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The rough-wall turbulent boundary layer
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Turbulence measurements for rough-wall boundary layers are presented and compared
to those for a smooth wall. The rough-wall experiments were made on a three-
dimensional rough surface geometrically similar to the honed pipe roughness used
by Shockling, Allen & Smits (J. Fluid Mech. vol. 564, 2006, p. 267). The present
work covers a wide Reynolds-number range (Reθ = 2180–27 100), spanning the
hydraulically smooth to the fully rough flow regimes for a single surface, while
maintaining a roughness height that is a small fraction of the boundary-layer
thickness. In this investigation, the root-mean-square roughness height was at least
three orders of magnitude smaller than the boundary-layer thickness, and the
Kármán number (δ+), typifying the ratio of the largest to the smallest turbulent
scales in the flow, was as high as 10 100. The mean velocity profiles for the rough
and smooth walls show remarkable similarity in the outer layer using velocity-
defect scaling. The Reynolds stresses and higher-order turbulence statistics also
show excellent agreement in the outer layer. The results lend strong support to
the concept of outer layer similarity for rough walls in which there is a large
separation between the roughness length scale and the largest turbulence scales in the
flow.

1. Introduction
Understanding the effect of roughness on wall-bounded turbulence is of practical

importance in the prediction of a wide range of industrial and geophysical flows.
Examples range from flow through pipes and over vehicles to atmospheric boundary
layers. Seminal work in this area was carried out by Nikuradse (1933) and Colebrook
& White (1937). While this work focused on roughness effects on the mean flow and
wall shear stress, later studies investigated the effect of roughness on the turbulence
structure (e.g. Perry & Joubert 1963; Perry, Schofield & Joubert 1969; Antonia &
Luxton 1971; Ligrani & Moffat 1986; Bandyopadhyay 1987; Krogstad, Antonia &
Browne 1992). An extensive review of the literature on rough-wall boundary layers
was given by Raupach, Antonia & Rajagopalan (1991). An important conclusion of
their work was that there is strong experimental evidence of outer-layer similarity
in the turbulence structure over smooth and rough walls. This is termed the ‘wall
similarity’ hypothesis, and it states that at high Reynolds number, turbulent motions
are independent of wall roughness and viscosity outside the roughness sublayer
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(or viscous sublayer in the case of a smooth wall). The roughness sublayer is the
region directly above the roughness extending about 5k from the wall (where k is
the roughness height) in which the turbulent motions are directly influenced by the
roughness length scales. Raupach et al. (1991) noted that the wall similarity hypothesis
is an extension of Townsend’s (1976) concept of Reynolds-number similarity for
turbulent flows.

Since Raupach et al.’s review, the concept of wall similarity has come into question.
Experimental studies of rough-wall boundary layers by Krogstad et al. (1992), Tachie,
Bergstrom & Balachandar (2000) and Keirsbulck et al. (2002) have all observed
significant changes to the Reynolds stresses that extend well into the outer layer
for flows over woven mesh and transverse bar roughness. Numerical simulations of
turbulent channel flow by Leonardi et al. (2003) and Bhaganagar, Kim & Coleman
(2004) also show that roughness effects can be observed in the outer layer. However,
the experimental studies of Kunkel & Marusic (2006) and the present authors (Flack,
Schultz & Shapiro 2005) provide support for wall similarity in smooth- and rough-
wall boundary layer in terms of both the mean flow and the Reynolds stresses. The
work of Kunkel & Marusic (2006) is notable because of the extremely high Reynolds
number and large separation of scales in the turbulent boundary layers that were
studied.

Jiménez (2004) states that the conflicting views regarding the validity of the wall
similarity hypothesis may be due to the effect of the relative roughness, k/δ, on
the flow (where δ is the boundary-layer thickness). Jiménez concluded that if the
roughness height is small compared the boundary-layer thickness (k/δ < 1/50), the
effect of the roughness should be confined to the inner layer and wall similarity will
hold. If, on the other hand, the roughness height is large compared to the boundary-
layer thickness (k/δ � 1/50), roughness effects on the turbulence may extend across
the entire boundary layer, and the concept of wall similarity will be invalid. However,
Jiménez (2004) notes that the classical notion of wall similarity has implications
far beyond roughness studies, extending to the fundamental concepts of turbulence
modelling. For example, the underpinning of large-eddy simulation (LES) is that the
small turbulence scales have little influence on the large energy-containing scales. If
surface roughness exerts an influence across the entire boundary layer, this may not
be a valid assumption.

In view of the conflicting evidence regarding the wall similarity hypothesis, the
purpose of the present study was to assess its validity when the criteria for similarity
are strictly adhered to, that is, the Reynolds number is sufficiently high and the
roughness is small compared to the boundary-layer thickness. It would seem that
wall similarity for larger relative roughness cannot be expected if it does not hold
true for the limiting case. In this study, the structure of the rough-wall boundary
layer in terms of the mean flow, Reynolds stresses and higher-order turbulence
statistics is compared with that for a smooth wall. The present work covers a
wide Reynolds-number range, spanning the hydraulically smooth to the fully rough
flow regime for a single surface, while maintaining a roughness height that is a
small fraction of the boundary-layer thickness. To our knowledge, the present paper
documents the turbulence quantities of a rough-wall boundary layer at the highest
Reynolds number (Reθ = 27 080) reported in the literature from a laboratory study.
The studies of Andreopoulos & Bradshaw (1981) at Reθ ∼ 20 000 and Ligrani &
Moffat (1986) at Reθ � 18 700 mark the largest Reynolds numbers previously studied;
however, in both these studies, the ratio k/δ was much larger than in the present
work.
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2. Background
2.1. Mean flow

The flow in a turbulent boundary layer can be broken into two regions: the inner
and outer layers, each having its own scaling. In the inner layer, the mean velocity,
U , at a given distance from the wall, y, is determined by the friction velocity, Uτ , the
kinematic viscosity, ν, and the roughness height, k, such that (Schubauer & Tchen
1961)

U = f1(y, Uτ , ν, k). (2.1)

In non-dimensional form this is the ‘law of the wall’, given as

U+ = f (y+, k+) (2.2)

where U+ = U/Uτ , y+ = yUτ/ν, k+ = kUτ/ν, Uτ = (τw/ρ)1/2, τw is the wall shear stress,
and ρ is the fluid density. In the outer region, the difference between the velocity at
the outer edge of the boundary-layer, Ue, and the local mean velocity, U , at a distance
y from the wall is determined by the boundary-layer thickness, δ (δ is understood to
be δ99, the distance from the wall where the mean velocity is 0.99Ue) and Uτ , such
that (von Kármán 1930)

Ue − U = g1(y, δ, Uτ ). (2.3)

In non-dimensional form this is the ‘velocity-defect law’, given as

U+
e − U+ = g(η), (2.4)

where U+
e = Ue/Uτ and η = y/δ.

