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Abstract

Defeasible logic is a rule-based nonmonotonic logic, with both strict and defeasible rules,

and a priority relation on rules. We show that inference in the propositional form of the

logic can be performed in linear time. This contrasts markedly with most other propositional

nonmonotonic logics, in which inference is intractable.
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1 Introduction

Most work in non-monotonic reasoning has focussed on languages for which propo-

sitional inference is not tractable. Sceptical default reasoning is Πp
2-hard, even for

very simple classes of default rules, as is sceptical autoepistemic reasoning and

propositional circumscription. The complexity of sceptical inference from logic pro-

grams with negation-as-failure varies according to the semantics of negation. For

both the stable model semantics and the Clark completion, sceptical inference is

co-NP-hard. See Gottlob (1992) and Cadoli & Schaerf (1993) for more details.

Although such languages are very expressive, and this expressiveness has been

exploited in answer-set programming (Niemelä, 1999), for example, they have not

led to any practical applications in non-monotonic reasoning.

There has also been work on more tractable languages. Extensive work on inher-

itance networks with exceptions has led to polynomial time algorithms (Stein, 1992)

and applications (Morgenstern, 1998). Defeasible logic (Nute, 1987; Nute, 1994) is

a generalization (Billington et al., 1990) of inheritance networks with exceptions

under the directly sceptical semantics (Horty, 1994). Defeasible logic replaces the

implicit specificity relation by an explicit, programmable priority relation; general-

izes containment statements among concepts and their complements to rules over

literals; and adds the notion of an explicit defeater. Recent work has proposed other

languages (Grosof, 1997; Dimopoulos & Kakas, 1995) which are essentially subsets

of defeasible logic (Antoniou et al., 2000).
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We have already established that full first-order defeasible logic has a recur-

sively enumerable inference problem (Maher & Governatori, 1999). In this paper we

establish that inference in propositional defeasible logic has linear complexity. Con-

sidering the several expressive features of defeasible logic, and its low complexity,

it appears to be a suitable basis for applications of non-monotonic reasoning that

involve very large rule sets.

In the next section we introduce the proof theory of defeasible logic, which defines

the logic. Then we present a transition system (for a subset of defeasible logic) that

progressively simplifies a defeasible theory while accumulating conclusions that can

be inferred from the theory. We show that the meaning of the theory is preserved, and

when no more transitions are applicable all consequences have been accumulated.

The following section presents an algorithm that can be viewed as performing a

particular sequence of transitions. By an appropriate choice of data structures, we

show that the set of all conclusions can be computed in time linear in the size of the

theory. Finally, we use the transformations of Antoniou et al. (1998, 2001) to map an

arbitrary defeasible theory to the subset of defeasible logic to which the algorithm

applies. These transformations require only linear time, and blowup in the size of

the theory is linear. Thus the result is a linear time computation of the conclusions

of the defeasible theory. This algorithm has been the basis of an implementation of

defeasible logic (Maher et al., 2000).

2 Defeasible logic

2.1 An informal presentation

We begin by presenting the basic ingredients of defeasible logic. A defeasible theory

(a knowledge base in defeasible logic, or a defeasible logic program) consists of five

different kinds of knowledge: facts, strict rules, defeasible rules, defeaters, and a

superiority relation.

Facts are indisputable statements, for example, “Tweety is an emu”. Written formally,

this would be expressed as emu(tweety).

Strict rules are rules in the classical sense: whenever the premises are indisputable

(e.g. facts) then so is the conclusion. An example of a strict rule is “Emus are birds”.

Written formally:

emu(X)→ bird(X).

Defeasible rules are rules that can be defeated by contrary evidence. An example of

such a rule is “Birds typically fly”; written formally:

bird(X)⇒ flies(X).

The idea is that if we know that something is a bird, then we may conclude that it

flies, unless there is other, not inferior, evidence suggesting that it may not fly.

Defeaters are rules that cannot be used to draw any conclusions. Their only use is to

prevent some conclusions. In other words, they are used to defeat some defeasible
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rules by producing evidence to the contrary. An example is “If an animal is heavy

then it might not be able to fly”. Formally:

heavy(X) ¬flies(X).

The main point is that the information that an animal is heavy is not sufficient

evidence to conclude that it does not fly. It is only evidence that the animal may

not be able to fly. In other words, we don’t wish to conclude ¬flies(X) if heavy(X),

we simply want to prevent a conclusion flies(X) unless there is more evidence that

overrides the heaviness of X.

The superiority relation among rules is used to define priorities among rules, that is,

where one rule may override the conclusion of another rule. For example, given the

defeasible rules

r : bird(X) ⇒ flies(X)

r′ : brokenWing(X) ⇒ ¬flies(X)

which contradict one another, no conclusive decision can be made about whether

a bird with broken wings can fly. But if we introduce a superiority relation > with

r′ > r, with the intended meaning that r′ is strictly stronger than r, then we can

indeed conclude that the bird cannot fly.

There are several relevant points to be made about the superiority relation in

defeasible logic. Notice that a cycle in the superiority relation is counter-intuitive. In

the above example, it makes no sense to have both r > r′ and r′ > r. Consequently,

defeasible logic requires that the superiority relation is acyclic.

A second point worth noting is that, in defeasible logic, priorities are local in the

following sense: Two rules are considered to be competing with one another exactly

when they have complementary heads. Thus, since the superiority relation is used

to resolve conflicts among competing rules, it is only used to compare rules with

complementary heads; the information r > r′ for rules r, r′ without complementary

heads may be part of the superiority relation, but has no effect on the proof theory.

