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This paper embeds time-varying volatility into a dynamic equilibrium model of returns
and trading. The model allows us to ask how time-varying volatility might
affect the relation among return autocorrelation, volatility, and trading volume, as opposed
to the pairwise relations that have been studied previously. It is shown analytically
that, with time-varying volatility, the relationship between volume and stock return
autocorrelation is ambiguous even if agents have symmetric information, which may
explain the contradictory findings in the empirical literature. In the numerical exercise,
the model is simulated in a way that mimics the persistent volatility of high-frequency
stock data documented in numerous empirical studies. Specially, the time-varying
volatility of stock returns is approximated with a highly persistent chaotic tent map, which
is known to have the same autocorrelation coefficients as an AR(1) process. The simulated
data can approximate GARCH-type behavior very well. Whereas in the simulated data,
no significant relation between volume and return autocorrelation can be found, there is
a significantly positive relation between volume and one-step-ahead stock return volatility.
The ambiguous volume–persistence and positive volume–volatility relations are confirmed
empirically by using four heavily traded individual stocks. Therefore, the data simulated
from the highly stylized asset pricing model with deterministic time-varying volatility can
mimic well the volume–return dynamics revealed in the observed data in these two respects.

1. INTRODUCTION

There are relatively few theoretical studies of the joint relationship among stock
return autocorrelation, volatility, and volume. This paper embeds time-varying
volatility into a dynamic equilibrium model of returns and trading. Hence, this
model allows us to ask how time-varying volatility might affect the relations among
return autocorrelation, volatility, and trading volume, as opposed to the pairwise
relations that have been studied previously. Most previous theoretical studies of the
joint behavior of returns and trading volume do not involve dynamic optimizing
behavior by agents. Wang (1994) proposed a dynamic equilibrium model of stock
trading to study the relation between volume and the nature of heterogeneity among
investors. His model assumes that agents are heterogeneous in their investment
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opportunities and/or in their information about the stock’s future payoff. Without
information asymmetry, volume is always negatively related to the return autocor-
relation. With information asymmetry, however, the relationship between volume
and the serial correlation of returns is ambiguous. This information asymmetry is
one potential explanation for the contradictory empirical findings concerning the
relation between stock return autocorrelation and volume: Campbell et al. (1993)
and Conrad et al. (1994) found a negative relation, whereas Morse (1978) and
Antoniewicz (1992) found a positive relation; LeBaron (1992) found that the sign
depends on the detrending procedure applied to the volume series; Tauchen et al.
(1996) found no influence of volume on the autocorrelation of stock returns.

In this paper, I show that if stock return volatility is time varying, the relationship
between volume and stock return autocorrelation is ambiguous even if agents
have symmetric information. Moreover, under the assumption of time-varying
volatility, one can study the correlatedness of volume with the one-period-ahead
return volatility, which has been the central issue of numerous empirical studies
[Lamoureux and Lastrapes (1990), Bollerslev et al. (1992), Gallant et al. (1992),
Brock and LeBaron (1996), and others].

I extend a special case of Wang’s model—the case of symmetric information—
by assuming that some of the shocks in the economy have autocorrelated time-
varying but deterministic volatility. Ideally, one would use a time-varying stochas-
tic volatility. However, if the volatility is stochastic, there is no closed-form solution
for the intertemporal optimization problem because the form of the value function
is unknown. Therefore, the analysis of the dynamics between volume and returns
becomes intractable. With deterministic time-varying volatility, it is shown analyt-
ically that the predicted relation between stock return autocorrelation and volume
is not monotonic: It can be positive or negative, depending on the probability
structure of the shocks.

The relation between volume and volatility is more complicated and cannot
be derived analytically. Thus, we rely on numerical exercises. In the simulations
reported in the following section, we model the deterministic volatility process
as a chaotic tent map, which is known to be similar to an AR(1) process [Sakai
and Tokumaru (1980)]. The simulated stock returns mimic GARCH behavior quite
well. Thus, modeling the volatility as an autocorrelated time-varying deterministic
process can be viewed as an approximation to the ARCH or GARCH process
[Engle (1982), Bollerslev (1986)], which is one of the most prominent tools for
characterizing changing variance of financial time series. The ambiguous relation
between the serial correlation of stock returns and volume as well as the positive
relation between volume and the volatility of stock returns are confirmed in a
series of empirical and numerical examples. Therefore, the data generated from the
simple dynamic asset pricing model with time-varying volatility can mimic well the
volume–persistence and volume–volatility relations revealed in the observed data.

The rest of the paper is organized as follows: Section 2 describes the eco-
nomic model, Section 3 reports the empirical and simulation results, and Section 4
presents concluding remarks.
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2. THEORETICAL FRAMEWORK

In this section we modify Wang’s model by assuming that a subset of the shocks in
the economy have time-varying (as opposed to constant) volatility and that agents
maximize their finite (as opposed to infinite) lifetime utility. It is shown that there
is a rational expectations equilibrium in which the market-clearing price is linear
in the payoffs of risky assets in the economy.

In the economy, all agents can trade both a bond (riskless asset) and a stock
(risky asset). Bonds guarantee a gross rate of returnR≡ 1+ r . The supply of
bonds is infinitely elastic. The dividend payoff of each share of stock isDt in
periodt . The total supply of stock shares per capita is fixed and is normalized to
one. There are two types of traders in the economy who differ from each other
in their investment opportunities: type A traders have the opportunity to invest
in a risky asset that is not available to type B traders. The nontradable asset has
an excess rate of return ofqt for period t , the mean of which, conditional upon
information in periodt − 1, is denotedZt−1. The percentage of type A traders is
ω and, consequently, the percentage of type B traders is 1−ω.

The dividend payoff of each share of stock in periodt is assumed to follow an
AR(1) process:

Dt = aD Dt−1+ εD,t , (1)

with 0 ≤ aD < 1 andεD,t ∼ i.i.d. N(0, σ 2
D). The excess rate of return on the

nontradable assetqt+1 for periodt + 1 is assumed to follow the process

qt+1 = Zt + εq,t+1, εq,t ∼ i.i.d. N
(
0, σ 2

q

)
,

(2)
Zt = aZ Zt−1+ εZ,t , εZ,t ∼ N

(
0, σ 2

Z,t

)
,

with 0≤aZ < 1 andσ 2
Z,t = f (σ 2

Z,t−1; t). It is assumed that the innovationsεD,t ,
εq,t , and εZ,t are jointly normal and uncorrelated except forεD,t and εq,t , the
covariance of which, denotedσD,q, is strictly positive.