Millikan (1938) proposed, by matching the velocity profiles in the law of the wall
(equation (2.2)) and the velocity-defect law (equation (2.4)), that a logarithmic velocity
distribution results in the overlap region (δ � y � ν/Uτ ) at sufficiently high Reynolds
number. This is the ‘log-law’ and for a smooth-wall turbulent boundary layer, is given
by

U+ =
1

κ
ln(y+) + B, (2.5)

where the von Kármán constant κ ≈ 0.421 and the smooth-wall log-law intercept
B ≈ 5.60 (McKeon et al. 2004). The ‘log-law’ can also be expressed in velocity-defect
form as

U+
e − U+ = − 1

κ
ln(η) + B1, (2.6)

where B1 is the velocity-defect intercept (2Π/κ) and Π is the wake strength.
Clauser (1954) and Hama (1954) found that the effect of surface roughness on the

mean flow was confined to the inner layer, causing a downward shift in the log-law
(equation (2.5)) called the roughness function, 	U+. Equation (2.5) can, therefore, be
recast for rough-wall boundary layers as

U+ =
1

κ
ln(y+) + B − 	U+. (2.7)

Coles (1956) extended (2.7) to cover both the overlap and outer region of the
boundary layer using the wake function, ω. This is the ‘law of the wake’. For smooth-
and rough-wall boundary layers, it is as follows:

U+ =
1

κ
ln(y+) + B +

Π

κ
ω(η) (smooth wall), (2.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

55
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005502


384 M. P. Schultz and K. A. Flack

U+ =
1

κ
ln(y+) + B − 	U+ +

Π

κ
ω(η) (rough wall). (2.9)

Turbulence models for Reynolds-averaged Navier–Stokes (RANS) computations
usually account for roughness effects using the roughness function, 	U+ for the
surface of interest (Patel 1998). They assume that the shape of the mean profile in the
overlap and outer region for smooth and rough walls is the same as the smooth wall
with the rough-wall profile being displaced by 	U+ below it. This is supported by the
classic works of Clauser (1954) and Hama (1954) who observed that mean velocity in
the outer region expressed in velocity-defect form ((2.4) and (2.6)) was independent of
surface roughness. Using the wake function, velocity-defect scaling can be extended
to describe the overlap and outer region of the boundary layer for both smooth- and
rough-wall boundary layers as

U+
e − U+ = − 1

κ
ln(η) + B1 − Π

κ
ω(η). (2.10)

While many studies support a universal velocity-defect profile for smooth and rough
walls, some have reported that Π is significantly increased for rough-wall flows (e.g.
Krogstad et al. 1992; Tachie et al. 2000; Keirsbulck et al. 2002). This implies that the
classic way of accounting for roughness effects on the mean flow through 	U+ may
be misguided. Krogstad et al. (2005) provides support for a universal velocity-defect
profile in fully developed turbulent channel flow using both experiment and direct
numerical simulation. They maintain that the differences observed between boundary-
layer and channel flows may be the result of the lack of a rotational–irrotational
interface at the outer part of the shear layer in fully developed channel flow. Strong
evidence of a universal velocity-defect profile for fully developed turbulent pipe flow
was shown by Shockling, Allen & Smits (2006), who found that smooth and rough
walls display similarity in the mean flow over a very large Reynolds number range.

2.2. Turbulence quantities

According to the wall similarity hypothesis, the energy-containing turbulent motions
in a boundary layer are independent of roughness and viscosity at a sufficient distance
from the wall except for the role they play in setting the boundary conditions for the
outer flow (i.e. the velocity and length scales, Uτ and δ). Wall similarity can also be
expressed in terms of the covariance of the velocity as

u′
i(y)u′

j (y + r) = U 2
τ Rij (y, r; δ), (2.11)

where r is the separation vector, as long as the Reynolds number is sufficiently high
and both y and y + r are located outside the roughness sublayer (Raupach et al.
1991). This implies that single-point turbulence measurements (i.e. r ≡ 0) over rough
and smooth walls, such as the Reynolds stresses and higher-order turbulence statistics,
should agree when scaled on outer variables. The studies of Raupach (1981), Perry &
Li (1990), Ligrani & Moffat (1986), Kunkel & Marusic (2006) and the present authors
(Schultz & Flack 2003; Flack et al. 2005) all show support for this. However, several
studies have concluded that wall similarity is not valid for rough-wall flows (e.g.
Krogstad et al. 1992; Keirsbulck et al. 2002; Leonardi et al. 2003; Bhaganagar et al.
2004).

Although there is general consensus in the literature that the streamwise Reynolds
normal stress (u′2+

) displays reasonable similarity in the outer flow with the exception
of a few studies (e.g. Tachie et al. 2000), the effect on the wall-normal Reynolds
normal stress (v′2+

) and Reynolds shear stress (−u′v′+) is not as clear. Krogstad et al.
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Uτ Clauser Uτ Total
Wall surface Uτ (m s−1) Reθ chart (m s−1) stress (m s−1) δ (mm) δ+ k+

s 	U+

Smooth 1.00 3110 0.0405 0.0394 29.0 1150 – –
Smooth 5.00 13 140 0.181 0.182 26.3 4760 – –
Rough 0.69 2175 0.0295 0.0289 29.2 843 2.3 0
Rough 1.00 3175 0.0415 0.0405 28.9 1180 3.2 0.14
Rough 3.00 8450 0.119 0.117 27.1 3150 9.2 1.5
Rough 5.00 13 800 0.202 0.199 25.5 5120 16 3.0
Rough 7.02 21 360 0.285 0.281 27.6 8030 23 4.2
Rough 7.96 27 080 0.322 0.320 31.2 10 100 26 4.6

Table 1. Experimental test conditions.

(1992) found significant increases in both v′2+
and −u′v′+ for rough walls outside the

roughness sublayer, with v′2+
being affected most. Quadrant decomposition showed

that the contribution to the Reynolds shear stress from Q4 events (i.e. sweeps) was
increased close to the rough wall. This was attributed to the less strict boundary
condition on v at y = 0 in the rough-wall case. The rough-wall v′ spectra in the outer
flow also exhibited significant differences across the entire wavenumber range. This
result implies that the ‘active’ motions (i.e. the turbulence that contributes to the
Reynolds shear stress) are not as universal as generally thought, and the ‘inactive’
motions, which are associated with larger-scale meandering motions in planes parallel
to the wall, show a higher degree of similarity than the active motions.

