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Abstract Suppose that G is a connected reductive algebraic group defined over R, G(R) is its group

of real points, θ is an automorphism of G, and ω is a quasicharacter of G(R). Kottwitz and Shelstad
defined endoscopic data associated to (G, θ, ω), and conjectured a matching of orbital integrals between

functions on G(R) and its endoscopic groups. This matching has been proved by Shelstad, and it yields a

dual map on stable distributions. We express the values of this dual map on stable tempered characters
as a linear combination of twisted characters, under some additional hypotheses on G and θ .
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1. Introduction

The theory of endoscopy expresses the harmonic analysis of an algebraic group in terms

of the harmonic analysis of smaller so-called endoscopic groups. The group in the present

work is a connected reductive algebraic group G defined over R, and the endoscopic

groups are denoted by H . Actually, an endoscopic group is only a part of an endoscopic

datum upon which the analytic comparison depends, but we shall overlook this briefly.

In standard endoscopy there are several established identities connecting the harmonic

analysis of G to H . These identities rely on correspondences between the conjugacy

classes of the groups G and H . Perhaps the most basic identities are of the form∑
γ

Oγ ( fH ) =
∑
δ

1(γ, δ)Oδ( f ), f ∈ C∞c (G(R)) (1.1)

[34, Theorem 14.3]. Here, O· denotes an orbital integral, γ a conjugacy class of H(R)
which corresponds to a conjugacy class δ in G(R), 1(γ, δ) are scalars, and fH ∈
C∞c (H(R)). The sum on the left runs over the representatives of a stable conjugacy
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class. An alternative way of expressing (1.1) is that, for any 8 in the space of orbital

integrals on G(R),

Trans(8) :=
∑
δ

1(·, δ)8(δ)

lies in the space of stable orbital integrals on H(R). The map Trans is typically called

geometric transfer.

The transpose of geometric transfer is a map from stable distributions on H(R) to

invariant distributions on G(R). This is what is meant by spectral transfer. Tempered

spectral transfer identities are dual to the geometric identities above, and have the basic

form ∑
πH∈5ϕH

2πH ( fH ) =
∑
π∈5ϕ

1(ϕϕϕH , π)2π ( f ), f ∈ C∞c (G(R)). (1.2)

Here, the orbital integrals are replaced by Harish-Chandra’s characters 2· of tempered

representations in L-packets. The terms 1(ϕϕϕH , π) are scalars called spectral transfer

factors. They are defined relative to the geometric transfer factors 1(γ, δ) given in (1.1).

The definition of these factors and the proofs of these identities were given by Shelstad

originally in [33], and revised more recently in [34, 36].

In twisted endoscopy, the group G is supplied with an algebraic automorphism θ and

a continuous quasicharacter ω of G(R). The endoscopic groups H are influenced by the

twisting data (θ, ω). So too are the underlying conjugacy classes and representations. The

foundations of twisted endoscopy were set down by Kottwitz and Shelstad in [20]. They

included a conjectural twisted geometric transfer identity extending (1.1). This geometric

transfer identity was proved recently by Shelstad in the real case [37].

Extensions of (1.2) to base change were proved in [7, 10, 11]. More generally, the real

twisted version of (1.2) was proved in [28] under the assumptions that ω was trivial, θ was

of finite order, and the L-packets consisted of (essential limits of) discrete series. There

was one further technical assumption in [28] which we will give later. The purpose of

this paper is to extend (1.2) to the twisted context only under this technical assumption

and the assumption that θ acts semisimply on the centre of G. Our extension of (1.2)

is given in Theorem 6.7. We will give just enough background for a precise statement of

this theorem, and then discuss its proof.

Suppose that θ is an algebraic automorphism of G which is defined over R. The technical

assumption alluded to above requires us to specify a quasisplit group G∗ in the inner

class of G. By definition, the group G∗ has an R-splitting splG∗ , and there is an inner

twisting ψ : G → G∗. On may choose gθ ∈ G∗ such that θ∗ = Int(gθ )ψθψ−1 preserves

splG∗ . One may also choose uσ ∈ G∗ such that Int(uσ ) = ψσψ−1σ−1 for the non-trivial

automorphism σ ∈ Gal(C/R). In fact, one chooses gθ and uσ in G∗sc, the simply connected

covering group of the derived group of G∗, with the interior automorphisms interpreted

correctly [20, 1.2 and 3.1]. It turns out that

σ 7→ gθuσσ(gθ )−1θ∗(uσ )−1 (1.3)
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determines a one-cocycle in the θ∗-coinvariants of the centre of G∗sc [20, Lemma 3.1.A].

Our technical assumption is that this cocycle is a coboundary. The assumption is

satisfied for quasisplit G when θ fixes an R-splitting. In particular, it is satisfied for

the automorphisms θ̃ (N ) and θ̃ appearing in [1].

The remaining background for the main theorem pertains to twisted endoscopy, and we

expect that the reader has some familiarity with this. Let (H,H, s, ξ) be an endoscopic

datum for (G, θ, ω) [20, 2.1], and (H1, ξH1) be a corresponding z-pair [20, 2.2]. The group

H1 is a z-extension of H with centre Z1. For every f ∈ C∞c (G(R)), there exists a smooth

function fH1 on H1(R) with matching orbital integrals [37], (5.5.1) [20]. Let ϕϕϕH1 be a

tempered L-parameter for H1, and ϕH1 ∈ ϕϕϕH1 be an admissible homomorphism. One

may define a tempered admissible homomorphism ϕ of G by composing ϕH1 with ξ ◦ ξ−1
H1

[28, 6]. By the local Langlands correspondence, there are L-packets of (equivalence classes

of) irreducible tempered representations 5ϕH1
and 5ϕ attached to (the L-parameters of)

ϕH1 and ϕ, respectively [26]. For each representation πH1 ∈ 5ϕH1
, we have a distribution

character 2πH1
. If π ∈ 5ϕ is equivalent to ω⊗π ◦ θ via an intertwining operator Tπ , then

one may define a distribution character 2π,Tπ which is twisted by Tπ [28, 5.2]. Otherwise,

we set 2π,Tπ = 0.

Theorem 1.1 (Main Theorem). Suppose that θ acts semisimply on the centre of G, and

that the cocycle defined by (1.3) is a coboundary. Then there exist spectral transfer factors

1(ϕϕϕH1 , π) ∈ C, π ∈ 5ϕ
such that ∫

H1(R)/Z1(R)
fH1(h)

∑
πH1∈5ϕϕϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1(ϕϕϕH1 , π)2π,Tπ ( f )

for all f ∈ C∞c (G(R)).

The crux of this theorem is to produce explicit spectral transfer factors so that the

desired identity holds. Although we have done this, we must stress that the transfer

factors are defined without showing that they are canonical. Indeed, there are certain

choices made in the definition of these transfer factors [28, 6.3], and one wishes to

show that the transfer factors are independent of these choices. This type of canonicity

holds for geometric transfer factors [20, §4.6], and the analogous canonicity for spectral

transfer factors is to be expected (see [31] and [36, §12]). One would also expect a form

of Whittaker normalization for the twisted spectral transfer factors [20, 5.3], [36, 11].

Rather than trying to cull canonicity and normalization from the complicated spectral

transfer factors used here, it would be better to develop a theory that parallels the one

given in [36].

Before turning to a discussion of the proof of the main theorem, let us comment

on the aforementioned technical assumption on (1.3). It does not seem to be relevant

to expected applications, and it simplifies the setting for it avoids any twisting of the

endoscopic groups (see [20, 5.4]). However, the cocycle of (1.3) appears to be an essential

feature of twisted endoscopy, and future work in this area should accommodate it.
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Let us turn to the proof of the main theorem. The proof relies on [28], where ω was

taken to be trivial and θ was taken to be of finite order. These assumptions were made

on ω and θ in order to satisfy the hypotheses of a twisted version of Harish-Chandra’s

uniqueness theorem [29, Theorem 15.1], [28, Theorem 1]. This twisted uniqueness theorem

has been extended here in appendix A to allow for arbitrary ω and θ . The assumption

of θ being semisimple on the centre remains due to changes of variable [28, Corollary 1].

The passage from (essential limits of) discrete series to tempered representations in

the proof of the main theorem in standard endoscopy employs a simple application of

Harish-Chandra’s method of parabolic descent [36, 14]. To see that something more

is required in the twisted case, consider the example of G(R) = SL(3,R). Let ω be

trivial, and set the automorphism θ equal to the inverse-transpose map composed

with conjugation by a representative w0 ∈ SL(3,R) for the long element in the Weyl

group. The dual group Ĝ is equal to PGL(3,C). There is a tempered L-packet5ϕ attached

to the homomorphism ϕ : WR → Ĝ defined by

ϕ(rei t ) =
ei t 0 0

0 1 0
0 0 e−i t

 Z , rei t ∈ C×, ϕ(σ ) =
0 0 −1

0 1 0
1 0 0

 Z .

Here, Z is the centre of GL(3,C), and WR = C× ∪C×σ is the real Weil group. The image

of ϕ is contained in the proper Levi subgroup

M̂ =

∗ 0 ∗

0 1 0
∗ 0 ∗

 Z

 ∼= GL(2,C),

and this Levi subgroup is dual to the following Levi subgroup of SL(3,R):

M(R) =

∗ 0 ∗

0 ∗ 0
∗ 0 ∗

 ∼= GL(2,R).

Regarding ϕ as a homomorphism into M̂ , one obtains an L-packet 5ϕ,M of discrete

series representations of M(R). In addition, the representations in 5ϕ are the irreducible

subrepresentations of the representations induced from 5ϕ,M [4, 11.3]. The element

s =
0 0 −1

0 1 0
1 0 0

w0 Z ∈ PGL(3,C)

corresponds to an endoscopic group H(R) = PGL(2,R), and the tempered L-packet 5ϕ
corresponds to an L-packet 5ϕH of discrete series representations [20, p. 24].

In standard endoscopy [34, 7], one may take the centralizer of the split component

of an elliptic maximal torus in H(R) to produce a Levi subgroup M∗(R) ⊆ G(R) which

corresponds endoscopically to H(R) and yields an L-packet 5ϕ,M∗ of discrete series.

One then uses parabolic descent to M∗. Unfortunately, in our case the elliptic tori of

H(R) have trivial split component so M∗ = SL(3,R) and 5ϕ,M∗ = 5ϕ does not consist

of discrete series representations.
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One might nevertheless associate H with the Levi subgroup M above, for M is preserved

by θ and 5ϕ,M consists of discrete series. One might then attempt to derive a spectral

character identity by parabolic descent to M . The problem here is that in the twisted case

the characters on the right-hand side of (1.2) are twisted by an intertwining operator.

Although M is preserved by θ , none of its associated parabolic subgroups are. This

necessitates the introduction of a Knapp–Stein intertwining operator [17, 6 XIV] into

the twisted character, and this operator hinders the usual process of parabolic descent

[17, 3 X]. In fact, there is no proper maximal parabolic subgroup of SL(3,R) which is

preserved by θ .

One way out of this bind is to recognize that the representations in 5ϕ are

fundamental series representations (III.3 [13]). Work of Duflo and Bouaziz affords us

with characterizations of, and twisted character expansions for, the fundamental series.

Using this work, one may prove a twisted spectral transfer identity between H(R) and

SL(3,R) without appealing to parabolic descent. This is the approach we use in general.

We have learnt from Clozel that this approach was already present in [9, §2.5].

For the remainder of this introduction, assume that H is any endoscopic group for a

general twisting datum (G, θ, ω). Our proof of spectral transfer follows in three stages. In

the first stage, the L-packet5ϕH consists of (essential) discrete series representations, and

5ϕ consists of fundamental series representations (Theorem 4.11). In the second stage,

the method of coherent continuation is applied to extend spectral transfer to the case

that 5ϕH consists of (essential) discrete series representations and 5ϕ consists of limits

of fundamental series representations (Theorem 5.3). In the final stage, it is shown that

there is a parabolic subgroup of G(R) which allows us to imitate the parabolic descent

argument of standard endoscopy [36, 14]. These three stages are analogous to the three

stages of the spectral transfer theorem in standard endoscopy [36, 13–14], [31, 11].

We close with some anticipated consequences of tempered twisted spectral transfer. As

in standard endoscopy, one expects to invert the spectral transfer identities for a fixed

L-packet 5ϕ [33, 5.4], [35]. In so doing, one expects to pair 5ϕ with a group-theoretic

structure fine enough to isolate individual representations [3, 6]. Such a pairing is

of fundamental importance to twisted trace formula comparisons. This is evidenced

by Arthur’s recent work in classifying automorphic representations of symplectic and

orthogonal groups [1, Theorem 2.2.1 and Remark 5]. Indeed, when G is a general linear

group the packet 5ϕ is a singleton and Theorem 1.1 has important consequences for [1,

(2.2.6)].

2. Notation

In this section only, G is a real Lie group which acts upon a non-empty set J . We set

NG(J ) = {g ∈ G : g · J ⊆ J },
ZG(J ) = {g ∈ G : g · j = j for all j ∈ J }.

In what follows, the set NG(J1) always forms a group. We set �(G, J ) equal to the

resulting factor group NG(J )/ZG(J ).
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For an automorphism θ of G, we set 〈θ〉 equal to the group of automorphisms generated

by θ . There is a corresponding semidirect product G o 〈θ〉. When elements of G are

written side by side with elements in 〈θ〉, we consider them to belong to this semidirect

product.

The inner automorphism of an element δ ∈ G is defined by

Int(δ)(x) = δxδ−1, x ∈ G.

It shall be convenient to denote the fixed-point set of Int(δ) ◦ θ in G by Gδθ . We shall

abbreviate the notation Int(δ) ◦ θ to Int(δ)θ or δθ habitually.

Unless otherwise mentioned, we denote the real Lie algebra of a Lie group using Gothic

script. For example, the real Lie group of G is denoted by g. Suppose that J is Cartan

subgroup of a reductive group G. Then the pair of complex Lie algebras (g⊗C, j⊗
C) determines a root system which we denote by R(g⊗C, j⊗C). We denote the Lie

algebra dual to g by g∗. The differential of the inner automorphism Int(δ) is the adjoint

automorphism Ad(δ) on g. The adjoint automorphism induces an automorphism on g∗ in

the usual way. Often, it shall be convenient to write δ · X in place of Ad(δ)(X) for X ∈ g.

Similarly, we write θ · X to mean the differential of θ acting on X ∈ g. We extend this

slightly abusive notation to the dual spaces, writing δ · λ or even simply δλ in place of

the coadjoint action of δ on λ ∈ g∗.
Finally, if we take H to be an algebraic group defined over R, we denote its identity

component by H0 and derived subgroup by Hder. The group of real points of H is denoted

by H(R). This is a real Lie group, and we denote the identity component of H(R) in the

real manifold topology by H(R)0.

3. The foundations of real twisted endoscopy

This section is a digest of some early material in [20], in the special case that the field of

definition is equal to R. It is essentially a reproduction of [28, Chapter 3], and is included

for convenience and completeness.

3.1. Groups and automorphisms

Let G be a connected reductive algebraic group defined over R. We take θ to be an

algebraic automorphism of G defined over R, and assume additionally that it acts

semisimply on the centre ZG of G. Set G(R) to be the group of real points of G. Let 0

be the Galois group of C/R, and let σ be its non-trivial element.

Let us fix a triple

(B0, T0, {X}) (3.1)

in which B0 is a Borel subgroup of G, T0 ⊆ B0 is a maximal torus of G, and {X} is a

collection of root vectors corresponding to the simple roots determined by B0 and T0 .

Such triples are called splittings of G. If (B0, T0, {X}) is preserved by 0, then it is called

an R-splitting.

There is a unique quasisplit group G∗ of which G is an inner form [39, Lemma 16.4.8].

This is to say that there is an isomorphism ψ : G → G∗ and ψσψ−1σ−1 = Int(u′) for

some u′ ∈ G∗. We shall choose uσ in the simply connected covering group G∗sc of the
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derived group G∗der of G∗ so its image under the covering map is u′. We shall then abuse

notation slightly by identifying uσ with u′ in equations such as

ψσψ−1σ−1 = Int(uσ ). (3.2)

As G∗ is quasisplit, there is a Borel subgroup B∗ defined over R. Applying [40, Theorem

7.5] to B∗ and σ , we obtain an R-splitting (B∗, T ∗, {X∗}). Following the convention made

for uσ ∈ G∗sc, we may choose gθ ∈ G∗sc so the automorphism

θ∗ = Int(gθ )ψθψ−1 (3.3)

preserves (B∗, T ∗, {X∗}) [39, Theorems 6.2.7 and 6.4.1], [16, 16.5]. Since

σ(θ∗) = σθ∗σ−1 = Int(σ (gθuσ )g−1
θ θ∗(uσ ))θ∗

preserves (B∗, T ∗, {X∗}), and the only inner automorphisms which do so are trivial, it

follows in turn that Int(σ (gθuσ )g−1
θ θ∗(uσ )) is trivial and σ(θ∗) = θ∗. This means that the

automorphism θ∗ is defined over R.

