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During the past five years, copy number variation (CNV) has emerged as a highly
prevalent formofgenomicvariation,bridgingtheintervalbetween long-recognised
microscopic chromosomal alterations and single-nucleotide changes. These
genomic segmental differences among humans reflect the dynamic nature of
genomes, and account for both normal variations among us and variations that
predispose to conditions of medical consequence. Here, we place CNVs into
their historical and medical contexts, focusing on how these variations can be
recognised, documented, characterised and interpreted in clinical diagnostics.
We also discuss how they can cause disease or influence adaptation to an
environment. Various clinical exemplars are drawn out to illustrate salient
characteristics and residual enigmas of CNVs, particularly the complexity of the
data and information associated with CNVs relative to that of single-nucleotide
variation. The potential is immense for CNVs to explain and predict disorders
and traits that have long resisted understanding. However, creative solutions are
needed to manage the sudden and overwhelming burden of expectation for
laboratories and clinicians to assay and interpret these complex genomic
variations as awareness permeates medical practice. Challenges remain for
understanding the relationship between genomic changes and the phenotypes
that might be predicted and prevented by such knowledge.

It is now about 50 years since the first recognition
of a microscopic human copy number variation
(CNV) – trisomy 21 (Ref. 1) – and five years
since the first reports of the widespread
prevalence of submicroscopic CNVs (Refs 2, 3)

(Table 1). Classical genetics was based on the
premise that all genes come in pairs, but, in the
interval between these two milestones, evidence
gradually accumulated to discount this dogma.
The earliest examples – trisomy 21, monosomy
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X (Ref. 4), and XXY (Ref. 5) – had clear clinical
consequences (Down, Turner and Kleinfelter
syndromes, respectively), but the remarkable
revelation associated with the submicroscopic
CNVs has been their ubiquity throughout and
among all genomes, not just those that come to
medical attention. The past five years have
yielded rapid developments in technology and
analysis, creating a field of investigation that is
transforming both our concept of the human
genome and the application to clinical practice.
CNVs are integral to the full spectrum of
human variation and its relationship to health
and disease.

Definition and scope of CNV:
five years later

After the seminal reports of 2004 (Refs 2, 3), the
abbreviation CNV was first formalised by Feuk
et al. (Ref. 6), who defined it operationally as ‘a
segment of DNA that is 1 kb or larger and is

present at a variable copy number in
comparison with a reference genome’ (Box 1).
The umbrella classification group of genomic
structural variation includes CNVs as well as
segments that involve no loss or gain of material
but are rearranged relative to a reference (i.e.
inversions or balanced translocations). Although
all are biologically important and can
impact phenotypes, we limit the focus of this
review to matters of CNVs. Discussion has
persisted as to use of ‘variant’ in this context.
Notwithstanding precedents from cytogenetics
and single-nucleotide terminology, our increasing
awareness of the inconsistent associations
between CNVs and phenotypes reinforces
recommendations (Refs 7, 8) concerning
nomenclature: to use ‘variant’ in a generic sense
without inherent implications as to pathogenicity,
frequency or other characteristics. It seems
pragmatic to retain a term without excess
denotation, and not attempt a priori to suggest

Table 1. History and milestones in human copy number variation research

Year New technology or discovery milestone Refs

1959 Down syndrome: trisomy 21 1
Turner syndrome (45,X) 4
Kleinfelter syndrome (47,XXY) 5

1961 Partial trisomy Down syndrome 159
1963 First inherited deletion syndrome: Cri-du-chat (5p2) 160
1969 Chromosome banding: detection of subchromosomal anomalies 161
1978 Duplication of a-globin genes proven by Southern blot 162
1980 First DNA polymorphism due to variable number tandem repeat (VNTR) 163
1980 Fluorescence in situ hybridisation (FISH) technique used for detection of cryptic/

submicroscopic anomalies
164

1982 FISH applied to human chromosomes 165
1985 Minisatellite probes for DNA fingerprinting 166
1985 Dystrophin gene cloning identified structural variants, including intragenic deletions and

translocation
167, 168

1986 Contiguous gene syndromes 169
1991 1.4 Mb duplication associated with Charcot–Marie–Tooth disease type 1A identified

and suggested to be caused by nonallelic homologous recombination (NAHR)
23

1992 Comparative genomic hybridisation (CGH) technique made possible detection of gains
and losses in tumours

170

1996 Complete set of human telomere-specific FISH probes created for clinical detection of
variation at human subtelomeric regions

171

1998 Array CGH using bacterial artificial chromosome clones 172
2001 Human Genome Project first reference sequence 42, 44
2004 Human Genome Project ‘finished’ 43
2004 Recognition of human genomic variation on large scale 2, 3
2006 Copy number variation map for the human genome 16
2007 First diploid sequence of an individual human 40
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that it is anything more than an observation
of difference. Issues of pathogenicity or
polymorphism can be addressed with modifiers
(easily adapted as information arises).

However, we suggest that the size component
of the CNV definition be reconsidered, and
perhaps simply dropped. The initial limitation
to segments of at least 1 kb was perhaps more a
reflection of the technologies first used to reveal
this class of variation [especially array

comparative genome hybridisation (aCGH)
with bacterial artificial chromosome (BAC)
probes] than of a biological or functional
threshold. Clearly, most quantitative variation
in the genome involves segments smaller than
1 kb (Refs 9, 10, 11, 12, 13). Thus, although
‘indels’ and di- and tri-nucleotide repeats are
not technically CNVs according to the original
definition, this term is now often used as a
‘catch-all’ that encompasses all non-SNP

Box 1. Terminology

Structural variation/variant
This is the umbrella term to encompass a group of microscopic or submicroscopic genomic alterations
involving segments of DNA. We use the term as a neutral descriptor with nothing implied about frequency,
association with disease or phenotype, or lack thereof. The structural variation may be quantitative (copy
number variants comprising deletions, insertions and duplications) and/or positional (translocations) or
orientational (inversions).

Copy number variation/variant (CNV)
CNV refers to DNA segments for which copy number differences have been observed in the comparison of two
or more genomes. Without further annotation, CNV carries no implication of relative frequency or phenotypic
effect. These quantitative structural variants can be genomic copy number gains (insertions or duplications) or
losses (deletions or null genotypes) relative to a designated reference genome sequence.

Insertion/deletion (indel)
Indel is a collective abbreviation to describe relative gain or loss of a segment of one or more nucleotides in a
genomic sequence. It allows the designation of a difference between genomes in situations where the direction
of sequence change cannot be inferred: for example, when a reference or ancestral sequence has not been
defined. It has typically been used to denote relatively small-scale variants (particularly those ,1 kb);
however, we do not propose any size restriction for its use.

Segmental duplication
This is a segment of DNA .1 kb in size that occurs in two or more copies per haploid genome, with the different
copies sharing .90% sequence identity. These segments can also be CNVs. The duplicated blocks predispose
to nonallelic homologous recombination.

Human genome reference assembly
The standard reference DNA sequence (or assembly) of the human genome. The assembly is derived mostly
(.60%) of DNA from a single donor, with the rest of the sequence originating from a mosaic of other sources. The
current assembly covers most of the euchromatic regions of the human genome.

Single-nucleotide polymorphism (SNP)
A variation in DNA that involves replacement of one nucleotide base for another is called a SNP. Polymorphism
implies that the variant (minor) allele has a frequency of at least 1%; however, terminology has come to be
applied more loosely by some, to include even rare mutations.

Syndrome
Literally ‘running together’, syndrome describes a collection of features or symptoms (typically comprising three
or more clinical findings), the constellation of which is recognisable as a specified disorder.

Relative risk and odds ratio
Relative risk (RR) and odds ratio (OR) are similar in that they both determine the likelihood that a member of one
group (individuals with a CNV) will develop a phenotype, relative to the likelihood that a member of another group
(individuals without a CNV) will develop that same phenotype. For RR, this likelihood is measured using
probability; for OR, it is measured using odds. With such metrics, researchers have discovered CNVs within
clinical cohorts that are risk factors for distinct phenotypes.
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(single-nucleotide polymorphism) unbalanced
variation in the genome. Thus, for some of the
same reasons discussed above, we suggest that
CNV be used in a less restrictive sense and be
classified when needed (e.g. CNVs greater than
1 kb).