Andreopoulos & Bradshaw (1981) showed that the velocity triple products involving
v′ are a sensitive indicator of changes in turbulence structure due to wall condition.
They observed changes in the v′ triple products out to ∼10k from a rough wall. Flack
et al. (2005) found that the velocity triple products were nearly the same over smooth
and rough walls beyond 5k, giving support to the concept of wall similarity. Unfortu-
nately, few other rough-wall studies, with the exception of Bandyopadhyay & Watson
(1988), Antonia & Krogstad (2001) and Keirsbulck et al. (2002), have presented these
statistics. This is mainly due to their inherently high experimental uncertainty.

3. Experiment
The experiments were conducted in the US Naval Academy’s large re-circulating

water tunnel. The test section of the tunnel is 40 cm × 40 cm in cross-section and is
1.8 m in length, with a tunnel velocity range of 0–8.0 m s−1 and a free-stream turbulence
intensity of ∼0.5 %. The current tests were run at six speeds within this range, produ-
cing a wide variation in Reynolds number (Reθ = 2180–27 100). The experimental test
conditions are given in table 1. The test plates were flush mounted into a permanent
splitter-plate test fixture. The test fixture was mounted horizontally, at mid-depth in the
tunnel. The first 200 mm of the test fixture is covered with no. 36-grit sandpaper to en-
sure adequate turbulent boundary-layer tripping. Measurements were obtained 1.35 m
downstream of the leading edge, allowing for a sufficient boundary-layer growth.
Profiles taken from 0.90 m to the measurement location confirmed that the mean flow
had reached self-similarity as witnessed by the collapse of the streamwise velocity-
defect profiles. The upper removable wall of the tunnel is adjustable to account for
boundary-layer growth. In the present work, the wall was set to produce a nearly
zero pressure gradient boundary layer as witnessed by the acceleration parameter (K)
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Flow Direction

Beam orientation
Sandpaper

trip

Beam expander
Beam displacer

Fibre optic probe

0.34 m 

1.35 m
200 mm

Figure 1. Experimental set-up.

which was �1 × 10−8 in all test cases. The acceleration parameter is defined as

K =
ν

U 2
e

dUe

dx
. (3.1)

Figure 1 shows a plan view of the flat-plate test fixture. Additional details of the
experimental facility can be found in Schultz & Flack (2003) and Flack et al. (2005).

Two test plates were used in the current study; one smooth and one rough surface.
The smooth surface was made of cast acrylic; the rough surface was produced by
bi-directional sanding of a cast acrylic plate coated with silica-filled polyamide epoxy.
A sanding block covered with no. 12-grit floor sanding paper was used to create
linear scratches in the surface. Care was taken to sand using only linear motions
across the test plate at an angle of ± 60◦ to the flow direction. The angle of the
sanding was controlled using a guide template that was moved down the test plate.
Sanding passes were first made at +60◦ to the flow along the entire test plate and
then the process was repeated at −60◦ to the flow. The resulting roughness was a
series of bi-directional scratches forming a diamond-shaped pattern. The process was
developed to create a geometrically similar surface to the honed pipe roughness tested
in the Princeton Superpipe facility (Shockling et al. 2006), since the honing process
cannot be carried out on flat surfaces.

The surface roughness profiles of the test plates were measured using a Cyber
Optics laser diode point range sensor laser profilometer system mounted to a Parker
Daedal two-axis traverse with a resolution of 5 µm. The resolution of the sensor is
1 µm with a laser spot diameter of 10 µm. Data were taken over a sampling length of
50 mm and were digitized at a sampling interval of 25 µm. Five linear profiles were
taken on the rough surface in order to calculate statistics. A two-dimensional survey
was also taken over a 5 mm × 5 mm sampling area in order to document the surface
topography (figure 2a). No filtering of the profiles was conducted except to remove
any linear trend in the trace. The probability density function (p.d.f.) for the surface
roughness elevations is presented in figure 2(b). The surface has a nearly Gaussian
p.d.f. with a root-mean-square height, krms, of 26.3 µm. The skewness of the p.d.f.
is −0.46 and the flatness is 3.59. The average maximum peak to trough roughness
height, kT ,for the five profiles was 193 µm. The honed pipe tested by Shockling et al.
(2006) has krms =2.5 µm, a skewness of 0.31, and a flatness of 3.43. For reference, the
original ‘smooth’ superpipe has krms = 0.15 µm, a skewness of −0.31, and a flatness
of 3.6. Therefore, the present roughness is geometrically similar to the pipe surfaces
tested in the superpipe facility with a roughness height that is ∼10 times larger than
the honed Superpipe and ∼175 times larger than the original superpipe.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

55
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005502


Rough-wall turbulent boundary layer 387

–100 –50 0 50 100
0

0.004

0.008

0.012

0.016

0.020

5000
(a)

(b)

Amplitude (µm)

100

50

0

–50

–100

4000

3000

2000

1000

0 1000 2000 3000

z (µm)

x 
(µ

m
)

4000 5000

surface
Gaussian

Amplitude (µm)

P
ro

ba
bi

li
ty

 d
en

si
ty

 f
un

ct
io

n,
 p

.d
.f

 (
µ

m
–1

)

Surface
Gaussian

Figure 2. Test roughness: (a) surface elevation of roughness; (b) probability
density function of roughness surface elevations.

Boundary-layer velocity measurements were obtained with a TSI FSA3500 two-
component laser-Doppler velocimeter (LDV). The LDV consists of a four-beam
fibre optic probe that collects data in backscatter mode. A custom designed beam
displacer was added to the probe to shift one of the four beams, resulting in three
co-planar beams that can be aligned parallel to the wall. This allowed for near-wall
measurements without having to tilt the probe at a small angle or rotate the probe
to resolve velocity components. Additionally, a 2.6:1 beam expander was located at
the exit of the probe to reduce the size of the measurement volume. The resulting
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probe volume diameter (d) was 45 µm with a probe volume length (l) of 340 µm.
The corresponding measurement volume diameter and length in viscous length scales
ranged from d+ = 1.3 and l+ = 10 at the lowest Reynolds number to d+ =15 and
l+ = 110 at the highest Reynolds number. The small measurement volume diameter
allowed for near-wall measurements, (y+ ≈ 4 for the lowest Reynolds number to
y+ ≈ 40 for the highest Reynolds number) while assuring minimal velocity gradient
bias due to finite probe diameter (Durst et al. 1998). The range of d+ values in
the present study is similar to the smooth-wall turbulent boundary layer study of
DeGraaff & Eaton (2000). As opposed to hot-wire measurements (e.g. Johansson &
Alfredsson 1983; Willmarth & Sharma 1984), the value of l+ is not of critical
importance for an LDV, since each individual velocity realization is for a single
seeding particle in the probe volume. Therefore, each individual velocity realization
is not spatially averaged. As long as the probe volume is aligned in a direction in
which the turbulence quantities are homogeneous, the probe volume length will have
no effect on the turbulence statistics. This was demonstrated by Luchik & Tiederman
(1985) who measured turbulence quantities in a wall-bounded flow using LDV systems
with l+ = 9–74. They showed that there was no effect of l+ on the measured streamwise
root-mean-square velocity, and the turbulence measurements with an LDV system
with this range of l+ were at least as accurate as a hot wire with l+ = 0.5. Although
it cannot be ensured that the turbulence is entirely homogeneous in the spanwise
direction, no significant differences were observed in the near-wall turbulence statistics
when the probe was displaced by small distances in the spanwise direction.