Finally, sets of rules with competing heads work as teams against each other. For

example, consider the following rules about mammals

r1 : monotreme(X) ⇒ mammal(X)

r2 : hasFur(X) ⇒ mammal(X)

r3 : laysEggs(X) ⇒ ¬mammal(X)

r4 : hasBill(X) ⇒ ¬mammal(X)

with the following superiority relation: r1 > r3 and r2 > r4. For a platypus, which

satisfies all antecedents, no rule is superior to all competing rules. However, rules r1
and r2 together are superior to rules r3 and r4. Hence defeasible logic concludes that

a platypus is a mammal.

Defeasible logic has some similarities with default logic (Reiter, 1980): both are

non-monotonic logics that distinguish statements which are unarguable (strict rules/

facts) from statements that have lesser force (defeasible rules/defaults). However,

there are substantial syntactic and semantic differences.

First, default logic has no notion of priority among rules, nor of a defeater that

https://doi.org/10.1017/S1471068401001168 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001168


694 M. J. Maher

cannot be used to make inferences. On the other hand, default logic permits any

logical expression as a fact or in a default rule, whereas defeasible logic allows

only rules as statements. Nevertheless, even if we restrict attention to propositional

default theories (W,D) where W is a conjunction of literals and D consists of Horn

default rules (so that the syntax is weaker than defeasible logic), sceptical inference

is co-NP-hard (Cadoli & Schaerf, 1993) whereas, as will be shown in this paper,

defeasible logic has linear complexity.

As noted by Nute (1994), a central difference between the two logics is in the

application of rules. In default logic the applicability of a default rule is independent

of any other default rule so that, given default rules : a
a

and : ¬a
¬a , either default may

be applied. On the other hand, in defeasible logic with rules {⇒ a,⇒ ¬a} neither

rule may be applied, since each rule ‘interferes’ with – or defeats – the other.

2.2 Formal definition

In this paper, we restrict attention to essentially propositional defeasible logic. Rules

with free variables can be interpreted as rule schemas, that is, as the set of all

variable-free instances; in such cases we assume that the Herbrand universe is finite

and we regard variable-free atoms as propositions. For compactness of presentation,

we use rule schemas in examples. However, in this paper we assume that a theory is

presented in propositional form, and not with rule schemas.

We assume that the reader is familiar with the notation and basic notions of

propositional logic. If q is a literal,∼q denotes the complementary literal (if q is a

positive literal p then∼q is ¬p; and if q is ¬p, then∼q is p).

A rule r : A(r) ↪→ C(r) consists of its unique label r, its antecedent (or body) A(r)

(A(r) may be omitted if it is the empty set) which is a finite set of literals, an arrow

↪→ (which is a placeholder for concrete arrows to be introduced in a moment), and

its consequent (or head) C(r) which is a literal. In writing rules we omit set notation

for antecedents and sometimes we omit the label when it is not relevant for the

context. There are three kinds of rules, each represented by a different arrow. Strict

rules use →, defeasible rules use ⇒, and defeaters use  .

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of

strict and defeasible rules in R by Rsd, the set of defeasible rules in R by Rd, the set

of defeasible rules and defeaters in R by Rdd, and the set of defeaters in R by Rdft.

R[q] denotes the set of rules in R with consequent q.

A superiority relation on R is a relation > on R. When r1 > r2, then r1 is called

superior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1 overrules r2,

should both rules be applicable. We assume > to be acyclic (that is, the transitive

closure of > is irreflexive).

A defeasible theory D is a triple (F, R,>) where F is a finite set of literals (called

facts), R a finite set of rules, and > an acyclic superiority relation on R.

Example 1

We will use the following defeasible theory to demonstrate several aspects of defea-

sible logic. We assume there are only the constants ethel and tweety in the language.
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Let Dbird = (Fbird , Rbird , >bird ) where: Fbird is the set of facts

emu(ethel).

bird(tweety).

Rbird is represented by the set of rule schemas

r1 : emu(X) → bird(X).

r2 : bird(X) ⇒ flies(X).

r3 : heavy(X)  ¬flies(X).

r4 : brokenWing(X) ⇒ ¬flies(X).

r5 : ⇒ heavy(ethel).

and the superiority relation >bird contains only r4 >bird r2.

The five rule schemas give rise to nine propositional rules by instantiating each

variable to ethel and tweety, respectively. Those rules, which make up Rbird are

r1,e : emu(ethel) → bird(ethel).

r1,t : emu(tweety) → bird(tweety).

r2,e : bird(ethel) ⇒ flies(ethel).

r2,t : bird(tweety) ⇒ flies(tweety).

r3,e : heavy(ethel)  ¬flies(ethel).
r3,t : heavy(tweety)  ¬flies(tweety).

r4,e : brokenWing(ethel) ⇒ ¬flies(ethel).
r4,t : brokenWing(tweety) ⇒ ¬flies(tweety).

r5 : ⇒ heavy(ethel).

The rules have been re-labelled purely to simplify later reference1. As a result, the

superiority relation becomes {r4,e >bird r2,e, r4,e >bird r2,t, r4,t >bird r2,e, r4,t >bird r2,t}.
As noted in the previous subsection, the two statements r4,e >bird r2,t and r4,t >bird r2,e
have no effect, since they do not involve rules with conflicting heads.

In this defeasible theory, Rs = {r1,e, r1,t} and Rd[¬flies(tweety)] = {r3,t, r4,t}. �

2.3 Proof theory

Defeasible logic is defined by the proof theory presented in this subsection following

(Billington, 1993). There are also characterizations of defeasible logic in other

frameworks (Maher & Governatori, 1999; Governatori & Maher, 2000; Maher,

2000), but they are not needed here.

A conclusion of D is a tagged literal that may be proved by D, and can have one

of the following four forms:

+∆q which is intended to mean that q is definitely provable in D.

−∆q which is intended to mean that we have proved that q is not definitely provable

in D.