The microscopically visible CNVs at the larger
end of the spectrum (1 Mb or larger) are almost
invariably associated with phenotypic
consequences that are likely to bring an
individual to medical attention. As we move
down the size spectrum, some genomic
variation is of striking clinical effect, but much
contributes to what we understand as normal
phenotypic variation: that which simply makes
individual humans different from one
another (Refs 14, 15). Some CNVs are also
likely to be entirely inconsequential (Refs 13,
16). As with variation at the level of the
individual nucleotide, many of these CNVs
provide the species with a reservoir of
adaptive potential for changing environmental
circumstances. CNVs, therefore, are involved
in every aspect of the phenotype, and whether
or not a given CNV is of clinical consequence
may be a function of time, place and other
factors. While acknowledging this breadth of
influence of CNVs, we limit the discussion for
this review to examples that are likely to be
relevant to medical practice now and in the
near future.

CNVs have become the genomic bridge to meld
disciplines of molecular genetics and cytogenetics
(Table 1). The light microscope revealed the first
gains and losses, starting with whole-
chromosome aneuploidies, and then partial
chromosome changes large enough to be
obvious with solid staining. By the mid 1970s,
the more indirect tools of molecular genetics,
such as Southern blot hybridisation, began to
expose quantitative DNA changes from the
small end of the spectrum. Later, the
hybridisation of molecular probes to human
chromosomes, particularly with fluorescence in
situ hybridisation (FISH), provided a potent
tool for detection of subtle segmental deletions,
duplications and rearrangements. With this
and, in tandem, the DNA sequencing efforts
of the Human Genome Project, segmental
changes started to be recognised as a basis for
many mendelian disorders as well as
contiguous gene syndromes (Ref. 17). The
emergence of array technologies, particularly

aCGH, facilitated widespread efficient scanning
of the genome for quantitative changes in a size
range that had not previously been accessible.
In 2003–2004, a few studies started to observe
complex CNV and structural variations at
multiple loci (Refs 18, 19, 20); however, the
Human Genome Project’s strong message of
99.9% human sequence identity between two
unrelated healthy individuals, with most
variation encompassed by SNPs, nonetheless
prevailed.

By 2004, it was apparent that CNVs are not just a
cause of disease, but are ubiquitous among
human genomes and an important aspect of
human variation (Refs 2, 3). Despite the
profound logistical challenges associated with
studying these complex genomic features,
progress has been swift. As whole-genome
sequences are becoming available for
comparison, we foresee greater opportunity for
fruitful analyses and applications in
personalised medical care.

Forms of CNVs
The gain or loss of genomic material is recognised
by comparison of reference and sample genomes
through hybridisation or sequence analysis, and
is described in relation to the reference (Fig. 1).
Simple CNVs take the form of deletions, or
tandem or insertional duplications. Sites at
which a greater degree of replication has
evolved allow a greater variety of copy number
alleles among haploid genomes, with the
potential for incremental variation in the related
individual phenotypes. Many CNVs, however,
show highly complex rearrangement of a
genomic region, reflecting a history of steps in
their generation, sometimes with both gain and
loss of material. CNVs may involve whole genes,
portions of genes, multiples of contiguous genes,
regulatory elements, or none of the above, and
the nature and extent of material that is deleted
or duplicated is undoubtedly important for the
phenotypic consequences.

The nearby genomic sequence may yield clues
as to how the CNV was generated (Ref. 21). Often,
a CNV is flanked by nearly identical blocks of
sequence, called segmental duplications or low-
copy repeats, or by Alu or LINE repetitive
elements, which have created the opportunity
for misalignment of DNA strands during
recombination. This process of nonallelic
homologous recombination (NAHR) (Ref. 22)
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was first suggested as the basis for duplications
causing Charcot–Marie–Tooth disease type 1A
(CMT1A) (Ref. 23) and subsequently for
recurrent changes associated with a wide array
of other genomic disorders (Ref. 24).

As more and more genomes are assayed,
evidence is accumulating for other mechanisms
that generate gains and losses. These include
nonhomologous end joining (NHEJ) (Refs 25,
26), a process that is important for generation
of B cell and T cell receptor diversity;
fork stalling and template switching (FoSTeS)
(Ref. 27), first invoked to explain nonrecurrent
rearrangements in Pelizaeus–Merzbacher disease
(Ref. 28) and more recently for duplications
and triplications of the MECP2 (methyl-CpG-
binding protein 2) gene associated with
developmental delay and mental retardation
in males (Ref. 29); and microhomology-
mediated break-induced replication (Refs 30,
31). Although these essentially nonrecurrent
mechanisms create a large diversity of CNV

breakpoints with complex architecture,
overlapping sets may be associated with some
common phenotypic features, reflecting shared
dosage-sensitive genes within the deleted or
duplicated segments.

Family studies may also be informative with
respect to the genesis of a CNV (as well as
assessing likelihood of pathogenicity). In
particular, an inversion in a parental chromosome
may predispose to a de novo unbalanced variant
in an offspring. The 17q21.31 microdeletion
syndrome is a notable example (Refs 32, 33), as
all currently reported cases result from a parental
inversion common in Europeans (Ref. 34). Sotos
syndrome in Japanese patients is usually due to a
paternal microdeletion, which is associated
with a paternal inversion (Ref. 35). Williams–
Beuren syndrome is often similarly associated
with predisposing parental inversions (Refs 36,
37) and other examples continue to emerge,
reinforcing the rationale for investigation of
parental samples when CNVs are found in

Forms of genomic copy number variation
Expert Reviews in Molecular Medicine © Cambridge University Press 2010

a  Deletion d  Higher-order replication: multiallelic CNV

e  Complex: inverted segment with duplication
and deletion at breakpoints

Reference genome

Reference genome

Reference genome

Sample genome

Reference genome

Sample genomes

Reference genome

Sample genomeSample genome

Sample genome

b  Duplication: tandem

c  Duplication: noncontiguous insertion

Figure 1. Forms of genomic copy number variation. Variations in sample genomes are depicted relative to a
reference genome. Colours represent different segments of DNA, such that segments of the same colourcontain
identical sequences. Schematics show(a) deletion, or loss, of sequence (brown and blue segments) as well as (b,
c) duplications of DNA segments. Duplications can be either (b) tandem, where segments (blue and purple) are
duplicated into the adjacent sequence, or (c) noncontiguous, where segments (brown) can be duplicated
distantly from the original sequence, even on another chromosome. The figure also shows schematics of
more complicated variation, including (d) higher-order replication, where a segment (purple) can be
duplicated several times and exist in multiple alleles, and (e) a complex rearrangement including an inversion
(change in orientation) of sequence associated with duplication (part of the green segment) and deletion
(part of the purple segment).
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clinical investigations, in order to properly counsel
about recurrence risk.

Relationship of CNVs and SNPs
SNPs are single base substitutions found
throughout the genome, each with a maximum
of four possible alleles, although common SNPs
usually have only two represented. They can
therefore be assayed and documented in binary
formats. CNVs are more complex than SNPs,
often by orders of magnitude. Either form of
variation can involve coding or noncoding
sequences, but whereas individual SNPs affect
a single site, individual CNVs may encompass
multiple contiguous genes. The difference in
complexity is even more important collectively,
because SNPs are discrete, but CNVs among
different chromosomes can be overlapping,
with variable DNA portions in common and
different endpoints. Furthermore, although
resolution for the assays used to determine the
extent (i.e. size) of CNVs has improved
dramatically, there are usually still limits to the
precision with which they are demarcated. As a
result, it is an important but challenging task
for databases to determine how to document
overlapping and nested sets of CNVs in a way
that is helpful for clinical research. Aside from
the variable size of a CNV segment, there are
aspects such as orientation and iterations to
accommodate. All in all, CNVs have many more
degrees of opportunity for creating variation.

