous
lines, denoting the critical flow (Fr = 1). During the runup phase, there is only one
critical flow point (CFP), which travels up the slope. During the rundown phase,
however, there is a period when the entire swash flow is in the critical flow regime
(i.e. the continuous line becomes almost vertical between t = 0.68 s and t = 0.72 s,
in figure 22). After that, there is also a single CFP on the slope at a given time.
The CFP advances in the offshore direction during the initial phase of rundown
(0.72 s < t < 0.97 s). At the instant when the hydraulic jump develops (depicted by
a red cross in figure 22) the CFP reaches its furthest offshore location, 1 cm up the
slope from the location of the red cross. After that instant, the CFP starts moving up
the slope.

The difference in location between the dashed line (Fr = 0) in figure 22 and the
stagnation line (i.e. zero shear stress at the bottom, dashed line in figure 23, discussed
next) indicates that the mean depth-averaged flow continues to travel up the slope for
a short lapse of time (mean value of 0.12 s) after flow reversal occurs at the bottom,
which is also consistent with the results shown in figure 7.

4.2. Bottom shear stress
The evolution of bottom shear stress (BSS) along the slope is plotted in figure 23. The
temporal and spatial resolution is (0.01 s × 1 mm). The BSS is computed from the
numerically obtained velocity field (weighted by the VOF value to isolate the water
phase) by assuming a linear variation between the zero velocity on the slope surface
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FIGURE 23. (Colour online) Temporal and spatial evolution of bottom shear stress (BSS)
on the slope. The BSS value has been averaged in the spanwise direction. The time and
location of the incipient breaking is marked by a red cross. The location of zero shear
stress is traced as a black continuous line. Position of the wave crest (i.e. highest position
of the free-surface elevation) is plotted as a red dashed line.

and the tangential velocity (i.e. in the X direction, see figure 1) at the centre of the
immediate adjacent cell. We remark that the velocity data have been averaged in the
spanwise direction.

During the runup phase, the largest BSS appears at the shoreline (defined as
the α = 0.5 contour line on the slope). The crest line (red dashed line) marks the
transition between the acceleration and deceleration phases of runup. Two black lines
trace the locations with zero BSS. The one adjacent to the crest line indicates the
initiation of flow reversal at the bottom during the deceleration phase of runup, as
the free-stream velocity is still pushing shorewards. The largest negative BSS values
in downrush also appear at the shoreline. Both observations are consistent with the
experimental measurements in Pujara, Liu & Yeh (2015). We have found that the
BSS at the shoreline during runup is larger than that during rundown by a factor of
approximately two, which is in accordance with Barnes et al. (2009).

Large shear stresses, although lower in magnitude than those at the shoreline,
initiate before wave breaking, at time 0.90 s < t < 1.35 s, in the vicinity of the
incipient wave breaking point (the red cross in figure 23). The local largest BSS
values are generated within the supercritical flow region (see figure 22), rather than
at the plunging point of the overturning wave. One reason behind this is that the
impact angle of the plunging jet is far from being perpendicular to the free surface,
therefore, the plunging wave bounces up the slope rather than penetrating towards the
bottom (Lubin et al. 2006). This phenomenon is aligned with Sumer et al. (2013) and
Matsunaga & Honji (1980), who reported that during their experiments the tracer on
the bed was lifted up by the backwash vortex, not by the plunging wave. Therefore,
the local BSS pattern observed, with alternating positive and negative values, is
created by a system of backwash vortices.

The present BSS results can also be compared qualitatively with those shown in
Sumer et al. (2011), understanding that their experiments involved a milder slope
(1:14) which caused the solitary wave to break as a plunger prior to runup. Wave
breaking is highly nonlinear and will dissipate energy, therefore, the evolution of
runup after breaking will be affected. Moreover, establishing the effects of the wave
breaking event on the rundown phase is an interesting topic that would require further
research.

The numerical simulation results in the runup phase match qualitatively very well
with those shown in Sumer et al. (2011, figure 9a). The largest BSS value took place
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at the shoreline and reached a constant value closer to the toe of the slope. During
rundown (figure 9b), the largest BSS was also obtained at the shoreline, as indicated
above, and also large BSS was generated below the hydraulic jump. However, this
second peak is not as sharp as presented in Sumer et al. (2011) but rather resembles
a plateau, due to the vortices travelling offshore.