1 Without the re-labelling we would have different rules with the same label. This is not a problem,
formally, but might be confusing.
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+∂q which is intended to mean that q is defeasibly provable in D.

−∂q which is intended to mean that we have proved that q is not defeasibly provable

in D.

Conclusions are used only at the meta-level and do not occur in defeasible theories.

Notice the distinction between −, which is used only to express unprovability, and

¬, which expresses classical negation. For example, −∆¬flies(tweety) means that

it has been proved that the negated proposition ¬flies(tweety) cannot be proved

definitely in the defeasible theory.

If we are able to prove q definitely, then q is also defeasibly provable. This is

a direct consequence of the formal definition below. Similarly, if −∂q is concluded

then we must also conclude −∆q.

Provability is defined below. It is based on the concept of a derivation (or proof) in

D = (F, R,>). A derivation is a finite sequence P = (P (1), . . . P (n)) of tagged literals

constructed by inference rules. There are four inference rules (corresponding to the

four kinds of conclusion) that specify how a derivation may be extended. (P (1..i)

denotes the initial part of the sequence P of length i):

+∆: We may append P (i+ 1) = +∆q if either

q ∈ F or

∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P (1..i)

This means, to prove +∆q we need to establish a proof for q using facts and strict

rules only. This is a deduction in the classical sense – no proofs for the negation of

q need to be considered (in contrast to defeasible provability below, where opposing

chains of reasoning must also be taken into account). From Dbird in Example 1 we

can infer +∆emu(ethel) (and +∆bird(tweety)) immediately, in a proof of length 1.

Using r1,e and the second clause of the inference rule, we can infer +∆bird(ethel) in

a proof of length 2.

−∆: We may append P (i+ 1) = −∆q if

q 6∈ F and

∀r ∈ Rs[q] ∃a ∈ A(r) : −∆a ∈ P (1..i)

To prove −∆q, that is, that q is not definitely provable, q must not be a fact.

In addition, we need to establish that every strict rule with head q is known to

be inapplicable. Thus for every such rule r there must be at least one element a

of the antecedent for which we have established that a is not definitely provable

(−∆a). From Dbird , we can infer −∆heavy(tweety) and −∆¬flies(tweety) immediately

(among many others), since in these cases Rs[q] is empty.

Note that this definition of nonprovability does not involve loop detection. Thus

if D consists of the single rule p → p, we can see that p cannot be proven, but

defeasible logic is unable to prove −∆p.

Defeasible provability requires consideration of chains of reasoning for the com-

plementary literal, and possible resolution using the superiority relation. Thus the

inference rules for defeasible provability are more complicated than those for definite

provability.

https://doi.org/10.1017/S1471068401001168 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001168


Defeasible logic has linear complexity 697

+∂: We may append P (i+ 1) = +∂q if either

(1) +∆q ∈ P (1..i) or

(2) (2.1) ∃r ∈ Rsd[q]∀a ∈ A(r) : +∂a ∈ P (1..i) and

(2.2) −∆∼q ∈ P (1..i) and

(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or

(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i) and t > s

Let us illustrate this definition. To show that q is provable defeasibly we have two

choices: (1) We show that q is already definitely provable; or (2) we need to argue

using the defeasible part of D as well. In particular, we require that there must be

a strict or defeasible rule with head q which can be applied (2.1). But now we need

to consider possible “attacks”, that is, reasoning chains in support of ∼q. To be

more specific: to prove q defeasibly we must show that∼q is not definitely provable

(2.2). Also (2.3) we must consider the set of all rules which are not known to be

inapplicable and which have head ∼q (note that here we consider defeaters, too,

whereas they could not be used to support the conclusion q; this is in line with the

motivation of defeaters given in subsection 2.1). Essentially each such rule s attacks

the conclusion q. For q to be provable, each such rule s must be counterattacked by

a rule t with head q with the following properties: (i) t must be applicable at this

point, and (ii) t must be stronger than s. Thus each attack on the conclusion q must

be counterattacked by a stronger rule.

From Dbird in Example 1 we can infer +∂bird(ethel) in a proof of length 3, using

part (1) of the inference rule. Other applications of this inference rule first require

application of the inference rule −∂. This inference rule completes the definition of

the proof theory of defeasible logic. It is a strong negation of the inference rule +∂

(Antoniou et al., 2001).

−∂: We may append P (i+ 1) = −∂q if

(1) −∆q ∈ P (1..i) and

(2) (2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i) or

(2.2) +∆∼q ∈ P (1..i) or

(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P (1..i) and

(2.3.2) ∀t ∈ Rsd[q] either

∃a ∈ A(t) : −∂a ∈ P (1..i) or t 6> s

To prove that q is not defeasibly provable, we must first establish that it is not

definitely provable. Then we must establish that it cannot be proven using the

defeasible part of the theory. There are three possibilities to achieve this: either we

have established that none of the (strict and defeasible) rules with head q can be

applied (2.1); or∼q is definitely provable (2.2); or there must be an applicable rule

s with head∼q such that no possibly applicable rule t with head q is superior to s

(2.3).

From Dbird in Example 1 we can infer −∂brokenWing(ethel) with a proof of length
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2 using (1) and (2.1), since R[q] is empty. Employing this conclusion, we can then

infer −∂¬flies(ethel), again using (2.1), since the only rule r is r4,e. Using r5, we

can infer +∂heavy(ethel) by (2) of the inference rule +∂; (2.3) holds since R[∼q] is

empty. Using (2.3) of the inference rule −∂, we can infer −∂flies(ethel), where the

role of s is taken by r3,e.