Note that the particular source of time-varying volatility is attached to the returns
of the nontradable asset, not the dividends. It would be a more direct approach
to assume that time-varying volatility of stock returns comes from the payoffs
on traded stock. However, it is well known that firms smooth dividends over
time [Lintner (1956), Merchant (1989)]. Therefore, it is unlikely that the dividend
process would exhibit highly autocorrelated time-varying volatility. Moreover,
if the daily dividend process has GARCH-like errors, low-frequency dividends
should exhibit conditional heteroskedasticity of the GARCH form as well [see
Drost and Nijman (1993)]. However, there is little empirical literature documenting
GARCH-like behavior of dividend movements.1

For all traders, preferences are assumed to be additively time separable with
exponential per-period utility that has constant absolute risk aversion (CARA).
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All traders maximize their expected lifetime utility:

maxEt

[
−

T∑
s=t

βs−t exp(−γ cs)− βT−t+1exp(−αWT+1)

]
(3)

subject toWt+1 = (Wt − ct )R+ X′tQt+1,

where Et is the expectation operator conditioned upon traders’ information in
period t , ct is an agent’s consumption in periodt , Wt is his wealth att , Xt is
his portfolio,Qt+1 is the excess returns on risky assets att + 1, β is the discount
factor, γ is the risk aversion coefficient, andα = (r γ )/R.2 The salvage term
βT−t+1 exp(−αWT+1) can be interpreted as a bequest motive, and this particular
form allows for analytical solution of the Bellman equation.

Denote the stock price in periodt asPt . The information structure in this econ-
omy is that both types of traders observePt , Dt , andZt at timet . Therefore, all
traders have the information setIt = {Ds, Ps, Zs | s ≤ t}.

Given the assumed process forDt andZt , the maximization problem in equa-
tion (3) can be solved recursively, starting by solving the agents’ maximization
problem at timeT :

maxET [−exp(−γ cT )− β exp(−αWT+1)]

subject toWT+1 = (WT − cT )R+ X′TQT+1.

The terminal pricePT+1 is assumed to be the discounted sum of the future dividend
payoffs:

PT+1 = ET+1

( ∞∑
j=1

R− j DT+1+ j

)
.

In doing so, we implicitly assume that the stock lives infinitely. The excess return
on the stock atT + 1 is

QT+1 ≡ PT+1+ DT+1− RPT

= aRDT − RPT

with a = aD/(R− aD). The excess return on the nontradable asset atT + 1 is

qT+1 = ZT + εq,T+1.

We have the following result.

PROPOSITION 1.The economy described above has a rational expectations
equilibrium in which the equilibrium stock price is

Pt = p0,t + aDt − pZ,t Zt , (4)

where a= aD/(R− aD) and where p0,t and pZ,t are deterministic sequences.

Proof. See Appendix A.
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Given the equilibrium price in equation (4), the excess return per share of the
stock,Qt+1 ≡ Pt+1+ Dt+1− RPt , is

Qt+1 = p0,t+1− Rp0,t + (RpZ,t −aZ pZ,t+1)Zt + (1+a)εD,t+1− pZ,t+1εZ,t+1.

(5)
The conditional variance of returns, denoted Vart (Qt+1), is

Var
t
(Qt+1) = Var

t
[(1+ a)εD,t+1− pZ,t+1εZ,t+1]

= (1+ a)2σ 2
D + p2

Z,t+1σ
2
Z,t+1.

Therefore, the stock return volatility is time varying.
The optimal stock demand of type B traders, denotedXB

t , is3

XB
t = f B

0,t + f B
Z,t Zt , (6)

where f B
0,t and f B

Z,t depend onσ 2
Z,t . Trading volume at timet can be written as

1−ω times the absolute change in the optimal holding of stock by type B traders.
Therefore, volume equals

Vt = (1− ω)
∣∣XB

t − XB
t−1

∣∣
= (1− ω)∣∣ f B

0,t − f B
0,t−1+ f B

Z,t Zt − f B
Z,t−1Zt−1

∣∣. (7)

Note that a change inσ 2
Z,t+1 or in Zt will trigger an increase in volume, whereas

a change inDt will not have any impact on volume. Ifσ 2
Z,t+1 is high orZt is low,

type A traders demand more stock because the risky private investment opportunity
is less attractive. While they rebalance their portfolio, the equilibrium price changes
to accommodate this excess demand, and volume increases. A change inDt ,
however, will not have any influence on the expected excess return on the stock
[see equation (5)] and thus will have no influence on the optimal demand of agents.
Therefore, we should observe a positive relation between volume and volatility in
this economy.

The ambiguous relation between volume and expected return is given in the
following proposition.

PROPOSITION 2.Given the current excess return and volume, next period’s
expected excess return is

E(Q̃t+1 | Q̃t ,Vt ) = λ0,t+1+ λ1,t+1V2
t + λ2,t+1Q̃t

+ λ3,t+1V2
t Q̃t + high-order terms, (8)

whereQ̃t+1 ≡ Qt+1− p0,t+1+Rp0,t , that is, the random part of the excess return,
andλ0,t+1, λ1,t+1, λ2,t+1, andλ3,t+1 are functions ofσ 2

Z,t+1. The coefficientλ3,t+1

can be positive or negative, depending on the parameters in the economy.

Proof. See Appendix B.

From Proposition 2, the sign ofλ3,t+1 is ambiguous. Therefore, the model de-
scribed earlier does not imply any monotonic relation between volume and the
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first-order autocorrelation of stock returns. One can further writeVt as

Vt = Ṽ t + V̄,

whereV̄ = E(Vt ) is the mean volume. To the same order approximation, equa-
tion (8) becomes

E(Q̃t+1 | Q̃t ,Vt ) = φ0,t+1+ φ1,t+1Ṽ t + (φ2,t+1+ φ3,t+1Ṽ t )Q̃t

+ high-order terms, (9)

with φ0,t+1 = λ0,t+1 + λ1,t+1V̄2, φ1,t+1 = 2λ1,t+1V̄ , φ2,t+1 = λ2,t+1 + λ3,t+1V̄2,
φ3,t+1 = 2λ3,t+1V̄ . Again, sinceλ3,t+1 can be positive or negative and̄V > 0, the
sign ofφ3,t+1 is ambiguous.