A total of 40 000 random velocity samples were obtained at each location in the
boundary layer. The data were collected in coincidence mode. The flow was seeded
with 2 µm alumina particles. The seed volume was controlled to achieve acceptable
data rates while maintaining a low burst density signal (Adrian 1983). The probe was
traversed to approximately 40 locations within the boundary layer with a Velmex
three-axis traverse unit. The traverse allowed the position of the probe to be main-
tained to ±5 µm in all directions. The wall-normal velocity component was not
obtained for the 8–10 data points closest to the wall owing to very low data rates and
wall reflections.

Two methods were used to determine the friction velocity, Uτ , for both the smooth
and rough surfaces (table 1). The first was the total stress method. It assumes a
nominally constant shear stress region exists in the inner part of the boundary layer
which is equal to the wall shear stress. The total stress was calculated at the plateau
of the Reynolds shear stress profile in the overlap region of the boundary layer by
summing the contributions of the viscous and turbulent stresses. The friction velocity,
Uτ , was then calculated using the expression

Uτ =

√
ν
∂U

∂y
− u′v′. (3.2)

For the smooth wall, the friction velocity was also determined using the Clauser
(1954) chart method, with log-law constants κ = 0.421 and B =5.6 (McKeon et al.
2004). A modified Clauser chart method, described by Perry & Li (1990), was also
employed to determine the friction velocity on the rough wall. The initial step in
this process is to determine the wall datum offset using an iterative procedure. A
plot of U/Ue versus ln(yUe/ν) was made for points in the log-law region (points
between y+ = 100, based on the value of Uτ obtained using the total stress method
and y/δ = 0.125). The wall normal distance is given as y = yT + ε, where yT is the
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location of the top of the roughness elements, and ε is the wall datum offset. The
wall datum offset is initially set to zero and then increased until the goodness-of-fit
of a linear regression through the points is maximized. The wall datum offset in the
present study was small (∼50 µm) owing to the small roughness height. The friction
velocity values obtained using the Clauser (smooth) and modified Clauser (rough)
methods are used in the subsequent data reduction. It should be noted, however,
that using Uτ determined from the total stress method would not change the trends
in the presented results since the values obtained from both methods show good
agreement. The difference between the two was �2.7 % in all cases, which is well
within the uncertainty of the measurements. It should also be noted that values of Uτ

for the smooth walls agree, within experimental uncertainty, with both the Reθ -based
correlation of Fernholz & Finley (1996), and the correlation of Österlund et al. (2000)
which is based on direct measurement of the skin friction using oil-film interferometry.

Uncertainty estimates were obtained by combining both precision and bias errors,
using the procedure described in Moffat (1988). The standard errors were determined
from repeated velocity profiles taken on both the smooth and rough plates and 95 %
confidence limits were determined from the Student’s t-value, given by Coleman &
Steele (1995). The precision uncertainties were obtained for the higher-order tur-
bulence statistics using the bootstrap technique described in Efron (1982), since the
statistical distribution of the parent population was not known a priori. The LDV data
were corrected for velocity bias, described by Buchhave, George & Lumley (1979) by
employing burst transit time weighting, and velocity gradient bias, detailed in Durst
et al. (1998). Fringe bias was considered insignificant, as the beams were shifted well
above a burst frequency representative of twice the free-stream velocity (Edwards
1987). Bias estimates were combined with the precision uncertainties to calculate the
overall uncertainties for the measured quantities. The resulting overall uncertainty in
the mean velocity is ±1 %. For the turbulence quantities u′2, v′2 and u′v′, the overall
uncertainties are ±2 %, ±3 % and ±5 %, respectively. The uncertainty in Uτ for the
smooth walls using the Clauser chart method is ±3 %, and the uncertainty in Uτ for
the rough walls using the modified Clauser chart method is ±4 %. The uncertainty in
Uτ determined using the total stress method is ±5 %. Uncertainties for higher-order
statistics are presented with the reduced data.

4. Results
4.1. Mean flow

The mean velocity profiles for the rough-wall boundary layers in inner variables are
shown in figure 3. The effect of increasing Reynolds number is seen as an increase
in the downward shift in the overlap region of the profiles termed the roughness
function, 	U+. Otherwise, the profiles retain a similar shape. In the present study, the
log-law constants of κ = 0.421 and B = 5.60 suggested by McKeon et al. (2004) were
employed so that direct comparison of the present roughness function results could
be made with the rough-wall pipe-flow study of Shockling et al. (2006). This study
employed these constants and tested a roughness similar to that used in the present
study. When the present data were analysed using the constants of Coles (1962),
the differences in the friction velocities obtained were well within the experimental
uncertainty of the measurements.

More effective comparisons of rough- and smooth-wall boundary layers may be
made with the mean profiles plotted in velocity-defect form (figure 4). The agreement
between the rough- and smooth-wall profiles is excellent. However, since changes to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

55
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005502


390 M. P. Schultz and K. A. Flack

y+

100 101 102 103 104

U +

0

5

10

15

20

25

U+ = y+

log-law

ks
+ = 2.3

3.2
9.2
16
23
26

Figure 3. Rough-wall mean velocity profiles in inner variables, log constants of
McKeon et al. (2004), uncertainty in U+ = ±4 %.
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Figure 4. Mean velocity profiles in velocity-defect form for both smooth and rough walls:
inset in log-normal axes, uncertainty in U+

e − U+ = ±4 %.

the wake are somewhat masked using linear axes, the inset in figure 4 presents the
velocity-defect profiles with log-normal axes. Plotted in this way, differences in the
wake strength, Π , would be observed as a lack of collapse of the profiles in the overlap
region of the boundary layer. An increase in Π for rough-wall boundary layers has
been observed by Krogstad et al. (1992), Keirsbulck et al. (2002), and Akinlade et al.
(2004). Krogstad et al. (1992) attributed the increase to the higher growth rate and
greater entrainment of irrotational fluid in the rough-wall boundary layer. However,
this change is not observed in the present velocity-defect profiles. These mean flow
results provide support for Townsend’s (1976) Reynolds-number similarity hypothesis
and the proposal of a universal defect profile in the overlap and outer region for zero
pressure gradient boundary layers as proposed by Clauser (1954) and Hama (1954),
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Figure 5. Roughness function results, 	U+ determined using the log constants of
McKeon et al. (2004), uncertainty in 	U+ = ± 10% or 0.2, whichever is larger.

provided that k/δ is small. Similar evidence has been given by Shockling et al. (2006)
and Krogstad et al. (2005), for pipe and turbulent channel flows, respectively.