We wish to describe the action of θ induced on the L-group of G. The splitting (3.1)

determines a based root datum [39, Proposition 7.4.6] and an action of 0 on the Dynkin

diagram of G [4, 1.3]. To the dual based root datum there is attached a dual group Ĝ
defined over C, a Borel subgroup B ⊆ Ĝ, and a maximal torus T ⊆ B [38, 2.12]. Let

us fix a splitting (B, T , {X }) of Ĝ. This allows us to transfer the action of 0 from the

Dynkin diagram of Ĝ to an algebraic action of Ĝ [38, Proposition 2.13]. This action may

be extended trivially to the Weil group WR, which as a set we write as C× ∪ σC× [4, 9.4].

The L-group L G is defined by the resulting semidirect product L G = Ĝ o WR.

In a parallel fashion, θ induces an automorphism of the Dynkin diagram of G, which

then transfers to an automorphism θ̂ on Ĝ. We define Lθ to be the automorphism of L G
equal to θ̂ × 1WR . By definition, the automorphism θ̂ preserves (B, T , {X }).

We close this section with some remarks concerning Weyl groups. Let us assume for

the moment that B0 and T0 are preserved by θ , and that T 1 is the identity component

of T θ ⊆ T0. The torus T 1 contains strongly regular elements [2, pp. 227–228], so its

centralizer in G is the maximal torus T0. Setting the identity component of Gθ equal to

G1 and the Weyl group of G1 relative to T 1 equal to �(G1, T 1), we see that we have an

embedding

�(G1, T 1)→ �(G, T )θ

into the θ -fixed elements of the Weyl group �(G, T ). In fact, this embedding is an

isomorphism [23, Lemma II.1.2].

3.2. Endoscopic data and z-pairs

Endoscopic data are defined in terms of the group G, the automorphism θ , and a

cohomology class a ∈ H1(WR, ZĜ), where ZĜ denotes the centre of Ĝ. Let ω be the

quasicharacter of G(R) determined by a [26, pp. 122–123], and let us fix a one-cocycle a
in the class a. By definition [20, pp. 17–18], endoscopic data for (G, θ, a) consist of the

following:

(1) a quasisplit group H defined over R;
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(2) a split topological group extension

1→ Ĥ → H
c
� WR → 1,

whose corresponding action of WR on Ĥ coincides with the action given by the

L-group L H = Ĥ o WR;

(3) an element s ∈ Ĝ such that Int(s)θ̂ is a semisimple automorphism [40, 7];

(4) an L-homomorphism [20, p. 18] ξ : H→ L G satisfying

(a) Int(s) Lθ ◦ ξ = a′ · ξ [4, 8.5] for some one-cocycle a′ in the class a,

(b) ξ maps Ĥ isomorphically onto the identity component of Ĝsθ̂ , the group of

fixed points of Ĝ under the automorphism Int(s)θ̂ .

Despite requirement 3.2 of this definition, it might not be possible to define an

isomorphism between H and L H which extends the identity map on Ĥ . One therefore

introduces a z-extension [20, 2.2], [25]

1→ Z1 → H1
pH→ H → 1 (3.4)

in which H1 is a connected reductive group containing a central torus Z1. The surjection

pH restricts to a surjection H1(R)→ H(R).
Dual to (3.4) is the extension

1→ Ĥ → Ĥ1 → Ẑ1 → 1. (3.5)

Regarding Ĥ as a subgroup of Ĥ1, we may assume that L H embeds into L H1 and that

Ĥ1 → Ẑ1 extends to an L-homomorphism

p : L H1 → L Z1.

According to [20, Lemma 2.2.A], there is an L-homomorphism ξH1 : H→ L H1 which

extends the inclusion of Ĥ → Ĥ1 and defines a topological isomorphism between H and

ξH1(H). Kottwitz and Shelstad call (H1, ξH1) a z-pair for H.

Observe that the composition

WR
c→ H

ξH1→ L H1
p→ L Z1 (3.6)

determines a quasicharacter λZ1 of Z1(R) via the local Langlands correspondence [4, 9].

3.3. Norm mappings

Our goal here is to fix endoscopic data (H,H, s, ξ) as defined in the previous section

and to describe a map from the semisimple conjugacy classes of the endoscopic group H
to the semisimple θ -conjugacy classes of G. The map uses the quasisplit form G∗ as an

intermediary. The reference for this section is [20, Chapter 3].

Since we are interested in semisimple conjugacy classes, and semisimple elements lie

in tori, we shall begin by defining maps between the tori of H and G∗. Suppose that

BH is a Borel subgroup of H containing a maximal torus TH and that (BH , TH , {XH }) is

the splitting of Ĥ used in the definition of L H (§3.1). Suppose further that B ′ is a Borel
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subgroup of G∗ containing a maximal torus T ′, and that both are preserved by θ∗.1 We

may assume that s ∈ T , ξ(TH ) = (T θ̂ )0 and ξ(BH ) ⊆ B. The pairs (B̂H , T̂H ) and (BH , TH )

determine an isomorphism T̂H ∼= TH . Similarly, through the pairs (B̂ ′, T̂ ′) and (B, T ), we

conclude that T̂ ′ ∼= T . We may combine the former isomorphism with requirement 3.2 of

§3.2 for the endoscopic map ξ to obtain isomorphisms

T̂H ∼= TH
ξ∼= (T θ̂ )0.

To connect (T θ̂ )0 with T ′, we define T ′θ∗ = T ′/(1− θ∗)T ′, and leave it as an exercise to

prove that ((T̂ ′)θ̂ )0 ∼= T̂ ′θ∗ . Combining this isomorphism with the earlier ones, we obtain

in turn that

T̂H ∼= TH
ξ∼= (T θ̂ )0 ∼= ((T̂ ′)θ̂ )0 ∼= T̂ ′θ∗ , (3.7)

and TH ∼= T ′θ∗ .
The isomorphic groups TH and T ′θ∗ are related to the conjugacy classes, which we now

define. The θ∗-conjugacy class of an element δ ∈ G∗ is defined as {g−1δθ∗(g) : g ∈ G∗}.
The element δ is called θ∗-semisimple if the automorphism Int(δ)θ∗ preserves a Borel

subgroup of G∗ and maximal torus thereof. A θ∗-semisimple θ∗-conjugacy class is

a θ∗-conjugacy class of a θ∗-semisimple element. Let Cl(G∗, θ∗) be the set of all

θ∗-conjugacy classes, and let Clss(G∗, θ∗) be the subset of θ∗-semisimple θ∗-conjugacy

classes. With this notation in hand, we look to [20, Lemma 3.2.A], which tells us that

there is a bijection

Clss(G∗, θ∗)→ T ′θ∗/�(G
∗, T ′)θ

∗
,

given by taking the coset of the intersection of a θ∗-conjugacy class with T ′.
The aforementioned map specializes to give the bijections on either end of

Clss(H)↔ TH/�(H, TH )→ T ′θ∗/�(G
∗, T ′)θ

∗ ↔ Clss(G∗, θ∗). (3.8)

To describe the remaining map in the middle of (3.8), recall from (3.7) that the

isomorphism between TH and T ′θ∗ is obtained by way of ξ . Using these ingredients and

the closing remarks of §3.1, we obtain maps

�(H, TH ) ∼= �(Ĥ , T̂H ) ∼= �(Ĥ , TH )→ �(Ĝ∗, T )θ̂ ∼= �(G∗, T ′)θ
∗
.

This completes the description of the map from Clss(H) to Clss(G∗, θ∗).
We proceed by describing the map from Clss(G∗, θ∗) to Clss(G, θ). The function m :

G → G∗ defined by

m(δ) = ψ(δ)g−1
θ , δ ∈ G (3.9)

passes to a bijection from Cl(G, θ) to Cl(G∗, θ∗), since

m(g−1δθ(g)) = ψ(g)−1m(δ)θ∗(ψ(g)).
We abusively denote this map on θ∗-conjugacy classes by m as well. It is pointed out in

[20, 3.1] that this bijection need not be equivariant under the action of 0. One of our key

assumptions is that the element gθ of (3.3) may be chosen so that

gθuσσ(g−1
θ )θ∗(uσ )−1 ∈ (1− θ∗)ZG∗sc . (3.10)

1Readers of [20] should note that we write T ′ for the torus T occurring there.
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Under this assumption, m is 0-equivariant [20, (3) Lemma 3.1.A]. Finally, we may

combine this bijection with (3.8) to obtain a map

AH\G : Clss(H)→ Clss(G, θ).

In keeping with [20, 3.3], we define an element δ ∈ G to be θ-regular if the identity

component of Gδθ is a torus. It is said to be strongly θ -regular if Gδθ itself is abelian.

An element γ ∈ H is said to be (strongly) G-regular if the elements in the image of

its conjugacy class under AH\G are (strongly) regular. An element γ ∈ H(R) is called

a norm of an element δ ∈ G(R) if the θ -conjugacy class of δ equals the image of the

conjugacy class of γ under AH\G . It is possible for AH\G(γ ) to be a θ -conjugacy class

which contains no points in G(R) even though γ ∈ H(R). In this case, one says that γ

is not a norm. These definitions are carried to the z-extension H1 in an obvious manner.

For example, we say that γ1 ∈ H1(R) is a norm of δ ∈ G(R) if the image of γ1 in H(R)
under (3.4) is a norm of δ.

As in [20, 3.3], we conclude with a portrayal of the situation when a strongly regular

element γ ∈ H(R) is the norm of a strongly θ -regular element δ ∈ G(R). We may let

TH = Hγ , as γ is strongly regular. The maximal torus TH is defined over R, since γ

lies in H(R). [20, Lemma 3.3.B] allows us to choose BH , B ′, and T ′ as above so that

θ∗(B ′) = B ′, and both T ′ and the isomorphism TH ∼= T ′θ∗ are defined over R. The resulting

isomorphism

TH (R) ∼= T ′θ∗(R) (3.11)

is called an admissible embedding in [20, 3.3]. The image of γ under this admissible

embedding defines a coset in T ′/�(G∗, T ′)θ∗ . This coset corresponds to the θ∗-conjugacy

class of m(δ). In fact, by [20, Lemma 3.2.A], there exists some gT ′ ∈ G∗sc such

that (after gT ′ has been identified with its image in G∗) this coset equals

gT ′m(δ)θ∗(gT ′)−1�(G∗, T ′)θ∗ . The element

δ∗ = gT ′m(δ)θ∗(gT ′)
−1 (3.12)

belongs to T ′, and it is an exercise to show that Int(gT ′) ◦ψ furnishes an isomorphism

between Gδθ and (G∗)δ∗θ∗ . Since Int(δ∗) ◦ θ∗ preserves (B ′, T ′), the torus (G∗)δ∗θ∗ contains

strongly G-regular elements of T ′ [2, pp. 227–228], so we see in turn that the centralizer

of (G∗)δ∗θ∗ in G∗ is T ′, and (G∗)δ∗θ∗ = (T ′)θ∗ . By [20, (3.3.6)], the resulting isomorphism

Gδθ Int(gT ′ )ψ−→ (T ′)θ
∗

(3.13)

is defined over R.

3.4. Twisted geometric transfer

Twisted geometric transfer is laid out generally in [20, 5.5]. For real groups, it has been

proved in [37]. It shall be convenient for us to state twisted geometric transfer in the

framework of orbital integrals on the component G(R)θ of the group G(R)o 〈θ〉. Let

δ ∈ G(R) be θ -semisimple and strongly θ -regular, and assume that the quasicharacter

ω is trivial on Gδθ (R). Let C∞c (G(R)θ) be the space of smooth compactly supported
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functions on the component G(R)θ . Define the twisted orbital integral of f ∈ C∞c (G(R)θ)
at δθ ∈ G(R)θ to be

Oδθ ( f ) =
∫

Gδθ (R)\G(R)
ω(g) f (g−1δθg) dg.

We wish to match functions in C∞c (G(R)θ) with functions on the z-extension H1.

Specifically, let C∞c (H1(R), λZ1) be the space of smooth functions fH1 on H1(R) whose

support is compact modulo Z1(R) and which satisfy

fH1(zh) = λZ1(z)
−1 fH1(h), z ∈ Z1(R), h ∈ H1(R)

(see the end of §3.2). The definition of orbital integrals easily carries over to functions of

this type at semisimple regular elements.

Suppose that γ1 ∈ H1(R) is a norm of a θ -semisimple strongly θ -regular element δ ∈
G(R). According to [37, Corollary 2.2], for every f ∈ C∞c (G(R)θ) there exists a function

fH1 ∈ C∞(H1(R), λZ1) as above such that∑
γ ′1

Oγ ′1( fH1) =
∑
δ′
1(γ1, δ

′)Oδ′θ ( f ). (3.14)

The sum on the left is taken over representatives in H1(R) of H1(R)-conjugacy classes

contained in the H1-conjugacy class of γ1. The sum on the right is taken over

representatives in G(R) of θ -conjugacy classes under G(R) contained in the θ -conjugacy

class of δ. The terms 1(γ1, δ
′) are geometric transfer factors, and they are defined in

[20, Chapter 4]. Normalization is required for the measures in the orbital integrals

to be compatible [20, p. 71]. We assume that the correspondence f ↔ fH1 induces

a continuous map on spaces of orbital integrals, and thereby also a map from stably

invariant distributions on H1(R) to distributions on G(R) as in standard endoscopy [8,

Remark 2, 6].

4. Spectral transfer for the fundamental series

The first step in proving spectral transfer in standard endoscopy for real groups is the

case of essentially square-integrable representations [36, 13], [33, 4.4]. This was done for

twisted endoscopy for θ of finite order and trivial quasicharacter ω [28, Theorem 1]. It

amounts to an identity of the form∫
H1(R)/Z1(R)

fH1(h)
∑

πH1∈5ϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1(ϕϕϕH1 , π)2π,Uπ ( f ) (4.1)

for all f ∈ C∞c (G(R)θ). The restrictions on θ and ω were due to the lack of a sufficiently

general version of Harish-Chandra’s uniqueness theorem in the twisted case. The required

version of this theorem is proved in the appendix (Proposition A.4). The spectral transfer

theorem (4.1) therefore now holds for arbitrary quasicharacter ω and θ acting semisimply

on ZG when 5ϕ consists of essentially square-integrable representations.

The purpose of this section is to prove (4.1) when 5ϕ consists more generally

of fundamental series representations. By ‘fundamental series’ we have in mind the
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representations presented in [13, III.3]. For convenience, let us call the essentially

square-integrable representations the discrete series, and highlight some differences with

the fundamental series. The discrete series is determined by regular forms of elliptic

tori. By contrast, the fundamental series is determined by regular forms of fundamental

tori. The main difference here is that elliptic tori are compact modulo the centre, whereas

fundamental tori are merely maximally compact modulo the centre. The compact portion

of a fundamental torus takes on the role of an elliptic torus in the discrete case, and a

fundamental series representation is obtained by inducing the resulting discrete series

representation.

Luckily, the character expansions of Bouaziz [6, Proposition 6.1.2], which lie at the

core of the spectral transfer theorem for the discrete series, remain the same for

the fundamental series. Thus, the foremost tasks in proving spectral transfer for the

fundamental series are to convert the language of Duflo into endoscopic parameters, and

then to show that this conversion retains the hypotheses necessary for Bouaziz’ character

expansions. We begin by providing the said endoscopic parameters. We shall do so in the

form of six assumptions.

The quadruple (H,H, s, ξ) is a fixed set of endoscopic data together with a z-pair

(H1, ξH1), as in §3.2. We take an L-parameter ϕϕϕH1 which is the Ĥ1-conjugacy class of an

admissible homomorphism ϕH1 : WR → L H1 [4, 8.2]. We suppose that the composition

of ϕH1 with L H1 → L Z1 corresponds to the quasicharacter λZ1 : Z1(R)→ C× of (3.6)

under the local Langlands correspondence. The endoscopic Langlands parameter ϕϕϕH1
corresponds to a Langlands parameter ϕϕϕ∗ of the quasisplit form G∗ [28, 6]. Our first

assumption is that ϕH1 is not contained in a proper parabolic subgroup of L H1. This is

equivalent to the assertion that the L-packet5ϕH1
consists of essentially square-integrable

representations [4, (3) 10.3].

