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Optimal perturbations in a four-vortex aircraft
wake in counter-rotating configuration

By D A V I D F A B R E, L A U R E N T J A C Q U I N
AND A N T O I N E L O O F

ONERA, Department of Fundamental and Experimental Aerodynamics, 8, rue des Vertugadins,
92190 Meudon, France

(Received 27 September 2001 and in revised form 16 October 2001)

We consider the instability of two vortex pairs in a counter-rotating configuration.
Such configurations model vortex wakes observed behind aircraft with inboard vor-
tices produced at the inboard flap edges and at the tips of the horizontal tail. The
instability potential is characterized by an optimal perturbation analysis. This extends
the analysis of Fabre & Jacquin (2000) which was restricted to particular stationary
configurations, and that of Crouch (1997) which considered co-rotating configur-
ations. A complete mapping of the optimal perturbations is presented. The optimal
perturbations grow faster than the Crow (1970) instability. However, they correspond
to short-wavelength perturbations mainly affecting the weaker inboard vortices. A
possible strategy which consists of forcing a long wavelength is then investigated. Ap-
plication of both the optimal and the long-wave optimal perturbations to reduction
of vortex wake danger is discussed.

1. Introduction
Instabilities growing faster than the Crow (1970) instability, which pertains to a

single vortex pair, are sought in order to consider reducing aircraft separation on
landing and take-off. It was recently recognized that such instabilities can occur in
vortex systems composed of more than two vortices. Such configurations exist in the
extended near field (within a few decades of wing spans) in the wake of aircraft when
landing or taking off. Fast cooperative instabilities have been found in such wakes
in laboratory experiments (Ortega & Savas 2001; Ortega, Bristol & Savas 2001) and
in flight tests (Corsiglia & Dunham 1976). The present paper aims at providing a
theoretical evaluation of the instability potential of a four-vortex configuration, which
is the simplest model of such a multipolar wake. We hope to provide indications about
possible strategies for designing wing planforms that favour faster decay of the wake.
The four-vortex configuration is displayed in figure 1(a). The outboard vortices
(labelled 1 and 4) are characterized by circulations Γ1 and Γ4 = −Γ1, core radii a1,
and are initially separated by a distance b1. The inboard vortices (labelled 2 and 3) are
characterized by circulations Γ2 and Γ3 = −Γ2, core radii a2, and are initially separated
by a distance b2. The inboard vortices may be co-rotating with respect to the outboard
ones (Γ2/Γ1 > 0), such as those produced at the outer flap edges, or counter-rotating
(Γ2/Γ1 < 0), such as those generated by the inner flap edges, the horizontal tail and,
perhaps, the fuselage. Donaldson & Bilanin (1975) considered the two-dimensional
evolution of this configuration, and showed that the system is either periodic (with
the vortices orbiting around the vorticity centroids) or divergent (with the two pairs

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

69
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006954


320 D. Fabre, L. Jacquin and A. Loof

(a)

–¡1

2a1 2a2

–¡2 ¡2 ¡1

b1

b2

333 222 111444

0 0.5 1.0

b2/b1

–1.0

–0.5

0

0.5

1.0
Divergent

Periodic

Divergent

Stationary

(b)

¡2

¡1

C
ou

nt
er

-r
ot

at
in

g
C

o-
ro

ta
ti

ng

Figure 1. (a) Four-vortex wake model, and (b) classification chart. The symbols correspond to
the theoretical and numerical studies of Crouch (1998) (•), Rennich & Lele (1999) and Fabre &
Jacquin (2000) (�), and Quackenbush et al. (1997) ( e), and to the experiments of Ortega et al. (2001)
(�), Jacquin et al. (2001) (4), and Coustols et al. (2001) (5). The rectangular box corresponds to
the region studied in the present work.