The roughness function results, 	U+, for the rough-wall profiles are presented in
figure 5. Shown for comparison, are the rough-wall pipe-flow results of Shockling
et al. (2006) that were obtained for a geometrically similar roughness. The agreement
in the two data sets is excellent. This is in concurrence with the findings of Schultz &
Myers (2003) that showed that roughness functions for a given roughness obtained
through disparate means yield similar results. In that study, the overall frictional drag
on a flat plate, the local mean velocity profile in a turbulent boundary layer, and the
overall torque on a rotating disk were used to find the roughness function for several
rough surfaces, and the results showed good agreement. It should be noted that
both in the present boundary-layer study and the pipe-flow experiments of Shockling
et al. (2006), the relative roughness height, or ratio of the roughness height to the
thickness of the shear layer, is much smaller than previous roughness studies. The
value of krms/R, where R is the pipe radius, was 3.9 × 10−5 in the Shockling study and
krms/δ � 1.0 × 10−3 in this work. Jiménez (2004) notes that such studies are critical in
order to assess the validity of wall similarity since the approach of most workers has
been to use a large relative roughness in order to achieve fully rough flow.

At low roughness Reynolds numbers (k+
s < 2.5), the present results show that the

rough surface is hydraulically smooth (	U+ ∼ 0). As the roughness Reynolds number
increases, departure from smooth behaviour is observed. Shown for comparison are
the Colebrook roughness function (Colebrook 1939) given by Hama (1954) with
the log-constants of McKeon et al. (2004) and the Nikuradse (1933) roughness
function for uniform sand. While the present roughness does not strictly follow either
roughness function, it clearly does not display Colebrook-type monotonic behaviour
of the roughness function in the transitional regime. Instead, the surface displays
Nikuradse-type behaviour, tending toward the hydraulically smooth flow regime at
finite k+

s with slight inflectional behaviour in the transitional regime. At larger values
of k+

s , the flow reaches the fully rough regime in which the velocity is independent of
viscosity, and U+

e is constant. The value of U+
e in the present study is 24.6 and 24.7
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at k+
s = 23 and 26, respectively. In the fully rough regime, the roughness function is

given by

	U+ =
1

κ
ln k+

s + B − B ′
FR (4.1)

where B ′
FR, the Nikuradse roughness function, in the fully rough flow regime is 8.5

(Nikuradse 1933). The present results show that at the highest roughness Reynolds
number tested (k+

s = 26), the roughness function lies on the fully rough asymptote
(equation (4.1)), indicating the boundary layer has reached the fully rough flow regime.
Further evidence of fully rough behaviour can also be seen in the profiles of the near-
wall streamwise Reynolds normal stress which will be presented later. Nikuradse
noted that the fully rough regime exists for k+

s � 70 for monodisperse close-packed
sandgrain roughness. However, the roughness Reynolds number signifying both the
onset of roughness effects (k+

s,smooth) and the beginning of the fully rough regime

(k+
s,rough) depends strongly on the roughness type and uniformity as was noted by

Ligrani & Moffat (1986). Their rough surface, consisting of uniform close-packed
spheres, displayed a fairly narrow transitionally rough regime with k+

s,smooth ≈ 15 and

k+
s,rough ≈ 55, while the monodisperse close-packed sandgrains of Nikuradse (1933),

which was not as uniform, had a wider transitionally rough regime, with k+
s,smooth ≈ 5

and k+
s,rough ≈ 70. For the present roughness, the results indicate that k+

s,smooth ≈ 2.5

and k+
s,rough ≈ 25 define the range of the transitionally rough regime. These values

are in reasonable agreement with the results of Shockling et al. (2006) that showed
k+

s,smooth ≈ 3.5 and k+
s,rough ≈ 30 for a geometrically similar roughness.

Snyder & Castro (2002) also noted the difficulties in defining the onset of the fully
rough regime for disparate roughness types. In their study, they adopted the log-law
form used in meteorology, given as

U+ =
1

κ
ln

(
y

y0

)
, (4.2)

where y0 is a roughness length scale. They point out that while it is commonly held
that y+

0 > 2 is necessary for fully rough flow, it depends strongly on the roughness
type. They found that for roughness consisting of isolated bluff bodies, the onset of
the fully rough condition occurs at y+

0 closer to 0.5. The highest value of y+
0 reached

in the present study was 0.64.

4.2. Reynolds stresses

The streamwise Reynolds normal stress (u′2+
) profiles for the smooth and rough

surfaces are presented in figure 6 using inner scaling. For the lowest roughness
Reynolds numbers (k+

s = 2.3, 3.2 and 9.2), a near-wall peak at y+ ≈ 15 is observed
which is similar to that observed on the smooth wall. As k+

s increases toward the

fully rough flow regime, the rise in u′2+
, which is seen to begin at y+ ≈ 100 on the

smooth wall, is reduced until at k+
s = 26, it is completely absent. At k+

s =26, there is a

large plateau region in u′2+
in the outer layer which drops as the wall is approached.

The absence of the near-wall rise in u′2+
was shown by Ligrani & Moffat (1986)

to be a sensitive indicator of a boundary layer reaching the fully rough regime.
The peak in the streamwise Reynolds normal stress on a smooth wall is primarily
due to viscous effects and is associated with streamwise vortical structures (Grass
1971). The reduction in the peak is due to the breakup of streamwise vortices by the
roughness elements that extend further and further from the wall (in wall variables)
as the Reynolds number increases. When the boundary layer reaches the fully rough
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Figure 6. Streamwise Reynolds normal stress profiles for all surfaces

in inner variables; uncertainty in u′2+
= ±8 %.
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Figure 7. Streamwise Reynolds normal stress profiles in outer variables;
uncertainty in u′2+

= ±8 %.

regime, the frictional drag of the wall is dominated by the form drag of the roughness
elements and viscous effects become negligible even very near the wall.