The reason for the ambiguous relation between volume and return autocorrela-
tion is that the excess returns on the stock depend not only on the expected return on
the nontradable assetZt but also on the time-varying volatilityσ 2

Z,t . Consider one-
period changes inZt andσ 2

Z,t . If a high Zt is followed by a low volatilityσ 2
Z,t+1,

Qt is low because the higher expected return on the nontradable asset decreases
type A traders’ demand for the stock. The lower risk in the nontradable asset leads
to a decrease inQt+1. In this case, the correlation betweenQt andQt+1 is more
likely to be positive and we should observe a positive relation between volume and
return autocorrelation. If a highZt is followed by a high volatility,Qt decreases and
Qt+1 increases because of lowPt and highPt+1. In this case, the relation between
volume and return autocorrelation is negative. Persistent movements inσ 2

Z,t , along
the lines of the GARCH-type behavior that seems to characterize financial mar-
kets, can lead to even more complicated time-series patterns of returns. Therefore,
the relation between volume and return autocorrelation is nonmonotonic.

3. VOLUME, VOLATILITY, AND SERIAL CORRELATION OF STOCK
RETURNS: EMPIRICAL AND NUMERICAL RESULTS

Using the model of the preceding section, it was possible to show analytically
that time-varying volatility of the payoffs on the nontradable asset results in an
ambiguous relation between volume and the serial correlation of stock returns.
The positive relation between return volatility and volume cannot be derived an-
alytically, however, because both the coefficients in the volume equation (7) and
conditional second moments of returns are functions of the time-varying volatility
of nontradable assetσ 2

Z,t . Thus, other methods must be used to address the more
complicated question of the relation among volume, volatility, and serial correla-
tion of stock returns implied by the economic model. We try to answer this question
by examining a number of numerical simulations and comparing the results with
observed data. Both the simulations and the data analysis support the prediction
of Proposition 2 that the relation between volume and serial correlation can be
of either sign. Furthermore, the data generated from the artificial economic world
described in Section 2 exhibit a highly significant positive correlation between
volume and the one-step-ahead volatility of stock returns. Intuitively, one would
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expect a positive relation, as explained in the preceding section. This significant
relation is further confirmed empirically by using observed data.

3.1. Data

The observed data set comprises daily log closing-price differences and the num-
ber of shares traded on the New York Stock Exchange for four heavily traded
stocks: Boeing (BA), International Business Machine (IBM), Coca Cola (KO), and
Minnesota Mining & Manufacturing (MMM). The sample period is from April
5, 1987, to October 14, 1996, for 3,000 observations on each series. We choose
individual stock data instead of index data for two reasons: First, in the artificial
world described in Section 2 there is only one risky asset traded in the economy
and volume is the net trade of this single stock. With aggregate volume data, if
traders buy or sell one stock in exchange for others, the net trade of the risky asset
might be overestimated. Second, the problem of nonsynchronous trading may lead
to spurious positive autocorrelation in an index return [Lo and MacKinlay (1990)].

Many previous empirical studies have found that long time spans of volume
data tend to be nonstationary. Alternatively, the ratio of the number of shares
traded to the number of shares outstanding, known as turnover, is used in some
studies. However, it does not remove the low-frequency variations in the volume
data completely and an additional detrending procedure has to be done [see, e.g.,
Campbell et al. (1993) and Brock and LeBaron (1996)]. For the volume series
used here, we conduct the Phillips and Perron (1988) test with and without a linear
trend and find no evidence supporting the unit root hypothesis. There is, however,
a significant linear trend in our four-volume series. Therefore, we use the linearly
detrended volume series for the following empirical exercise. The return data and
the transformed volume data are plotted in Figure 1.

3.2. Simulation Algorithm

The simulated data are obtained by calibrating the theoretical model with the risk
aversion coefficientγ = 1.00 and the discount factorβ = 0.9995, which implies
approximately a consistent interest rate ofr = 0.05% (=0.0005). The proportion
of type A traders (ω) in the economy is set equal to 0.01. The autocorrelation
coefficient of dividends (aD) as well as of the expected return on the nontradable
asset (aZ) are set equal to 0.99. The variances of dividends (σ 2

D) and the nontradable
asset (σ 2

q ) are set to 1 and the covariance (σD,q) equals 0.25.
The time-varying volatility ofZt is modeled by the chaotic asymmetric tent-

map dynamics. The asymmetric tent map is the continuous piecewise linear map
fh,[0,b] : [0, b] 7→ [0, b] defined as

fh,[0,b](x) = 2x

1+ h
if 0 ≤ x ≤ (1+ h)b

2

= 2(b− x)

1− h
if

(1+ h)b

2
≤ x ≤ b,
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where−1< h< 1. The (asymmetric) tent maps have the property that the auto-
correlation coefficients coincide exactly with the autocorrelation coefficients of an
AR(1) process [Sakai and Tokumaru (1980)]. Modeling volatility in this way can
be considered as a first-order approximation for a GARCH process [Bollerslev
(1986)]. The main limitation of using a tent map is that the generated volatility
would look uniformly distributed, which is different from a GARCH(1,1) process
or a stochastic volatility with Gaussian innovations. Thus, it is unlikely that data
simulated from this simple tent-map process would match well the higher mo-
ments in observed data. One could use a more complicated deterministic volatility
process to mimic the higher moments of observed returns. For example, Gallant
et al. (1997) show that, by fitting the variance with a chaotic Mackey–Glass se-
quence, the conditional density fits the daily standard and Poor’s 500 Composite
Index better than a standard stochastic volatility model. Because higher moments
are not central to the issues examined in this paper, this additional complication
does not seem worthwhile.