separating). They gave a classification chart (reproduced in figure 1b) of the periodic
and divergent configurations versus the dimensionless parameters Γ2/Γ1 and b2/b1.
The symbols in figure 1(b) refer to various studies. Crouch (1997) studied analytically
a co-rotating configuration using Floquet theory. He identified two new instability
mechanisms. The first is a short-wave instability, with a growth rate approximately
twice that of the Crow instability. The second is a transient growth mechanism which
mainly affects long wavelengths. Rennich & Lele (1999) computed the evolution of a
wake leading to the formation of a four-vortex counter-rotating configuration. They
showed that the presence of the inboard vortices strongly enhances the development
of the Crow instability on the outboard vortices. They further showed that this effect
is particularly strong if the vortices are close to particular configurations where they
remain aligned. These stationary configurations correspond to the thick line in the
lower part of figure 1(b). Fabre & Jacquin (2000) studied analytically the stability of
these configurations. They showed that for long wavelengths, the growth rate of the
instability is ten times higher than that of the Crow instability, in accordance with the
computations of Rennich & Lele (1999). On the other hand, they showed that this
long-wave instability is not the most amplified. The most amplified one is a short-
wave instability which mainly affects the inboard vortices, and is expected to dissipate
them without alteration of the outboard vortices. A long-wave instability should
thus be forced in order to dissipate the outboard vortices. Other counter-rotating
configurations in a different range of parameters have been studied numerically by
Quackenbush et al. (1997), and experimentally by Ortega et al. (2001). In both studies,
on each side of the wake, the inboard and outboard vortices undergo a rapidly growing
Crow-type instability with a short wavelength, and at larger times vortex hoops form
while the weaker inboard vortices wrap around the outboard vortices. Other symbols
displayed in figure 1(b) correspond to experimental results for a small Airbus A300
model (Jacquin et al. 2001), and for a large transport aircraft of a type currently
under study in the European research projects with two different flap configurations
(Coustols et al. 2001). Note that in the Jacquin et al. (2001), two-point measurements
revealed a significant correlation between the displacements of the inboard and
outboard vortices, suggesting the existence of a cooperative instability mechanism.
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The aim of this paper is to evaluate the instability potential of counter-rotating four-
vortex configurations for a large range of parameters, represented by the rectangular
box in figure 1(b). We use a linearized vortex filament method close to that used by
Crouch (1997), (§ 2), and look for perturbations leading to an optimal growth at a
fixed distance behind the aircraft (§ 3). This extends the study of Fabre & Jacquin
(2000) to non-stationary configurations, and complements the work of Crouch (1997)
who considered co-rotating configurations. As in Fabre & Jacquin (2000), two cases
are considered. The first (§ 4) is the optimal perturbation which leads to a maximum
growth of the instabilities. The second (§ 5), referred to as the ‘long-wave optimal
perturbation’, corresponds to the symmetrical initial condition with a wavelength
corresponding to that of the Crow instability which leads to a maximum amplification
of the instabilities on the outboard vortices. Conclusions are given in § 6.

2. The linearized vortex filament method
The optimal perturbations are computed using a linearized vortex filament method

identical to that in Crouch (1997), except that the self-induction terms are evaluated
with the method proposed by Fabre & Jacquin (2000). The parametric equation for
each of the four vortices is

X n(x, t) = [x, Yn(t) + ŷn(t) eikx, Zn(t) + ẑn(t) eikx]. (2.1)

Here Yn and Zn are the mean positions of the vortices, and ŷn and ẑn are the amplitudes
(assumed small) of a three-dimensional perturbation with wavelength λ = 2π/k. The
displacement velocities of the vortices are computed using the Biot–Savart law (except
for the self-induction terms, see below). This gives, at leading order,

dYn
dt

=
∑
m 6=n

ΓmZmn

2πR2
mn

,
dZn
dt

= −∑
m 6=n

ΓmYmn

2πR2
mn

. (2.2a, b)

We use the simplifying notation Ymn = Ym − Yn, Zmn = Zm − Zn, and Rmn =
(Y 2

mn + Z2
mn)