Our second assumption is that there exists a strongly θ -regular element δ ∈ G(R) which

has a norm γ ∈ H(R) (§3.3), and (Gδθ/Z θG)(R) is compact. A strongly θ-regular element

in G(R) satisfying the latter compactness condition is called θ-elliptic [20, p. 5]. This

compactness condition may be translated to a maximal torus. We say that a maximal

torus S in G, which is defined over R, is fundamental if R(G, S) has no real roots.

This is equivalent to S(R) being a maximally compact Cartan subgroup in G(R) [44,

Lemma 2.3.5]. Similarly, on the level of Lie algebras, one says that s is fundamental if

R(g⊗C, s,⊗C) has no real roots.

Lemma 4.1. The element δ ∈ G(R) determines a unique maximal torus S of G which

contains Gδθ . Moreover, the torus S is defined over R, and is fundamental.

Proof. By definition of strongly θ-regular, Gδθ is an abelian group. It contains strongly

G-regular elements [2, pp. 227–228], so the identity component of ZG(Gδθ ) is a maximal

torus of G, which is uniquely determined by δ. Suppose first that the centre ZG is trivial.

Then Gδθ (R) is compact, since δ is θ -elliptic. The Lie algebra of Gδθ (R) is therefore

contained in a Cartan subalgebra of the Lie algebra of a maximally compact subgroup of

G(R). The centralizer of this Cartan subalgebra in g is a fundamental Cartan subalgebra

s of g [18, Proposition 6.60]. The exponential of s⊗C is a maximal torus S in G [16,

Corollary 15.3]. By construction, the torus S is defined over R, and S(R) is maximally

https://doi.org/10.1017/S1474748014000437 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000437


Tempered spectral transfer in the twisted endoscopy of real groups 581

compact. Furthermore, S contains Gδθ so it is equal to the uniquely determined torus

mentioned above.

Now, we remove the assumption that ZG is trivial, and observe that there is a canonical

bijection between the set of maximal tori of G and the set of maximal tori of the

semisimple algebraic group G/ZG , which is induced by the quotient map. The quotient

map is defined over R [39, Theorem 12.2.1]. This bijection therefore passes to a bijection

of maximal R-tori. In addition, the quotient map sends δ to an element of (G/ZG)(R),
and it is immediate that this element retains the analogues of the properties of strong

θ -regularity and θ -ellipticity. By our earlier argument, we obtain a maximal torus of

G/ZG . The pre-image of this torus under the quotient map is a maximal torus in G with

the desired properties.

By construction, the torus S of Lemma 4.1 is stable under Int(δ)θ , and isomorphism

(3.13) passes to an isomorphism

Sδθ (R)0
Int(gT ′ )ψ−→ (T ′)θ

∗
(R)0.

In fact, this map extends to an isomorphism of the respective centralizers

S(R)
Int(gT ′ )ψ∼= T ′(R), (4.2)

as the commutator of σ and Int(gT ′)ψ lies in Int(T ′) [20, (3.3.6)] and acts trivially on T ′.
One may decompose S into a product of a maximally split subtorus Sd and a maximally

anisotropic subtorus Sa [5, Proposition 8.15]. The centralizer M = ZG(Sd) is a Levi

subgroup of G which is defined over R [5, Proposition 20.4]. By construction, Z M ⊇ Sd ,

and it therefore follows that S is elliptic in M . The torus Sd is also the split component

of the centre of M [5, Proposition 20.6]. The usual notation for the latter is AM . Observe

that, since Int(δ)θ is defined over R and preserves S, it also preserves Sd = AM and M .

Our third assumption is that ϕϕϕ∗ has a representative homomorphism ϕ∗ whose image is

minimally contained in a parabolic subgroup of L G, and that this parabolic subgroup is

dual, in the sense of [4, 3.3 (2)], to an R-parabolic subgroup P of G with Levi component

M . In the language of [4, 8.2], this translates as the parabolic subgroup of L G being

relevant, and ϕ∗ being admissible with respect to G. Under this assumption, we set

ϕϕϕ = ϕϕϕ∗ with the intention that ϕϕϕ be regarded as a Langlands parameter of G.
We choose a Levi subgroup M of Ĝ and an admissible homomorphism ϕ ∈ ϕϕϕ such that

M ∼= M̂ and Mo WR is a standard Levi subgroup of L G which contains ϕ(WR)minimally

[4, 3.4], [28, 4.1]. We may thus regard ϕ as an admissible homomorphism into Mo WR,

and derive from it an L-packet 5ϕ,M of essentially square-integrable representations of

M(R) [4, 10.3 (3) and 11.3].

Our fourth assumption is that the representations in 5ϕ,M have unitary central

character. From this, the local Langlands correspondence prescribes that the

representations in 5ϕ are the irreducible subrepresentations of the representations

induced from those in 5ϕ,M [4, 11.3].

Before making our fifth assumption, we must recall some facts about the
homomorphism ϕ and the L-packet 5ϕ,M . The homomorphism ϕ is determined by a pair
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µ, λ ∈ X∗(Ŝ)⊗C [26, 3], [28, 4]. One may regard the elements in this pair as elements in

the dual of the complex Lie algebra of S via the isomorphisms X∗(Ŝ) ∼= X∗(S) and

X∗(S)⊗C ∼= s∗⊗C. (4.3)

To be more precise, isomorphism (4.3) is an isomorphism of R[0]-modules, given that

0 acts on both X∗(S) and C in the usual way [4, see 9.4]. In other words, isomorphism

(4.3) rests upon an isomorphism

(X∗(Sa)⊗ iR)⊕ (X∗(Sd)⊗R) ∼= s∗ (4.4)

of R-vector spaces. The pair may be lifted to a quasicharacter of S(R) in the following

manner. The element µ is M̂-regular, and so determines a positive system on R(M, S)
[26, Lemma 3.3]. Let ιM ∈ X∗(Ŝ)⊗C be the half-sum of the positive roots of R(M, S).
The pair (µ− ιM , λ) corresponds to a linear form on s, and satisfies a condition which

allows one to lift to a quasicharacter 3 = 3(µ− ιM , λ) of S(R) [26, p. 132], [28, 4.1].

By the work of Harish-Chandra, the quasicharacter 3 corresponds to an essentially

square-integrable representation of Z M (R)Mder(R)0 [14]. Inducing this representation to

M(R) produces an irreducible representation $3 ∈ 5ϕ,M [26, p. 134]. The remaining

representations of 5ϕ,M are obtained by replacing 3 by w−13 = 3(w−1 · (µ− ιM ), λ),
where w ∈ �(M, S)/�R(M, S) (see [28, 4.1]).

Let us consider the differential of the quasicharacter 3. The differential only records the

behaviour of 3 on the identity component S(R)0, and this behaviour is given precisely by

µ− ιM [32, 4.1]. The infinitesimal character of $3 corresponds to µ, and the restriction of

this infinitesimal character to s∩ [m,m] ⊆ sa is equal to the Harish-Chandra parameter

of the underlying representation of Mder(R)0 [17, p. 310].

Our fifth assumption is really two separate regularity assumptions. The first regularity

assumption is that µ is Ĝ-regular, that is,

〈µ, α〉 6= 0, α ∈ R(Ĝ, Ŝ).

The second regularity assumption pertains to Duflo’s characterization of fundamental

series representations, and this depends on the behaviour of µ on the anisotropic part

Sa(R) of S(R)0 [13, (ii) III.1]. By identifying µ with a linear form in s∗⊗C under (4.3),

the second regularity assumption reads as

〈µ|sa , α〉 6= 0, α ∈ R(Ĝ, Ŝ).

Holding this view, the second regularity assumption is equivalent to the g⊗C-regularity

of the s∗a ⊗C-component of µ. Alternatively, the µ|sa may be regarded as the restriction

to Sa of µ ∈ X∗(S)⊗C.

We come to our sixth and final assumption. In order for twisted spectral transfer to

have any content, we assume that 5ϕ is stable under twisting, that is,

5ϕ = ω⊗ (5ϕ ◦ θ)
(see [28, 4.3]).

We list the six assumptions of this section again for convenience.
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Assumption 1. ϕH1 is not contained in a proper parabolic subgroup of L H1.

Assumption 2. There exists a strongly θ -regular and θ -elliptic element δ ∈ G(R) which

has a norm γ ∈ H(R).

Assumption 3. ϕϕϕ∗ has a representative ϕ∗ whose image is minimally contained in a

parabolic subgroup of L G which is dual to an R-parabolic subgroup P with Levi

component M .

Assumption 4. The representations in 5ϕ,M have unitary central character.

Assumption 5. The elements µ and µ|sa in X∗(Ŝ)⊗C are Ĝ-regular.

Assumption 6. 5ϕ = ω⊗ (5ϕ ◦ θ).

4.1. Fundamental series representations

Our goal here is to show that the L-packet 5ϕ , given under the previous

assumptions, consists of fundamental series representations as defined by Duflo

in [13, III]. By definition, the representations in 5ϕ are (equivalence classes of)

irreducible subrepresentations of indG(R)
P(R)$ , where$ ∈ 5ϕ,M [4, 11.3]; parabolic induction

throughout is normalized. Recall that $3 ∈ 5ϕ,M is induced from an irreducible

representation of Z M (R)Mder(R)0. More precisely, there exists a square-integrable (i.e.,

discrete series) representation $0 of Mder(R)0 such that

$3 ∼= indM(R)
Z M (R)Mder(R)0

(
χϕ ⊗$0

)
, (4.5)

where χϕ is the central character of $3 (or any other representation in 5ϕ,M). Using

isomorphism (4.3), one may identify the infinitesimal character of$3 with µ. In addition,

since 〈µ, α∨〉 ∈ R for all α ∈ R(M, S) [26, Proof of Lemma 3.3] and χϕ is unitary on

Z M (R), it follows from Corollary 6.49 [18] that iµ ∈ s∗ (see (4.4)). In particular,

σ(µ) = −µ. (4.6)

This infinitesimal character must satisfy three criteria in order for indG(R)
P(R)$3 to be in

the fundamental series. Two of the three criteria are covered by Assumption 5. The

g⊗C-regularity of µ fulfils the criterion that iµ be bien polarizable [13, Lemma 7 II and

III.1]. The g⊗C-regularity of the s∗a ⊗C-component of µ fulfils the criterion of iµ being

standard [13, (ii) III.1].

To state the third criterion, we define ρ to be the half-sum of positive roots in R(g⊗
C, s⊗C) determined by the regular element µ|sa . The third criterion is that µ− ρ lifts

to a quasicharacter of S(R)0 [13, Remark 2 II.2]. This is equivalent to iµ being admissible

in the parlance of Duflo.

Lemma 4.2. The linear form µ− ρ ∈ s∗⊗C lifts to a quasicharacter of S(R)0.

Proof. Since Sd(R)0Sa(R) is a closed connected subgroup of the same dimension as S(R)0,

we see that S(R)0 = Sd(R)0Sa(R). It is clear from the isomorphism sd ∼= Sd(R)0 that
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(µ− ρ)|sd lifts to a quasicharacter of Sd(R)0. To lift (µ− ρ)|sa , we observe that

−σ(µ|sa ) = µ|sa (see (4.6)). It follows that −σ(ρ) = ρ and

ρ =
1

2

∑
imaginary

α

+
1

2

∑
complex

α+ (−σ(α))
 ,

where the rightmost sum is over −σ -orbits of positive roots. The sum on the left

corresponds to ιM [39, Lemma 15.3.2]. By [32, 4.1], the form (µ− ιM )|sa lifts to 3 =
3(µ− ιM , λ) on Sa(R). The lemma will therefore be complete once we show that the

second sum lifts to Sa(R). For this, we compute that

1
2

∑
complex

(α− σ(α))|sa =
1
2

∑
complex

α|sa +α|sa =
∑

complex

α|sa ,

and note that all integer combinations of roots lift to S(R) [17, (4.15)].

We have now verified the criteria µ must satisfy for us to describe 5ϕ in Duflo’s

framework.

Lemma 4.3. The representation indG(R)
P(R)$3 is irreducible and equivalent to

indG(R)
ZG (R)G(R)0

(
(χϕ)|ZG (R)⊗ indG(R)0

P(R)∩G(R)0$1

)
, (4.7)

where $1 is defined in terms of (4.5) as

$1 = indM(R)∩G(R)0
Z M (R)0 Mder(R)0

((χϕ)|Z M (R)0 ⊗$0).

Proof. The reader may verify that the distribution characters of indG(R)
P(R)$3 and (4.7)

agree on the regular subset of S(R). The equivalence of the two representations then

follows from Harish-Chandra’s uniqueness theorem [17, Theorem 12.6]. The irreducibility

of (4.7) follows in two steps. First, we show that it is equal to representation [13, (8), on

p. 172]. The latter representation is written as

IndG(R)
ZG (R)G(R)0

(τ ⊗ T G(R)0
g ). (4.8)

Here, g ∈ g∗ is an element which is admissible, bien polarizable, and standard. As discussed

above, we may take g = iµ. The expression T G(R)0
g is defined as indG(R)0

P(R)∩G(R)0$1 [13,

p. 164]. The term τ is an irreducible representation of a metaplectic group, but only its

restriction to ZG(R) is relevant in (4.8). We may take τ|ZG (R) = (χϕ)|ZG (R). With these

substitutions, one sees that (4.7) is equal to (4.8).

The irreducibility of (4.8) follows from [13, Lemma 8 (i) III.6] once we show that

S(R) = ZG(R) S(R)0 [13, Remark 2 III.5]. When G is semisimple, this identity follows

from [19, Lemma 10.4]. When G is reductive, the semisimple case reduces the exact

sequence

H2(0, X∗(Z0
G))→ H2(0, X∗(S))→ H2(0, X∗(S/Z0

G))

to a surjection

Z0
G(R)/ZG(R)0 → S(R)/S(R)0 → 1

(cf. [32, 4.1]). This surjection implies that S(R) = ZG(R)S(R)0.
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Corollary 4.4. Every representation of G(R), parabolically induced from an irreducible

representation in 5ϕ,M , is irreducible.

Proof. The representations of 5ϕ,M are obtained by replacing $3 by $w−13, where

w ∈ �(M, S)/�R(M, S) (see [28, 4.1]). The arguments of the proof are unaffected by

replacing 3 by ẇ−13 and µ by ẇ−1 ·µ for any ẇ ∈ �(M, S).

Corollary 4.4 tells us that parabolic induction furnishes a bijection between 5ϕ,M
and 5ϕ . Moreover, every representation in 5ϕ has an expansion as in (4.7). From the

perspective of [13, III], this is equivalent to saying that every representation in5ϕ belongs

to the fundamental series of G(R).

4.2. Twisted characters

As claimed earlier, the character expansions of Bouaziz [6, Proposition 6.1.2] apply

equally well to discrete series and fundamental series representations. We shall address

this claim in the context of the twisted characters. In this section, we suppose that the

representation

π = indG(R)
P(R)$3 ∈ 5ϕ

is stable under twisting. More precisely, we suppose that there exists a unitary linear

operator U = Uπ on the space Vπ of π such that

U ◦π(x) = ω(x) πθ (x) ◦U, x ∈ G(R). (4.9)

We define the twisted character 2π,U as the distribution on G(R) given by

f 7→ tr
∫

G(R)
f (xθ)π(x)U dx, f ∈ C∞c (G(R)θ)

(see [28, (34)]). This is the kind of distribution which appears on the right of (4.1).

There is a technical point we must verify in order to use Bouaziz’ character formula

later on. By the reduction of [28, 5.1], this point needs only to be verified in the case that

G(R) is semisimple and connected in the manifold topology. Let us assume for the rest

of §4.2 that this is so. In this way, we temporarily remove the quasicharacter ω from the

picture, and associate the representation π to a representation of the larger disconnected

Lie group

L = G(R)o 〈δθ〉.
In the context of this group,2π,U may be identified with the restriction of the distribution

character to the connected component G(R)o δθ ⊆ L. Under this identification, Bouaziz’

character formula on L delivers an explicit formula for 2π,U on θ -regular and θ-elliptic

elements of G(R) [28, Lemma 6]. This was explained in great detail in 5 [28] for discrete

series representations. The only noteworthy difference in the case of the fundamental

series is in proving that the parameter µ occurring in 3 = 3(µ− ιM , λ) is elliptic, i.e.,

that its restriction to Sd is trivial (5.2 [6]). Indeed, in the case of discrete series the torus

S is elliptic so Sd is itself trivial and there is nothing to prove. This is the technical point

alluded to above.