In our simulation, we seth = 0.9, that is, the first-order autocorrelation of the
time-varying volatilityσ 2

Z,t equals 0.9, so as to mimic the persistence of the volatil-
ity on stock returns found in high-frequency financial time series. The volatility
varies between 0 andb. We setb = 1, 10, 50, and 100 in various settings, denoted
setting A, B, C, and D, respectively. This implies that, on average, the volatility
of Zt contributes 3%, 19%, 56%, and 74% of stock return volatility in simulation
setting A, B, C, and D, respectively.4

Given the entire path of volatility{σ 2
Z,t }T+1

t=0 , we first compute the solution of
the model described in Section 2 for the terminal periodT and then iteratively
compute the solution fort = 1, . . . , T−1 backward, as described in Appendix A.
For each setting of the upper bound of volatility, we simulate 1,000 data sets, each
with a length of 15,000 periods. We discard the last 12,000 periods to ensure that
the effect of terminal conditions on the maximization problem does not distort the
results. To be more precise, foryt = (rt ,Vt )

′ with rt ≡ Qt/Pt−1 denoting stock
return per dollar, the simulated data set{yi

t }Tt=1 is generated by the structural model
described in Section 2 withT = 15,000 andi = 1, 2, . . . ,1,000.

3.3. Simulation and Empirical Results

Figures 2 and 3 show the scatterplots of stock return and detrended volume se-
ries from the observed data and simulated data, respectively. The scatterplots of
the observed as well as the simulated data reveal a positive contemporaneous
relationship between volume and the magnitude of returns: days with small abso-
lute returns tend to be days with lower-than-average volume, whereas days with
large absolute returns are high-volume days. Table 1 reports this significant re-
lation by regressing the absolute value of returns on volume data for observed
as well as simulated data. As surveyed by Karpoff (1987), a V-shaped relation
between volume and stock returns has been found by virtually all empirical inves-
tigators of the return-volume relation in equity markets. This consistent empirical
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FIGURE 1. Return (left) and volume series (right).
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FIGURE 1. (Continued.)
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FIGURE 2. Scatterplots of return vs. detrended volume, observed data.

https://doi.org/10.1017/S1365100500017053 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100500017053


VOLUME AND VOLATILITY IN ASSET PRICING 517

FIGURE 2. (Continued.)
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FIGURE 3. Scatterplots of return vs. volume, simulated data.

result can be reproduced by the data generated from the model introduced in
Section 2.

Table 2 and Table 3 report the relationship between volume and the first au-
tocorrelation of stock returns in the observed and simulated data, respectively. In
Table 3, we report the proportion of individualt-statistics that are less than−1.64,5

the averaged standard errors, and the centeredR2 averaged over 1,000 regressions
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FIGURE 3. (Continued.)

of the simulated time series. From the second column of Table 2, we can see that
the first-order autocorrelations of individual stock returns are not all positive, as
found for the returns on a value-weighted stock index by, for example, Campbell
et al. (1993). This characteristic is exhibited in the simulated data. From the second
column of Table 3, only 0.5%, 5%, 6%, and 7% of the individualt-statistics are
less than−1.64 for simulation settings A, B, C, and D, respectively. The adjusted
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TABLE 1. Volume and absolute value of
return

|rt | = a+ bVt

Sample ba R2b

BA 0.485(0.016)∗∗∗ 0.230
IBM 0.345(0.010)∗∗∗ 0.264
KO 0.083(0.004)∗∗∗ 0.102
MMM 0.618(0.026)∗∗∗ 0.164
Setting A 0.016(0.012)∗ 0.001
Setting B 0.021(0.008)∗∗ 0.011
Setting C 0.025(0.005)∗∗∗ 0.017
Setting D 0.046(0.011)∗∗∗ 0.053

aNumbers in parentheses are standard errors. For sim-
ulated data the standard errors andR2 are averaged
over 1,000 simulations. Significance levels are∗=
10%, ∗∗=5%, and∗∗∗=1%: ∗=0.1, ∗∗=0.5, and
∗∗∗=0.01.
b R2’s are the adjustedR2’s.

TABLE 2. Volume and first autocorrelation of return, individual stock dataa

rt+1 = γ0 +
(
γ1 + γ2Vt + γ3V2

t

)
rt

Sample γ1 γ2 γ3 R2

BA 0.033(0.018)b 0.001
0.053(0.025)c −0.022(0.009)c 0.003
0.066(0.025)c −0.055(0.037) 0.003(0.003) 0.003

IBM −0.014(0.018) 0.000
−0.032(0.028) 0.004(0.016) 0.000
−0.019(0.024) −0.019(0.038) 0.002(0.003) 0.002

KO −0.041(0.018)c 0.002
−0.047(0.035) 0.001(0.018) 0.002
−0.021(0.026) −0.028(0.032) 0.001(0.001) 0.010

MMM −0.054(0.018)c 0.003
−0.005(0.029) −0.044(0.036) 0.008
−0.054(0.028)b 0.224(0.120)b −0.067(0.027)c 0.019

aIn parentheses are the heteroskedasticity-consistent standard errors.R2’s are the adjustedR2’s.
b p = 0.1.
c p = 0.5.

R2’s averaged over the 1,000 simulated return series are less than 0.01% for all
simulation settings.

To investigate the relation between volume and the first autocorrelation of re-
turns, we regress the one-day-ahead return on the current return and the return
interacted with volume. We also regress the one-day-ahead return on the current
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TABLE 3. Volume and first autocorrelation of return, simulated dataa

rt+1 = γ0 +
(
γ1 + γ2Vt + γ3V2

t

)
rt ,

γ̄ j = 1

1000

1000∑
i=1

γ j,i , j = 1, 2, 3, 4.