1/2. The initial conditions for (2.2a, b) are Y1(t0) = b1/2, Y2(t0) = b2/2,
Y3(t0) = −b2/2, Y4(t0) = −b1/2 and Z1(t0) = Z2(t0) = Z3(t0) = Z4(t0) = 0, as
described in figure 1(a). The set of equations governing the perturbation amplitudes
is obtained at the following order in the linearization:

dŷn

dt
=

Γn

2πa2
n

$(kan)ẑn +
∑
m 6=n

ΓmYmnZmn

πR4
mn

(ŷn − φ(kRmn)ŷm)

−∑
m 6=n

Γm

2πR2
mn

[(
1− 2Z2

mn

R2
mn

)
ẑn −

(
ψ(kRmn)− 2Z2

mn

R2
mn

φ(kRmn)

)
ẑm

]
, (2.3a)

dẑn
dt

= − Γn

2πa2
n

$(kan)ẑn −
∑
m 6=n

ΓmYmnZmn

πR4
mn

(ẑn − φ(kRmn)ẑm)

+
∑
m 6=n

Γm

2πR2
mn

[(
1− 2Z2

mn

R2
mn

)
ŷn −

(
ψ(kRmn)− 2Z2

mn

R2
mn

φ(kRmn)

)
ŷm

]
. (2.3b)

Here an denotes the ‘effective core radius’ of the vortex labelled n (see Widnall, Bliss
& Zalay 1971; Fabre & Jacquin 2000). The function $ appearing in (2.3a, b) corre-
sponds to the self-induction effect of the perturbed vortices. This term is evaluated,
following the method proposed by Fabre & Jacquin (2000), as the non-dimensional
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frequency of a Kelvin wave of a Rankine vortex. As discussed by Fabre & Jacquin
(2000), in the long-wave limit (ka1,2 � 1), this method is equivalent to the cutoff
method used by Crouch (1997), and it applies regardless of the exact structure of
the vortex cores. Moreover, this method does not lead to the prediction of short-
wavelength spurious instabilities, contrary to the cutoff method. The functions φ
and ψ characterize the mutual induction of the vortices. These functions involve the
modified Bessel functions of second kind:

ψ(β) = β2K0(|β|) + |β|K1(|β|), φ(β) = 1
2
β2K2(|β|). (2.4)

The set of equations (2.3a, b) for the amplitudes of the three-dimensional pertur-
bations is a linear, non-autonomous system, which can be written in the symbolic
form

d

dt
X (t) = L(t)X (t), (2.5)

where X (t) = (ŷ1(t), ẑ1(t), ŷ2(t), ẑ2(t), ŷ3(t), ẑ3(t), ŷ4(t), ẑ4(t)) is a vector representing the
perturbation amplitudes and L(t) is a 8 × 8 matrix containing the different terms of
(2.3a, b). Using the generalized stability theory of Farell & Ioannou (1996), the general
solution of this system can be written in the form

X (t) = P[t0 ,t]X (t0), (2.6)

where P[t0 ,t] is the propagator of the system. This propagator is the 8×8 matrix which
is the solution of the differential equation

d

dt
P[t0 ,t] = L(t)P[t0 ,t], (2.7)

with the initial condition P[t0 ,t0] = I . Note that in the stationary cases the linear system
(2.5) becomes autonomous and the propagator can be computed analytically as the
exponential of the matrix L, as done by Fabre & Jacquin (2000).

3. The optimal perturbations: definition
In order to characterize the instability potential, we define the ‘optimal growth’ Gopt

as the maximum growth over all wavenumbers and all possible initial conditions, i.e.

Gopt = max
k

max
‖X (t0)‖=1

‖ X (t) ‖≡ max
k
‖ P[t0 ,t] ‖ . (3.1)

Here ‖ X ‖ is the (Euclidian) norm of the perturbation amplitude vector, and ‖ P[t0 ,t] ‖
is the norm of the propagator matrix. We also define the ‘optimal wavenumber’
kopt and the ‘optimal perturbation’ X opt as the wavenumber and initial condition
corresponding to the maximum in (3.1).