Lemma 4.5. The parameter µ is elliptic.
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Proof. The element µ ∈ X∗(S)⊗C is obtained from µH1 ∈ X∗(TH1)⊗C. To be more

precise, µH1 lies in the image of X∗(TH )⊗C ↪→ X∗(TH1)⊗C [28, 6], and µ is obtained

through the sequence of 0-module homomorphism

X∗(TH ) = X∗(TH )
ξ∼= X∗((T θ̂ )0) ∼= X∗(T ′θ∗) ↪→ X∗(T ′)

(4.2)∼= X∗(S).

There is a surjection Sδθ (R)→ TH (R) [28, Proof of Lemma 12], and under our

assumptions Sδθ (R) is compact. It follows in turn that TH (R) is compact, X∗(TH )
1−σ =

X∗(TH ) [4, 9.4], σ(µH1) = −µH1 σ(µ) = −µ, and µ|Sd = 0.

4.3. A parameterization of stable data

There are two sorts of stable data underlying the spectral transfer identity (4.1). The first

sort is geometric and is related to the pair of elements δ ∈ G(R) and γ1 ∈ p−1
H (γ ) ⊆ H1(R).

Explicitly, the stable geometric data are the θ -conjugacy classes under G(R) of elements

in G(R) whose norm is γ1, that is, the collection of sets

{x−1δ′θ(x) : x ∈ G(R)},
where δ′ ∈ G(R) runs through the representatives which have norm γ1. By Assumption 2,

δ is a representative of such a conjugacy class. This collection of sets is basic to geometric

transfer [20, 5.5]. When S is elliptic in G and θ is trivial, this collection of stable data

is parameterized by the collection of cosets �(G, S)/�R(G, S) [24, 6.4]. Our first effort

will be to describe how this parameterizing set is altered when S is fundamental and θ

is non-trivial.

The second sort of stable data is spectral and is related to representations in the

L-packet 5ϕ . Again, when S is elliptic in G and θ is trivial, these representations are

parameterized by �(G, S)/�R(G, S) [24, 7.1]. We shall describe in the general case how

this spectral parameterizing set is altered and becomes an object attached to M .

Upon having described parameterizing sets of the stable geometric and spectral sorts,

we connect them through a canonical surjection. This is indispensable in the proof of

(4.1), since it connects the data of geometric transfer to the L-packets 5ϕ and 5ϕH1
.

Let us begin geometric parameterization by looking back at some cosets presented in

[28, 6.1]. One may dissect�(G, S)/�R(G, S) and extract the coset space NG(S)/NG(R)(S).
When S is elliptic in G, the elements in NG(S) act as R-automorphisms of S [24, Lemma

6.4.1]. This is not so in general, and the elements of NG(S) which act as R-automorphisms

form the subgroup NG(Sσ ) = NG(S(R)). A moment’s reflection reveals that NG(R)(S) and

S are subgroups of NG(S(R)) so we may consider the collection of double cosets

S\NG(Sσ )/NG(R)(S).

This collection may be identified with

�(G, S)σ /�R(G, S). (4.10)

This will be seen to be the parameterizing set of the stable geometric data when θ is

trivial. However, as seen in [28, 6.1], twisting by θ forces us to consider the collection of

double cosets

Sδθ\NG(Sσ )/NG(R)(S).
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In fact, the only double cosets Sδθ x NG(R)(S) which are of interest are those which satisfy

x−1δθx(δθ)−1 ∈ G(R). (4.11)

This being so, we define

Sδθ\(NG(Sσ )/NG(R)(S))δθ (4.12)

to be the collection of double cosets whose representatives x ∈ NG(Sσ ) satisfy (4.11). The

following two results justify the above claims.

Lemma 4.6. Suppose that x ∈ G and x−1δθ(x) ∈ G(R). Then Int(x−1)|S is defined over

R. In particular, if x also belongs to NG(S), then x ∈ NG(Sσ ).

Proof. It suffices to show that Int(xσ(x−1))|S is the identity map. From (3.12), we know

that γ1 being a norm of δ entails that δ∗ = gT ′m(δ)θ∗(g−1
T ′ ) for some gT ′ ∈ G∗sc. According

to [20, Lemma 4.4.A], the element gT ′uσσ(g
−1
T ′ ) belongs to T ′sc. Likewise, x−1δθ(x) has

norm γ1. Indeed, following the computations of [20, 3.1], we observe that

m(x−1δθ(x)) = ψ(x−1)m(δ)θ∗(ψ(x)),

so

δ∗ = gT ′ψ(x)m(x−1δθ(x))θ∗(gT ′ψ(x))−1.

We may thus apply [20, Lemma 4.4.A] to the element gT ′ψ(x) in place of gT ′ ,
to find that gT ′ψ(x)uσσ(gT ′ψ(x))−1 belongs to T ′sc. Therefore conjugation of T ′ by

gT ′ψ(x)uσσ(gT ′ψ(x))−1 is trivial. Under transport by (4.2), this implies that the

restriction to S of

ψ−1Int(gT ′)
−1Int(gT ′ψ(x)uσσ(gT ′ψ(x))−1)Int(gT ′)ψ

is the identity map. For simplicity, we write g = gT ′ , and compute

ψ−1Int(g)−1Int(gψ(x)uσσ(gψ(x))−1)Int(g)ψ

= Int(x)ψ−1Int(uσ )Int(σ (ψ(x−1)g−1))Int(g)ψ

= Int(x)σ−1ψ−1σ Int(σ (ψ(x−1)g−1))Int(g)ψ

= Int(xσ(x−1))(σ−1(Int(g)ψ)−1σ Int(g)ψ)

= Int(xσ(x−1)),

where the last equality follows from (4.2) being defined over R.

The next lemma is a slightly amended version of [28, Lemma 14]. Only the surjectivity

argument is affected when S is not elliptic in G.

Proposition 4.7. Suppose that x ∈ NG(Sσ ) satisfies (4.11). Then the map defined by

x 7→ x−1δθ(x)

passes to a bijection from (4.12) to the collection of θ-conjugacy classes under G(R) of

elements in G(R) whose norm is γ1.
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Proof. Suppose that x ∈ NG(Sσ ) satisfies (4.11). Since δ belongs to G(R), property (4.11)

is equivalent to x−1δθ(x) ∈ G(R). As γ1 is a norm of δ, it is also a norm of x−1δθ(x).
It is simple to verify that any element in the double coset Sδθ\x/NG(R)(S) maps to an

element which is θ -conjugate to x−1δθ(x) under G(R). Thus, we have a well-defined map

from (4.12) to the desired collection of θ-conjugacy classes.

To show that this map is surjective, suppose now that x ∈ G is any element satisfying

x−1δθ(x) ∈ G(R), that is, an element in G(R) whose norm is γ1. The automorphism

Int(x−1δθ(x))θ is defined over R. Therefore, the group Gx−1δθ(x)θ is defined over R. The

property that x−1δθ(x) ∈ G(R) implies in turn that xσ(x−1) ∈ Gδθ and

Gx−1δθ(x)θ (R) = (x−1Gδθ x)(R) = x−1Gδθ (R)x .

The quotient Gx−1δθ(x)θ (R)/Z θG(R) = x−1(Gδθ (R)/Z θG(R))x is compact, since δ is

θ -elliptic. Using [44, Lemma 2.3.4] and the arguments of Lemma 4.1, one may show

that there exists g ∈ G(R) such that g−1Gx−1δθ(x)θ (R)g lies in the torus S(R). Hence,

S ⊇ g−1Gx−1δθ(x)θg = (xg)−1Gδθ xg = (xg)−1Sδθ xg.

The group Sδθ contains strongly G-regular elements [2, pp. 227–228]. The previous

containment therefore implies that xg ∈ NG(S). Furthermore, the element (xg)−1δθ(xg)
belongs to G(R) so xg ∈ NG(Sσ ) by Lemma 4.6. It is clear that xg ∈ NG(Sσ ) maps to

the same θ -conjugacy class as x−1δθ(x) under G(R), and surjectivity is proved.

To prove injectivity, suppose that x1, x2 ∈ G are representatives for double cosets in

(4.12) such that x−1
1 δθ(x1) and x−1

2 δθ(x2) belong to the same θ -conjugacy class under

G(R). Then there exists g ∈ G(R) such that

x−1
1 δθ(x1) = (x2g)−1δθ(x2g),

and it follows that

x2gx−1
1 ∈ Gδθ = Sδθ .

This implies that g ∈ NG(R)(S), and x1 and x2 represent the same double coset in (4.12).

Let us point out that there is some redundancy in the notation of (4.12). If x ∈ NG(S)
satisfies (4.11), then it satisfies x−1δθ(x) ∈ G(R). Lemma 4.6 then tells us that x ∈
NG(Sσ ). As a result, (4.12) could have been written more simply as

Sδθ\(NG(S)/NG(R)(S))δθ .

We prefer the notation of (4.12), as it highlights a distinction which is absent for elliptic

tori, and reduces more readily to (4.10) when θ is trivial.

We now turn to the parameterization of the spectral data 5ϕ . Our assumptions on

ϕϕϕ dictate that induction furnishes a bijection between 5ϕ,M and 5ϕ (Lemma 4.3). The

L-packet 5ϕ,M of essentially square-integrable representations of M(R) is parameterized

by the coset space �(M, S)/�R(M, S) (see [28, (21)]). We wish to ascertain the cosets
which parameterize the representations in 5ϕ which are stable under twisting by (ω, θ).
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Define (�(M, S)/�R(M, S))δθ to be the subset of those cosets in �(M, S)/�R(M, S)
which have a representative w ∈ �(M, S) satisfying

w−1δθw(δθ)−1 ∈ �R(M, S). (4.13)

Suppose that $3 is a representation in 5ϕ,M which is stable under twisting. Suppose

that w ∈ �(M, S) is a representative of a coset in �(M, S)/�R(M, S). Then, according

to [28, Lemma 15],

$w−13
∼= ω|M(R)⊗$ δθ

w−13

if and only if w satisfies (4.13).

Proposition 4.8. Without loss of generality, the representation indG(R)
P(R)$3 ∈ 5ϕ is stable

under twisting. Furthermore, the subset of representations in 5ϕ which are stable under

twisting is {
indG(R)

P(R)$w−13 : w ∈ (�(M, S)/�R(M, S))δθ
}
.

Proof. The first assertion follows by applying the arguments of [28, Corollary 2] to

indG(R)
P(R)$3 in place of $3 (cf. [27, Proof of Proposition 4.1]). There is no loss of generality,

since 3 may be replaced by any w−13, w ∈ �(M, S) without affecting the assumptions

of §4.

To prove the second assertion, suppose that w ∈ �(M, S) and that indG(R)
P(R)$w−13 is

stable under (δθ, ω). According to the Langlands disjointness theorem [26, pp. 149–151],

there exists k ∈ NG(R)(AM ) such that$w−13 is stable under (kδθ, ω|M(R)). Since k ∈ G(R),
the maximal torus kSk−1 is defined over R and also elliptic in M . As all elliptic tori of M
are M(R)-conjugate, we may assume that k normalizes S while maintaining the stability

of $w−13 under twisting. This stability implies that

ω|S(R)(kδθw−1 ·3) = w−1 ·3.
By assumption, ω|S(R)(δθ ·3) = 3 so we may rewrite the above equation as

w−1
1 k ·3′ = 3′,

where 3′ = δθw−1(δθ)−1 ·3 and w1 = w−1δθw(δθ)−1. The differential of the

quasicharacter 3′ is G-regular so w−1
1 k is the identity in �(G, S) [16, Lemma B 10.3].

It follows that w1 is represented by an element in G(R). Looking back to (4.13), this

means that w ∈ (�R(M, S)/�R(M, S))δθ . Conversely, given w ∈ (�R(M, S)/�R(M, S))δθ ,
the intertwining operators in [27, Proof of Proposition 4.1] exhibit the stability of

indG(R)
P(R)$w−13.

This proposition tells us that (�(M, S)/�R(M, S))δθ is a spectral parameterizing set

for 5ϕ . Despite appearances, it is not so different from the geometric parameterizing set

Sδθ\(NG(Sσ )/NG(R)(S))δθ . The intermediary between the two sets is

Sδθ\(NM (S)/NM(R)(S))δθ ,

whose definition is given by substituting M = G in (4.11). According to [28,

Proposition 2], there is a canonical surjection

Sδθ\(NM (S)/NM(R)(S))δθ → (�(M, S)/�R(M, S))δθ . (4.14)
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To complete the comparison between the spectral and geometric parameterizing

sets, we observe that there is a canonical map from Sδθ\(NM (S)/NM(R)(S))δθ to

Sδθ\(NG(Sσ )/NG(R)(S))δθ . We conclude this section by proving that this map is a

bijection.

Lemma 4.9. Suppose that x ∈ G such that x−1δθ(x) ∈ G(R). Then there exists y ∈ G(R)
such that xy ∈ M.

Proof. Fix a maximally R-split torus S′ containing Sd and a positive system on

R(G, S′). Choose β∨ ∈ X∗(Sd) ⊆ X∗(S′) as regular as possible in the positive chamber,

and let P(β∨) be its corresponding R-parabolic subgroup (see [5, Proposition 20.4]).

By construction, P(β∨) has Levi decomposition MU . According to Lemma 4.6,

the map Int(x−1)|S is defined over R so x−1Sd x is an R-split torus. Consequently,

x−1 P(β∨)x = P(x ·β∨) is also an R-parabolic subgroup. By [39, Theorem 15.2.6] and

[5, Theorem 20.9], there exists y ∈ G(R) such that (xy)−1Sd xy ⊆ S′ and (xy)−1 P(β∨)xy =
P(β∨). The latter equation implies that xy ∈ P(β∨) [5, Theorem 11.16]. Writing xy = mu
according to the Levi decomposition P = MU , the earlier containment implies that

u−1m−1smus−1 = u−1sus−1 ∈ S′ ∩U = {1}, s ∈ Sd .

In other words, the element u belongs to M = ZG(Sd), and so xy ∈ M .

We remark that Lemmas 4.6 and 4.9 do not rely on the θ -ellipticity of δ, and so remain

true without the assumption that S is fundamental in G. This fact will be used in §6.

Lemma 4.10. The canonical map

Sδθ\(NM (S)/NM(R)(S))δθ → Sδθ\(NG(Sσ )/NG(R)(S))δθ

is a bijection.

Proof. The injectivity of this map follows from NG(R)(S)∩M = NM(R)(S). To prove

surjectivity, suppose x ∈ NG(Sσ ) is a representative of a double coset on the right. Then

x−1δθ(x) ∈ G(R) by Proposition 4.7. Choosing y ∈ G(R) as in Lemma 4.9, we see that

xy ∈ M . The map Int((xy)−1)|S is defined over R. Consequently, the torus (xy)−1S(xy) is

also elliptic in M . After possibly multiplying y on the right by an element of M(R), we

may assume that (xy)−1S(xy) = S [44, Lemma 2.3.4] so xy ∈ NM (S) and y ∈ NG(R)(S).
Finally, as M is preserved by Int(δ)θ , we have (xy)−1δθxy(δθ)−1 ∈ M , and

(xy)−1δθxy(δθ)−1 = y−1x−1δθ(x)θ(y)δ−1 ∈ G(R)∩M = M(R).

This proves that xy ∈ NM (S) is a representative of a double coset on the left, and that

the canonical injection is surjective.

4.4. Spectral comparisons

We shall provide a brief overview of the proof of the spectral transfer identity (4.1).

The proof is essentially the same as the one given in [28, 6] for discrete series

representations. We therefore tailor our overview around those points which are influenced

by accommodating fundamental series representations.
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There are two pieces to the proof. The first is the proof of (4.1) for functions f with

small elliptic support about δθ [28, 6.3]. The second piece of the proof is an extension

to all f ∈ C∞c (G(R)θ) using a twisted version of Harish-Chandra’s uniqueness theorem

[28, 6.4]. The second piece is not affected by the move to the fundamental series, and

the required uniqueness theorems are given in appendix A. For this reason, we shall only

examine the proof in the case of small elliptic support [28, 6.3].