While the vortices are attached to the bottom, their trajectory can be traced by
analysing BSS. Observations indicate that the vortices are transported in the offshore
direction (following diagonal lines towards the bottom and right of figure 23), driven
by the fast rundown flow. The largest BSS values in the area are generated by the
anti-clockwise vortex which initiates closer to the incipient breaking point (red cross).
It can also be observed that the vortex generation point migrates onshore as time
advances, generating second and third anti-clockwise vortices upstream. Whether
clockwise vortices appear between each pair of anti-clockwise vortices or not (i.e.
downwash flow gets diverted towards the bottom and ‘bounces’ back up) cannot be
studied with a BSS analysis, therefore, further insights will be provided in the next
subsection. From time t = 1.27 s, the BSS turns positive throughout the slope and
presents values close to zero, indicating that wave breaking has dissipated the energy
almost entirely.

4.3. Flow visualization and pressure analysis
Since the velocity field can be resolved with very fine resolution in the numerical
simulations, the flow features can then be investigated with the line integral
convolution (LIC) technique (Cabral & Leedom 1993). In LIC, a greyscale texture
created randomly from a Gaussian distribution is advected pixel by pixel according to
the flow velocity field, and a convolution is applied to the resulting image to obtain
the final visualization, in which each streamline tends to have a similar intensity (i.e.
brightness).

As discussed before, the major flow separation and vortex shedding events take
place during the development of the hydraulic jump. The evolution of the flow pattern
is shown with the LIC technique in figure 24. Note that although the X–Z coordinate
system is used in this figure, the x-component of pressure gradient (free from gravity
effects) is superimposed. The vortices are named with letters, in accordance to the
ones previously shown in figures 9 and 10.

The fast rundown flow presents a large positive pressure gradient (further up
the slope, not shown in the snapshots); this is the consequence of the swash flow
accelerating in the offshore (negative x) direction due to gravity, and the thinning
of water depth. Further offshore, in the subcritical region, the pressure gradient is
close to zero because the water depth is deeper and flow is almost at rest. The
swash flow must decelerate in the offshore direction to fulfil continuity (to change
from supercritical flow to subcritical flow), thus creating a negative pressure gradient
locally. This transition area is wider initially and gets narrower as the free surface
becomes vertical, initiating the hydraulic jump (t= 0.97 s, numerical simulation time,
see figure 3), thus inducing an increasing negative pressure gradient.

Flow reversal on the slope in the numerical solution starts at t = 0.81 s and x =
0.177 m (X = 0.187 m) and is limited to a few cells adjacent to the bottom. This
instant is not shown in figure 24, since vortices are not visible until later. At t=0.86 s
(figure 24a) the main anti-clockwise vortex (A), although extremely small (∼0.5 mm
in height), is already visible at X=0.178 m. The vortex A is travelling down the slope
associated with the pressure gradient fluctuations (negative to positive, from offshore
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FIGURE 24. (Colour online) Time evolution of vortex shedding and pressure gradient
(x component) under the overturning wave visualized with the LIC technique. Vortices
are marked with triangles, indicating the direction of rotation, and tagged with letters.
(a) t= 0.86 s, (b) t= 0.94 s, (c) t= 0.97 s, (d) t= 1.01 s and (e) t= 1.07 s.

to onshore) that generated it at t = 0.81 s. Migration down the slope and growth of
vortex A continue at instant t= 0.94 s, when the vortex is centred at X = 0.160 m.

At t = 0.97 s a smaller anti-clockwise vortex (C) appears at X = 0.167 m. This
new vortex is also linked to a local pressure gradient fluctuation from positive (up the
slope) to negative (down the slope). The height of vortex A has increased significantly,
reaching almost one-third of the local water depth in the Z direction. At this instant
the free surface above vortex A becomes vertical, corresponding to the initiation of
wave breaking at the hydraulic jump. By t= 1.01 s, A and C continue travelling down
the slope close together, although only A has grown significantly in size with respect
to the previous snapshot, both in the X and Z directions. In the space between both
vortices, a new clockwise vortex (B) appears, separating them. The system continues
to evolve as the wave overturns above it, trapping a pocket of air.

At t = 1.07 s all vortices have grown and travelled down the slope driven by
the supercritical downwash flow, while the system (A–B–C) continues linked and
working in the same way as in the previous snapshot. At this time the overturning
water surface impinges upon the rundown flow and then bounces up in the shoreward
direction. As a result, the flow induced by the collapsing wave splits. The upper
portion continues to travel up the slope, while the lower part is diverted and moves
in the offshore direction, conveyed by the fast downwash flow near the slope.

Figure 24(e) can be further explained with figure 21(b) (note the time lag). As
previously mentioned, the trapped pocket of air is located further up in the numerical
results and the velocity profiles differ in that area. In figure 24, it can be observed
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that vortex A has grown to occupy almost the whole water depth, thus driving the air
pocket further away from the bottom than observed in the experiments.