The optimal growth depends upon five non-dimensional parameters, namely the
ratios Γ2/Γ1, b2/b1, a1/b1 and a2/b1 and a non-dimensional time t̄, defined as

t̄ =
Γ1

2πb2
0

(t− t0). (3.2)

In his study of periodic co-rotating configurations, Crouch (1997) computed maximum
amplifications for a time interval corresponding to the rotation period. Here we wish
to compute optimal growths at fixed downstream distance X from the generating
aircraft. This allows us to consider periodic, divergent and stationary configurations
with a unique method. Suppose that the vortices have been generated by an aircraft
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with velocity U0, geometric wing span b0, lift coefficient CL and aspect ratio AR. The
lift L of the aircraft is (see Donaldson & Bilanin 1975)

L =
CL

2AR
ρU2

0b
2
0 = ρU0Γ1b1

(
1 +

Γ2b2

Γ1b1

)
, (3.3)

where ρ is the density of the air. As the instabilities are essentially convective (see
Fabre, Cossu & Jacquin 2000; Fabre & Jacquin 2000), the spatial amplifications can
be deduced from the temporal ones through the change of variables X = U0(t− t0).
Using (3.2) and (3.3), this change of variables leads to

X

b0

=
4πAR

CL

(
1 +

Γ2b2

Γ1b1

)(
b1

b0

)3

t̄. (3.4)

In the computation of the optimal growths, we have integrated numerically (2.2a, b)
and (2.7a, b) using a fourth-order Runge–Kutta scheme, and computed the norm
‖ P[t0 ,t] ‖ in (3.1) as the highest singular value of the matrix (see Farell & Ioan-
nou 1996). The method also allows us to compute the optimal perturbation, which
corresponds to the associated singular vector.

4. The optimal perturbations: results
Figure 2, the main result of our work, describes the optimal perturbations computed

for a downstream distance X/b0 = 30, for circulation and separation ratios in the
ranges −0.7 6 Γ2/Γ1 6 0 and 0.1 6 b2/b1 6 0.5. The lift coefficient and aspect
ratio of the generating aircraft were chosen as CL = 1.5, AR = 7, typical values of
landing configurations. The parameter b1/b0 was set to π/4. This choice is obtained
by assuming that the outboard vortices are formed through the roll-up of vorticity
shed by an elliptically loaded wing, see Donaldson & Bilanin (1975). The vortex
radii were chosen as a1 = 0.1b1, a2 = 0.05b1 as in Fabre & Jacquin (2000). Several
results are given in figure 2. The thin lines display iso-levels of the optimal growths
Gopt. The dashed lines give a classification of the optimal wavelengths. A distinction
is made between long wavelengths (LW, koptb1 < 1), medium wavelengths (MW,
1 < koptb1 < 4), short wavelengths (SW, 4 < koptb1 < 8) and ultra-short wavelengths
(USW, koptb1 > 8). The shaded and white areas indicate, respectively, symmetrical and
antisymmetrical optimal perturbations. The thick line corresponds to the stationary
configurations.

For the divergent configurations located to the left of the thick line, the instability
potential is particularly high. The optimal growth is always larger than 1020 and the
corresponding optimal perturbation is a symmetrical perturbation with an ultra-short
wavelength. In this range, the inboard vortices quickly escape from the influence of
the outboard ones and at X/b0 = 30 they are no longer in their proximity. The
leading instability mechanism is simply the Crow instability on the inboard vortices;
the corresponding perturbation is located almost entirely on the inboard vortices,
and hardly affects the outboard vortices. Note that, as the inboard vortices escape,
the resulting circulation is higher. Thus these configurations are unattractive. For the
stationary configurations (thick line), the optimal perturbations correspond to short-
wave symmetrical instabilities. Their optimal growth is of order 108. For Γ2/Γ1 = −0.4
and b2/b1 = 0.14, our results give Gopt = 7.7 × 108, koptb1 = 7.2, in agreement with
Fabre & Jacquin (2000). Consider, now, the periodic configurations located to the right
of the thick line. In this region, although they are several orders of magnitude smaller
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Figure 2. Optimal growth Gopt and properties of the optimal perturbations at X/b0 = 30.