Furthermore, we can infer −∂brokenWing(tweety) and −∂heavy(tweety) using

(2.1) of inference rule −∂, since in both cases Rsd[q] is empty. Employing those

conclusions, we can then infer −∂¬flies(tweety), again using (2.1), since the only

rules for ¬flies(tweety) involve antecedents already established to be unprovable

defeasibly. Now, using this conclusion, we can use (2), specifically (2.1), of the

inference rule +∂ to infer +∂flies(tweety).

The elements of a derivation P in D are called lines of the derivation. We say that

a tagged literal L is provable in D = (F, R,>), denoted D ` L, iff there is a derivation

in D such that L is a line of P . Equivalently, we say that L is a consequence of D.

Conclusions are the basis of our notion of equivalent defeasible theories. We say

D1 and D2 are conclusion equivalent (written D1 ≡ D2) iff D1 and D2 have identical

sets of consequences, that is, D1 ` L iff D2 ` L.

An important property of defeasible logic is that it is coherent, that is, there is no

defeasible theory D and literal p such that D ` +∂p and D ` −∂p, or D ` +∆p and

D ` −∆p (Billington, 1993). Put simply, this property says that we cannot establish

that a literal is simultaneously provable and unprovable.

Notice that strict rules are used in two different ways. When we try to establish

definite provability, then strict rules are used as in classical logic: if their bodies are

proved definitely then their head is proved definitely, regardless of any reasoning

chains with the opposite conclusion. But strict rules can also be used to show

defeasible provability, given that some other literals are known to be defeasibly

provable. In this case, strict rules are used exactly like defeasible rules. For example,

a strict rule may have its body proved defeasibly, yet it may not fire because there

is a rule with the opposite conclusion that is not weaker. Furthermore, strict rules

are not automatically superior to defeasible rules. In this paper, we will choose to

duplicate strict rules as defeasible rules, and require definite reasoning to use the

strict rules (as always), while defeasible reasoning may use only defeasible rules.

Because of the above facts, this duplication and separation of rules does not modify

the consequences. When there is a duplicate defeasible rule for every strict rule in a

defeasible theory, we say that the theory has duplicated strict rules.

In this paper we will focus on the subset of defeasible logic that involves no

superiority statements and no defeaters, which we call basic defeasible logic. For

basic defeasible logic the inference rules are simplified (Antoniou et al., 2001). We

simplify them further by introducing two auxiliary tags for literals (+σ and −σ) and

corresponding inference rules.

+σ: We may append P (i+ 1) = +σq if

∃r ∈ Rsd[q] ∀a ∈ A(r) : +∂a ∈ P (1..i)

−σ: We may append P (i+ 1) = −σq if

∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i)
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These tags (+σ,−σ) represent the ability/inability to find a tentative reason for

the literals. Essentially, we can prove +σq when there is an argument for q, but we

must consider all counter-arguments (for∼q) before we can prove +∂q. Similarly, we

can prove −σq if there is not even a tentative reason for q, but there are other ways

to conclude −∂q. Tagged literals involving σ, ∂ or ∆ are called extended conclusions.

With the addition of these tags and inference rules, the inference rules for ∂ are

reduced to:

+∂: We may append P (i+ 1) = +∂q if either

+∆q ∈ P (1..i) or

{+σq,−∆∼q,−σ∼q} ⊆ P (1..i)

−∂: We may append P (i+ 1) = −∂q if

−∆q ∈ P (1..i) and

{−σq,+∆∼q,+σ∼q} ∩ P (1..i) 6= ∅
This modified proof system reduces the amount of ‘work’ done in any one proof

step in comparison with the original inference rules, and is the logical basis for the

algorithm. However, the algorithm is also based on repeated simplification of the

defeasible theory, which we describe as a transition system in the next section.

3 The transition system

The algorithm is defined in terms of a transition system on states. A state is a

pair (D,C) of a defeasible theory D and a set of extended conclusions C . As the

algorithm proceeds, the theory D is simplified and consequences of the theory are

accumulated in C . The transitions for the positive conclusions are based on forward

chaining. The negative conclusions are derived by a dual process.

Definition 1

There is a transition (Di, Ci) =⇒ (Di+1, Ci+1) only in the following cases:

1. (Di, Ci) =⇒ (Di, Ci ∪ {+∆q,+∂q,+σq})
if there is a fact q in Di or a strict rule in Di with head q and empty body

2. (Di, Ci) =⇒ (Di, Ci ∪ {+σq})
if there is a defeasible rule in Di with head q and empty body

3. (Di, Ci) =⇒ (Di, Ci ∪ {−∆q})
if there is no strict rule in Di with head q and no fact q in Di

4. (Di, Ci) =⇒ (Di, Ci ∪ {−σq})
if there is no rule in Di with head q

5. (Di, Ci) =⇒ (Di, Ci ∪ {+∂q})
if +∆q ∈ Ci or if {−∆∼q,−σ∼q,+σq} ⊆ Ci

6. (Di, Ci) =⇒ (Di, Ci ∪ {−∂q})
if −∆q ∈ Ci and either +∆∼q ∈ Ci or +σ∼q ∈ Ci or −σq ∈ Ci.

7. (Di, Ci) =⇒ ((Di\{r}) ∪ {r′}, Ci)
if r is a strict rule in Di with body containing q, r′ is r with q deleted, and

+∆q ∈ Ci
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8. (Di, Ci) =⇒ ((Di\{r}) ∪ {r′}, Ci)
if r is a defeasible rule in Di with body containing q, r′ is r with q deleted, and

+∂q ∈ Ci
9. (Di, Ci) =⇒ ((Di\{r}), Ci)

if r is a strict rule in Di with body containing q, and −∆q ∈ Ci
10. (Di, Ci) =⇒ ((Di\{r}), Ci)

if r is a defeasible rule in Di with body containing q, and −∂q ∈ Ci
We write (Di, Ci) 6=⇒ if there is no transition (Di, Ci) =⇒ (Di+1, Ci+1) except those

where (Di, Ci) = (Di+1, Ci+1).