Sample ¯γ1 γ̄2 γ̄3 R2

Setting A 0.000(0.018) 0.000
t < −1.64 0.005

0.000(0.003) 0.010(0.810) 0.000
t < −1.64 0.005 0.062

−0.002(0.041) 0.119(2.319) −1.339(2.604) 0.001
t < −1.64 0.056 0.061 0.071

Setting B 0.000(0.018) 0.000
t < −1.64 0.059

0.000(0.026) −0.005(0.332) 0.000
t < −1.64 0.051 0.070

0.000(0.031) −0.001(0.557) −0.037(1.527) 0.001
t < −1.64 0.043 0.070 0.045

Setting C −0.001(0.018) 0.000
t < −1.64 0.063

0.000(0.028) −0.013(0.179) 0.001
t < −1.64 0.046 0.131

0.000(0.033) −0.013(0.355) −0.013(0.722) 0.001
t < −1.64 0.030 0.090 0.069

Setting D −0.003(0.018) 0.000
t < −1.64 0.078

0.001(0.028) −0.027(0.145) 0.001
t < −1.64 0.052 0.178

0.001(0.034) −0.029(0.309) 0.000(0.544) 0.002
t < −1.64 0.031 0.103 0.100

aIn parentheses are the standard errors averaged over 1,000 simulations. The bold numbers represent the percentage
of the numbers oft-statistics less than−1.64.R2’s are the adjustedR2’s.

return, the return interacted with volume and squared volume, which is motivated
by equation (9). This regression exercise is similar to that conducted by Campbell
et al. (1993). The analytical result predicted in Proposition 2 is confirmed by the
observed individual stocks as well as the simulated realization: With time-varying
volatility, the correlation between volume and return persistence is not always
negative, as found by Campbell et al. (1993), or is not always positive, as found by
Morse (1978) and Antoniewicz (1992). Table 2 shows that, when regressing the
one-day-ahead return on the current return and the return interacted with volume,
the relation between volume and the autocorrelation of return (the coefficientγ2) is
significantly negative for the BA series but insignificant for IBM, KO, and MMM.
By including the additional term involving squared volume interacted with return,
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the estimate ofγ2 becomes insignificant for the BA series. For IBM and KO, the
estimate ofγ2 remains insignificant. For MMM, the estimate ofγ2 is significantly
positive whereas the coefficient of squared volume interacted with return (γ3) is
significantly negative. This suggests that the relation between the first autocorre-
lation of returns and volume is nonlinear and nonmonotonic for the MMM series.

Table 3 reports the results from the simulated data. From Table 3, only 6%,
7%, 13%, and 17% of the individualt-statistics of the coefficient on volume
interacted with stock return are less than−1.64 for simulation settings A, B, C,
and D, respectively. Furthermore, the average adjustedR2’s are less than 0.002
for all simulation samples, which implies that the effect of trading volume on the
autocorrelation of returns is negligible. The results are not improved by including
the additional terms involving volume and squared volume interacted with return:
only 6%, 7%, 9%, and 10% of the individualt-statistics of the coefficient on
volume interacted with return are less than−1.64 for simulation settings A, B,
C, and D, respectively. In addition, for all four simulation settings, none out of
1,000 simulated series has estimated coefficients on volume and volume squared
interacted with return (i.e.,γ2 andγ3) that are jointly significantly different from
zero at the 5% level. In short, our result supports the finding by Tauchen et al.
(1996), who used a nonparametric impulse response analysis and found no relation
between volume and first-order autocorrelation of stock returns.

We now turn to the analysis of the relation between volume and return volatility.
First, we regress the simulated theoretical volatility of stock returns on simulated
volume data. The volatility of (per dollar) returns can be directly expressed as

σ 2
r,t+1 ≡ Var

t
(rt+1) = Var

t

(
Qt+1

Pt

)
= (1+ a)2σ 2

D + p2
z,t+1σ

2
Z,t+1

P2
t

. (10)

Thus, the regression equation is

σ 2
r,t+1 = c0+ c1Vt + et , et ∼ i.i.d.

(
0, σ 2

e

)
. (11)

If the volatility of return per share is constant over time, one should find a negative
relation between volume and the volatility of return per dollar.6

Next, we empirically examine the relation between volume and volatility for the
four individual stock return series. Because volatility is not directly observable in
the real world, we use the fitted values from a GARCH(1,1) model.7 Such a model
is given by

rt+1 = β0+ β1rt + εt+1,

εt+1 | It ∼ N(0, ht+1), (12)

ht+1 = a0+ a1ε
2
t + b1ht .

The estimated volatility, denotedĥt+1, is then regressed on volume data. The reason
for doing this two-step procedure instead of putting volume as an explanatory
variable directly into the volatility equation, as in Lamoureux and Lastrapes (1990),
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is that the high correlation between contemporaneous volatility and volume causes
severe problems of convergence. Because the estimated (as well as simulated)
volatilities exhibit high persistence, we regress the one-step-ahead volatility on
current volatility and volume

ĥt+1 = φ0+ φ1ĥt + φ2Vt . (13)

For the sake of comparison, we perform the same exercise for the simulated data
as well.

Table 4 and Table 5 summarize our findings of a positive correlation between
volume and one-step-ahead return volatility. From Table 4, we can see that the re-
gression coefficientc1 obtained by regressing the theoretical volatilities on volume
data, both generated from our artificial economy, is highly significant and positive.
Furthermore, from the lower panel of Table 5, if one approximates the simu-
lated volatility of stock returns by estimating a GARCH(1,1) model, the estimated

TABLE 4. Volume and the theoretical volatility

σ 2
r,t+1 = c0 + c1Vt

c1 s.e.a t > 1.64b R2c

Setting A 0.000 0.004 0.044 0.000
Setting B 0.199 0.023 1.000 0.025
Setting C 0.375 0.027 1.000 0.054
Setting D 0.333 0.023 1.000 0.066

a s.e. is the standard error ofc1 estimates averaged over 1,000 simulations.b The fourth column (t > 1.64) reports
the percentage oft statistics larger than 1.64.c R2’s are the averagedR2 over 1,000 simulations.