Figure 7 shows the profiles of u′2+
for the smooth and rough surfaces in outer

scaling. Reynolds-number dependence in the overlap region can be observed for both
the smooth- and rough-wall cases. This is seen as a slight increase in u′2+

with
Reynolds number. There is, however, good agreement of the smooth- and rough-wall
results in the overlap and outer region of the boundary layer when similar Reynolds-
number cases are compared. This similarity in the streamwise Reynolds normal stress
for rough and smooth walls in the outer flow is fairly well accepted and has been
observed in previous roughness studies (see Raupach et al. 1991; Jiménez 2004).
Likewise, the present streamwise Reynolds normal stress profiles provide support for
the concept of wall similarity. It should also be noted that all the present smooth-wall
Reynolds-stress profiles agree well with those of DeGraaff & Eaton (2000) at similar
Reynolds numbers.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

55
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005502


394 M. P. Schultz and K. A. Flack

0.2 0.4 0.6 0.8 1.0 1.2 1.40

0.4

0.8

1.2

1.6

y/δ

ks
+ = 2.3

3.2
9.2
16
23
26

v′2+–––

Smooth wall Reθ = 3100 
Smooth wall Reθ = 13140

Figure 8. Wall-normal Reynolds normal stress profiles for all surfaces
in outer scaling; uncertainty in v′2+

= ±9 %.

Figure 8 shows the profiles of v′2+
for the smooth and rough surfaces in outer

scaling. The agreement of the smooth and rough profiles is within the experimental
uncertainty of the measurements across the overlap and outer regions of the boundary
layer. For both the smooth- and rough-wall profiles, a rather broad plateau of
v′2+ ≈ 1.3–1.4 is observed in the overlap region. This is in agreement with DeGraaff &
Eaton (2000), who observed a plateau in v′2+ ≈ 1.35 for smooth walls at Reθ � 2900.
The effect of roughness on the wall-normal or ‘active’ turbulent motions has been the
topic of considerable debate. Raupach et al. (1991), based on the roughness literature

to date, concluded that there was similarity in v′2+
outside the roughness (or viscous)

sublayer for rough and smooth walls. Since that time, there has been work that
supports this view (e.g. Flack et al. 2005; Kunkel & Marusic 2006) and work that
shows that roughness effects on the wall-normal component extend well into the
outer layer (e.g. Krogstad et al. 1992; Leonardi et al. 2003). Jiménez (2004) tried to
reconcile these conflicting views by concluding that the differences might be the effect
of the relative roughness, k/δ, on the flow. He noted that in cases in which the relative
roughness is large (k/δ � 1/50), the roughness effect on the wall-normal component
may be observed well into the outer layer. There appear to be other possibilities,
however. A case in point is the DNS and experimental study of Krogstad et al. (2005)
on channels roughened by transverse bars. In this study, results of both the DNS and
the experiment showed little effect of the roughness on v′2+

outside the roughness
sublayer. The boundary-layer study of Krogstad & Antonia (1999) that used two-
dimensional transverse rods found that v′2+

was increased significantly, well into the
outer layer. This led Krogstad et al. (2005) to hypothesize that the internal flows such
as channel and pipe flows may respond differently to roughness than do boundary-
layer flows. Further study is required to see if this is indeed the case. Nonetheless,
the present v′2+

profiles provide support for the concept of wall similarity for
boundary layers in which the relative roughness is small and the Reynolds number is
large.

The −u′v′+profiles for the smooth and rough surfaces in outer scaling are shown
in figure 9. Again, there is no significant difference in the smooth- and rough-wall
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Figure 9. Reynolds shear stress profiles for all surfaces in outer scaling;
uncertainty in −u′v′+ = ±9 %.

profiles in the outer part of the boundary layer. Krogstad et al. (1992) observed a
moderate increase in −u′v′+ for a woven mesh roughness compared to a smooth wall
in the outer layer. However, the difference was smaller than was seen in v′2+

. The
differences in v′2+

and −u′v′+ were attributed in part to the less strict wall boundary
condition for the wall-normal velocity component on a rough surface compared to
a smooth one. For example, on a smooth wall, the wall-normal velocity fluctuations
must go to zero at y = 0. On a rough wall, y = 0 is located between the roughness
peaks and troughs, not strictly on the wall, so the wall-normal velocity fluctuations
may be non-zero there. Also, the type of roughness would seem to play a major
role in the severity of this boundary condition. Woven mesh and transverse bars,
for example, provide more ‘porosity’ to the wall-normal motions than close-packed
three-dimensional roughness like sand roughness and the surface used in the present
study. However, Flack et al. (2005) found little change in the Reynolds stresses over
woven mesh for y > 3ks .

4.3. Quadrant decomposition

Quadrant decomposition (Wallace, Eckelmann & Brodkey 1972) was used in order to
examine possible changes in turbulence structure resulting from the surface roughness.
The technique sorts turbulent events into each of the four quadrants of the (u′, v′)-
plane providing information regarding the turbulence structure. In particular, it allows
the contributions of ejection (Q2) and sweep (Q4) motions to the total Reynolds shear
stress to be calculated. In the present work, the quadrant decomposition was carried
out using the hyperbolic hole size (H ) method of Lu & Willmarth (1973).

The contribution to u′v′ from a given quadrant, Q, can be expressed as

(u′v′)Q = lim
T →∞

1

T

∫ T

0

u′v′(t)IQ(t) dt, (4.3)

where IQ(t) is a trigger function defined as

IQ =

{
1 when |u′v′|Q � H (u′2)1/2(v′2)1/2,

0 otherwise.
(4.4)
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Figure 10. Percentage contribution to the Reynolds shear stress from Q2 events (H = 0).

y/δ

0.2 0.4 0.6 0.8 1.0

Q4 (%)

0

20

40

60

80

100

120

140

160

ks
+ = 26

Smooth wall Reθ = 13 140

Figure 11. Percentage contribution to the Reynolds shear stress from Q4 events (H = 0).

Figures 10 and 11 show the percentage contributions from ejection and sweep
events, respectively, to the Reynolds shear stress for H = 0. It should be noted that
for clarity only the highest-Reynolds-number cases for the smooth and rough wall
are presented for the quadrant decomposition. However, the trends were very similar
for the lower-Reynolds-number cases.

The present results show that there is excellent agreement in the contributions from
both Q2 and Q4 events for the smooth- and rough-wall boundary layers. This is in
agreement with previous work (Flack et al. 2005) which showed similar results for
both sandpaper and woven mesh roughness. The relative roughness height, ks/δ, in
that study was 1/62 and 1/45 for the sandpaper and mesh roughness, respectively.
The ratio ks/δ for the rough-wall results presented here is 1/400. In contrast, Krogstad
et al. (1992) observed a significant increase in (−u′v′)+2 across much of the boundary
layer for a woven mesh roughness compared to a smooth wall with H =0. An increase
in (−u′v′)+4 in the wall region was also noted. The ratio ks/δ was 1/15 in that study.
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Figure 12. Percentage contribution to the conditionally averaged Reynolds
shear stress from Q2 events (H = 2).
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Figure 13. Percentage contribution to the conditionally averaged Reynolds shear
stress from Q4 events (H = 2).