The genetic relationship of CNVs and SNPs to
each other (linkage disequilibrium) has been
examined by determining the proportion of
CNVs that can be ‘tagged’ well by nearby SNPs
(Refs 13, 38). Such ‘taggability’ was shown to
depend on CNV allele frequency and local SNP
density, but not CNV size. Overall, the taggability
of biallelic CNVs examined was found to be
largely similar to that of frequency-matched
SNPs, except when rare CNVs were examined,
presumably because these events were recent in
origin or under negative selection. Interestingly,
deletions are found to be better tagged than
duplications, which may be a result of the
chromosomal dispersion of some duplications
and an increased frequency of reversions and
multiple new mutations at some duplications.

Prevalence and frequency of CNVs
The remarkable insight of the past five years has
been the extent to which CNVs are found as likely

explanations, or at least highly suspect candidates
for participation, in disease causation, and also
their prevalence throughout all genomes,
regardless of any association with pathology.
Now that researchers are aware of this form of
variation, searching for it has become very
fruitful. The Database of Genomic Variants
(DGV) (Refs 2, 39) documents variation found
in population control samples, with more than
29 000 CNVs recorded as of December 2009
(http://projects.tcag.ca/variation/) (Ref. 2).
Whether CNVs are more important or more
abundant than SNPs as sources of human
variation or disease is readily debated.
However, it is clear that as a result of their size,
CNVs collectively account for more of the
variable genome than do SNPs (Refs 16, 40).
The first two single human genome sequences
(Refs 40, 41) provided an opportunity to look at
the number of CNVs in individual genomes
[relative to the haploid composites of the
Human Genome Project (Refs 42, 43) and
Celera Genomics (Ref. 44)]. Recently, we found
that �1.28% of nucleotide variation between
the first individual human genome sequence
(Ref. 40) and the reference genome assembly
was accounted for by CNV, far exceeding the
0.1% encompassed by SNPs (C. Lee and S.W.
Scherer, unpublished).

The meaning of the term polymorphism in a
genetic context has become muddled, and its
use in describing structural variants might well
be avoided in the interests of clarity.
Descriptors such as ‘rare’ and ‘common’ in
reference to a CNV apply to the frequency of a
given variant rather than to the state of the
locus. By convention, a rare variant has a
frequency of less than 1% in a population, and
this threshold is useful (but should always be
specified). Many medical conditions that are
relatively common in the population are clearly
the result of heritable (and other) risk factors,
but the search for common genetic variants to
account for the majority of the heritability
underlying these phenotypes has generally
been unfruitful (Refs 45, 46), first at the level of
nucleotides and also with CNV analyses
(Ref. 13). What is emerging, however, is
evidence that multiple rare CNVs – de novo or
inherited – may contribute to the genetic
vulnerability for conditions such as
schizophrenia or autism (Ref. 47), and likely to
many other medically important conditions.
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This creates situations of great complexity to
analyse and interpret, and will continue to
challenge medical researchers for years to come.

Means of detection: evolution and
implications

Array CGH was the technology that disclosed the
large but submicroscopic CNVs, first with array
probes made from relatively large DNA
segments cloned in BACs. Significant
refinements have ensued, such as arrays made
with smaller oligonucleotide probes (for
enhanced resolution), and much greater
numbers of probes on each array (for denser
coverage of the genome). Arrays designed to
genotype SNPs are also exploited for dosage
information, by looking for stretches of these
markers with increased or decreased signal
intensity. Recent strategic modifications to SNP
arrays enhance the opportunity to discover
CNVs along with concomitant SNP genotypes.
The scope of these arrays may be genome-wide
(with breadth but with gaps in coverage),
targeted (for example to a specific gene or
region of interest) or semitargeted (such as only
probes for chromosome 21). Particularly for
clinical diagnostics, hybrid panels are being
developed, with some depth of genome-wide
coverage in addition to higher density of
regions known to harbour clinically relevant
CNVs (Ref. 48).

The alternative to hybridisation methods for
detection of CNVs is direct comparison of DNA
sequence data between reference and other
genomes. As methods for whole-genome
sequencing become more efficient and effective,
individual genome data will soon accumulate
in databases and this method of analysis will
undoubtedly predominate. The direct approach
to sequence comparison (Refs 10, 40, 41, 49, 50,
51, 52, 53, 54) will eventually allow a much
more complete and precise documentation of
genomic variation (Ref. 55), but there can be
technical obstacles that keep some genomic
regions obscured (Ref. 7). Nevertheless,
compared with array-based approaches,
analysis by, for example, massively parallel
sequencing can provide precise determination
of breakpoints and copy number, will detect
smaller alterations and copy-number-neutral
rearrangements and (of particular importance
for tumour analysis) can accommodate cellular
admixture (Ref. 56).

How CNVs can cause disease
Both SNPs and CNVs provide the basis for
phenotypic variability, which is essential for
adaptive evolution. They may also be
maladaptive in a particular environment, or
more globally. In humans, this creates one end
of a phenotypic spectrum recognised as disease
(Ref. 14), bringing individuals and families to
medical attention or seeking clinical
intervention. These dysadaptive changes may
directly involve genes, but not necessarily, and
their pathogenicity can result from quantitative
(dosage) or disruptive effects (Table 2; Fig. 2).
CNVs that are intragenic or involve a single
gene may have functional consequences that are
similar to point mutations, behaving much as
classical mendelian dominant or recessive traits.
Alternatively, CNVs overlapping genes can
result in fusion genes that may have phenotypic
consequences. More extensive CNVs comprise
multiple genes and underlie the ‘contiguous
gene syndromes’ or genomic disorders (Ref. 57).
Many other conditions seem to be related to
complex combinations of events at
noncontiguous loci.

Deletion of a genomic segment causes
hemizygosity for the deleted interval, which
may also result in haploinsufficiency for
dosage-sensitive gene(s). For example, a CNV
deletion of LCE3B and LCE3C (two late
cornified envelope genes) has been shown to be
a risk factor for psoriasis (Refs 58, 59). Copy
number gains, such as duplications, may create
imbalances due to excess product of the
duplicated genes, or, when intragenic, may alter
the structure of a product and thereby its
function. The dosage effects of CNVs can be
incremental, particularly when associated with
higher-order replication (e.g. due to unequal
crossover events), in which case, the relationship
between copy number and disease states may be
more subtle and related to thresholds (Fig. 2c and
e). Other studies are revealing certain phenotypes
to be associated with a more generalised increase
in CNVs. For example, the number of CNVs per
genome is strikingly increased in cancer-prone
individuals in families with Li–Fraumeni
syndrome (Ref. 60), and this observation has
prompted similar investigations for
neuroblastoma (Ref. 61) and many other
phenotypes. CNVs are manifesting the extent to
which genomes are unstable, and family studies
will allow determination of not just how
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Table 2. Spectrum of copy number variation genotypes and illustrative phenotypes

CNV genotype
feature

Illustrative phenotypes (gene symbol or locus) Refs

Single genes causing phenotype

Recessive
disruption or loss

Duchenne/Becker muscular dystrophy (DMD) 173, 174

Dominant
disruption or loss

Neurofibromatosis 1 (NF1) 175, 176, 177
Tuberous sclerosis (TSC1 or TSC2) 87, 133
Sotos syndrome (NSD1) 35, 178, 179
CHARGE syndromea (CHD7) 143

Dosage effect Pelizaeus–Merzbacher disease (PLP1) 28, 180
Early-onset Alzheimer disease (APP) 181, 182, 183
22q autism (SHANK3) 146, 184, 185, 186
Psoriasis (LCE3C/LCE3B) 58, 59

Position effect Aniridia (PAX6) 88, 187
Triphalangeal thumb–polysyndactyly

syndrome (ZRS)
188, 189

Crohn disease (IRGM) 126

Multiallelic
effects

Crohn disease predisposition (DEFB4) 190, 191
Systemic autoimmunity predisposition (FCGR3B) 124, 192, 193
Parkinson disease (SNCA) 194
HIV/AIDS susceptibility/Kawasaki disease

susceptibility/rheumatoid arthritis predisposition
(CCL3L1)