The proof begins with the left-hand side of (4.1). The sum over the discrete L-packet

5ϕH1
may be converted to one over �(H1, TH1)/�R(H1, TH1). The latter set also

parameterizes the stable conjugacy class on the left of (3.14). Using the Weyl integration

formula, it then becomes possible to substitute the geometric transfer identity (3.14). The

resulting substitution [28, (100)] yields a sum over Sδθ\(NG(Sσ )/NG(R)(S))δθ (Proposition

4.7) which may be replaced by Sδθ\(NM (S)/NM(R)(S))δθ (Lemma 4.10). The substitution

also introduces geometric transfer factors, which we may choose as in [28, 6.2]. After

this point, one may continue precisely as in [28, Section 6.3] to arrive at the right-hand

side of (4.1). In particular, the surjection (4.14) accounts for the desired sum over 5ϕ
(Proposition 4.8). The twisted characters 2π,Uπ are obtained by replacing 3 in section

4.2 by w−13, where w ∈ (�(M, S)/�R(M, S))δθ . The use of Bouaziz’ character formula

is also justified in §4.2.

Theorem 4.11. The spectral transfer identity (4.1) holds for the fundamental series under

Assumptions 1–6.

5. Spectral transfer for limits of fundamental series

In this section, we adjust the framework of §4 by weakening Assumption 3 and removing

Assumption 5. Let us concentrate on Assumption 5 for the moment. If we remove the

Ĝ-regularity of the parameters µ and µ|sa , then the irreducible representations in5ϕ need

no longer be fundamental series representations. As we shall see, these representations

may be obtained using the method of coherent continuation or Zuckerman tensoring.

When the Levi subgroup M of §4 is equal to G, then this method produces (essential)

limits of discrete series [17, 7 XII]. By analogy, when M is allowed to be a proper Levi

subgroup, we shall speak of (essential) limits of fundamental series. The goal then is to

prove Theorem 4.11 for L-packets 5ϕ consisting of limits of fundamental series. This

was accomplished for limits of discrete series in 7.2–7.3 [28]. The proof for the limits of

fundamental series is basically the same once the requisite objects are introduced.

We assume that we have the same endoscopic data as in §4 with the same Langlands

parameter ϕϕϕH1 . The pair of elements δ ∈ G(R) and γ1 ∈ H1(R) are as before, and these

bring with them the same fundamental torus S and Levi subgroup M . However, our

assumptions on the Langlands parameter ϕϕϕ∗ for G∗ shall be weaker. We merely assume

that ϕϕϕ∗ has a representative ϕ∗ which is an admissible homomorphism with respect to

G [4, 8.2]. This amounts to the assumption that the image of ϕ∗ is minimally contained

in a parabolic subgroup of L G which is relevant (in the sense of 3.3 [4]) with respect

to G.
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Lemma 5.1. The image of ϕ∗ is contained in a Levi subgroup L M dual to M (in the sense

of (3) 3.3 [4]).

Proof. Without loss of generality, we assume that ϕH1(C×) ⊆ TH [28, 4]. Let M be

the centralizer in Ĝ of the subtorus equal to the identity component of the fixed-point

subgroup of T under conjugation by ϕ∗(σ ). Then M is a Levi subgroup of Ĝ [5,

Proposition 20.4]. Let L M be the subgroup generated by M and ϕ∗(σ ). It is a Levi

subgroup of L G by [4, Lemma 3.5]. Furthermore, the image of ϕ∗ is contained in the

subgroup of L M generated by T and ϕ∗(σ ). The admissibility assumption on ϕ∗ [4, (ii)

8.2] implies that L M is dual to (a G(R)-conjugacy class of) an R-Levi subgroup M ′ of G
[4, (3) 3.3]. The action of ϕ∗(σ ) on R(M, T ) is that of inversion [39, Lemma 15.3.2]. In

[26, Proof of Lemma 3.1], one sees that this implies that M ′ contains an elliptic maximal

torus S′ such that L S′ ∼= 〈T , ϕ∗(WR)〉. By the conjugacy theorems, [18, Corollary 4.35]

and [38, Corollary 5.31], we may assume that the anisotropic subtorus S′a of S′ is contained

in Sa .

It follows from Assumption 1 on ϕH1 that ϕH1(σ ) acts by inversion on the root lattice

in X∗(TH ) [28, (17)]. This implies that ϕ∗(σ ) acts by inversion on the corresponding root

lattice in X∗((T θ̂ )0) (see (3.7)). Since θ̂ preserves the pair (B, T ), there exists an element

β in the root lattice of R(Ĝ, T ) which lies in the Weyl chamber fixed by B, and is invariant

under the action of θ̂ . In particular, β is Ĝ-regular. The dual element β∨ [38, 2.2] belongs

to X∗(T θ̂ ). Since T θ̂/(T θ̂ )0 is finite, we may replace β by some integer multiple and

assume that β∨ ∈ X∗((T θ̂ )0). From before, we see that ϕ∗(σ ) acts by inversion on β∨. It

therefore acts by inversion on β. This, together with the isomorphism X∗(T ) ∼= X∗(S′),
allows us to identify β with a regular element in X∗(S′a) [39, Proposition 13.2.4]. The

regularity of β implies that ZĜ(im(β)) is a maximal torus of G. Since im(β) ⊆ S′a ⊆ Sa ,

we find that this maximal torus is equal to both S′ and S.

We deduce in turn that S′ = S is elliptic in M ′, Sd ⊆ Z M ′ , and M = ZG(Sd) ⊇ M ′.
On the other hand, the definition of M, and the duality between M and M ′, and T
and S, together imply that ZG(Sd) = M ′. We conclude that M = M ′, and the lemma is

complete.

According to Lemma 5.1, the group ϕ∗(WR) is minimally contained in a Levi subgroup
L M1 of L M . By a relevance assumption, there exists a Levi subgroup M1 ⊆ M defined over

R which corresponds to L M1 [4, 3.3–3.4]. This produces an admissible homomorphism
ϕ : WR → L G which we may view as a representative of a Langlands parameter for any

of G, M , or M1.

Regardless of which perspective one takes, the admissible homomorphism ϕ is

determined by a pair µ, λ ∈ X∗(Ŝ)⊗C. This pair is begotten from a defining pair

µH1 , λH1 ∈ X∗(T̂H1)⊗C for an admissible homomorphism ϕH1 ∈ ϕϕϕH1 [26, 3], [28, 4.1], and

an application of the maps in (3.4), (3.7) and (4.2) (cf. [36, 7(b)]). There are identifications

of Borel subgroups implicit in the maps of (3.7). We may assume that µH1 is in the

positive Weyl chamber determined by the Borel subgroup BH ⊇ TH of H [26, Lemma

3.3], [28, 4.1]. It follows from the identification of B̂H with BH and the containment

ξ(BH ) ⊆ B ∼= B̂ ′ (§3.3) that µ lies in the Weyl chamber determined by B̂ ′ ∩ M̂1. To say

precisely what this means, let us denote by B the image of B ′ under the inverse of
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Int(gT ′)ψ . Then the precise statement is that 〈µ, α∨〉 > 0 for all α ∈ R(B ∩M1, S) [26,

Lemma 3.3]. This ensures the M̂1-regularity of µ, but not its Ĝ-regularity.

5.1. Shifting to the context of the fundamental series

We shall approach the representations in 5ϕ indirectly, first shifting µ by a Ĝ-regular

element ν ∈ spanZ R(G, S) ⊆ X∗(S). This shift by ν will be constructed so as to

produce a pair of matching admissible homomorphisms ϕν and ϕνH1
which satisfy all

of the assumptions of §4. We may then apply coherent continuation to recover the

representations in 5ϕ and the spectral transfer identity (4.1).

Lemma 5.2. There exists ν ∈ spanZ R(M, S) which is G-regular and is fixed under the

action of δθ .

Proof. We first prove the existence of G-regular ν. Suppose by way of contradiction that

for some α ∈ R(G, S)∨ and all ν ∈ spanZ R(M, S) we have 〈ν, α〉 = 0. Then, in particular,

the image of α belongs to

(∩β∈R(M,S) kerβ)0 = Z0
M = Sd

[39, Proposition 8.1.8(i)], [5, Proposition 20.6(i)], and α ∈ X∗(Sd). This implies that α is

a real coroot [5, 8.15], which contradicts S being fundamental.

We may now choose G-regular ν′ ∈ spanZ R(M, S) which is positive with respect to

R(B, S). Under transport by (4.2), we identify ν′ with an element in spanZ R(Ĝ, T̂ ′)∨ ∼=
spanZ R(G∗, T ′) which lies in the positive Weyl chamber determined by B ′. Recall from

§3.3 that the pair (B ′, T ′) is preserved by θ∗. Therefore the automorphism θ∗ has finite

order on X∗(T ′), and we may define ν =∑|θ∗|j=1(θ
∗) j (ν′). The θ∗-invariance of ν translates

to δθ-invariance under transport by (4.2).

Let us fix ν as in Lemma 5.2. After possibly replacing it by some positive integer

multiple, we have Re〈µ+ ν, α∨〉 > 0 for all α ∈ R(B, S), and so the element µ+ ν is
Ĝ-regular. This takes care of half of Assumption 5 in §4. The other half requires an

understanding of the action of σ on ν. The δθ-invariance of ν implies that ν ∈ X∗(Ŝδθ ).
Since Ŝδθ/(Ŝδθ )0 is finite, we may again replace ν by some positive integer multiple

and assume without loss of generality that ν ∈ X∗((Ŝδθ )0). There is an isomorphism

X∗((Ŝδθ )0) ∼= X∗(Sδθ ), where Sδθ = S/(1− δθ)S, and a surjection (Sδθ )0 → Sδθ (see [28,

Proof of Lemma 12]). Consequently, there is an injection X∗(Sδθ ) ↪→ X∗((Sδθ )0). We may

identify ν ∈ X∗((Ŝδθ )0) with its image under the map

X∗((Ŝδθ )0) ↪→ X∗((Sδθ )0)

of 0-modules. In fact, ν belongs to the submodule X∗((Sδθ )0/(Z θG)
0). By the θ -ellipticity

of δ, the automorphism σ acts as inversion on X∗((Sδθ )0/(Z θG)
0) so σ(ν) = −ν. The

decomposition

X∗(S)⊗R ∼= (X∗(Sa)⊗R)⊕ (X∗(Sd)⊗R)

[5, 8.15] allows us to identify ν with its restriction ν|sa (see (4.4)). As before, we may

assume that

Re〈(µ+ ν)|sa , α
∨〉 = Re〈µ|sa + ν, α∨〉 > 0

https://doi.org/10.1017/S1474748014000437 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000437


594 P. Mezo

for all α ∈ R(B, S), so the element (µ+ ν)|sa is Ĝ-regular. At this point we have shown

that Assumption 5 of §4 holds for µ+ ν.

We turn to the construction of matching admissible homomorphisms ϕν and ϕνH1
which

satisfy the remaining assumptions of §4. First, since σ(ν) = −ν is in the root lattice,

it is easily verified that the pair µ+ ν, λ ∈ X∗(Ŝ)⊗C corresponds to an admissible

homomorphism ϕν : WR → L G with ϕν(σ ) = ϕ(σ) [28, 4]. The pair also corresponds to a

quasicharacter 3(µ+ ν− ιM , λ) of S(R) [28, (18)]. As in §4, the L-packet 5ϕν ,M consists

of essentially square-integrable representations of M(R).
The central character of the representations in 5ϕν ,M differs from the unitary central

character of the representations in 5ϕ,M by the restriction of 3(µ+ ν− ιM , λ)3(µ−
ιM , λ)

−1 to Z M (R). This restriction depends only on the restriction of ν ∈ X∗(S)⊗C to

Z M ⊆ S [4, 9]. Therefore, to show that Assumption 4 of §4 holds for the central character

of 5ϕν ,M , it suffices to show that the restriction of ν ∈ X∗(S)⊗R to the split component

of Z M is trivial. This is true, as the split component of Z M is contained in Sd , the map

(1− σ) annihilates X∗(Sd) [5, 8.15], and

ν|Sd =
1− σ

2
(ν)|Sd =

1− σ
2

(ν|Sd ) = 0.

Thus far, we see Assumptions 2, 4 and 5 of §4 hold for ϕν , and enough has been shown

to conclude that the L-packet 5ϕν is comprised of fundamental series representations

(see 4.1). Assumption 6 of §4 follows from the δθ-invariance of ν (see [28, (136)]).

It remains to construct an admissible homomorphism ϕνH1
such that Assumptions 1

and 3 hold. For this, we return to viewing ν as an element of X∗(T ′θ∗) ∼= X∗((T θ̂ )0), as in

the proof of Lemma 5.2. Let νH1 ∈ X∗(T̂H ) be the image of ν under the composition of

the isomorphisms of (3.7). By (3.5), we may regard νH1 as an element in X∗(T̂H1). The

positivity of ν with respect to the Borel subgroup B transfers to the positivity of νH1

with respect to the Borel subgroup BH . Let µH1 , λH1 ∈ X∗(T̂H1)⊗C be a defining pair for

ϕH1 such that µH1 is positive with respect to BH . Then µH1 + νH1 is regular so the pair

µH1 + νH1 , λH1 ∈ X∗(T̂H1)⊗C defines an admissible homomorphism ϕνH1
: WR → L H1 [28,

4.1] such that Assumption 1 of §4 holds for ϕνH1
.

Finally, Assumption 3 of §4 holds by virtue of the definition of (ϕν)∗ as ξ ◦ ξ−1
H1
◦ϕνH1

[28, 6]. Indeed, the image of µH1 + νH1 under the maps induced by ξ ◦ ξ−1
H1

corresponds

to µ+ ν by the construction of νH , and the regularity of µ+ ν in M̂ ensures that ϕν is

minimally contained in L M .

5.2. Coherent continuation to the limit of fundamental series

representations

Let us describe the relationship between the L-packets of ϕ and those of the shifted

admissible homomorphism ϕν , following [36, 14] and [28, 7]. The representations in 5ϕν ,M
are essential discrete series representations. The representations in 5ϕ,M are essential

limits of discrete series representations obtained via Zuckerman tensoring representations

in 5ϕν ,M [22, (1.10)]. To explain this relationship better, let w ∈ �(M, S)/�R(M, S)
and $w−13 ∈ 5ϕν ,M be as in Proposition 4.8. Denote the distribution character of the
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representation obtained from $w−13 through Zuckerman tensoring by 2(w−1µ, λ,w−1 ·
B̂). Then the set of characters of the irreducible representations in 5ϕ,M is equal to the

non-zero subset of characters in

{2(w−1µ, λ,w−1 · B̂) : w ∈ �(M, S)/�R(M, S)}.
Using Hecht–Schmid identities, one may determine this non-zero subset explicitly [28,

(142)], [33, p. 408].

The irreducible representations in 5ϕ and 5ϕν are the irreducible subrepresentations of

the representations induced from 5ϕ,M and 5ϕν ,M , respectively. In the present context,

parabolic induction and Zuckerman tensoring commute with one another [41, Corollary

5.9] and produce irreducible representations (when non-zero) [41, Theorem 5.15]. Hence,

parabolic induction furnishes a bijection between 5ϕ,M and 5ϕ , just as it does between

5ϕν ,M and 5ϕν . We may write the characters of the representations occurring in 5ϕ as

indG(R)
P(R)2(w

−1µ, λ,w−1 · B̂), (5.1)

where w lies in [28, (142)]. We call the representations corresponding to these characters

limit of fundamental series representations. A limit of discrete series character is the

special case of (5.1) in which P = M = G. These are all special cases of limit of generalized

principal series representations given on [41, p. 265 5].

The spectral transfer identity (4.1) was proved for essential limits of discrete series

in [28, 7.2.3]. The argument there hinges on Zuckerman tensoring a discrete series

representation $̄ν of the disconnected group Gder(R)0 o 〈δθ〉 to a limit of discrete series

representation $̄1. This argument is unaffected when $̄ν is allowed to be a fundamental

series representation. In consequence, if π ∈ 5ϕ is obtained from πν ∈ 5ϕν by Zuckerman

tensoring, we obtain a twisted character 2π,Uπ from the character of $̄1. Moreover, after

defining

1(ϕϕϕH1 , π) = 1(ϕϕϕν
H1
, πν),

[28, Proof of Theorem 3] carries through and (4.1) holds. We record this as a theorem.

Theorem 5.3. Suppose that there exists a strongly θ-regular and θ-elliptic element

δ ∈ G(R) which has a norm γ ∈ H(R). Suppose further that ϕH1 is an admissible

homomorphism not contained in a proper parabolic subgroup of L H1. Finally, suppose

that ϕ∗ = ϕ is an admissible homomorphism such that the representations in 5ϕ,M have

unitary central character and 5ϕ = ω⊗ (5ϕ ◦ θ). Then∫
H1(R)/Z1(R)

fH1(h)
∑

πH1∈5ϕϕϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1(ϕϕϕH1 , π)2π,Uπ ( f )

for all f ∈ C∞c (G(R)θ).