If (D, ∅) =⇒ · · · =⇒ (D′, C ′) 6=⇒ and C is the subset of C ′ involving only the tags

+∆,−∆,+∂, and −∂, then we say that D derives C .

We demonstrate the action of the transition system on Dbird in Example 1.

Transition 1 applies to each fact and transition 3 applies to all literals except the

facts and bird(ethel). Similarly, transition 2 applies to heavy(ethel) and transition

4 applies to several literals, including all brokenWing literals. These transitions do

not modify Di; they only accumulate conclusions in Ci. However, as a result of this

accumulation, transition 7 deletes emu(ethel) from r1,e, which then allows transition

1 to add +∂bird(ethel) to Ci, and transition 9 deletes r1,t. Furthermore, transition

5 applies for emu(ethel), bird(tweety), and bird(ethel) by the first condition, and

then transition 8 applies to modify r2,e and r2,t; similarly, transition 6 applies to all

brokenWing literals, which then allows r4,e and r4,t to be deleted by transition 10.

Further transitions are possible.

It is quite clear that, by ignoring defeaters and superiority statements, the transition

system is incorrect for theories of full defeasible logic. The transition system is also

incomplete, in general, for theories of basic defeasible logic. For example, from the

rules

a → b

⇒ a

the transition system cannot conclude +σb. But under the assumption that strict

rules are duplicated as defeasible rules, the transition system is sound and complete,

as we now show.

Theorem 1

Let D be a basic defeasible theory with duplicated strict rules. Suppose (D, ∅) =⇒
· · · =⇒ (D′, C ′) 6=⇒. If c ∈ C ′ then D ` c.
Proof

Consider a transition (Di, Ci) =⇒ (Di+1, Ci+1). We prove, by induction on i, that

• If c ∈ Ci+1\Ci then Di ` c
• Di ≡ Di+1

for every conclusion c.

The first part is straightforward, since the first six transitions are essentially

instances of the inference rules of defeasible logic. The remainder of the transitions

do not modify Ci.
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For the second part only the last four transitions are relevant. We need to show

that, for each transition and every proof in Di there is a corresponding proof in

Di+1, and vice versa.

For transition 7

If a proof p in Di applies the inference rule +∆ using r, then the inference rule is

still applicable using r′ and p is also a proof in Di+1. Similarly, if a proof p in Di
applies the inference rule −∆ involving r, then p establishes −∆x, for some x in the

body of r. x cannot be q, since Di ` +∆q. Thus p is also a proof in Di+1.

If a proof p in Di+1 applies the inference rule +∆ using r′, let p′ be a proof in Di
of +∆q. Then the concatenation of p′ and p is a proof in Di. If a proof p in Di+1

applies the inference rule −∆ involving r′, then p is also a proof in Di.

For transition 8

Let s be the head of r. If p is a proof in Di containing +σs then p is also a proof in

Di+1. If p is a proof in Di+1 containing +σs, let p′ be a proof in Di of +∂q. Then the

concatenation of p′ and p is a proof in Di.

If p is a proof in Di containing −σs, then there is some literal t in the body of r

such that Di ` −∂t. t cannot be q since, by assumption, Di ` +∂q, and defeasible

logic is coherent. Thus p is also a proof in Di+1. If p is a proof in Di+1 containing

−σs, then there is some literal t in the body of r′ such that Di+1 ` −∂t. We must

also have Di ` −∂t, since the proof in Di+1 cannot use r′, which would introduce

circularity. Thus p is also a proof in Di.

For transition 9

If a proof p in Di applies the inference rule +∆ it does not use r since Di ` −∆q.

Thus p is also a proof in Di+1. If a proof p in Di applies the inference rule −∆ then

the inference rule also applies in Di+1. Thus p is also a proof in Di+1.

If a proof p in Di+1 applies the inference rule +∆ then it is also a proof in Di. If

a proof p in Di+1 applies the inference rule −∆ let p′ be a proof in Di of −∆q. Then

the concatenation of p′ and p is a proof in Di.

For transition 10

Let s be the head of r. If p is a proof in Di containing −σs then p is also a proof in

Di+1. If p is a proof in Di+1 containing −σs, let p′ be a proof in Di of −∂q. Then the

concatenation of p′ and p is a proof in Di.

If p is a proof in Di containing +σs, then the proof of +σs cannot use r, since

Di ` −∂q. Thus p is also a proof in Di+1. If p is a proof in Di+1 containing +σs,

then p is also a proof in Di+1. q

It follows from the above proof that the transformed defeasible theories are

equivalent.

Corollary 1

Let D be a basic defeasible theory with duplicated strict rules. Suppose (D, ∅) =⇒
· · · =⇒ (D′, C ′). Then D ≡ D′.

The transition system is complete: it generates all the conclusions that are inferred

by defeasible logic.
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Theorem 2

Let D be a basic defeasible theory with duplicated strict rules. Suppose (D, ∅) =⇒
· · · =⇒ (D′, C ′) 6=⇒. For every conclusion c, if D′ ` c then c ∈ C ′.

Proof

Suppose, to obtain a contradiction, that the theorem does not hold, and let c be a

consequence of D′ that is not in C ′ and has a minimal length proof in D′ among

such consequences.

If c is −∆q then every strict rule with head q has a body literal b such that

D′ ` −∆b. By the assumption, and since the proof for each −∆b must be shorter,

−∆b ∈ C ′. Since no more transitions are possible, and considering transition 9, there

is no strict rule with head q. But then, a transition 3 that adds −∆q to C ′, is possible,

contradicting the assumption.