127, 128, 129, 130, 195

Multiple genes potentially involved in phenotype

Recurrent Velo–cardio–facial syndrome/DiGeorge syndrome
(22q11.2 deletion)

74, 75, 196, 197

Williams–Beuren syndrome/7q11.23 duplication
syndrome

36, 37, 67, 96, 98, 100,
198, 199

17q21.3 microdeletion/microduplication syndromes 32, 33, 34, 200, 201
1q21.1 neuroblastoma 61
15q13.3 microdeletion syndrome 105, 106, 107, 108, 109
1q41q42 microdeletion syndrome 202
16p11.2-p12.2 microdeletion syndrome 203
16p11.2 microdeletion/microduplication syndrome(s) 145, 147, 148, 149, 204
3q29 microdeletion/microduplication syndromes 205, 206

Nonrecurrent Potocki–Lupski syndrome [dup(17)(p11.2p11.2)] 207
WAGR syndromeb (11p13) 88

Heterogeneous Autism 47, 118, 144, 145, 146,
147, 208, 209, 210,
211, 212

Bipolar disorder 213, 214, 215
Schizophrenia 47, 89, 106, 113, 149,

214, 215, 216, 217,
218

Age-related macular degeneration 219, 220
Tetralogy of Fallot 90, 221

(continued on next page)
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commonly CNVs exist, but also how frequently
they occur de novo or change during
transmission between generations (Ref. 62) (Fig. 3).

Disruptive effects of CNVs result from a variety
of mechanisms. A breakpoint within a gene may
functionally disable it, but there might also be
impact due to disruption or disassociation of
promoters or other regulatory elements, or
effects on local chromatin structure (Refs 63, 64)
(Fig. 2d). These effects may be long-range; for
example, microduplication of a conserved
noncoding sequence about 110 kb downstream
of the BMP2 (bone morphogenic protein 2)
gene, with demonstrated enhancer function,
was recently shown to underlie brachydactyly
type 2A in two families (Ref. 65). A study of
gene expression in HapMap lymphoblasts
revealed more than half of the effects of
currently known CNV are caused not by
altering gene dosage, but by gene disruption or
by affecting regulatory or other functional
regions, some more than 2 Mb apart (Ref. 66).
Analysis of gene expression from within and
flanking the region deleted in Williams–Beuren
syndrome (Ref. 67) found evidence of
significant dysregulation of genes up to 6.5 Mb
beyond the deleted region, as well as a lack of
direct correlation with copy number for

expression of the deleted genes. Clearly the cis-
regulatory effects of CNVs can spread well
beyond their borders, and genes involved in
disease phenotypes may well lie outside of the
associated deleted or duplicated segments.

Pathogenicity of a given CNV can be difficult to
establish. In investigations initiated by an
abnormal phenotype in an individual or cohort
(phenotype first), the goal is to find a genotypic
explanation to enhance further studies (for
clinical research) or to make a diagnosis (in
clinical practice) (Fig. 4). The implications of
determining pathogenic potential become
greater when a CNV is found before a
phenotype is known (genotype first), and
predictions are expected, upon which
interventions may be taken – prenatal
diagnosis being, of course, the circumstance of
greatest concern in this respect. Various
characteristics of pathogenic versus benign
variants are outlined in Table 1 of Ref. 8; major
considerations involve validation to confirm the
chromosomal location and extent of the
variation, family studies to determine whether
others share the variant genotype or it is de
novo, comparison with precedents documented
in databases of healthy or affected individuals
[such as DGV or DECIPHER (Ref. 68),

Table 2. Spectrum of copy number variation genotypes and illustrative phenotypes
(continued)

CNV genotype
feature

Illustrative phenotypes (gene symbol or locus) Refs

Buffering or
modifier effects

Thrombocytopaenia absent radius (TAR) syndrome
(1q21.1)

77, 78

Spinal muscular atrophy (SMN1/SMN2) 79, 222, 223

Epigenetic
effects

Silver–Russell syndrome (11p15 duplication) 80

Somatic
mosaicism

Rubinstein–Taybi syndrome (CREBBP, EP300) 84, 85, 86
Tuberous sclerosis (TSC1, TSC2) 87
Aniridia (11p13) 88

Somatic
instability

Li–Fraumeni syndrome 60, 133
Tuberous sclerosis 133
Neurofibromatosis 224

aColoboma, heart anomaly, choanal atresia, retardation, genital and ear anomalies.
bWilms tumour, aniridia, genitourinary anomalies, mental retardation.
Abbreviations: CNV, copy number variation; HIV/AIDS, human immunodeficiency virus infection and/or acquired
immune deficiency syndrome. Full versions of gene names can be found on the HUGO Gene Nomenclature
Committee website (http://www.genenames.org/).
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Ways by which copy number variation can cause disease
Expert Reviews in Molecular Medicine © Cambridge University Press 2010

Gene CN = 2

Gene CN = 1

Normal phenotype Normal phenotype

Deletion

CNV loss removes regulatory element

CNV gain disrupts regulatory element

Total gene dosage Total gene dosage

Duplication

No functional genes:
abnormal phenotype

Gene CN = 3Functional CN = 1 Functional CN = 1

Whole-gene or partial intergenic deletion

a  CNVs and single genes

b  CNVs and recessive alleles

c  CNVs and contiguous genes

d  Regulatory effects

e  Incremental effects of dosage-sensitive genes

Whole-gene or partial intergenic duplicaton

3

4

5

0

1

2

Figure 2. Ways by which copy number variation can cause disease. (See next page for legend.)
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respectively] and knowledge of the genic content
of the variant segment. Thus, a CNV that is
inherited from a healthy parent or found in
healthy family members, or that overlaps
variants established in the DGV or does not
involve genes of known clinical significance, is
more likely to be phenotypically benign. A
CNV that is shared by affected family members,
or is documented in association with clinical
phenotypes [found to be a risk factor using
relative risk (RR) and/or odds ratio (OR) (Box
1)], or is gene-rich, particularly if any genes
involved are documented in the morbid map of
Online Mendelian Inheritance in Man (OMIM)
(http://www.ncbi.nlm.nih.gov/omim/), is more
likely to be of pathogenic consequence. It is
important to note that the characteristics
described here rarely allow a definitive
determination of whether a given CNV is or is
not the explanation for a phenotype (for
phenotype-first investigations) or will cause a
particular phenotype (for genotype-first
studies). Importantly, additional functional
studies would need to be conducted to
investigate pathogenicity of CNVs and
understand the relationship between the
genotype and the phenotype. As with most
areas of medicine, accurate annotation of the
cause and effect of genomic variation requires a
combination of analyses, experience and expert
judgement for interpretation.

Aside from its content, the overall genomic
context of a particular CNV is critical to its
phenotypic consequences, and this knowledge
is still in its infancy. In a very simple example, a
CNV that deletes a dosage-insensitive gene may
be completely recessive, but if the remaining
allele happens to carry a functional mutation,
then a phenotype may ensue (Fig. 2b). Research

may eventually identify specific pathogenic
combinations of CNVs that otherwise might be
individually benign (Ref. 8), or the converse:
certain CNVs that are pathogenic unless a
compensatory element is present elsewhere in
the genome, epigenome or environment to
reduce penetrance. Interpretations of this kind
will be enhanced as whole-genome sequence
analysis becomes the norm. The apparent lack
of phenotype associated with an isolated CNV
does not rule out its pathogenic potential in
another genomic context. Although a CNV that
has arisen de novo is more likely to be
pathogenic than one that has escaped selection
in a family or population, this is again
probabilistic. This assertion is due to the fact
that inherited CNVs are present in at least one
reproductively viable individual, while de novo
CNVs are present in a single individual and
may not have been subjected to negative
selection. However, this is not a definitive
distinction between these classes of CNVs.
Finally, CNVs of pathological consequence are
more likely to be large (encompassing many
genes and/or regulatory sequences), and to
involve loss, rather than gain, of genomic
material (although early data are somewhat
biased because of the relative ease of
ascertainment of deletions and larger segments)
(Ref. 13).