The differences observed among these studies may be a result of differences in scale
separation between the roughness length scale and the largest turbulence scales in the
flow. Jiménez (2004) hypothesized that if the scale separation is insufficient, roughness
effects may be observed well into the outer flow. The scale separation in the present
study is extremely large, typified by the extremely small value of the relative roughness
ks/δ. The degree of scale separation in the present work is much larger than achieved
in any previous laboratory boundary-layer study able to reach the fully rough flow
regime.

Figures 12 and 13 show the percentage contributions from ejection and sweep
events, respectively, to the conditionally averaged Reynolds shear stress for H = 2.
Using H = 2 isolates strong turbulence events in which the instantaneous Reynolds
shear stress is larger in magnitude than 5u′v′.
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Figure 14. Ratio of Q2 to Q4 events (H = 0).

Again, the results show good agreement in the contributions from both Q2 and Q4
events for the smooth- and rough-wall boundary layers across most of the boundary
layer. However, near the wall (y/δ � 0.025), the percentage contribution from strong
ejection events on the rough wall decreases, while the percentage contribution from
strong sweep events increases. In contrast, near the smooth wall, the contribution
from strong ejection events increases, while the percentage contribution from strong
sweep events decreases. These differences observed in the near-wall region between
the rough and smooth walls are in agreement with the results of Krogstad et al.
(1992) and Flack et al. (2005) for woven mesh and sandpaper roughness. Krogstad &
Antonia (1999) observed a similar trend for a transverse rod roughness with the
effect persisting well into the outer flow. The relative roughness, ks/δ, was 1/8 in that
study. In the present investigation in which the relative roughness is much smaller, the
differences between the rough and smooth wall are confined to the near-wall region.
It should be noted that for the smooth wall, y/δ = 0.025 corresponds to y+ =119, and
for the rough wall, it corresponds to y+ = 253 or y ≈ 10ks . Therefore, the differences
observed for y/δ � 0.025 could either be the direct influence of the roughness on the
turbulence structure or simply the lack of viscous influence on the rough wall, which
is increasingly important on the smooth wall in this region.

In order to highlight the relative importance of ejection and sweep events to the
maintenance of the Reynolds shear stress, the ratios of the Q2 to Q4 contributions
are presented in figures 14 and 15 for H = 0 and H = 2, respectively. For H = 0, the
agreement between the rough- and smooth-wall results is quite good throughout the
entire boundary layer.

The profiles of Q2/Q4 for the strong Reynolds stress events (H = 2) show good
agreement across most of the boundary layer (figure 15). However, some changes are
observed in the near-wall region (y/δ � 0.025). For the smooth wall, Q2/Q4 maintains
a value greater than 2 throughout the boundary layer, and the ratio increases as the
wall is approached. This illustrates the relative importance of strong ejection events
compared to strong sweeps on a smooth surface, especially very close to the wall.
On the rough wall, Q2/Q4 is also greater than 2 for most of the boundary layer.
However, Q2/Q4 is observed to decrease to a value of less than unity as the wall
is approached. This indicates that near the roughness, strong sweeps actually make
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Figure 15. Ratio of Q2 to Q4 events (H =2).

a larger contribution to the Reynolds shear stress than do ejections. This is in
accordance with the studies of Krogstad et al. (1992) and Flack et al. (2005) which
both showed similar changes close to a rough wall. The differences in the relative
importance of strong ejection and sweep events are believed to be the result of the less
strict wall-boundary condition for the wall-normal velocity component on a rough
surface compared to a smooth one. It should be noted that these differences are
confined to the near-wall region in the present study.

4.4. Higher-order turbulence statistics

While the present results in terms of the mean flow, Reynolds stresses, and quadrant
decomposition of the Reynolds shear stress indicate that roughness effects are
confined to the near-wall region, the velocity triple products will now be examined.
Andreopoulos & Bradshaw (1981) showed these quantities to be an indicator of
changes in turbulence structure due to the surface boundary condition. As with the
quadrant decomposition, only the highest-Reynolds-number cases for the smooth and
rough wall are presented for the velocity triple products. Murlis, Tsai & Bradshaw
(1982) noted that these quantities display only a weak Reynolds-number dependence
even at Reθ < 5000 in the outer flow. For both the present cases shown, the Reynolds
number is much higher (Reθ > 13 000). It is believed, therefore, that a valid assessment
of the effect of roughness on the triple products can be made, despite the difference
in Reynolds number between the smooth and rough cases. Profiles of the velocity
triple product u′3+

for the smooth and rough wall are shown in figure 16. Over most
of the boundary layer, the agreement between the rough and smooth wall is quite
good. Near the wall at y/δ � 0.025, some significant differences are noted (see inset
in figure 16). On the rough wall, u′3+

changes sign and becomes positive near the
roughness. For the smooth wall, it remains negative across the entire boundary layer.
This difference may be due to changes in the ejection-sweep cycle and modification
of the longitudinal vortices and accompanying low-speed streaks by the roughness.
The flow visualizations by Grass (1971) showed that while ejection-sweep cycle over
rough and smooth walls exhibited a high degree of similarity, the particulars of
the mechanics of the entrainment of low momentum fluid at the wall differed. One
notable difference was a relative lack of long streamwise vortices near the rough wall.
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Figure 16. The velocity triple product u′3+
for highest-Reynolds-number smooth and rough

walls in outer scaling; near-wall region shown in inset; uncertainty in u′3+
= ±16%.
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Figure 17. The velocity triple product v′3+
for highest-Reynolds-number smooth and

rough walls in outer scaling; uncertainty in v′3+
= ±25 %.

The modifications to these vortices by the roughness are probably involved in the
changes observed in u′3+

as well as destruction of the peak in u′2+
when the flow is

fully rough.

The distributions of the velocity triple product v′3+
are presented in figure 17. The

present smooth- and rough-wall results agree within their uncertainty throughout

the boundary layer. Antonia & Krogstad (2001) showed that the profile of v′3+
was

considerably altered for flows over transverse rods. They observed that the value of
v′3+

was negative over a significant fraction of the boundary layer while this triple
product remained positive for a smooth and a woven mesh roughness over the entire
layer. This observation on the two-dimensional, transverse rod roughness indicates
that the direction of transport of v′2 turbulent kinetic energy (TKE) is toward the
wall, not away from it as is observed for smooth walls and the present roughness.
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Figure 18. The velocity triple product u′2v′+ for highest-Reynolds-number smooth
and rough walls in outer scaling; uncertainty in u′2v′+ = ±17 %.