If c is +∆q then there is a strict rule with head q and D′ ` +∆b for each body

literal b. By the assumption, and since the proof for +∆b must be shorter, +∆b ∈ C ′.
Since no more transitions are possible, and considering transition 7, the body of the

rule must be empty. But then, considering transition 1, +∆q ∈ C ′, contradicting the

assumption.

Similarly, if c is +∂q then there must be a defeasible rule for q with an empty body.

Furthermore, D′ ` −∆∼q, and every defeasible rule for∼q contains a body literal

b such that D′ ` −∂b. By the assumption, −∂b ∈ C ′, for each b, and −∆∼q ∈ C ′.
Since no more transitions are possible, considering transition 10 there must be no

defeasible rules for ∼q. Thus −σ ∼q ∈ C ′. Also +σq ∈ C ′, since the rule body is

empty, and thus the transition 5 applies, leading to a contradiction.

If c is −∂q then D′ ` −∆q, and either every defeasible rule for q contains a body

literal b such that D′ ` −∂b or D′ ` +∆∼q or and there is a defeasible rule for

∼q such that for all its body literals b′, D′ ` +∂b′. By the assumption, and since

any of these proofs must be shorter than the proof of c, −∆q ∈ C ′ and either every

defeasible rule for q contains a body literal b such that −∂b ∈ C ′ or +∆∼q ∈ C ′ or

and there is a defeasible rule for∼q such that for all its body literals b′, +∂b′ ∈ C ′.
But then, since no transitions are possible, and considering transition 8 and 10,

either there are no defeasible rules for q or +∆∼q ∈ C ′ or there is a defeasible

rule for∼q with an empty body. Considering transitions 2 and 4, either −σq ∈ C ′
or +∆∼q ∈ C ′ or +σ ∼q ∈ C ′. Consequently, because of transition 6, −∂q ∈ C ′,
contradicting the original assumption. q

Combining the previous two theorems, we can conclude that the transition system

computes exactly the conclusions of the initial defeasible logic program.

Theorem 3

Let D be a basic defeasible theory with duplicated strict rules. Suppose D derives C .

Then, for every conclusion c,

D ` c iff c ∈ C
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4 The linear algorithm

The algorithm consists of two main parts: (1) a series of transformations to pro-

duce an equivalent basic defeasible theory with duplicated strict rules; and (2) the

application of transitions from the transition system in a computationally efficient

order. These parts will be discussed in separate subsections.

4.1 Transformations

The input to the algorithm is an arbitrary defeasible theory, but the transition system

is proved correct only for basic defeasible theories with duplicated strict rules. To

bridge this gap we must transform the input defeasible theory into the appropriate

form.

In Antoniou et al. (2001), three transformations are used to convert any defeasible

theory into an equivalent basic defeasible theory. The first places the defeasible

theory in a normal form, the second eliminates defeaters, and the third reduces

the superiority relation to the empty relation. Let Basic denote this sequence of

transformations. We will use Basic in the inference algorithm.

It is beyond the scope of this paper to present a definition of Basic; for that,

the reader is referred to Antoniou et al. (2001). However, to give the flavor of the

transformations we present one component transformation, elim sup, which empties

the superiority relation. It introduces two new propositions for each rule, two rules

for each superiority statement, and up to four rules replacing each original rule. It

is defined as follows.

Definition 2

Let D be a regular defeasible theory with rules R. Let Σ be the language of D.

elim sup(R) = Rs ∪ { ¬inf+(r1)⇒ inf+(r2),

¬inf−(r1)⇒ inf−(r2) | r1 > r2}
∪ { A(r)⇒ ¬inf+(r),

¬inf+(r)⇒ p,

A(r)⇒ ¬inf−(r),

¬inf−(r)⇒ p | r ∈ Rd[p]}
∪ { A(r)⇒ ¬inf−(r),

¬inf−(r) p | r ∈ Rdft[p]}
For each r, inf+(r) and inf−(r) are new atoms not in Σ. Furthermore, all new atoms

are distinct.

Intuitively, the two introduced propositions, inf+(r) and inf−(r), represent that r

is inferior to a rule in Rsd (respectively R) that has a defeasibly provable body. If

D ` +σinf+(r) then D 6` +∂¬inf+(r) and even when A(r) is proved defeasibly p, the

consequent of r, cannot be established defeasibly using r because the link between

the two is broken.

The transformation to eliminate defeaters is slightly similar to the above trans-

formation; two propositions are introduced for every proposition in D and up to

three rules are used to replace each rule in D. The two propositions – p+ and
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p− – introduced for each proposition p, represent that p (respectively ¬p) is not

defeated by a defeater. Again, these propositions form links between antecedent and

consequent, and the effect of a defeater is obtained with a defeasible rule that can

break such a link. For more details, see Antoniou et al. (2001).

It is clear that these two transformations are profligate in their introduction of

propositions and generation of rules. Nevertheless, they can be applied in one pass

(each) over a defeasible theory, and the resulting defeasible theory is, at most, a

constant factor larger.

The following result was proved in Antoniou et al. (2001), albeit in parts and with

slightly different terminology.

Theorem 4 (Antoniou et al., 2001)

Let D be a defeasible theory and let Σ be the language of D. Let D′ =Basic(D).

Then D′ is a basic defeasible theory and, for all conclusions c in Σ,

D ` c iff D′ ` c.
Furthermore, D′ can be constructed in time linear in the size of D, and the size of

D′ is linear in the size of D.

We must also ensure that the basic defeasible theory resulting from Basic has

duplicated strict rules. To guarantee this property we employ the following simple

transformation DupStrict2.

Definition 3

Let D = (F, R,>). Then DupStrict(D) = (F, R′, >) where

R′ = R ∪ {(r : B ⇒ q) | (r : B → q) ∈ Rs}
It is straightforward to show that DupStrict does not change the consequences of

a theory.