Means of ascertainment shapes findings
Ascertainment bias is an inevitable component of
research, and acceptable as long as it is
acknowledged and accounted for. The
remarkable aspect of CNVs has been not so
much discovery of their association with
genomic disorders as their ubiquity throughout
genomes of general populations. To study

Figure 2. Ways by which copy number variation can cause disease. (See previouspage for figure.) This figure
illustrates mechanisms underlying quantitative (dosage) or disruptive effects of copy number variation (CNV).
Genes are indicated by coloured boxes, while promoters are depicted by coloured ovals. The direction of
transcription is indicated by bent arrows above the genes. (a) CNVs can change the number of functional
gene copies, through whole or partial deletions or duplications of genes. (b) A recessive mutant allele
(indicated by red marker) can be unmasked by a deletion, which causes the loss of both functional copies of
the gene. (c) Contiguous gene deletions can also eliminate (green) or disrupt (blue and red) functional genes;
additionally, the mechanisms causing contiguous gene deletions can also cause a reciprocal duplication.
These duplications can disrupt a dosage-sensitive gene (blue) or increase the copy number of a dosage-
sensitive gene (green), which can cause disease. (In this example, another gene, shown in red, has partial
duplications of its 3′ end.) (d) CNVs can also cause disease when deletions or duplications interrupt control
regions that regulate juxtaposed and distant genes. Lastly, (e) CNVs can have an incremental effect when
the copy number of dosage-sensitive genes is modified.
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cause-and-effect relationships and to put
knowledge to use for clinical practice, we need
to compare the prevalence of CNVs between
defined cohorts and nonclinical samples. The
developing means to undertake relatively
hypothesis-free and fully comprehensive data
collection has begun to provide unprecedented
opportunities for such analysis (Fig. 4). For a
fully genotype-first approach, data must be
gathered from an unselected cohort, such as all
newborns, followed by phenotypic comparison
of all those who share particular CNV
genotypes. A phenotype-first approach involves
collecting a cohort with a particular clinical
presentation or diagnosis, and looking for
CNVs that are more prevalent among them,
relative to those without the phenotype.
Genotyping can be genome-wide (hypothesis-
free), or a targeted search around a candidate
locus [compare, for example approaches of
Miller et al. (Ref. 69) and Sharp et al. (Ref. 70)
with respect to the 15q13.3 deletion syndrome].
Many current studies are somewhat
intermediate, in that they involve samples
referred for analysis because of some clinical
finding, and research outcomes can be strongly
influenced by reasons for such referrals – such
as developmental delay, behaviour issues,
dysmorphic features and so on. A recent
commentary (Ref. 71) compares early
phenotype-led and more-recent CNV-led
studies (Refs 72, 73) that focus on phenotypes

Complexities of de novo and inherited 
copy number variation
Expert Reviews in Molecular Medicine 
© Cambridge University Press 2010

3

2 4

3

b  No de novo changes; CNV ‘loss’ and ‘gain’ 
in offspring relative to parents

a  Simple de novo loss (deletion) and 
gain (duplication)

c  Complex multilocus CNV: de novo and 
transmitted changes

 4 

 4 4 

1 3

2 2

5 5

37

Figure 3. Complexities of de novo and inherited
copy number variation.

Figure 3. Complexities of de novo and inherited
copy number variation. This figure uses a
schematic of chromosomes (blue, paternal; pink,
maternal) to illustrate transmission of copy number
variation (CNV) to offspring. The gene copy
number is given below each chromosome pair.
Both de novo (indicated by curved arrow) and
transmitted changes in CNV copy number are
shown. In (a), single de novo deletion and
duplication are shown within the maternal
chromosome. In (b), no de novo changes are seen,
but in each case the offspring has a different copy
number than the parents. In the case of the
multiallelic variant shown on the right, offspring
have the same gene copy number but different
gene configurations. Finally, in (c), both de novo
and transmitted changes in copy number are
combined to show a complex multilocus CNV. In
this example, the offspring shows no change in
copy number, despite de novo deletion.
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associated with deletions and duplications at
1q21.1, with markedly different outcomes from
the various approaches – what you find
depends largely on what you look for.

Penetrance and expressivity of CNVs
A mutant gene is described as fully penetrant
when all individuals with the mutation express
the related phenotype, whereas reduced
penetrance refers to a situation in which some
individuals with a given genotype show
phenotypic evidence of it and some do not. To
some extent, it is one end of a spectrum of
variable expression of the phenotype, and the
concepts are inter-related. They apply also to
observations about the much more complex
genotypes involving CNVs and their associated
phenotypes, and examples span a wide range

of relationships. In some situations, there is a
consistent relationship between the CNV
genotype and at least a core phenotype, such
that all individuals with (for example) a given
deletion share a definable phenotype, and every
individual with that phenotype has a similar or
overlapping deletion. Clinical examples of this
kind include Williams–Beuren syndrome,
Prader–Willi and Angelman syndromes,
and the 17q21.31 deletion syndrome. Other
CNVs, such as the most common human
microdeletion – 22q11.21 – are highly penetrant
but with a range of phenotypic expression so
broad as to encompass more than one clinically
designated syndrome (Refs 74, 75). A nearby
multiply ascertained microduplication was
associated with such disparate findings as to
‘obfuscate the clinical relevance of the

Approaches to clinical investigation
Expert Reviews in Molecular Medicine © Cambridge University Press 2010

Hypothesis-driven Hypothesis-free

Cohort with a particular phenotypePhenotype-
driven

Genotype-
driven

Patient with a phenotype

Purpose: discovery Purpose: diagnosis

Purpose: discovery 

Cohort with a particular genotype

Search for phenotype elements in common

Purpose: prognosis

Patient with a genotype

Predict clinical outcome

Clinical research Clinical practice

Search for variants in
candidate genes

Genome-wide search
(e.g. GWAS)

Hypothesis-driven Hypothesis-free

Search for particular
variant to confirm

suspected diagnosis

Scan for any variants –
assess likelihood of

a relationship

Targeted scans
(e.g. for a specific

locus)

Global scans
(e.g. whole-genome

scan)

Targeted genotype
(e.g. family study)

Global genotype
(e.g. whole-genome 

scan)

Figure 4. Approaches to clinical investigation. This figure breaks the different approaches for clinical
investigations into phenotype-driven and genotype-driven approaches. These are further broken into
investigations involved in clinical research, aimed at discovery, and investigations involved in clinical
practice, aimed at diagnosis or prognosis. Flow charts illustrating different investigations to discover and
analyse copy number variation are included in each category. The means of CNV ascertainment, be it
phenotype-driven or genotype-driven, can significantly influence the interpretation of disease associations.
Abbreviations: CNV, copy number variation; GWAS, genome-wide association study.
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molecular data’ (Ref. 76), and the 1q21.1
microdeletions are said to be so variable as to
‘elude syndromic classification’ (Ref. 73). Other
conditions, notably psychiatric disorders
including autism, have a more nuanced
connection to the various CNVs emerging as
factors that are significantly associated but not
independently causative for the phenotype
(Ref. 47). Evidence of reduced penetrance
abounds in these families with inherited CNVs,
although retrospective evaluation of apparently
unaffected parents or other relatives sometimes
reveals subtle features of the proband’s
phenotype.

Buffering or modifier effects have been
described for the thrombocytopaenia absent
radius (TAR) syndrome (Refs 77, 78), for which
a deletion at 1q21.1 is necessary but not
sufficient to cause the syndrome, and for spinal
muscular atrophy (Ref. 79), where the impact of
an intragenic deletion of the SMN1 (survival of
motor neuron 1, telomeric) gene may be
tempered by normal variation in the number of
gene copies of SMN1 and the closely related
SMN2. Epigenetic effects may also influence
expression of the phenotype, as exemplified
with Silver–Russell syndrome (Ref. 80) and
possibly developmental verbal dyspraxia
(Ref. 81).