than for the divergent and stationary configurations, the optimal growths remain
very high. Recall, for comparison, that in a single vortex pair the Crow instability
grows only by a factor exp(0.8̄t ) ≈ 2.2 at X/b0 = 30. The optimal perturbations
are either symmetrical or antisymmetrical, and the optimal wavelengths range from
medium to ultra-short. Note that a region of long wavelengths also exists, but it
is limited to very weak inboard vortices (|Γ2/Γ1| < 0.02). In this range, the inboard
vortices vanish and the optimal growth defined by (3.1), which takes into account
the displacement of all of the vortices, is meaningless. Two regions of parameters
are particularly interesting. The first is the region just to the right of the thick
line, and corresponds to configurations which are nearly stationary. In this range,
the optimal perturbations are symmetrical with medium or short wavelengths. The
physical mechanism responsible for the strong amplifications is the strong interaction
between the inboard vortices due to their proximity, as in Fabre & Jacquin (2000).
However, this effect is felt in a very limited range of parameters, and the optimal
growth decreases abruptly when moving away from the stationary case. The second
interesting region is the lower right corner of figure 2, i.e. large b2/b1 and |Γ2/Γ1|. In
this range, the optimal perturbations are antisymmetrical with short wavelengths. Here
the physical mechanism was identified by Ortega et al. (2001) to be the generalized
form of the Crow instability for the unequal vortex pairs of each half-plane.

Figure 3 displays, as an example, the optimal perturbation for Γ2/Γ1 = −0.3 and
b2/b1 = 0.3, a case close to configurations that can be obtained in wind tunnel
experiments using a representative aircraft model (Coustols et al. (2001)). For this
configuration the location X/b0 = 30 corresponds approximately to one period of
rotation of the vortices. The corresponding optimal growth is Gopt = 5677 and the
wavelength is koptb1 = 4.55. The initial level of the perturbation is chosen arbitrarily
at ‖ X (t0) ‖= 10−4. With this choice, the perturbations are not visible at X/b0 = 0 and
10. They become visible at X/b0 = 20, and reach a large magnitude at X/b0 = 30.
The figure shows that the optimal perturbation mainly affects the inboard vortices;
in figure 3(d ) the ratio of the displacement amplitudes of the outboard vortices to
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(a) (b) (c) (d )

Figure 3. Optimal perturbation computed for X/b0 = 30 in the case Γ2/Γ1 = −0.3, b2/b1 = 0.3.
(a) X/b0 = 0, (b) 10, (c) 20 and (d ) 30.

that of the inboard vortices is about 7%. This ratio is always smaller than 10% for
moderate values of |Γ2/Γ1| ( 6 0.35).

Note that figure 3 qualitatively resembles the experimental vortex visualizations of
Ortega et al. (2001), for Γ2/Γ1 = −0.37 and b2/b1 = 0.5. For this case, our results
predict an optimal wavelength koptb1 ≈ 7 and an optimal growth Gopt ≈ 108, which
seems particularly favourable. Ortega et al. (2001) report a wavelength of λ ≈ b1 (thus
kb1 ≈ 2π), and an antisymmetrical perturbation, in accordance with our results. They
also show that the perturbations reach large amplitudes within 20–30 wing spans
behind the wing, which confirms the high instability potential of this configuration.

We have also considered the dependence of the optimal growths upon the vortex
radii a1,2. In the whole range of parameters considered in figure 2, an increase of the
vortex radii leads to a slight decrease of the optimal growth, and to a shift of the
optimal wavelength toward short wavelengths.