TABLE 5. Volume and return volatilitya

rt+1 = β0 + β1rt + εt+1, εt+1|It ∼ N(0, ht+1)
ht+1 = a0 + a1ε

2
t+1 + b1ht

ht+1 = φ0 + φa1ht + φ2Vt

Sample a1 b1 φ2 R2c

BA 0.215 (0.020)∗∗∗
b

0.328 (0.040)∗∗∗ 0.012 (0.000)∗∗∗ 0.401
IBM 0.117 (0.005)∗∗∗ 0.894 (0.010)∗∗∗ 0.042 (0.003)∗∗∗ 0.812
KO 0.096 (0.004)∗∗∗ 0.851 (0.001)∗∗∗ 0.084 (0.009)∗∗∗ 0.892
MMM 0.093 (0.003)∗∗∗ 0.861 (0.007)∗∗∗ 0.058 (0.005)∗∗∗ 0.837
Setting A 0.006 (0.770) 0.267 (0.252) 0.000 (0.939) 0.331
Setting B 0.012 (0.885) 0.813 (0.523) 0.002 (1.000) 0.582
Setting C 0.025 (0.979) 0.845 (0.737) 0.017 (1.000) 0.737
Setting D 0.042 (1.000) 0.886 (0.984) 0.018 (1.000) 0.841

a For the individual stocks, it is the standard error in the parenthesis and for the simulated data, it is the percentage
of t statistics larger than 1.64.b ∗∗∗ represents significant level of one percent.c R2’s are the adjustedR2’s of the
regression in equation (12).
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persistence in the (estimated) volatility, measured bya1 + b1 in equation (12), is
very close to the calibrated value of 0.9 for the autocorrelation in the time-varying
volatility except for setting A. This result can be considered as a justification
for approximating a GARCH(1,1) process with the deterministic chaotic process
employed in the simulation. For the volatility of all individual stock returns, the
estimatedφ′2’s are positive and highly significant. This finding is consistent with
results obtained in other empirical work cited in Section 1. The above reported
results confirm that much of the movement in the volatility of daily stock returns
is related to volume. Furthermore, to compare the correlation pattern between vol-
ume and volatility, Figures 4 and 5 plot the cross correlations of volume (from lag
10 to lead 10) and volatility of observed and simulated data, respectively. For the
observed data, the volatility is the GARCH(1,1) estimate whereas for the simulated
data it is the theoretical volatility defined in equation (10). Figures 4 and 5 show
that the correlation pattern between volume and volatility is qualitatively matched
by the data simulated from the theoretical model.

4. CONCLUSION

This paper investigates the relation between volume, stock return autocorrelation,
and volatility. I extend a special case of Wang’s (1994) model, the case of symmetric
information, by assuming that a subset of the shocks in the economy has autocor-
related time-varying volatility. It is shown that if the volatility is time varying, the
relationship between volume and stock return autocorrelation is ambiguous, even
if agents have symmetric information. This may explain the contradictory findings
in the empirical literature studying the relation between volume and the persistence
of stock returns. Moreover, under the assumption of time-varying volatility, one
can study the correlatedness of volume with the one-period-ahead return volatility.

It is shown analytically that time-varying volatility of the payoffs on the non-
tradable asset results in an ambiguous relation between volume and the serial
correlation of stock returns. The relation between return volatility and volume
cannot be derived analytically. We use numerical simulations as well as empirical
exercises to address this more complicated question. In the numerical exercise, we
simulate the model in a way that mimics the persistent volatility of high-frequency
stock data documented in numerous empirical studies. Specifically, we approxi-
mate time-varying volatility of stock returns with a highly persistent chaotic tent
map, which is known to have the same autocorrelation coefficients as an AR(1)
process. The simulated data can approximate GARCH-type behavior very well.
Whereas in the simulated data, no significant relation between volume and return
autocorrelation can be found, there is a significant positive relation between volume
and one-step-ahead stock return volatility. The ambiguous volume–persistence and
positive volume–volatility relations are confirmed empirically by using four heav-
ily traded individual stocks. Therefore, the data simulated from the highly stylized
asset pricing model with deterministic volatility can mimic well the volume–return
dynamics revealed in the observed data in these two respects.
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NOTES

1. Using the annual growth rate of dividends for Boeing, IBM, Coca Cola, and Minnesota Mining
& Manufacturing from 1973 to 1998, we conduct a likehood ratio test of constant volatility vs. the
GARCH(1,1) process. For all four series, one cannot reject the hypothesis that volatility is constant.

2. Thus, for a type A trader,Xt = (Xt , yt )
′, whereXt is his stock shares,yt is his investment in the

nontradable asset, andQt+1 = (Qt+1,qt+1)
′. For type B traders,Xt = Xt andQt+1 = Qt+1 because

they cannot invest in the nontradable asset.
3. See Appendix A.
4. These pecentages are obtained from Vart (Qt+1) = (1+ a)2σ 2

D + (pZ,t+1)
2σ 2

Z,t+1. In the nu-
merical simulations, the maximum values ofpZ,t for b = 1, 10, 50, and 100 are 16.5, 14.5, 15.3, and
16.1, respectively.

5. This is the 5% level for a one-tailed test, or the 10% level for a two-tailed test.
6. If the volatility of return per share is constant over time, i.e.,σ 2

Z,t = c for all t , the one-step-ahead

conditional volatility of return per dollar isσ 2
r,t+1 = c/P2

t . Since volumeVt and squared priceP2
t are

positively related [see equations (4) and (7)],σ 2
r,t+1 will be positively related to 1/Vt .

7. Nelson (1992) shows that the volatility can be estimated very precisely from high-frequency
data, even when the true model for volatility is unknown.

8. There seems to be a typo in Wang’s equations (A17) and (A18) (1994, p. 161).
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APPENDIX A: PROOF OF PROPOSITION 1

As in Appendix B of Wang (1994), we take three steps to prove Proposition 1: First, we
conjecture that the equilibrium price function has the form as in equation (4). Second,
we solve the optimization problem of both types of traders, given the conjectured price
function. Finally, we verify the conjectured price function by imposing the market-clearing
condition. The proof here differs from Wang’s in two crucial aspects: (i) The coefficients
in the conjected price function are time varying, whereas in Wang’s case they are constant.
(ii) Since we assume that the investor has a finite life horizon, the optimization problem is
solved recursively.

Define

εD,t = δεD,t ,

εZ,t = σtεz,t ,

εq,t = κεq,t ,

whereσ 2
t = f (σ 2

t−1; t). If the price takes the conjectured form as in equation (4),

Pt = p0,t + aDt − pZ,t Zt ,

the excess return per share of the stock,Qt+1, is

Qt+1 = p0,t+1 − Rp0,t + [RpZ,t − aZ pZ,t+1]Zt + (1+ a)εD,t+1 − pZ,t+1εZ,t+1. (A.1)
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Define9t ≡ (1, Zt )
′, which can be written as

9t = a99t−1 + b9,tεt ,

with a9 = ( 1 0
0 aZ

), b9,t = ( 0 0 0
0 1 0) and

εt ≡ (εD,t εZ,t εq,t )
′ ∼ N(0, 6t ), 6t =

 δ2 0 ρ

0 σ 2
t 0

ρ 0 κ2

 .