Germline and somatic CNVs
Genomic alterations, including CNVs, have one of
four origins: they can be (1) inherited from a
parent with the same germline variant, (2)
inherited from a parent with germline
mosaicism for the same variant, (3) arise de
novo from a parental germ cell or (4) arise de
novo in a somatic cell (Fig. 3). The latter
category is especially relevant to the field of
cancer genomics because of generalised
genomic instability, and clonal expansion and
evolution of tumour cells. Somatic mosaicism
for CNVs has also been noted in monozygotic
twins (Ref. 82) and in different tissues of an
individual (Ref. 83), as well as in diseases such
as Rubinstein–Taybi syndrome (Refs 84, 85, 86),
tuberous sclerosis (Ref. 87) and aniridia
(Ref. 88). In clinical genetics applications, it is
important to distinguish among these
categories, both for clinical research and to
predict outcomes for newly ascertained
probands and recurrence risks for families.
Among de novo events, some are truly random,

but, in contrast to single-base mutations, the
structural variants are often associated with
vulnerable genomic regions in which similar
CNVs tend to recur. These variants can, in turn,
beget more genomic instability with disrupted
chromatin structure or opportunities for
misalignment.

Enigmas in CNV genotype–phenotype
relationships

Some approximately similar CNVs have emerged
in the context of various different complex
phenotypes. Duplications of 17p12 cause
CMT1A and the reciprocal deletion is
associated with hereditary neuropathy with
liability to pressure palsies (HNPP), but the
region is also implicated in schizophrenia
(Ref. 89). Deletions at 1q21.1 also emerged in
schizophrenia phenotype-driven studies
(Ref. 89), but CNVs of this region are found
enriched in association with phenotypic
features such as micro- or macrocephaly, mental
retardation, cardiac anomalies or autism
(Refs 72, 73). Furthermore, family studies
demonstrate that the same CNVs can be
without apparent consequence in some
individuals.

Some ostensibly similar phenotypes are
associated with various different genotypic
findings, each of a magnitude to elicit suspicion
with respect to pathogenicity. Neurological and
psychiatric conditions seem to predominate as
examples (Table 2) but the cardiac defect
known as tetralogy of Fallot has recently
provided similar genotypic characteristics
(Ref. 90).

Syndrome, meaning ‘running together’,
describes clinical entities that involve
constellations of features from different
systems. Certainly there are examples of single-
nucleotide mutations that have pleiotropic
effects and create multisystem phenotypes, but
CNVs are more likely to do so because of their
potential to compromise multiple genes, with
concomitantly widespread effect. As more
information emerges about such genotype–
phenotype relationships, we are struck by the
enigma that some classical syndromes,
Williams–Beuren syndrome for example, have a
relatively consistent genotype and phenotype
presentation, whereas the highly recognisable
phenotypic constellation of Down syndrome
can result from CNVs ranging from full trisomy
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21 to almost any portion thereof. At the same time,
some recurrent CNVs have been discovered in
clinically unselected cohorts (such as
microdeletions of 1q21.1, described above) that,
despite considerable genotypic consistency,
have no recognisable consistent ‘running
together’ of features.

Clinical exemplars
The ability to undertake whole-genome scans by
arrays or sequencing has provided the
opportunity to discover individual disease-
associated CNVs in the absence of any prior
hypotheses as to their chromosomal location.
This holistic approach is also revealing
combinations of CNVs, both collectively and
within individuals, that may become the key to
understanding complex phenotypes such as
autism, bipolar disorder, schizophrenia,
macular degeneration, or tetralogy of Fallot
(Table 2). A concept is emerging of CNV load,
as cohorts or individuals are recognised to have
a higher than average number of CNVs, rather
than specific aberrations in candidate genes.
Li–Fraumeni syndrome provides a striking
prototype (Refs 60, 91). Below, we describe
representative examples of the effects of CNVs
in clinical conditions.

Down syndrome
Down syndrome is something of a metaphor for
the progress of CNV discovery in humans. When
we consider CNVs in the broader definition to
include microscopic variants, then trisomy 21
was arguably the first to be discovered (Ref. 1)
(Table 1). Whole-chromosome aneuploidies
have different underlying mechanisms than the
submicroscopic variants, but the phenotypic
consequences are not categorically distinct;
rather, they are part of a continuous spectrum
in this respect. After recognition of
nondisjunctional trisomy 21, rearrangements
such as Robertsonian translocations were found
as the basis for duplicated long arms of
chromosome 21, and then microscopic partial
trisomies, followed by those detectable by FISH.
Eventually, arrays have been used to fine-
tune the extent of duplicated material with
higher-resolution mapping, and to study
correlates of specific features of the phenotype
with particular genes or regions (Refs 92, 93).
A very early study of the reciprocal deletion
syndrome (i.e. partial monosomy 21) made

some prescient observations concerning gene-
dosage effects: ‘Our findings do add weight to
the hypothesis that genetic control of enzymes
is not a simple gene-dosage affair, but a
complex interaction of structural, regulator,
and modifying genes which may be located
at various loci on different chromosome
segments.’ (Ref. 94).

Williams–Beuren syndrome and its
reciprocal 7q11.23 duplication syndrome
Williams–Beuren syndrome is one of the
classic genomic disorders – a contiguous
gene syndrome associated with a recurrent
microdeletion of 7q11 that is strikingly
consistent. The recurrence is mediated by
flanking segmental duplications and by a
relatively common inversion of the region
(carried by up to a third of parents of affected
individuals and 5% of the general population),
which predisposes to aberrant meiotic
recombination in parental chromosomes, with
pathological outcomes in the offspring (Refs 36,
95, 96). The deletion phenotype is a relatively
predictable syndrome. As anticipated for the
CNVs mediated by NAHR, by which deletion
outcomes should be matched by reciprocal
duplication products (Refs 22, 97), the
complementary duplication syndrome was
eventually recognised (Refs 98, 99, 100). Its
clinical phenotype is distinct from that
associated with the deletion, and, particularly
with respect to expressive speech ability, is in
striking contrast, suggesting some effects of
gene dosage. As discussed, the impact of the
Williams–Beuren microdeletion extends to
genes well beyond the borders of the aberrant
segment (Ref. 67).

15q13.3 microdeletion and duplication
phenotypes
This recurrent CNV locus has been recognised only
recently, by aCGH (Refs 70, 101), but is repeatedly
coming to attention from a variety of study groups.
It illustrates the challenges in assessing
pathogenicity of these variants, and the impact of
ascertainment. The region is adjacent to that
deleted in Prader–Willi and Angelman
syndromes (PWS/AS), which together feature a
series of duplication blocks demarcated by
recurrent breakpoints (BP1 to BP6) (Refs 102, 103,
104). Just distal to the PWS/AS region is the 1.5
Mb segment BP4–BP5, which is found to be
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deleted or duplicated in an increasing number of
individuals ascertained through routine and
targeted clinical investigations, occasionally as
part of a larger CNV (Refs 105, 106, 107, 108,
109). Clearly the region is enticing, drawing
interest from several clinical directions, but
observations are disparate. Among controls,
deletions have been mostly limited to a handful
of Icelandic individuals (Ref. 106), but several
studies that included family investigations have
discovered deletions or duplications in parents
or other relatives who do not share the probands’
phenotypes (Refs 69, 110, 111, 112), indicating
that deletion of this region is not necessarily
pathogenic, but also not inconsequential.

Even from relatively untargeted clinical
investigations (Refs 69, 70, 110, 112),
details of phenotypes associated with the
15q13.3 CNVs are skewed by the nature of
the referral base – for example, predominantly
developmental delay, dysmorphic features,
multiple congenital anomalies and behaviour
issues. Deletions of 15q13.3 were found in up to
0.3% of such referrals; duplications were rarer.
When parental samples were available, the
majority of these probands’ CNVs were found
to be inherited.