5. The ‘long-wave optimal’ strategy
We have seen that the optimal perturbations can lead to very large growths.

However, they poorly affect the outer vortices, at least in the linear régime. Whether
these instabilities can effectively lead to a reduction of the wake vortex danger will
depend upon the nonlinear régime. There are two different ways to reduce this
danger (see Spalart 1998; Jacquin et al. 2001). The first is to reduce the overall
circulation of the wake through transport of vorticity across the plane of symmetry
of the wake. The second is to increase the dispersion of the vorticity. The optimal
perturbations correspond to short wavelength, and, in many cases, to antisymmetric
perturbations so they may not contribute to transport of vorticity across the plane of
symmetry, but only to an increase of the vorticity dispersion. There is no guarantee
that the subsequent nonlinear régime will not lead to a collapse to a new vortex
pair, with the benefit of the linear instability being lost. Such a possibility suggests a
different strategy. One strategy consists in promoting long-wave perturbations which
will survive the nonlinear disruption of the inboard vortices and will keep on growing
in the far field, leading finally to transport of vorticity through the plane of symmetry
by the formation of vortex rings. This was the initial idea of Rennich & Lele (1999),
also advocated by Fabre & Jacquin (2000). The instability potential of this strategy
is evaluated in this section.

We set the wavelength to kb̃ = 0.8, as in Rennich & Lele (1999). Here b̃ is the
‘effective span’ of the four-vortex system, defined as (Γ1 + Γ2)b̃ = Γ1b1 + Γ2b2. This
effective span is expected to correspond to the span of the resulting vortex pair after
merging of the inboard and outboard vortices, see Rennich & Lele (1999). We define
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Figure 4. ‘Long-wave optimal growth’ GLW computed for X/b0 = 30.

the ‘long-wave optimal growth’ as

GLW = max
X (t0)∈S,‖X (t0)‖=1,kb̃=0.8

‖ X(t) ‖out . (5.1)

HereS is the subspace of the symmetrical initial conditions, and ‖ X ‖out = (ŷ2
1 + ẑ2

1 +
ŷ2

4 + ẑ2
4)

1/2 is the norm of the perturbations on the outboard vortices only. This long-
wave optimal growth is computed as the largest singular value of the 4 × 4 matrix,
deduced from the propagator P[t0 ,t], which maps the symmetrical initial conditions to
the corresponding final perturbations on the outer vortices. We also call the long-
wave optimal perturbation the symmetrical initial condition XLW corresponding to
the maximum in (5.1).

Figure 4 displays iso-levels of the long-wave optimal growth at X/b0 = 30 for
the same parameters as in figure 2. Again, the growths obtained for the stationary
configurations (thick line) are several orders of magnitude higher than for other
configurations (for Γ2/Γ1 = −0.4, b2/b1 = 0.14, the value GLW = 10650 is in accord-
ance with the predictions of Fabre & Jacquin 2000). The periodic configurations with
Γ2/Γ1 < −0.3 lead to long-wave optimal growth of order 10 or higher. As in figure 2,
two regions of parameters are of a particular interest. The first is located just above
the thick line corresponding to the stationary configurations, and the second is located
in the lower right corner, with large b2/b1 and |Γ2/Γ1|. As in Fabre & Jacquin (2000),
the long-wave stability properties are found to be weakly dependent upon the precise
value of the vortex radii a1,2. Note the wavy aspect of the contours for GLW = 3,
5, 10 and 30. This is due to a transient effect during the vortex orbits (the number
of rotation periods at X/b0 = 30 predicted by (3.4) varies with the location in the
figure).

For the case Γ2/Γ1 = −0.3, b2/b1 = 0.3 already considered, the growth at X/b0 = 30
is GLW = 14.9. This is almost 400 times smaller than the optimal growth (Gopt = 5677)
but remains much higher than the growth of the Crow instability (which is close to
2.2). Figure 5 displays the long-wave optimal perturbation obtained for that case. The
amplitude of the initial condition was chosen as ‖ X (t0) ‖= 2×10−2. With this choice,
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(a) (b) (c) (d )

Figure 5. ‘Long-wave optimal perturbation’ computed for X/b0 = 30 in the case Γ2/Γ1 = −0.3,
b2/b1 = 0.3. (a) X/b0 = 0, (b) 10, (c) 20, (d ) 30.

the perturbation reaches a large magnitude at X/b0 = 30. Note that the long-wave
optimal perturbation favours the displacement of the outboard vortices: in figure 5(d )
the ratio of outboard to inboard displacement amplitudes is 27% compared to 7%
for the optimal perturbation in figure 3.