It should be noted that the relative roughness, ks/δ was 1/8 for the transverse rods
of Antonia & Krogstad (2001), which is quite large. However, it is not clear if the
differences observed are due to this or more fundamental differences in the flows over
two- and three-dimensional roughness. Bandyopadhyay & Watson (1988) observed
similar differences in the velocity triple products between two- and three-dimensional
roughness.

The results for the velocity triple product u′2v′+ are shown in figure 18. This term
represents the wall-normal transport of the u′2 contribution to the TKE by the v′

fluctuations. The present results show good similarity in u′2v′+ for smooth and rough
walls in the outer flow. Closer to the wall, the results are more scattered, but the
differences observed are within the experimental uncertainty of the measurements.
Flack et al. (2005) noted that u′2v′+ was significantly reduced close to a rough wall
(y < 5ks). However, the closest point to the wall for the v′-based triple products
presented here is y ≈ 8ks , which is outside the zone they showed to be influenced by

the roughness. Antonia & Krogstad (2001) observed that u′2v′+ was negative over
a significant fraction of the boundary layer for a two-dimensional transverse rod
roughness, indicating transport of TKE toward the wall instead of away from it.
They also noted differences in the behaviour of the gradients ∂u′2v′/∂y and ∂v′3/∂y
for two- and three-dimensional roughness near the wall. This gradient reflects the
turbulent diffusion of u′2 and v′2 TKE by the v′ fluctuations. For a two-dimensional
roughness, they observed a negative gradient signifying a gain in TKE, whereas for a
three-dimensional roughness there was a loss of TKE by turbulent diffusion.

The profiles of the velocity triple product u′v′2+
are shown in figure 19. This

triple product represents the wall-normal turbulent flux of the Reynolds shear stress.
Although there is some scatter in the present results, there are no striking differences
observed between the smooth- and rough-wall profiles over most of the boundary
layer. Previous work by the present authors (Flack et al. 2005) also showed good agree-
ment in u′v′2+

for rough- and smooth-wall boundary layers over much of the boundary
layer. However, for both the sandpaper and woven mesh roughness that were tested,
u′v′2+

became positive near the wall (y < 5ks), indicating a flux of Reynolds shear stress
toward the surface as opposed to away from it, as is observed here. This change in
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Figure 19. The velocity triple product u′v′2+
for highest-Reynolds-number smooth

and rough walls in outer scaling; uncertainty in u′v′2+
= ±19 %.

near-wall transport was also noted by Andreopoulos & Bradshaw (1981). Again, since
the closest point to the wall for the v′-based triple products presented here is y ≈ 8ks ,
the change in near-wall transport cannot be directly corroborated by the present
results. However, some differences are observed for y/δ � 0.025 (y ≈ 10ks) with the
rough-wall u′v′2+

approaching zero whereas the smooth-wall u′v′2+
remains negative.

5. Conclusions
Experimental measurements that cover a wide Reynolds-number range, spanning

the hydraulically smooth to the fully rough flow regime for a single surface with a
small relative roughness height, have been presented and compared to those for a
smooth wall. The rough-wall experiments were made on a three-dimensional rough
surface geometrically similar to the honed pipe roughness used by Shockling et al.
(2006) in the Princeton superpipe facility. The roughness functions (	U+) for the
present boundary-layer tests show good agreement with the superpipe results and
indicate that a three-dimensional roughness with a nearly Gaussian distribution shows
inflectional behaviour and does not follow a monotonic Colebrook-type roughness
function (Colebrook 1939) as suggested by the Moody diagram (1944).

The present results for the mean flow, Reynolds stresses, quadrant decomposition of
the Reynolds shear stress, and turbulent transport of the Reynolds stresses (velocity
triple products) all show excellent agreement between rough- and smooth-wall
boundary layers in the overlap and outer regions, and, therefore, provide compelling
support for the wall similarity hypothesis (Townsend 1976; Raupach et al. 1991).
These results indicate that if the separation of scales between the roughness and the
largest turbulent length scales is sufficient, the outer layer is independent of surface
condition except for the role that the wall conditions have on setting the length (δ) and
velocity (Uτ ) boundary conditions for the outer flow. This is not to say that roughness
has no effect on the flow. Differences in the turbulence were observed in the near-wall
region of the boundary layer (y/δ � 0.025 or y � 10ks). For example, the near-wall
peak in u′2+

is observed to be reduced with increasing k+
s , which was also noted by

Ligrani & Moffat (1986) in turbulent boundary-layer flow and Krogstad et al. (2005)
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in turbulent channel flow. This is probably due to the roughness modification of the
viscous-influenced coherent structures that give rise to the peak on a smooth wall
(e.g. near-wall longitudinal vortices and low-speed streaks). Quadrant decomposition
also shows that there is an increase in strong sweep events and a decrease in strong
ejection events near the rough wall. However, outside the near-wall region, the mean
flow and turbulence properties appear to be independent of the surface condition.

Despite the significant amount of work that has focused on roughness effects on
wall-bounded shear flows, the picture is still not clear on the range of validity of the
wall similarity hypothesis. It seems reasonable, as Jiménez (2004) contends, that the
outer flow may be directly affected by the roughness if there is not sufficient scale
separation between the roughness height and the boundary-layer thickness. However,
there also seem to be some trends regarding roughness type which emerge from the
literature. The most significant changes to the outer flow appear to occur with two-
dimensional roughness, such as transverse rods (e.g. Krogstad & Antonia 1999) and
bars (e.g. Leonardi et al. 2003). Three-dimensional roughness such as closely packed
spheres (e.g. Ligrani & Moffat 1986), sandpaper (e.g. Flack et al. 2005), and sanded
surfaces (e.g. Schultz & Flack 2003) tend to show much less effect on the outer flow.
Other roughness types, such as three-dimensional woven mesh, have been used to both
support (Flack et al. 2005) and dispute (Krogstad et al. 1992) the concept of wall
similarity. A common thread in roughness types that show effects in the outer layer is
the relative large 	U+ they produce for their maximum peak-to-trough height (kT ).
This can be quantified by the ratio ks/kT . For most close-packed three-dimensional
roughness, ks/kT � ∼1. For two-dimensional transverse rods, the ratio ks/kT may be
greater than 6 (Krogstad & Antonia 1999). Additional work is necessary to understand
the effects of large relative roughness and the difference between roughness types.
The present study has shown that in the limit of high Reynolds number with a
small relative roughness height, turbulence effects are limited to the near-wall region,
supporting the wall similarity hypothesis.
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