Proposition 1

For any defeasible theory D, and any conclusion c,

D ` c iff DupStrict(D) ` c

Proof

(Sketch) Definite provability is affected only by strict rules and facts. The strict rules

in R and R′ are essentially the same, and the facts are unchanged. Thus definite

provability is unchanged by DupStrict.

In applying the defeasible inference rules, it makes no difference whether a rule

is strict or defeasible. So `, applied to DupStrict(D) uses effectively the same rules

as when applied to D. It also makes no difference whether there is one or several

copies of a rule. q
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D′ = (F ′, R′, ∅) = Basic(D)

R = DupStrict( R′ )

initialize S

K = ∅

while ( S 6= ∅ )

choose s ∈ S and delete s from S

add s to K

case s of

+∆p:

delete all occurrences of p in all rule bodies

whenever a body of a strict rule with head h becomes empty

add +∆h to S

record +∆h,+∂h,+σh

CheckInference( +∆h, S )

whenever a body of a defeasible rule with head h becomes empty

record +σh

CheckInference( +σh, S )

−∆p:

delete all strict rules where p occurs in the body

whenever there are no more strict rules for a literal h, and there is no fact h

add −∆h to S

record −∆h

CheckInference( −∆h, S )

+∂p:

delete all occurrences of p in defeasible rule bodies

whenever a body with head h becomes empty

record +σh

CheckInference( +σh, S )

−∂p:
delete all defeasible rules where p occurs in the body

whenever there are no more defeasible rules for a literal h

record −σh
CheckInference( −σh, S )

end case

end while

Fig. 1. Inference algorithm for defeasible logic.

4.2 The algorithm

In the algorithm, which is presented in Figure 1, p ranges over literals and s

ranges over conclusions. K and S are sets of conclusions. K accumulates the set of

conclusions that have been proved and used, while S holds those proven conclusions

that have not yet been used to establish more conclusions. D is the input defeasible

theory.

2 This duplication is not strictly necessary since an appropriate separation of definite and defeasible
reasoning is achieved by the transformations of Antoniou et al. (2001). However, in this context, it is
simpler to ensure this property by duplication than to argue that it holds of transformations that are
not presented here.
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To begin the algorithm we reduce D to basic defeasible logic with duplicated strict

rules, as discussed above. We also initialize the set S , that is, we add to S those

conclusions that can immediately be established: all facts are definitely true, as are

the heads of strict rules with empty bodies. The heads of defeasible rules with empty

bodies are tentatively true. Similarly, those literals with no (strict) rules for them are

unprovable (strictly).

The algorithm proceeds by modifying the rules in the theory. For strict rules, when

inferring positive definite consequences, the algorithm is similar to unit resolution

for definite clauses in classical logic: when an atom is proved, it can be eliminated

from the bodies of all other definite clauses. In this case, when a literal is established

definitely it can be deleted from the body of all rules. Similarly, when it is established

that a literal p cannot be proved then those strict rules which have p as a pre-

condition cannot be used to prove the head, and so they can be deleted. When

a strict rule has an empty body, then its head is definitely provable; when there

are no strict rules for a literal, then the literal is unprovable definitely. When an

atom is proved definitely it is eliminated from both strict and defeasible rules; this

necessitates extra code for the case when the body of a defeasible rule becomes

empty.

When establishing tentative provability, we proceed in exactly the same way as

with definite provability, except that we restrict attention to defeasible rules. We can

conclude +σq precisely when the body of a defeasible rule for q becomes empty,

and −σq precisely when there are no more defeasible rules for q.

When establishing defeasible provability, we use the simplified inference rules

introduced at the end of section 2. Each time a statement such as +σp is inferred

by the system the statement is recorded in the data structure for p and we check to

see whether either of the simplified inference rules for ∂ can be applied. This task is

performed by CheckInference, which will add either +∂p or −∂p, if justified, to the

set S3. For example, CheckInference (+σp, S) will check whether −∆∼p and −σ∼p
have already been established, so that +∂p may be inferred and added to S , and if

−∆∼p has been established will add −∂∼p to S . Similarly, CheckInference(−∆p, S)

will check whether +σ∼p and −σp, so that +∂∼p might be inferred, and will check

−σp, +∆∼p and +σ∼p to decide whether −∂p might be proved.

Execution of this algorithm can be understood as execution of the transition

system of Section 3. S ∪K combined with the set of recorded extended conclusions

in the algorithm corresponds to Ci in the transition system. The deletions in the

algorithm correspond to transitions 7, 8, 9, and 10. The add statements correspond to

transitions 1 and 3. The record statements correspond to transitions 1, 2, 3, 2, and 4.

These transitions are also reflected in the initialization of S . Finally, CheckInference

embodies transitions 5 and 6.

The algorithm corresponds to a restricted form of the transition system where

some sequences of transitions are disallowed. For example, the first case of Figure 1

requires that all transitions 7 and 8 involving p must occur as a block, uninterrupted

3 Recall that defeasible logic will never infer both +∂p and −∂p since it is coherent (Billington, 1993).
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r1      a b c d

r2      a ¬b d ¬e

r3    ¬a d ¬e

d ¬eca

Fig. 2. Data structure for rules.

by any other uses of these transitions. Furthermore, the only possible other transi-

tions in the block are transitions 1 and 2, when p is the last remaining literal in a rule,

and transitions 5 and 6 when the recorded information about p triggers them. Note,

however, that the algorithm does not disallow any transitions; it simply restricts the

order in which transitions may occur. Thus the soundness and completeness of the

transition system extends to soundness and completeness of the algorithm.