A comparison between the present simulation and an analogous one assuming
laminar flow (i.e. disregarding Reynolds stress modelling) is presented in § C of the
supplementary material. As mentioned before, the only significant changes between
both simulations take place during the latter portion of the rundown phase, after onset
breaking.

5. Concluding remarks

In this paper we have investigated the laboratory swash flows generated by a
non-breaking solitary wave propagating over a steep slope. Based on laboratory
observations and numerical simulations, we have illustrated the physical processes,
both qualitatively and quantitatively, which can be summarized as follows.

The laboratory generated swash flows can be divided into four stages: (1) wave
shoaling; (2) runup flow; (3) rundown flow; and (4) hydraulic jump. During the
shoaling period the solitary wave deforms with a steepening wave front, and a wave
crest can always be identified. In contrast, during the runup period, the moving
shoreline is always the highest free-surface elevation. The rundown stage starts right
after the shoreline reaches its maximum runup height. During these three stages no
wave breaking occurs and the flow regime remains laminar.

During the shoaling and runup stages, a viscous boundary layer develops along
the slope surface. At a fixed cross-section on the slope the free-stream velocity first
accelerates with growing boundary layer thickness. Once the wave crest passes, the
free-stream velocity decelerates, and the boundary layer velocity reverses its direction
under the unfavourable pressure gradient condition. As the flow in the free-stream
velocity continues to move in the onshore direction with diminishing intensity, return
currents gain strength.

During the rundown stage, the flow is driven by gravity and resisted by bottom
friction; it can be best described as a supercritical flow in a very shallow depth. As
the supercritical flow rushes down the slope into the large body of water near the
original shoreline region, the flow experiences large inertia resistance and decelerates
quickly. The transition from supercritical flow to subcritical flow causes the steepening
of the free surface and generates vortices close to the sloping bottom. This is the start
of a hydraulic jump. As the free-surface gradient becomes steeper, the largest vortex
of the system is generated and advected further down the slope. At the same time,
smaller vortices are created. Eventually, the free surface becomes vertical (incipient
wave breaking) and then overturns into the rundown flow in front. Flow separation
and vortex shedding are the result of a change in the pressure gradient direction that
takes place below the hydraulic jump. This pressure gradient pattern is driven by
the deceleration that the flow undergoes to transition between the supercritical and
subcritical flow regimes, and becomes sharper after incipient breaking occurs.

Most of the details of the swash process, including the flow reversal in the
boundary layer, vortex generation and transport in the vicinity of the hydraulic jump,
were clearly captured by the HSPIV technique.

A 3D numerical model was also adopted to simulate the entire process so as to
complement the laboratory observations. Since the numerical solutions are highly
resolved both temporally and spatially, they provided comprehensive information on
the evolution of free-surface profile and velocity field throughout the entire process.
Additional physical variables, such as pressure gradients, and bottom shear stresses,
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were obtained from the numerical solutions. The evolution of Froude number and the
shear stress along the bottom of slope were also presented. Both physical quantities
are important in characterizing the flow field; especially in estimating the sediment
transport potential. Moreover, the bottom shear stress can be used to monitor the
vortex generation zone under the hydraulic jump, locating and tracking the vortices,
while they are attached to the bottom, and the evolution of the flow separation point,
which moves up the slope as the hydraulic jump produces wave breaking.

The numerical model used in the present study would benefit from further
improvements to increase the accuracy of simulating the flow region near the moving
shoreline where the meniscus is important. The surface tracking technique like
geometric VOF, e.g. piecewise linear interface calculation (PLIC) (Pilliod & Puckett
2004), can remove the VOF diffusivity and parasitic currents problems. However,
these methods significantly increase the computational cost due to the complex
geometric operations required to reconstruct the free surface. Furthermore, research
is still ongoing to extend their applicability to arbitrary polyhedral meshes. Another
alternative is to couple VOF with the Level Set method (CLSVOF, Albadawi et al.
(2013)), which causes just a moderate computational cost increase. More recently,
Roenby, Bredmose & Jasak (2016) have discussed a novel numerical algorithm for
tracking the free surface sharply with a minimum number of geometric operations,
and Vukcevic, Jasak & Gatin (2017) have extended the Ghost Fluid Method (GFM)
to arbitrary polyhedral meshes, suppressing spurious velocities. The combination of
both techniques, developed within the framework of OpenFOAMr, could resolve
VOF diffusivity and parasitic currents.

In conclusion, the combination of experimental and numerical results has enhanced
our understanding of the swash flow processes of a non-breaking solitary wave on a
steep slope. The experimental data are extremely useful as a benchmark problem for
further numerical model refinement.
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