6. Spectral transfer for tempered representations

In this section, we show how the framework of the previous sections extends to

tempered representations. Suppose that we have an endoscopic quadruple (H,H, s, ξ)
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and a compatible z-pair (H1, ξH1), as above. Now, we assume only that ϕH1 : WR →
L H1 is an admissible homomorphism such that 5ϕH1

consists of irreducible tempered

representations. As before, we assume that the homomorphism ϕ∗ = ξ ◦ ξ−1
H1
◦ϕH1 is

admissible with respect to G, and denote ϕ∗ by ϕ. The condition that 5ϕH1
be tempered

is equivalent to ϕH1 having bounded image [4, (4) 10.3]. It follows from the continuity

of ξ and ξ−1
H1

that ϕ has bounded image so 5ϕ is an L-packet consisting of irreducible

tempered representations of G(R). In order for this L-packet to have any bearing on

twisted endoscopy, we assume that 5ϕ = ω⊗5ϕ ◦ θ .

Let L M̄H1 be the smallest Levi subgroup of L H1 containing the image of ϕH1 .

By definition, the representations in 5ϕH1
are the irreducible subrepresentations of

the representations induced from 5ϕH1 ,M̄H1
[4, 11.3]. In addition, the admissible

homomorphism ϕM̄1
: WR → L M̄H1 , defined by replacing the codomain of ϕH1 with L M̄H1 ,

satisfies Assumption 1 of §4. In order to ensure that the other assumptions of §§4

or 5 apply, we must produce an R-Levi subgroup M̄ of G and a triple (M̄, θM̄ , ωM̄ )

corresponding to an endoscopic quadruple (M̄H ,HM̄ , sM̄ , ξM̄ ), where M̄H1 is a z-extension

of M̄H .

6.1. Endoscopic data related to L M̄H1

We begin with the definition of M̄ . As H1 is a quasisplit group, there is an R-Levi subgroup

M̄H1 of H1 which is dual to L M̄H1 . The minimality of L M̄H1 implies that there exists a

maximal torus TH1 of M̄H1 which is elliptic in M̄H1 . Let TH,d be the split component of

TH = pH (TH1). Choose β∨ ∈ X∗(TH,d) as regular as possible with respect to R(H, TH ),

and choose a Borel subgroup BH ⊇ TH such that 〈α, β∨〉 > 0 for all α ∈ R(BH , TH ). The

cocharacter β∨ is defined over R, and the Levi subgroup M̄H1 is the centralizer in H1 of any

pre-image of β∨ under pH . An application of [20, Lemma 3.3.B] gives us a θ∗-stable pair

(B ′, T ′) and an admissible embedding (3.11) so we have the following maps of 0-modules:

β∨ ∈ X∗(TH,d) ↪→ X∗(TH ) ∼= X∗(TH )
ξ
↪→ X∗((T θ̂ )0) ∼= X∗(T ′θ∗)

(see (3.7)). The image ξ ◦β∨ of β∨ in X∗((T θ̂ )0) is non-negative with respect to the

ordering defined by R(B, T ). We may suppose that β∨ has been chosen so that ξ ◦β∨ is

as positive as possible with respect to this ordering. There is a unique lift of (some positive

multiple of) ξ ◦β∨ to a character in X∗(T ) which is trivial on the torus complementary

to (T θ̂ )0 [5, Corollary 8.5]. Let (β ′)∨ ∈ X∗(T ′) be the cocharacter corresponding to this

lift under the isomorphism X∗(T ′) ∼= X∗(T ). By design, the cocharacter (β ′)∨ is defined

over R and is non-negative with respect to the ordering defined by R(B ′, T ′). Let M̄∗ be

the centralizer of the image of (β ′)∨. It is the Levi subgroup of the parabolic subgroup

P̄∗ determined by (β ′)∨ [39, 13.4]. Both M̄∗ and P̄∗ are defined over R [39, Theorem

13.4.2]. These groups are also compatible with θ∗.

Lemma 6.1. The automorphism θ∗ preserves both M̄∗ and P̄∗.

Proof. Recall that (β ′)∨ corresponds to a lift of an character in X∗((T θ̂ )0). The

θ̂ -invariance of this character implies that θ∗ ◦ (β ′)∨ = (β ′)∨, and the lemma follows.
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Now, by the admissibility of ϕ [4, 8.2(ii)], there exist R-subgroups M̄ and P̄ of G parallel

to the subgroups M̄∗ and P̄∗ of G∗. From here on, we make the assumption that there

is a θ -regular element δ ∈ G(R) which has norm γ1 ∈ TH1(R). It will be explained in §6.4

why this is a negligible assumption. With this assumption in force, we have recourse to

the R-isomorphism (4.2). It follows that M̄ and P̄ are given by the inverse image of (β ′)∨
under Int(gT ′)ψ . In addition, the δ∗θ∗-invariance of M̄∗ and P̄∗ (Lemma 6.1) translates

to the δθ-invariance of M̄ and P̄.

We define the twisting data in the triple (M̄, θM̄ , ωM̄ ) by θM̄ = Int(δ)θ|M̄ and ωM̄ = ω|M̄ .

For the definition of the endoscopic data, we recall that the passage from θ to the dual

map θ̂ is insensitive to composition with inner automorphisms (§3.1, see [4, 1.3]). Indeed,

θ̂ is obtained via an action on based root data, and such an action is independent of

inner automorphisms. The upshot of this observation is that Înt(δ)θ = θ̂ . This identity

in turn justifies that (M̄H ,HM̄ , s, ξM̄ ) is an endoscopic datum for (M̄, θM̄ , ωM̄ ), where

M̄H = pH (M̄H1), HM̄ = ˆ̄MH o c(WR), and ξM̄ = ξ|HM̄
(see §3.2). The surjection p|M̄H1

:
M̄H1 → M̄H defines a z-extension of M̄H [20, 2.2] and a z-pair (M̄H1 , (ξH1)|L M̄H1

).

This choice of endoscopic datum may be associated with the quasisplit group

M̄∗ through the isomorphism Int(gT ′)ψ|M̄ : M̄ → M̄∗ mentioned above. By defining

ψM̄ = Int(gT ′)ψ|M̄ , the element uσ of (3.2) is replaced by gT ′uσσ(g
−1
T ′ ) ∈ T ′sc ⊂ M̄∗sc.

Equation (3.3) is replaced by

θ∗M̄ = θ∗|M̄∗ = Int((δ∗)−1)ψM̄θM̄ψ
−1
M̄
,

in which some lift of (δ∗)−1 to M̄∗sc takes on the role of gθ . Finally, the element in (3.10)

is replaced by

(δ∗)−1gT ′uσσ(g
−1
T ′ )σ (δ

∗)θ∗(σ (g)u−1
σ g−1

T ′ ). (6.1)

One may compute that this element is equal to

θ∗(gT ′)gθuσσ(g−1
θ )θ∗(u−1

σ )θ∗(g−1
T ′ ),

which by (3.10) is equal to gθuσσ(g−1
θ )θ∗(u−1

σ ) and therefore defines a cocycle in (1−
θ∗)ZG∗sc ⊆ (1− θ∗M̄ )Z M̄∗sc

. This shows that Assumption (3.10) holds for (M̄, θM̄ , ωM̄ ) in

place of (G, θ, ω).
The image of ϕ is contained in the Levi subgroup L M̄ dual to M̄∗ under the

identification of R(B, T ) with R(B ′, T ′)∨ (see the proof of Lemma 5.1). By substituting
L M̄ for the codomain of ϕ, we may regard ϕM̄ : WR → L M̄ as an admissible

homomorphism of M̄ obtained from the admissible homomorphism ϕM̄H1
of M̄H1 above.

6.2. Assumptions required for spectral transfer on M̄

At this stage, it makes sense to revisit the assumptions of §4 with M̄ in place of

G. As already mentioned, Assumption 1 holds for ϕM̄H1
. The next lemma shows that

Assumption 2 holds.

Lemma 6.2. The strongly θ-regular element δ is θ-elliptic.
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Proof. By isomorphism (4.2), it suffices to prove that the identity component of

(T ′)θ∗/Z θ
∗

M̄∗ is anisotropic. We shall accomplish this by producing a torus T1 ⊆ Z θ
∗

M̄∗ such

that ((T ′)θ∗/T1)(R) is compact. Essentially, T1 is the image of TH,d under the maps used

to define (β ′)∨ ∈ X∗(T ′).
This is easiest to see in the special case that T ′θ∗ ∼= (T ′)θ

∗
. In this case, (3.11) maps TH,d

to a split subtorus T1 ⊆ (T ′)θ∗ , and (β ′)∨ ∈ X∗(T1) is as regular as possible with respect

to R(B ′, T ′). It follows that α ∈ R(M̄∗, T ′) if and only if α|T1 is trivial [39, Lemma 15.3.2

(ii)], [5, Proposition 20.4]. This implies that T1 ⊆ Z M̄∗ , and we obtain a surjection

TH/TH,d
(3.11)∼= (T ′)θ

∗
/T1 → (T ′)θ

∗
/Z θ

∗
M̄∗

of elliptic tori.

In general, the canonical map (T ′θ∗)0 → T ′θ∗ is merely an isogeny (see [28, Proof of

Lemma 12]). The lift of ξ ◦β∨ to (β ′∨) amounts to a lift from X∗(T ′θ∗) to X∗((T ′θ
∗
)0), as

may be seen from

X∗(T ) //

∼=
��

ξ ◦β∨ ∈ X∗((T θ̂ )0)

∼=
��

(β ′)∨ ∈ X∗(T ′) // X∗(T ′θ∗)

and the proof of Lemma 6.1. Similarly, the image of TH,d in T ′θ∗ under (3.11) lifts to a

split torus T1 ⊆ (T ′θ∗)0, and (β ′)∨ belongs to X∗(T1). As argued in the special case above,

the torus T1 is contained in Z M̄∗ . We now have two surjections,

(T ′θ
∗
)0/(Z θ

∗
M̄∗)

0 ← (T ′θ
∗
)0/T1 → TH/TH,d .

The surjection on the right is an isogeny induced by (T ′θ∗)0 → T ′θ∗ and (3.11). As TH/TH,d
is anisotropic, this isogeny ensures that (T ′θ∗)0/T1 is also anisotropic. The surjection on

the left now implies that (T ′θ∗)0/(Z M̄∗)
0 is anisotropic, and the lemma is proved.

A consequence of Lemmas 6.2 and 4.1 is that S is a fundamental torus in M̄ .

Assumption 3 was weakened in §5 to ϕ being admissible. This admissibility assumption

is made in this section as well, so ϕM̄ is admissible.

Assumption 4 must hold, for otherwise the central character of 5ϕ,M would force the

image of ϕ to be unbounded, and 5ϕ would not be tempered.

Assumption 5 was removed in §5, and so we may ignore it.

We must prove Assumption 6 for M̄ . We have assumed that the L-packet 5ϕ is stable

under twisting. To deduce the same for the L-packet 5ϕM̄
, it is natural to make a

connection between the two L-packets. The common ground between the two packets

5ϕ and 5ϕM̄
is the ‘minimal’ packet 5ϕ,M in the following extension of Proposition 4.8.

Lemma 6.3. Let Sd be the split component of the torus S, let M = Z M̄ (Sd), and let P
be a parabolic subgroup of G with M as a Levi subgroup. Suppose that $,$ ′ ∈ 5ϕ,M
are essential limit of discrete series representations of M(R) such that indG(R)

P(R)$
′ and

ω⊗ (indG(R)
P(R)$)

δθ share equivalent irreducible subrepresentations. Then $ ′ is equivalent

to ω|M(R)⊗$ δθ .
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Proof. Suppose first that $ ′ and $ are essentially square-integrable representations. As

in §4.3, we may write $ = $w−13 and $ ′ = $(w′)−13, where S is an elliptic torus of M =
M̄ , 3 is an M-regular, and δθ-stable quasicharacter of S(R), and w,w′ ∈ �(M, S). The

Langlands disjointness theorem (pp. 149–151 [26]) provides k ∈ NG(R)(M) such that $ ′
is equivalent to ω|M(R)⊗$ kδθ . As in Proposition 4.8, we may assume that k ∈ NG(R)(S)
and identify it with an element of �R(G, S). We have the equation

ω|S(R)(kδθw−1 ·3) = (w′)−1 ·3,
which may be rewritten in the form

w−1
1 k ·3′ = 3′, (6.2)

where 3′ = δθw−1(δθ)−1 ·3 and w1 = (w′)−1δθw(δθ)−1.

The (differential of the) quasicharacter 3′ is M-regular. We choose a positive system on

R(G, S) so that its induced positive system on R(M, S) corresponds to a Weyl chamber

containing 3′. Equation (6.2) implies that the element w−1
1 k ∈ �(G, S) is a product of

reflections generated by simple roots in R(G, S) which are orthogonal to 3′ [16, Lemma B

10.3]. Suppose that α is such a simple root, and let ρM be the half-sum of the positive

roots of R(M, S). The simple reflection sα fixes 3′ and therefore stabilizes the system

of positive roots for R(M, S). This implies that sα fixes ρM , or, equivalently, that α is

orthogonal to ρM .

Using the terminology of [43, 3], this proves that α is a quasisplit root and that w−1
1 k

lies in the quasisplit Weyl group generated by the quasisplit roots. We also know that

w1 ∈ �(M, S) is defined over R [24, Lemma 6.4.1] so w−1
1 k belongs to the subgroup

of the quasisplit Weyl group whose elements are defined over R. According to Vogan,

this subgroup is a semidirect product of two groups [43, p. 961], and each of these

two is contained in �R(G, S) [43, Lemma 3.1]. In short, w−1
1 k belongs to �R(G, S) so

w1 ∈ �R(M, S) and

w′�R(M, S) = (δθ ·w)�R(M, S).

We deduce from [24, 6.4] and a character comparison that

$ ′ = $(w′)−13
∼= ω|M(R)⊗$δθ ·w−13

∼= ω|M(R)⊗ ($w−13)
δθ = ω|M(R)⊗$ δθ .

Suppose now that $,$ ′ ∈ 5ϕ,M are essential limit of discrete series representations.

In the notation of 7.2.3 [28], we may write $ = 9w−1·(µ+ν′)
w−1·µ $w−13 and $ ′ =

9
(w′)−1·(µ+ν′)
(w′)−1·µ $(w′)−13, where $w−13 and $(w′)−13 are essentially square-integrable

representations as above. As in the previous case, the Langlands disjointness theorem

supplies k ∈ NG(R)(S) such that $ ′ is equivalent to ω|M(R)⊗$ kδθ . By [22, Theorem

1.1(c)], there exists k1 ∈ NM̄(R)(S) such that k1kδθw−1 ·3 = (w′)−1 ·3. The previous

argument for essentially square-integrable representations therefore applies after

replacing k with k1k. We conclude in turn that $(w′)−13
∼= ω|M(R)⊗ ($w−13)

δθ and $ ′ is

equivalent to

ω|M(R)⊗9δθ ·w
−1·(µ+ν′)

δθ ·w−1·µ ($w−13)
δθ ∼= ω|M(R)⊗ (9w

−1·(µ+ν′)
w−1·µ $w−13)

δθ = ω|M(R)⊗$ δθ .
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Corollary 6.4. The L-packet 5ϕM̄
= 5ϕ,M̄ equals the L-packet ωM̄ ⊗5ϕM̄

◦ θM̄ .

Proof. Suppose that $ ∈ 5ϕ,M̄ . Then the irreducible subrepresentations of indG(R)
P̄(R)$

belong to 5ϕ [4, 11.3]. We are assuming that 5ϕ = ω⊗5ϕ ◦ θ so that there exists

$ ′ ∈ 5ϕ,M̄ such that indG(R)
P̄(R)$

′ and ω⊗ (indG(R)
P̄(R)$)

δθ have some equivalent irreducible

subrepresentations. By Lemma 6.3 and the fact that the irreducible representations

in 5ϕ,M̄ are induced from irreducible representations in 5ϕ,M (Corollary 4.4), the

representation $ ′ is equivalent to ωM̄ ⊗$ δθ ∈ ωM̄ ⊗5ϕ,M̄ ◦ θM̄ . Since L-packets with

non-empty intersection are equal, the corollary is complete.