The excess returns of the type A tradersQA
t+1 = (Qt+1,qt+1)

′ can be written as

QA
t+1 = eA

Q9t + bA
Qεt+1, (A.2)

with

eA
Q =

(
0 RpZ,t − aZ pZ,t+1

0 1

)
; bA

Q =
(

1+ a −pZ,t+1 0

0 0 1

)
.

Analogously, the excess returns of the type B tradersQB
t+1 = Qt+1 can be written as

QB
t+1 = eB

Q9t + bB
Qεt+1, (A.3)

with
eB
Q = ( 0 RpZ,t − aZ pZ,t+1 ); bB

Q = ( 1+ a −pZ,t+1 0).

With this notation, both the type A and type B traders’ optimization problem can be
expressed in the form of the Bellman equation:

J(Wt ;9t ; t) = max
{−β t e−γ ct + E[ J(Wt+1;9t+1; t + 1) | It ]

}
subject toWt+1 = (Wt − ct )R+ X′tQt+1.

This equation must hold for all 0< t ≤ T . Because of the salvage term in equation (3), we
have

J(WT+1, 9T+1; T + 1) = −βT+1e−αWT+1. (A.4)

The trial solution for the value function considered here is

J(Wt ;9t ; t) = −β t e−
r γ
R Wt− 1

29
′
t vt9t , (A.5)

wherevt is a 2× 2 matrix of following form:

vi
t =
(
vi

1,t vi
3,t

vi
3,t vi

2,t

)
,

for i = A, B. Define

vi
aa,t+1 ≡ a′9vi

t+1a9,

vi
ab,t+1 ≡ a′9vi

t+1b9,

vi
bb,t+1 ≡ b′9vi

t+1b9,

for i = A, B.
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We first compute the solution for the periodT . To do so, we compute the agents’ value
functions and policy functions, taking as given the previous wealthWT and the vector of
the state variablesΨT . Agents’ optimization problem at timeT is

maxET (e
−γ cT − βe−αWT+1)

subject toWT+1 = (WT − cT )R+ X′TQT+1. (A.6)

If the price takes the conjectured form as in equation (4), the equilibrium price atT is

PT = p0,T + aDT − pZ,T Zt .

The terminal pricePT+1 is assumed to be the discounted sum of the future dividend payoffs:

PT+1 = ET+1

( ∞∑
j=1

R− j DT+1+ j

)
.

In doing so, we implicitly assume that the stock lives infinitely. The excess return on stock
and on the nontradable asset atT + 1 is

QT+1 = PT+1 + DT+1 − RPT ,

= −Rp0,T + RpZ,T ZT + (1+ a)εD,T+1,

qT+1 = ZT + εq,T+1.

Given the market-clearing condition

ωXA
T + (1− ω) XB

T = 1

and the terminal conditionvA
T+1 = vB

T+1 = 0 from equation (A.6), we can fully determine
the value function and the optimal investment-consumption policies. The type A traders’
optimal demand of stock atT is given by

XA
T =

−Rκ2 p0,T

α(1+ a)2(δ2κ2 − ρ2)
+ Rκ2 pZ,T − (1+ a)ρ

α(1+ a)2(δ2κ2 − ρ2)
ZT

and the type B traders’ optimal demand of stock atT is

XB
T =

−Rp0,T

α(1+ a)2δ2
+ RpZ,T

α(1+ a)2δ2
ZT

with

p0,T = −α(1+ a)2δ2(δ2 − ρ2)

R(δ2κ2 − ρ2 + ωρ2)
,

(A.7)

pZ,T = (1+ a)ωδ2κρ

Rκ2(δ2κ2 − ρ2 + ωρ2)
.
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For the periodt ≤ T , one can solve the model in exactly the same way as in Wang [1994,
Eq. (A18), p. 161]. The following recursive equations8 have to hold fort ≤ T :

vA
1,t =

1

R

[
vA

1,t+1 −
(
vA

3,t+1

)2
sA

t+1 +
κ2

1A
t+1

(
πt+1 − pZ,t+1v3,t+1s

A
t+1

)2
]

+ 2

(
r

R
ln r − 1

R
lnβ

√
sA

t+1

σ 2
t+1

− ln R

)
,

vA
2,t =

a2
Zv

A
2,t+1

R

(
1− vA

2,t+1s
A
t+1

)
+ κ

2
[
RpZ,t − aZ pZ,t+1

(
1− vA

2,t+1s
A
t+1

)]2

R1A
t+1

−2(1+ a)ρ
[
RpZ,t − aZ pZ,t+1

(
1− vA

2,t+1s
A
t+1

)]
R1A

t+1

+ (1+ a)2δ2 + p2
Z,t+1s

A
t+1

R1A
t+1

,

vA
3,t =

aZv
A
3,t+1

R

(
1− vA

2,t+1s
A
t+1

)
+ κ

2
(
πt+1 − pZ,t+1v

A
3,t+1s

A
t+1

)[
RpZ,t − aZ pZ,t+1

(
1− vA

2,t+1s
A
t+1

)]2

R1A
t+1

− (1+ a)ρ
(
πt+1 − pZ,t+1v

A
3,t+1s

A
t+1

)
R1A

t+1

,

vB
1,t =

1

R

[
vB

1,t+1 −
(
vB

3,t+1

)2
sB

t+1 +
1

1B
t+1

(
πt+1 − pZ,t+1v3,t+1s

B
t+1

)2
]

+ 2

(
r

R
ln r − 1

R
lnβ

√
sA

t+1

σ 2
t+1

− ln R

)
,

vB
2,t =

a2
Zv

B
2,t+1

R

(
1− vB

2,t+1s
B
t+1

)+ [RpZ,t − aZ pZ,t+1

(
1− vB

2,t+1s
B
t+1

)]
R1B

t+1

2

,

vB
3,t =

aZv
B
3,t+1

R

(
1− vB

2,t+1s
B
t+1

)
+
(
πt+1 − pZ,t+1v

B
3,t+1s

B
t+1

)[
RpZ,t − aZ pZ,t+1

(
1− vB

2,t+1s
B
t+1

)]2

R1B
t+1

,

where

sA
t+1 =

σ 2
t+1

1+ vA
2,t+1σ

2
t+1

,

sB
t+1 =

σ 2
t+1

1+ vB
2,t+1σ

2
t+1

,
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1A
t+1 = (1+ a)2(δ2κ2 − ρ2)+ κ2 p2

Z,t+1s
A
t+1,

1B
t+1 = (1+ a)2δ2 + p2

Z,t+1s
B
t+1,

πt+1 = p0,t+1 − Rp0,t .