In studies of more clinically defined cohorts
(phenotype-first), deletions of the BP4–BP5
segment (or more) were rarely, but significantly,
associated with schizophrenia (Refs 106, 113) or
idiopathic generalised epilepsy (Ref. 114);
deletions or duplications of the same segment
appear with tantalising frequency when autism
or related features such as expressive language
delay are part of the phenotype (Refs 69, 110,
111, 112). Despite relative consistency of the
CNV genotypes found across a broad range of
studies, the phenotypes of these individuals
vary greatly. With current evidence, the finding
of a CNV involving 15q13.3 in a clinical
investigation would raise concern, but would
probably be insufficient to explain or predict
any particular phenotype. Such observations of
uncertainty will consume a great deal of health
professionals’ time for the foreseeable future
(Refs 115, 116).

Chromosome 1q21.1 CNV phenotypes
Evidence of a potentially contiguous gene
syndrome at 1q21.1 was first noted in a targeted
candidate gene study of a cohort with
congenital heart defects (Refs 16, 117). Later,

genome-wide phenotype-first surveys detected
significant association of similar duplications
with autism (Ref. 118) and deletions with
schizophrenia (Refs 106, 113). Using the
complementary genotype-first approach, two
large studies (Refs 72, 73) started with relatively
unselected clinical referral cohorts to ascertain,
through data from genome-wide or targeted
assays, large numbers of individuals with
CNVs involving 1q21.1 and then to document
the scope of associated clinical phenotypes.
Both found large (�1.35 Mb) recurrent
deletions of the region as well as reciprocal
duplications, but other than some relationship
between CNV dosage and micro- or
macrocephaly (Ref. 72), there was such a wide
range of clinical presentation among index
cases that no common manifestations of a
syndrome could be recognised. Furthermore,
although deletions and duplications of this
region are clearly rare in the general population
(Ref. 119), family studies for those ascertained
in the clinical cohort showed many CNVs to
have been inherited from parents with milder
or absent features relative to those of their
respective offspring. Similar to the situation for
15q13.3, and undoubtedly for many regions yet
to be characterised, the finding of a CNV in this
region would raise legitimate suspicion, but,
with current information, would be sufficient
neither to explain nor to predict a particular
clinical outcome.

Attention has been drawn recently to a smaller
previously known CNV (Ref. 120) just distal to the
1q21.1 region, for which the deletion allele is
common (9.1%) in controls but significantly
more prevalent (15.6%) among cases with
neuroblastoma (Ref. 61). Cis and trans effects
appear to be involved as part of dosage effects
on susceptibility, and scrutiny as a result of the
initial observation led to discovery of a novel
transcript of interest from within the deletion
interval.

The 1q21.1 region is flanked proximally by
another segment of 200 kb that is deleted in all
individuals with TAR syndrome and not in
controls studied to date (Ref. 77). In at least two
families (Refs 77, 78), the microdeletion was
inherited from an unaffected parent, indicating
that the CNV is necessary but not sufficient
to cause the syndrome. At present, therefore,
this CNV is a helpful diagnostic tool in the
context of other clinical findings, but is not
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in itself predictive of the TAR phenotype.
We also note that larger deletions of 1q21.1
could also influence risk for neuroblastoma
(Ref. 61) and that chromosomal inversion
encompassing the 1q21.1 region has also been
observed (Ref. 16).

Immunity and autoimmunity
Early observations on the impact of CNVs was that
they are particularly prevalent among genes that
have a role in our interface with the environment
(Refs 121, 122, 123), such as those that are part
of the immune system. Various gene families,
such as the major histocompatibility locus,
immunoglobulins, chemokines, receptors,
defensins and interleukins, might reflect CNV
events throughout evolution, but are also
characteristically polymorphic with much of the
variation contributed by CNV for individual loci.
By contrast to simple deletion variants, these
sites are typically multiallelic, reflecting a wide
range of copy number and creating particular
challenges for discerning their incremental effects
and specifying exact copy numbers, but new
approaches have been reported (Refs 124, 125).

Disorders with an autoimmune component,
such as psoriasis (Ref. 59), systemic lupus
erythematosus (SLE), type 1 diabetes, and
rheumatoid arthritis, are all beginning to yield
some of the mystery of their respective causes
as more refined data emerge from these highly
variable genomic sites. Interestingly, a recent
discovery found that a polymorphic deletion
variation upstream of IRGM (immunity-related
GTPase family, M) was associated with Crohn
disease (Ref. 126).

Autoimmunity is a maladaptive consequence
of an adaptive immune system, and variation at
some of the relevant loci can have a spectrum
of clinical consequences. For example, a lack of
the chemokine receptor CCR5 or an excess of its
ligand CCL3L1 appears to be protective against
human immunodeficiency virus (HIV) infection
and acquired immune deficiency syndrome
(AIDS) (Refs 127, 128, 129), but at the same time
is associated with an enhanced inflammatory
and autoimmune response, predisposing to
rheumatoid arthritis (Ref. 130). This example
reminds us that these variants do not act in
isolation but as part of functional networks, and
powerful analytical tools will be needed in
order to interpret clinical data in the
appropriate context.

Given the weak effect of HLA (human
leukocyte antigen) matching to predict acute
organ rejection in lung transplantation, a recent
study (Ref. 131) considered other genetic risk
factors – in particular, the chemokine ligand
CCL4L1, genes for which are within a CNV
region on chromosome17q12 that also contains
CCL3L1. Copy number for CCL4L1 was
significantly greater in patients who
experienced acute rejection, and even greater in
those with multiple rejection episodes than
among those who did not reject their allograft.
Another study (Ref. 132) found a similar result
when looking at mismatches for the
homozygous deletion of UGT2B17 between
donors and recipients, which increased the
likelihood of graft-versus-host disease. Whether
these observations are a direct effect of gene
dosage, or a proxy for nearby variable elements
is not yet clear, but undoubtedly they will spark
a flurry of research activity.

Modifier effects in Li–Fraumeni syndrome
This familial cancer syndrome is caused by
mutations in the TP53 gene (encoding p53), but
the breadth of variation in severity, onset and
types of tumours, even among those who share
the same TP53 mutation, prompted a genome-
wide search for evidence of modifier loci.
Rather than specific genomic sites, the number
and size of CNVs was found to be markedly
increased in TP53 mutation carriers,
particularly those with cancer (Ref. 60). The
instability associated with these CNVs might in
turn be the precursor to somatic changes and
tumour formation. Information about the CNV
load in TP53 mutation carriers may provide an
adjunct for risk prediction and counselling
(Ref. 133).

A specific modifier was found within the TP53
gene, comprising a common (�10–30%) 16 bp
microduplication in intron 3 (TP53PIN3), the
presence of which is associated with an average
onset of tumour diagnosis 19 years later than in
mutation carriers without the duplicated
variant (Ref. 134).

Two recent reports (Refs 135, 136) describe
deletions of 17p13.1 encompassing the TP53
gene found from whole-genome scans in three
patients with mental retardation and
dysmorphic features. In addition to providing a
likely explanation for the referring clinical
features, they predicted a Li–Fraumeni
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phenotype for which appropriate risk
management could be recommended. These
add to a larger series found from among
general clinical referrals of CNVs that involve
genes with probable predisposition to various
cancer syndromes (Ref. 137).

Discussion: clinical implications and
applications

How are CNVs changing clinical practice?
The most conspicuous effect of the discovery of
CNVs has been in laboratory medicine. There
are many more diagnoses being made, but the
distinction between classical cytogenetics and
molecular diagnostics has become blurred
(Ref. 138) as the gap in resolution of analysis is
taken up with knowledge of this prevalent form
of variation. New laboratory tools and skills are
being invoked, and practitioners must broaden
their expertise to encompass the entire
spectrum of variation. The very particular skill
of reading a traditional karyotype is rapidly
being usurped by diagnostic arrays with less
subjective interpretation, enhanced resolution
and competitive costs. From the other end of
the spectrum, awareness of interactions among
single-nucleotide alterations and structural
variations is increasing demand for follow-up
diagnostic assays and enhancing the
expectation for more comprehensive analysis.
As whole-genome sequencing eventually
becomes routine, the needed interpretive skills
will change yet again.