Corollary 6.4 shows that Assumption 6 holds for M̄ , and we are now in the position

to apply Theorem 5.3 on the level of M̄ . This will be done in the following section. We

record one more corollary which aligns twisting on 5ϕ with twisting on 5ϕM̄
.

Corollary 6.5. Suppose that π ∈ 5ϕ and $ ∈ 5ϕ,M̄ such that π is a subrepresentation of

indG(R)
P̄(R)$ [4, 11.3]. If π is (θ, ω)-stable, then $ is (θM̄ , ωM̄ )-stable.

6.3. Parabolic descent

Suppose that P̄H1 is an R-parabolic subgroup of H1 which has M̄H1 as a Levi subgroup.

The parabolic descent of a compactly supported (mod centre) function f1 on H1(R) with

respect P̄H1 will be written as f
(P̄H1 )

1 [17, (10.22)]. It is a function on M̄H1(R). When

f1 = fH1 for some f ∈ C∞c (G(R)θ), the left-hand side of the spectral transfer identity

(4.1) equals ∫
M̄H1 (R)/Z1(R)

( fH1)
(P̄H1 )(h)

∑
πM̄H1

∈5ϕM̄H1

2πM̄H1
(h) dh (6.3)

[17, (10.23)]. This reduces the sum over the tempered L-packet 5ϕH1
in (4.1) to a sum

over the (essentially) discrete series L-packet 5ϕM̄H1
. We shall take the same approach

to the right-hand side of (4.1), using the parabolic subgroup P̄ of G, and then apply

Theorem 5.3. This approach must take into account the inconvenience that, although P̄
is preserved by Int(δ)θ , it might not be preserved by θ . To account for this, we replace

the twisting data (θ, ω) in this section by the twisting data (Int(δ)θ, ω), but make no

distinction in notation. That this shift from θ to Int(δ)θ ultimately has no effect on the

spectral transfer identity (4.1) is justified in appendix B.

Let P̄ = M̄ N̄ be a Levi decomposition of P̄. Suppose that $ is an irreducible tempered

representation of M̄(R) such that

U ◦$(x) = ω(x)$ δθ (x) ◦U, x ∈ M̄(R) (6.4)

for a non-zero intertwining operator U. The representation ω⊗ (indG(R)
P̄(R)$)

δθ is equivalent

to ω⊗ indG(R)
P̄(R)$

δθ ∼= indG(R)
P̄(R)$ . Indeed, we may define an operator T on the functions φ

in the representation space of indG(R)
P̄(R)$ by

(Tφ)(g) = Uφ(Int(δ)θ(g)), g ∈ G(R).
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The reader may verify that

T ◦ indG(R)
P̄(R)$(x) = ω(x) (indG(R)

P̄(R)$)
δθ (x) ◦T, x ∈ G(R)

(cf. [27, Proof of Proposition 3.1] and [12, Lemma 5(i)–(ii)]).

We wish to compute the twisted character 2indG(R)
P̄(R)$,T

defined by

f 7→ tr
∫

G(R)
f (xθ)indG(R)

P̄(R)$(x)T dx, f ∈ C∞c (G(R)θ)

in terms of the twisted character of $ . This amounts to a twisted version of (6.3), and

the techniques are entirely the same. Suppose that f ∈ C∞c (G(R)θ) and that n̄ is the real

Lie algebra of the unipotent group N̄ (R). Define

f (P̄)(xθM̄ ) = | det Ad(x)|n̄|1/2
∫

K

∫
N̄ (R)

f (kxnδθk−1) dn dk, x ∈ M̄(R).

The crucial fact that P̄ is preserved by Int(δ)θ allows one to imitate the analytic

manipulations given for descent in 3 X [17]. The result is

2indG(R)
P̄(R)$,T

( f ) = 2$,U( f (P̄)). (6.5)

We wish to apply the descent argument of (6.5) to the right-hand side of (4.1), where

5ϕ is our tempered L-packet. This argument is valid, since Corollary 6.5 tells us that

every representation in π ′ ∈ 5ϕ which is stable under twisting is a subrepresentation of

indG(R)
P̄(R)$ with $ as in (6.4). One may then define the twisted character 2π ′,Tπ ′ by taking

Tπ ′ to be the restriction of T above to the space of π ′ (this uses multiplicity one, [21,

Theorem 2.3(b)]).

One must also define spectral transfer factors which are compatible with parabolic

descent. Accordingly, we define

1(ϕϕϕH1 , π
′) = 1(ϕϕϕ M̄H1

,$),

whenever π ′ ∈ 5ϕ is a (δθ, ω)-stable subrepresentation of indG(R)
P̄(R)$ and $ ∈ 5ϕM̄

. When

π ′ is not stable under twisting, we set 1(ϕϕϕH1 , π
′) = 0. The parabolic descent argument

applied to the right side of (4.1) yields∑
π ′∈5ϕ

1(ϕϕϕH1 , π
′)2π ′,Tπ ′ ( f ) =

∑
$∈5ϕ,M̄

1(ϕϕϕ M̄H1
,$)2indG(R)

P̄(R)$,T$
( f )

=
∑

$∈5ϕ,M̄
1(ϕϕϕ M̄H1

,$)2$,U$ ( f (P̄)). (6.6)

To complete the spectral transfer identity we must proceed from (6.6) to (6.3). For this

one must show that parabolic descent is compatible with twisted geometric transfer. In

other words, one would like to define geometric transfer factors 1M̄ (γ1, δ
′) for M̄ so that

( f (P̄))M̄H1
= ( fH1)

(P̄H1 ). (6.7)
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This is proved in Lemma B.1, by essentially restating ideas from a recent preprint of

Shelstad [37, 11]. Thus we may press on from (6.6) with∑
π ′∈5ϕ

1(ϕϕϕH1 , π
′)2π ′,Tπ ′ ( f ) =

∑
$∈5ϕ,M̄

1(ϕϕϕ M̄H1
,$)2$,U$ ( f (P̄))

=
∫

M̄H1 (R)/Z1(R)
( f (P̄))M̄H1

(h)
∑

πM̄H1
∈5ϕM̄H1

2πM̄H1
(h) dh

=
∫

M̄H1 (R)/Z1(R)
( fH1)

(P̄H1 )(h)
∑

πM̄H1
∈5ϕM̄H1

2πM̄H1
(h) dh,

where the expression on the right is equal to (6.3).

Theorem 6.6. Suppose that ϕH1 and ϕ are admissible homomorphisms with tempered

L-packets. Let L M̄H1 ⊆ L H1 be a Levi subgroup minimally containing the image of ϕH1 ,

and let TH1 be an elliptic maximal torus in M̄H1 . If there is a strongly regular element of

TH1(R) which is a norm, then∫
H1(R)/Z1(R)

fH1(h)
∑

πH1∈5ϕϕϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1(ϕϕϕH1 , π)2π,Tπ ( f )

for all f ∈ C∞c (G(R)θ).

6.4. No norms

The purpose of this section is to remove the hypothesis in Theorem 6.6 of norms existing

in TH1 . Suppose that no strongly regular element of TH1(R) is a norm of an element in

G(R). In this case, we set all spectral transfer factors 1(ϕϕϕH1 , π) on the right of (4.1)

equal to zero. We shall argue that the distribution 2 which sends f ∈ C∞c (G(R)θ) to the

left side of (4.1) is also zero. In this way, spectral transfer reduces to an identity of zeros.

First, note that the (tempered) distribution characters of 2πM̄H1
in (6.3) allow us to

regard 2 as a function supported on those elements of δ′θ ∈ G(R)θ for which strongly

θ -regular δ′ have norm γ ′1 ∈ M̄H1(R). Thought of in this way, the distribution 2 is

determined by its values on subsets of the form Gδ′θ (R)δ′θ . If no such δ′ exist, then

2 vanishes.

Fix then such a δ′ ∈ G(R), and let T ′H = pH (M̄
γ ′1
H1
). The maximal torus T ′H ⊆ M̄H

contains Z M̄H
⊇ TH,d . We may therefore repeat the construction of §6.1 with δ replaced by

δ′, but with the same β∨ ∈ X∗(TH,d), to arrive at a triple (M̄ ′, θM̄ ′ , ωM̄ ′) with endoscopic

datum (M̄H ,HM̄ ′ , s, ξM̄ ′). We also have Gδ′θ ⊆ M̄ ′, as before. Thus, it suffices to show

that 2 vanishes on M̄ ′(R)δ′θ ′ ⊇ Gδ′θ (R)δ′θ ′.
Let 2M̄ ′ = 2|M̄ ′(R)δ′θ . The distribution 2M̄ ′ is a tempered, ωM̄ ′-equivariant,

eigendistribution ([28, Lemma 24] and [42, Proposition 30 (38) 6]). Since no strongly

regular element of TH1(R) is a norm, the distribution vanishes on the θM̄ ′-elliptic elements.

Proposition A.4 therefore applies to 2M̄ ′ , and so it vanishes. In conclusion, 2 vanishes,

and Theorem 6.6 now extends to the following.
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Theorem 6.7. Suppose that ϕH1 and ϕ are admissible homomorphisms with tempered

L-packets. Then∫
H1(R)/Z1(R)

fH1(h)
∑

πH1∈5ϕϕϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1(ϕϕϕH1 , π)2π,Tπ ( f )

for all f ∈ C∞c (G(R)θ).

Acknowledgements. We thank the referees for this paper and an earlier version for their

suggested improvements.

Appendix A. Twisted uniqueness theorems

Spectral transfer in [28] did not include twisting by a general quasicharacter ω of G(R),
and was limited to θ being of finite order. This resulted from the hypotheses required

for the use of a twisted version of Harish-Chandra’s uniqueness theorem [29, Theorem

15.1]. The hypotheses require θ to be finite and the distributions to be G(R)-invariant.

The purpose of this appendix is to extend this uniqueness theorem to allow for arbitrary

θ , and then to use methods of Waldspurger to handle the lack of G(R)-invariance due to

non-trivial ω. As a consequence, we may extend [28, Theorem 1] to include non-trivial ω

and θ of any order.

We assume that δ ∈ G(R) is strongly θ-regular and θ -elliptic, and that S is the torus

of Lemma 4.1. We begin with the extension to arbitrary θ .

Proposition A.1. There exists g0 ∈ Gder(R) such that Int(g0)θ has finite order on Gder(R)
and preserves a maximally R-split maximal torus T of G.

Proof. We may assume without loss of generality that G = Gder. We may suppose that

T = T0 of (3.1) is defined over R and contains a maximal R-split torus of G. In other

words, the split component of T is a maximal R-split torus in G. The split component

of the maximal torus θ(T ) is also a maximal R-split torus of G, as θ is defined over R.

Therefore there exists x1 ∈ G(R) such that Int(x1)θ preserves T [39, Theorem 15.2.6].

We may therefore assume without loss of generality that θ itself preserves T . Splitting

(3.1) affords a decomposition of Aut(G) as a split semidirect product of the group of

inner automorphisms and the group of graph automorphisms of the Dynkin diagram [38,

Corollary 2.14]. As the latter group is finite, there exist some positive integer `1 and
an element x2 ∈ G such that θ`1 = Int(x2). Since θ preserves T , so does Int(x2), and this

is the same as saying that x2 is a representative of an element in �(G, T ). The Weyl

group �(G, T ) is finite so for some positive integer `2 we have θ`1`2 = Int(x3) where

x3 = x`2
2 belongs to T . The automorphism θ`1`2 commutes with σ , and consequently

Int(σ (x3)x−1
3 ) is the identity automorphism. This implies that σ(x3)x−1

3 lies in the centre

of the semisimple group G. The centre is finite, so there exists a positive integer `3 such

that

σ(x`3
3 )x

−`3
3 = (σ (x3)x−1

3 )`3 = 1.

This equation implies that x4 = x`3
3 ∈ T (R). Similarly, Int(x4) = θ`1`2`3 commutes with θ ,

and this in turn implies that Int(θ(x4)x−1
4 ) is the identity automorphism and θ(x`4

4 ) = x`4
4
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for some positive integer `4. Set x5 = x`4
4 ∈ T θ (R). Finally, being the real points of an

algebraic group, the group T θ (R) has finitely many connected components as a real

manifold. Therefore, there is a positive integer `5 such that y = x`5
5 belongs to T θ (R)0.

Set ` = `1 · · · `5. Then θ` = Int(y), and there exists Y ∈ tθ such that exp(Y ) = y. Let

g0 = exp(− 1
`
Y ) ∈ T θ (R)0. Clearly,

(Int(g0)θ)
` = Int(g`0)θ

` = Int(y−1)θ`

is the identity automorphism.

Proposition A.2. Suppose that G is semisimple and that 2 is any tempered

G(R)-invariant eigendistribution on G(R)θ . Then 2 = 0 if and only if 2(xδθ) = 0 for

all θ-regular elements xδ ∈ Sδθ (R)δ.

Proof. Since G is semisimple, the centre ZG is finite. Fix an element g0 ∈ G(R) as in

Proposition A.1, and let θ ′ = Int(g0)θ be the resulting finite algebraic R-automorphism.

Let δ′ = δg−1
0 . It is easily verified that Gδθ = Sδθ = Sδ

′θ ′ = Gδ′θ ′ , and that x ∈ G is

θ -regular if and only if xg−1
0 is θ ′-regular. The distribution 2 may be regarded as a locally

integrable function on the θ -regular subset of G(R)θ [6, Theorem 2.1.1]. We define 2′ to

be the distribution on G(R)θ ′ ⊆ G(R)o 〈θ ′〉 through the function

2′(xθ ′) = 2(xg0θ)

defined on the θ ′-regular subset of G(R)θ ′. It is a simple exercise to show that 2′ is

also a tempered G(R)-invariant eigendistribution. Obviously, 2 = 0 if and only if 2′ = 0.

[29, Theorem 15.1] applies to 2′ (Proposition 3.6.1 [6]). Consequently, 2 = 0 if and

only if 2′(xδ′θ ′) = 0 for all θ ′-regular xδ′ ∈ Sδ
′θ ′(R)δ′. The proposition now follows from

2′(xδ′θ ′) = 2(xδg−1
0 g0θ) = 2(xδθ).

Corollary A.3. Suppose that 2 is any tempered G(R)-invariant eigendistribution on

G(R)θ . Then 2 = 0 if and only if 2(xδθ) = 0 for all θ-regular elements xδ ∈
ZG(R)Sδθ (R)δ.

Proof. Suppose first that G(R) ∼= ZG(R)×Gder(R), and let δ = (δZ , δder) accordingly. The

multiplication map

C∞c (ZG(R))⊗C∞c (Gder(R)θ)→ C∞c (G(R)θ)

has dense image [30, Theorem III IV.3]. On the left, we are abusively identifying θ with its

restriction to Gder. For a fixed function h ∈ C∞c (ZG(R)), define 2h to be the distribution

on Gder(R)θ given by

2h( f ) = 2(h f ), f ∈ C∞c (Gder(R)θ).

As a locally integrable function on the θ-regular set of Gder(R)θ , the distribution 2h has

an expansion

2h(xθ) =
∫

ZG (R)
h(z)2(zxθ) dz. (A 1)
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It is simple to show that 2h is a tempered Gder(R)-invariant eigendistribution so

Proposition A.2 applies. Keeping in mind the density of the map above, we find that

2 = 0 if and only if (A 1) vanishes for every h ∈ C∞c (ZG(R)) and when restricted to

Sδθder(R)δder. Allowing h to approach a Dirac delta function, we see that this is equivalent

to 2(zxδθ) = 0 for almost all z ∈ ZG(R) and θ -regular xδder ∈ Sδθder(R)δder. This proves

the corollary when G(R) ∼= ZG(R)×Gder(R).
If G(R) = ZG(R)Gder(R), then the surjective map from ZG(R)×Gder(R)→

ZG(R)Gder(R) has some finite kernel F . The automorphism θ induces an automorphism

of the direct product, and in this case the tempered invariant eigendistributions on G(R)θ
may be identified with the tempered invariant eigendistributions on (ZG(R)×Gder(R))θ
which are fixed under left multiplication by elements of F . Combining this identification

with the case already proved, we see that the corollary holds when G(R) = ZG(R)Gder(R).
In general, the quotient group G(R)/ZG(R)Gder(R) is finite with representatives

y1, . . . , yt . For any f ∈ C∞c (R), define

f1(xθ) =
t∑

j=1

f (y j xθy−1
j ), x ∈ ZG(R)Gder(R).