Moreover, from the market-clearing condition

ωXA
t + (1− ω)XB

t = 1

one can derive the following two additional equations:

p0,t = 1

R

[
p0,t+1 −

ωκ21B
t+1s

A
t+1v

A
3,t+1 + (1− ω)1A

t+1s
B
t+1v

B
3,t+1 + α1A

t+11
B
t+1

ωκ21B
t+1 + (1− ω)1A

t+1

]
,

pZ,t =
aZ pZ,t+1

[
ωκ21B

t+1

(
1− sA

t+1v
A
2,t+1

)+ (1− ω)1A
t+1

(
1− sB

t+1v
B
2,t+1

)]
R
[
ωκ21B

t+1 + (1− ω)1A
t+1

]
+ ω(1+ a)ρ1B

t+1

R
[
ωκ21B

t+1 + (1− ω)1A
t+1

] .
This system of first-order difference equations can be solved backward, given the end

conditionvA
T+1 = vB

T+1 = 0.

APPENDIX B: PROOF OF PROPOSITION 2

Since trading volume at timet can be written as

Vt = (1− ω)
∣∣ f B

0,t − f B
0,t−1 + f B

Z,t Zt − f B
Z,t−1Zt−1

∣∣,
defineYt ≡ f B

0,t − f B
0,t−1 + f B

Z,t Zt − f B
Z,t−1Zt−1. ThenYt is normally distributed as

Yt ∼ N
(
µt ,
[

f B
Z,t

]2
χ2

t +
[

f B
Z,t−1

]2
χ2

t−1

)
with

µt ≡ f B
0,t − f B

0,t−1

and

χ2
t =

∞∑
j=0

aj
Zσ

2
t− j .

Denote the covariance matrix of [Q̃t+1, (Q̃t ,Yt )
′] as

∑
t ≡
(∑

aa,t

∑
ab,t∑

ba,t

∑
bb,t

)
.
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Using a similar argument as in Appendix B of Wang (1994), we can derive the following
result, which is the counterpart of equation (B10) in Wang (1994, p. 165), with time-varying
volatility:

E
(

Q̃t+1 | Q̃t ,Vt

) =∑ab,t

∑−1
bb,t

[(
Q̃t

−µt

)
+
(

0
Vt

)
G(Q̃t ,Vt , µt )

]
, (B.1)

where

G(Q̃t ,Vt , µt ) = f1 − f2

f1 + f2
,

and

f1 = exp

[
−1

2

(
Q̃t

Vt − µt

)′ −1∑
bb,t

(
Q̃t

Vt − µt

)]
;

f2 = exp

[
−1

2

(
Q̃t

−Vt − µt

)′ −1∑
bb,t

(
Q̃t

−Vt − µt

)]
.

The Taylor expansion with respect tõQt andVt of the right-hand side of (B.1) is

E(Q̃t+1 | Q̃t ,Vt ) = λ0,t+1 + λ1,t+1V2
t + λ2,t+1Q̃t + λ3,t+1V2

t Q̃t + high-order terms,

where

λ0,t+1 = −
(
κQt+1,Qt hQt ,Yt + κQt+1,Yt hYt ,Yt

)
µt ;

λ1,t+1 = −
(
κQt+1,Qt hQt ,Yt + κQt+1,Yt hYt ,Yt

)
hYt ,Ytµt ;

λ2,t+1 = κQt+1,Qt hQt ,Qt + κQt+1,Yt hQt ,Yt ;
λ3,t+1 =

(
κQt+1,Qt hQt ,Yt + κQt+1,Yt hYt ,Yt

)
hQt ,Yt ;

κQt+1,Qt = (RpZ,t−1 − aZ pZ,t )(RpZ,t − aZ pZ,t+1)aZχ
2
t−1 + pZ,t (aZ pZ,t+1 − rpZ,t )σ

2
t ;

κQt+1,Yt = az(RpZ,t − aZ pZ,t+1)
(
az f B

Z,t − f B
Z,t−1

)
χ2

t−1 − (aZ pZ,t+1 − rpZ,t ) f B
Z,tσ

2
t ;

hQt ,Qt = |Ät |−1
[(

az f B
Z,t − f B

Z,t−1

)2
χ2

t−1 +
(

f B
Z,t

)2
σ 2

t

];
hQt ,Yt = |Ät |−1

[
pZ,t f B

Z,tσ
2
t −
(

RpZ,t−1 − aZ pZ,t

)(
az f B

Z,t − f B
Z,t−1

)
χ2

t−1

];
ht ≡

(
hQt ,Qt hQt ,Yt

hYt ,Qt hYt ,Yt

)
= [VC(Qt ,Yt )]

−1 =
(
κQt ,Qt κQt ,Yt

κYt ,Qt κYt ,Yt

)−1

;

|Ät | = det(ht );
with VC denoting the variance–covariance matrix. Since the signs ofκQt+1,Qt , κQt+1,Yt , and
hQt ,Yt depend on the signs ofRpZ,t−1 − aZ pZ,t , RpZ,t − aZ pZ,t+1, aZ pZ,t+1 − rpZ,t , and
az f B

Z,t − f B
Z,t−1, which are not unambiguous in the case of time-varying volatility, the sign

of λ3,t+1 is not unambiguous. In our numerical simulations, we could indeed observe both
positive and negative values forλ3,t+1.
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