The key to an efficient implementation of this algorithm is the data structure

used to represent the rules. It is exemplified (albeit incompletely) in Figure 2 for the

theory

r1 : b, c, d⇒ a

r2 : ¬b, d,¬e⇒ a

r3 : d,¬e⇒ ¬a
Each rule body is represented as a doubly-linked list (horizontal arrows in Fig-

ure 2). Furthermore, for each literal p there are doubly-linked lists of the occurrences

of p in the bodies of strict (respectively, defeasible) rules (diagonal arrows). For each

literal p, there are doubly-linked lists of the strict (respectively, defeasible) rules for p

(dashed arrows). Each literal occurrence has a link to the record for the rule it occurs

in (not shown in Figure 2). As mentioned above, each literal p holds information

showing which extended conclusions about p have been established, and there is

also a link to the corresponding data structure for ∼p.
This data structure allows the deletion of literals and rules in time proportional to

the number of literals deleted. Furthermore, we can detect in constant time whether

a literal deleted was the only literal in that body, and whether a rule deleted with

head h was the only strict (defeasible) rule for h. Each literal occurrence is deleted at

most once, and the test for empty body is made at most once per deletion. Similarly,

each rule is deleted at most once, and the test for no more rules is made once per

deletion. The cost of a call to CheckInference is constant, since all checking relies

on data that is immediately available, and at most three checks are needed per call.

Thus the cost of the main part of the algorithm is O(N), where N is the number of

literal occurrences in D′.
Furthermore, the initialization of S is supported by the data structure and has cost

proportional to the number of propositions in D′. Note that S can be implemented

as a queue or a stack, since the only operations on S are to test for emptiness, add
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an element, or choose and delete an element. These operations require only constant

time, and the number of operations is, in the worst case, proportional to the number

of rules in D′. Since the initial transformations (Antoniou et al., 2001) that produce

D′ are linear, the cost of the entire algorithm is linear in the size of D.

Theorem 5

The consequences of a defeasible theory D can be computed in O(N) time, where N

is the number of symbols in D.

This algorithm, when restricted to positive definite conclusions, is similar to the

bottom-up linear algorithm for determining satisfiability of Horn clauses of Dowling

& Gallier (1984) and Gallo & Urbani (1989). One difference is in the data structures:

the Dowling-Gallier algorithm keeps a count of the number of atoms in the body

of a rule, rather than keep track of the body. The latter results in greater memory

usage, but allows us to reconstruct the residue of the computation: the simplified

rules that remain. This residue is useful in understanding the behaviour of a theory,

and can be useful in some applications of defeasible logic.

5 Discussion

There seem to be several inter-related features of defeasible logic that contribute to

its linear complexity:

• form of failure: the form of failure-to-prove exhibited in the proof conditions

for −∆ and −∂ is closely related to Kunen’s semantics for logic programs

with negation-as-failure (Maher & Governatori, 1999). This form of failure

does not include looping failures, and the propositional form is known to have

linear complexity.

• static and local nature of conflict: when trying to derive +∂q or −∂q it is

sufficient to look at rules for q and∼q, since∼q is the only literal that conflicts

with q. Thus the set of conflicting rules is unchanging and readily apparent.

In logics where there is no bound on the number of conflicting literals and/or

the conflicting rules cannot be known a priori (for example, plausible logic

(Billington & Rock, 2001)) the corresponding inference rules for +∂ and −∂
can be expected to be more complex.

• linear cost elimination of superiority relation: defeaters can be handled as a

variant of defeasible rules using the techniques of section 4. The presence

of a superiority relation complicates these techniques greatly, although it is

clear that there is a linear direct implementation of full defeasible logic by

imitating the elimination transformation. The elimination of the superiority

relation is based on a simple syntactic transformation (Antoniou et al., 2001),

but a similar transformation has been proposed for other logics (Kowalski

& Toni, 1996) that have higher complexity. The success of such a simple

transformation can be partly attributed to the static nature of the superiority

relation and the static and local nature of conflicting literals, which do not

change over the course of evaluation.
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A significant non-factor in the complexity of defeasible logic is the team defeat

aspect of the logic. This might be expected to create some difficulties since, con-

ceptually, two teams of rules are pitted against each other, and this might give

rise to combinatorial problems. However, reformulating the issue as one of compet-

ing/conflicting literals clarifies that there is a fixed number of pieces of information

that are of interest, and each rule can contribute individually.

We can expect that similar logics, such as the variants discussed in (Antoniou et

al., 2001) and variants where strict rules are superior to defeasible rules (Nute, 1994),

also have linear complexity and are amenable to the techniques used here, although

the details will require careful verification. Similarly, well-founded defeasible logic

(Maher & Governatori, 1999) can be expected to have quadratic complexity, since

it employs the well-founded semantics (Van Gelder et al., 1991) notion of failure,

which has quadratic complexity.

6 Conclusion

We have shown that propositional defeasible logic has linear complexity. The al-

gorithm that we have presented here has been implemented as the system Delores

(Miller, 2000) and has undergone a preliminary experimental evaluation (Maher et

al., 2000). It executes simple, but large, theories of basic defeasible logic very quickly.

The linear complexity of the algorithm is supported empirically.

However, the transformations used to convert an arbitrary defeasible theory to the

appropriate form for the algorithm of Figure 1 impose a large constant factor on the

cost of initializing S . Although the cause has not been pinpointed, it appears to be

derived from the multiplication of rules and propositions during the transformations.

It should be possible to improve performance by integrating the transformations of

Antoniou et al. (2001) more tightly and/or abandoning the design goal (Antoniou

et al., 2001) of incrementality of the transformations (with respect to changes in the

original defeasible theory).

Work is proceeding on improvements to the implementation of defeasible logic

and the application of similar techniques to implement well-founded defeasible

logic. We propose to use the implementation to support reasoning about regulations

(Antoniou et al., 1999).
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