Note that the short-time behaviour of the long-wave optimal perturbation in
figure 5 is similar to that of the perturbations leading to transient growth in co-
rotating configurations (see figure 13 of Crouch 1997), with only a 180◦ phase shift
to the weaker vortex perturbation (consistent with the sign change of the circulation
ratio). On the other hand, the large-time behaviour is different: for co-rotation, after
a rapid transient growth the perturbations rise at a slower rate corresponding to that
of the Crow instability (see figure 12 of Crouch 1997), whereas for counter-rotation
the perturbations continuously grow at a faster rate. For example, considering again
the case Γ2/Γ1 = −0.3, b2/b1 = 0.3, amplifications as high as GLW = 137 and 3046
are obtained, respectively, at X/b0 = 60 and 100.

6. Summary and discussion
We have considered the instability properties of an aircraft wake model composed

of two vortex pairs in a counter-rotating configuration, as obtained in the wake of
aircrafts for particular wing planform configurations, with high levels of vorticity
produced at the inner flap edges and at the tips of the horizontal tail. Note that
other wing planforms may lead to co-rotating four-vortex configurations; the stability
analysis of such configurations was conducted by Crouch (1997).

The counter-rotating configurations may be periodic, divergent or stationary. The
present work extends to periodic and divergent configurations the stability analysis
conducted by Fabre & Jacquin (2000) on stationary cases. We have characterized
the instability potential of such vortex systems in two different ways. First, we
considered optimal perturbations, which correspond to the perturbations leading to
the largest amplifications over all wavenumbers. Secondly, we considered ‘long-wave
optimal perturbations’, defined as the symmetrical perturbations leading to the largest
amplification of the instabilities for a long wavelength, corresponding to that of the
Crow instability. We computed the corresponding amplifications at a downstream
distance of 30 spans behind the generating aircraft, assuming a typical landing
configuration.

For divergent configurations, the optimal perturbations affect only the inboard
vortices, and the long-wave optimal perturbations lead to limited growths. For periodic
configurations, very large optimal growths may be reached. Values as high as 106

to 108 are found for large values of b2/b1 (> 0.4). But, according to (3.3), for large
|Γ2/Γ1| and b2/b1 the circulation Γ1 of the outboard vortices and thus the loading
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at the wing tips has to be increased significantly to maintain a constant lift of the
wing. A realistic aircraft wing is unlikely to support such a load at its extremities.
Values of b2/b1 around 0.3 are thought to be more realistic for conventional wing
planforms, see Coustols et al. (2001). With this constraint, at 30 wing spans, the
optimal growths range from 103 to 104 and the long-wave optimal growths range
from 10 to 100. Thus, both cases can lead to a large-amplitude perturbation close
behind the aircraft, but a larger initial amplitude is required for the long-wave
optimal perturbation. Even larger amplifications are obtained farther away. As a
comparison, for the case of a single vortex pair, an amplification of a factor 10 is
reached at 100 spans behind the aircraft. For the co-rotating configurations considered
by Crouch (1997), a growth of a factor 10 is reached at 30 spans for the long-
wave transient growth mechanism, and at 45 spans for the short-wave instability
mechanism.

The optimal perturbation analysis is relevant to the linear régime of development
of the instabilities. Whether these instabilities can effectively lead to a reduction of
the wake vortex danger will depend upon the subsequent nonlinear régime. Forcing
the long waves in a four-vortex system gives a better guarantee of final dissipation
of the wake by transport of vorticity through the plane of symmetry whatever the
outcome of the nonlinear interaction between the two initial vortex pairs.

This work was partially conducted in the framework of C-WAKE project funded
by the European Community under grant number G4RD-CT-1999-00141.
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