Then, by the G(R)-invariance of 2, we have∫
G(R)

f (xθ)2(xθ) dx =
∫

ZG (R)Gder(R)

t∑
j=1

f (y j xθ)2(y j xθ) dx

=
∫

ZG (R)Gder(R)

t∑
j=1

f (y j xθy−1
j )2(xθ) dx

= 21( f1),

where 21 is the restriction of 2 to ZG(R)Gder(R). It follows that 2 = 0 if and only if

21 = 0, and we are reduced to the previous case of the proof.

Corollary A.3 takes care of general θ . The principal tool in handling a non-trivial

quasicharacter ω is the central extension

1→ C → G ′ p→ G → 1

constructed recently by Waldspurger [45, Proposition 2.4]. The group C is a central torus

in the connected reductive algebraic group G ′. The group G ′ is defined over R, and the

algebraic homomorphism p is defined over R and remains surjective as a homomorphism

from G ′(R) to G(R). This extension was constructed so that θ extends to a finite-order

algebraic R-automorphism θ ′ of G ′ and there exists a unitary character µ′ of G ′(R) such

that

ω ◦ p = µ′ ◦ (1− θ ′). (A 2)

We introduce the extension G ′(R) into the discussion of 6.4 [28] by first lifting the

distribution 2 defined there on G(R)θ to a distribution 2′ on G ′(R)θ ′. We shall then be

able to apply Corollary A.3 to a variant of 2′ and thereby deduce the desired vanishing

results for 2.
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Proposition A.4. Suppose that 2 is a tempered eigendistribution on G(R)θ . Suppose

further that

2( f y) = ω(y)2( f ), f ∈ C∞c (G(R)θ),

where f y(xθ) = f (y−1xθy) for all x, y ∈ G(R). Then 2 is given by a locally integrable

function on the θ-regular subset. Moreover, 2 = 0 if and only if 2(xδθ) = 0 for all

θ-regular elements xδ ∈ Sδθ (R)δ.

Proof. We shall lift 2 to a distribution on G ′(R)θ ′ by using the map υ : C∞c (G ′(R)θ ′)→
C∞c (G(R)θ) defined by

υ( f ′)(p(g′)θ) =
∫

C(R)
f ′(zg′θ ′) dz, g′ ∈ G ′(R).

Our first claim is that υ is a continuous surjection. To see this, we regard the central

extension

1→ C(R)→ G ′(R)→ G(R)→ 1

as the set G(R)×C(R) together with a group multiplication given by a cocycle in

Z2(G(R),C(R)). In this perspective, we obtain the sequence

C∞c (G(R))⊗C∞c (C(R))→ C∞c (G ′(R)θ ′)
υ→ C∞c (G(R)θ).

The map on the left is the injection given by multiplication, and it has dense image [30,

Theorem III IV.3]. If one identifies C∞c (G(R))⊗C∞c (C(R)) with its image in C∞c (G ′(R)θ ′)
under the subspace topology, then it is simple to show that υ is a continuous surjection of

this subspace onto C∞c (G(R)). By density then, the map υ is continuous on C∞c (G ′(R)θ ′).
We define the distribution 2′ on the component G ′(R)θ ′ by 2′ = 2 ◦ υ. Since 2 is

tempered and υ is continuous, the distribution 2′ is tempered. Now, define (µ′)−1 ·2′ =
2′ ◦ L(µ′)−1 , where L(µ′)−1 : C∞c (G ′(R)θ ′)→ C∞c (G ′(R)θ ′) is left multiplication by (µ′)−1.

The map L(µ′)−1 is continuous, since µ′ is a smooth function [15, Proposition 1 4.6]. It

now follows that (µ′)−1 ·2′ is tempered. By (A 2), the distribution (µ′)−1 ·2′ satisfies

(µ′)−1 ·2′(( f ′)y′) = 2(υ(L(µ′)−1( f ′)y′))

= µ′ ◦ (1− θ ′)((y′)−1)2(υ(L(µ′)−1 f ′)p(y′))

= µ′ ◦ (1− θ ′)((y′)−1)ω(p(y′))2(υ(L(µ′)−1 f ′))

= (µ′)−1 ·2′( f ′)

for y′ ∈ G ′(R). This means that (µ′)−1 ·2′ is a G ′(R)-invariant tempered distribution.

The final requirement for us to apply Corollary A.3 to (µ′)−1 ·2′ is that it be an

eigendistribution of Z(g′⊗C). This is easily verified by considering the decomposition

g′ = g⊕ c and noting that 2 is an eigendistribution. Indeed, 2′ is an eigendistribution

whose infinitesimal character is that of 2 extended by zero on c⊗C.

For the first assertion of the proposition, we use [6, Theorem 2.1.1] to express

(µ′)−1 ·2′ as a locally integrable function. It then follows that the product of this locally

integrable function with µ′ is an expression of 2′ as a locally integrable function. For
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any f = υ( f ′) ∈ C∞c (G(R)θ) we also have f = υ(L z f ′), where L z f ′(x ′θ ′) = f ′(zx ′θ ′) and

z ∈ C(R). As a result,∫
G ′(R)

f ′(x ′θ ′)2′(x ′θ ′) dx ′ = 2′( f ′) = 2( f ) = 2′(L z f ′)

=
∫

G ′(R)
f ′(x ′θ ′)2′(z−1x ′θ ′) dx ′.

This shows that 2′ is a (left) C(R)-invariant function. We may therefore set 2(xθ) =
2′(xθ ′) for θ -regular x ∈ G(R) ∼= G ′(R)/C(R), and conclude that

2( f ) =
∫

G ′(R)
f ′(x ′θ ′)2′(x ′θ ′) dx ′

=
∫

G ′(R)/C(R)

∫
C(R)

f ′(zx ′θ ′) dz2′(x ′θ ′) dx ′

=
∫

G(R)
f (xθ)2(xθ) dx .

For the final assertion of the proposition, the surjectivity of υ implies that 2 = 0 if and

only if 2′ = 0. Clearly, 2′ = 0 if and only if (µ′)−1 ·2′ = 0. The assertion now follows by

applying Corollary A.3 to (µ′)−1 ·2′ = 0 and tracing back to 2.

This last vanishing result was the missing link to [28, Theorem 1] and its subsequent

arguments. The subsequent arguments and results therefore hold for non-trivial ω and θ

of any order.

Appendix B. Parabolic descent in twisted geometric transfer

The purpose of this appendix is to delineate results given in a preprint of Shelstad [31,

11] concerning parabolic descent in twisted geometric transfer. The results given here

are considerably simpler than the original ones, as we are working under the assumption

that the cocycles given by (3.10) and (6.1) are trivial.

The main point is to prove (6.7), namely that

( f (P̄))M̄H1
= ( fH1)

(P̄H1 ), f ∈ C∞c (G(R)θ)

under twisting by (Int(δ)θ, ω). To simplify the notation, we shall sketch the proof under

the assumptions that δ is the identity and P̄ is preserved by θ . After the proof, we shall

describe how transfer differs when twisting with respect to Int(δ)θ or with respect to θ .

Ultimately, we show that the spectral transfer identity (4.1) is unaffected by the shift

from Int(δ)θ to θ .

Suppose then that δ is trivial so that P̄ is preserved by θ , θM̄ = θ|M̄ , and ψM̄ = ψ|M̄ ,

etc. (see §6.1). The crux of identity (6.7) lies in the comparison of the transfer factor

1M̄ (γ
′, δ′), defined for M̄ , with the transfer factor 1G(γ

′, δ′) = 1(γ ′, δ′) defined for G.

Each of these factors is a product of four terms [20, 4]. The first terms of these transfer

factors depend only on the torus T ′ and the endoscopic datum s (Gx = T x in [20, 4.2]),

and are therefore equal. The second term of 1M̄ (γ
′, δ′) depends on χ-data, which may be
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chosen to be trivial on roots outside M̄ . In this way, the second terms of the two transfer

factors may be taken to be equal. The third terms of both transfer factors depend the

strongly θ -regular element δ′ ∈ M̄(R). To be more precise, there is an element g′ ∈ M̄(R)
such that g′m(δ′)θ∗(g′)−1 = g′ψ(δ′)δ∗θ∗(g′)−1 corresponds to γ ′ under an admissible

embedding (see (3.12)). The third term of 1M̄ (γ
′, δ′) depends on the Galois cocycle

defined by g′uσσ(g′)−1 [20, Lemma 4.4.A]. One may choose this cocycle to serve the

same purpose in the definition of the third term of 1G(γ
′, δ′) so that the third terms are

equal. In summary, we have

1M̄ (γ
′, δ′) = 1M̄,I V (γ

′, δ′)
1I V (γ ′, δ′)

1(γ ′, δ′), (B 1)

where the terms with I V in subscript are defined in 4.5 [20].

Lemma B.1. Under suitable normalization of geometric transfer factors and measures,

we may assume that equation (6.7) holds.

Proof. Suppose that f ∈ C∞c (G(R)θ). Then, by (3.14), there exists a function ( f (P̄))M̄H1
such that ∑

γ ′′1

Oγ ′′1 (( f (P̄))M̄H1
) =

∑
δ′
1M̄ (γ

′
1, δ
′)Oδ′θ ( f (P̄)). (B 2)

The sum on the right is taken over the θ -conjugacy classes under M̄(R) of elements

in M̄(R) whose norm is γ ′1. It follows from the remark following Lemma 4.9 that

this collection of θ -conjugacy classes over M̄(R) is in bijection with the collection of

θ -conjugacy classes under G(R) of elements in G(R) whose norm is γ ′1. This bijection is

necessary for us to convert the right-hand side of (B 2) into the analogous sum over G(R).
Still looking at the right-hand side, one may imitate the computations of [17, Lemma

10.17] to obtain

Oδ′θ ( f (P̄)) = |det(1−Ad(δ′θ))|g/m|1/2Oδ′θ ( f ).

Making this substitution and cancelling with the I V -terms in (B 1), we arrive at∑
γ ′′1

Oγ ′′1 (( f (P̄))M̄H1
) = |det(1−Ad(γ ))|h/mH|1/2

∑
γ ′′1

Oγ ′′1 ( fH1)

=
∑
γ ′′1

Oγ ′′1 (( fH1)
(P̄H1 )).

In the sums over γ ′′1 we have also used the bijection between stable conjugacy classes

over H1 and M̄H1 (Lemma 4.9 with trivial θ , cf. [34, §14]). The above identity between

orbital integrals justifies the assertion of the lemma.

From now on, we drop the assumption that δ is the identity, and distinguish between

twisting with respect to Int(δ)θ and twisting with respect to θ . We begin with the concept

of norm. There is a norm with respect to θ and a norm with respect to Int(δ)θ . We call

the former a θ-norm and the latter a δθ-norm.

It is simple to show that δ′δ−1 ∈ G(R) is a strongly Int(δ)θ-regular element if and

only if δ′ ∈ G(R) is strongly θ -regular. Suppose that δ′ is strongly θ -regular with θ -norm

https://doi.org/10.1017/S1474748014000437 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000437


Tempered spectral transfer in the twisted endoscopy of real groups 609

γ ′1 ∈ H1(R). We wish to prove that δ′δ−1 has δθ-norm γ ′1. To do this, we must retrace the

definitions of the maps in §3.3. These maps are defined in terms of the endoscopic data

and the automorphism θ∗. Replacing θ with Int(δ)θ does not have an effect on θ∗, since

the automorphism

Int(gθψ(δ)−1)ψInt(δ)θψ−1 = θ∗
preserves the splitting (B∗, T ∗, {X∗}). However, this replacement does have an effect on

gθ . The effect is to replace gθ with gθψ(δ)−1, and this affects the definition of (3.9). By

substituting gθψ(δ)−1 in place of gθ and δ′δ−1 in place of δ in (3.9), we find that

ψ(δ′δ−1)(gθψ(δ)−1)−1 = ψ(δ′)g−1
θ ,

and the expression on the right is equal to the image of δ′ under the original map (3.9).

Conjugating this equation by gT ′ (see (3.12)), it is evident that δ′δ−1 corresponds to an

element δ′∗ under twisting by Int(δ)θ in the same way that δ′ corresponds to δ′∗ under

twisting by θ .

We should observe that the change from gθ to gθψ(δ)−1 does not affect Assumption

(3.10). Indeed, substituting gθψ(δ)−1 in place of gθ into (3.10) yields

gθψ(δ)−1uσσ((gθψ(δ)−1)−1)θ∗(uσ )−1

= gθψ(δ)−1 (Int(uσ )σψ(δ)) uσσ(g−1
θ )θ∗(uσ )−1

= gθψ(δ)−1ψ(σ(δ)) uσσ(g−1
θ )θ∗(uσ )−1

= gθuσσ(g−1
θ )θ∗(uσ )−1 ∈ (1− θ∗)ZG∗sc .

This ensures the 0-equivariance of m relative to twisting by Int(δ)θ . The rest being the

same, we conclude that δ′δ−1 has δθ-norm γ ′1.

We now examine the effect of replacing θ by Int(δ)θ on twisted characters. Clearly, if

π ∈ 5ϕ satisfies (4.9), then it also satisfies

π(δ)U ◦ω−1(x)π(x) = π δθ (x) ◦π(δ)U, x ∈ G(R). (B 3)

This presents us with the intertwining operator Uδπ = π(δ)U and the corresponding

twisted character 2π,Uδπ defined by

f 7→ tr
∫

G(R)
f (xθ)π(x)π(δ)U dx, f ∈ C∞c (G(R)θ). (B 4)

Define Rx on C∞c (G(R)θ) by

Rx f (yθ) = f (yxθ), x, y ∈ G(R).

Then

2π,Uδπ ( f ) =
∫

G(R)
f (x)π(xδ)U dx = 2π,Uπ (Rδ−1 f ), f ∈ C∞c (G(R)), (B 5)

by the invariance of the Haar measure (cf. [12, (5.1)]).

There is a dual identity to (B 5) for twisted orbital integrals. We denote the orbital

integral of f ∈ C∞c (G(R)θ) at δ′δ−1 as Oδ
δ′θ ( f ) when twisted by Int(δ)θ . Evidently,

Oδ
δ′θ ( f ) =

∫
Gδ′θ (R)\G(R)

ω(g) f (g−1δ′δ−1δθ(g)δ−1) dg = Oδ′θ (Rδ−1 f ), (B 6)
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where the orbital integral on the right is twisted by θ . Let us denote geometric transfer

factors with respect to twisting by Int(δ)θ with 1δ. It follows for purely formal reasons

that we may take 1δ(γ ′1, δ
′δ−1) = 1(γ ′1, δ′). In this way,∑

γ ′′1

Oγ ′′1 ( fH1) =
∑
δ′
1(γ ′1, δ

′)Oδ′θ ( f )

=
∑
δ′
1δ(γ ′1, δ

′δ−1)Oδ
δ′θ (Rδ f ),

and we may define geometric transfer of Rδ f with respect to Int(δ)θ by

(Rδ f )δH1
= fH1 , (B 7)

where on the right we mean transfer with respect to θ .

The assumption of δ = 1 above was made only to simplify the notation. In the notation

we have just established, the transfer factors in the proof of Lemma B.1 are given a δ in

the superscript, and the assertion of the lemma is

( f (P̄))δM̄H1
= (( f )δH1

)(P̄H1 ).

Similarly, the assertion of Theorem 6.6 reads as∫
H1(R)/Z1(R)

( f )δH1
(h)

∑
πH1∈5ϕϕϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1δ(ϕϕϕH1 , π)2π,Tδπ ( f ) (B 8)

when twisting by Int(δ)θ . Here, the spectral transfer factor 1δ(ϕϕϕH1 , π) is defined with

respect to twisting by Int(δ)θ . As with the geometric transfer factors, we may set

1(ϕϕϕH1 , π) = 1δ(ϕϕϕH1 , π), π ∈ 5ϕ .
In light of this equation and equations (B 7) and (B 5), identity (B 8) becomes∫

H1(R)/Z1(R)
(Rδ−1 f )H1(h)

∑
πH1∈5ϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1(ϕϕϕH1 , π)2π,Tπ (Rδ−1 f )

for all f ∈ C∞c (G(R)θ); or, equivalently,∫
H1(R)/Z1(R)

fH1(h)
∑

πH1∈5ϕH1

2πH1
(h) dh =

∑
π∈5ϕ

1(ϕϕϕH1 , π)2π,Tπ ( f ).

This proves that Theorem 6.6 remains the same when twisting by θ or by Int(δ)θ .
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7. A. Bouaziz, Relèvement des caractères d’un groupe endoscopique pour le changement

de base C/R, in Orbites Unipotentes et Représentations, number 171–172 in Astérisque,
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