New awareness of the widespread nature of this
form of genomic variation reminds us of the
ongoing need for healthy scepticism in
diagnostic and predictive analyses – the
simplest example being that apparent
homozygosity for a SNP may in fact be
hemizygosity, where both a SNP and a deletion
are present in combination, but on different
haplotypes. Only the haplotype containing the
SNP would be detected by traditional
genotyping assays, leading to the
misclassification of the allele as homozygous.
For example, in one case, a patient with cystic
fibrosis (autosomal recessive) was apparently
homozygous for the F508del mutation. This
was unremarkable until the mother’s sample
tested negative for the same mutation;
subsequently, she and the newborn were found
to share a large deletion that encompassed the
same exon (Ref. 139). In another, more complex

example, a newborn with strong clinical
evidence of cystic fibrosis was negative for all
standard sequence-based mutation screens, and
only with quantitative assays did the laboratory
find large intragenic deletions on each of the
patient’s CFTR alleles (Ref. 140). Recent
evidence from global newborn screening
programmes demonstrates that larger intragenic
deletions of CFTR may account for 1–3% of
mutant chromosomes (Ref. 141), or more, as
awareness permeates and appropriate screening
assays for CNVs are invoked (Ref. 142).

For clinicians, CNVs have opened up analytical
potential for clinical cases that had previously
eluded diagnosis. This potential is creating a
huge demand for laboratory tests that are still
expensive, and very time-consuming to
interpret. Nonetheless, when informative, such
results may allow many patients and families
the satisfaction of an explanation for their
observed challenges, sometimes after years of
fruitless investigations. These additional tools
may allow earlier diagnosis for conditions, such
as autism, for which early intervention in some
individuals may be particularly beneficial.

Attention is drawn to genes of interest by virtue
of their location in a newly recognised CNV [e.g.
CHARGE syndrome (Ref. 143)], and this is
opening a floodgate of research potential into
complex disorders. Eventually, of course, we
hope to find therapeutic prospects among such
genes, and awareness of their involvement in a
given phenotype is the first step. Particularly
because of the tendency of larger CNVs to
encompass contiguous genes, we are gaining
insight into syndromology, with some
improvement in explaining the spectrum of
variation and the degree of consistency or
inconsistency among phenotypic features. As
illustrated by CNVs such as at 1q21.1 and
15q13.3 (discussed in this review), and more
recently at 16p11.2 [in autism (Refs 144, 145,
146, 147), developmental delay (Ref. 148),
schizophrenia (Ref. 149) and obesity (Ref. 150)],
this opportunity can also be a Pandora’s box.
How CNV results are applied to research or
medical decision-making needs to be weighted
according to the circumstances where it is
observed. For example, the relevance of the
results will differ if a CNV is uncovered in (1) a
known disease gene, (2) in a high-risk setting
(such as during prenatal complications), (3)
through a targeted list (such as an individual with
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a family history of a disease or as confirmation
of an existing clinical diagnosis), and (4) in a
universal population screen (Refs 14, 47).

Conclusion: research in progress and
outstanding research questions

Five years since the first rudimentary scans drew
our attention to the widespread presence of
genomic CNVs, they have become the focus for
a myriad of surveys, both genotype- and
phenotype-driven. Compendia such as the DGV
are being refined and updated regularly. The
apparent size of CNVs is decreasing as tools
with enhanced resolution allow more precise
definition of breakpoints, and annotation of
precise copy number is becoming feasible
(Ref. 151). The complexity of these data makes
them somewhat recalcitrant, and the means for
documentation in an unambiguous and
functional way has been significantly
challenging. Even more daunting, however, is
annotation of the phenotypes of individuals
who do and do not carry these variant
genotypes, and finding ways to merge the
plethora of disparate observations.

In addition, as technologies advance, the ability
to detect CNVs in an individual genome increases.
This is evidenced by recent diploid genome
sequencing projects that find many CNVs that
are unique to an individual (Refs 40, 41, 49, 50,
51, 52, 53, 54). Many of these CNVs are large
and represent potentially pathogenic variation.
As the cost of genome sequencing decreases, the
prevalence of such studies will increase.
Importantly, sequencing technologies have the
potential of combining both SNP and CNV
detection strategies into a single analysis, which
should increase the power to detect variation
that is related to phenotypes and disease.

As the HapMap project followed quickly on the
heels of the first consensus genome sequence, so
too has considerable effort moved to the study of
how these structural variants are differentially
distributed among global populations (Refs 13,
16, 152, 153, 154, 155, 156, 157). How does
knowledge of such distributions influence the
clinical interpretation of data? Can this
information tell us anything about different
environmental pressures to which these
genomic alterations may have provided the
means for adaptation? Are the phenotypic
consequences different under different
environmental circumstances?

Much has already been learned about
mechanisms that underlie these genomic
rearrangements, and the extent to which they
are recurrent or randomly generated, inherited
or de novo, and stable or unstable (Ref. 158).
This has done little, however, to enlighten us
about what determines whether a given CNV
will have any pathogenic consequences, or will
be associated with a pattern of features that
might be recognised as a syndrome.

Major challenges
The connections between genomic observations
and clinical implications are not
straightforward, and involve complex network
relationships. Single-gene disorders will
continue to present themselves for medical
attention, but the more prevalent and
problematic conditions – heart disease, cancer,
psychiatric and behavioural disorders,
developmental delay, dysmorphic syndromes –
require a shift in mindset from genetic-based to
genomic-based. Candidate gene searches within
a CNV (or group of CNVs) will need to
progress to analyses of added dimensions,
including gene and protein pathways and
networks, for which sophisticated
bioinformatics tools will be essential. Moreover,
a more complete understanding of CNV and
SNPs will be required to better empower
genome-wide association studies (GWASs) of
disease.

In our recent study, we explored whether
CNVs might be plausible candidates for known
complex trait associations from SNP-based
GWASs. However, we found that CNVs might
explain less than 5% of previously reported
GWAS hits, suggesting that common CNVs are
not likely to account for a large part of the
‘missing heritability’ (Ref. 45) from complex
traits. These results also emphasise the need
to consider all classes of variation (CNVs,
other structural variants and SNPs, both
common and rare) in order to maximise power
to detect causal variation in disease association
studies.

As formidable as data gathering may be for
these CNVs of higher-order complexity,
interpretation is far more of a challenge.
Examples cited in this review provide some
illustration of why particular caution is needed
in moving between research findings and
applications in a clinical context, in particular
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when studying complex disease. More studies
examining CNV mutation rates across
chromosomes and the effects of such events on
gene dosage and the functional consequences
would be beneficial. Undoubtedly, with
accumulation of much more information,
patterns will emerge to make some sense of
what can currently seem, for some CNVs and
phenotypes, like an uninterpretable mass of
raw data.

We will be challenged to move beyond the
obvious benefit of CNVs for explaining
(diagnosing) various phenotypes to their utility
in prediction and prognosis. A difficulty is that
the plethora of CNV data can be provided as
information, but without knowledge, and
healthcare providers may be burdened for some
time with the ‘variant of unknown significance’.

Finally, the challenge will be not only to use our
knowledge of these variants for explanation and
prediction of medically relevant conditions but
also to find ways to mitigate their untoward
impact, for prevention or treatment of genomic
disease. This will require a new level of
inspired creativity.
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Further reading, resources and contacts

The Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources
(DECIPHER) provides tools that allow researchers to share information about copy number changes
in patients:

https://decipher.sanger.ac.uk/

The Database of Genomic Variants (DGV) provides a resource for researchers looking for known or previously
identified genomic variation. It documents variation found in population control samples:

http://projects.tcag.ca/variation/

Online Mendelian Inheritance in Man is a comprehensive resource that describes associations between human
genes and genetic phenotypes. It contains referenced information focusing on the link between genotype
and phenotype, and contains entries on all known mendelian disorders and over 12 000 genes:

http://www.ncbi.nlm.nih.gov/omim/
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