Econometric Theory, 21, 2005, 60—68. Printed in the United States of America.
DOI: 10.1017/S0266466605050048

CHALLENGES FOR ECONOMETRIC
MODEL SELECTION

BRucE E. HANSEN
University of Wisconsin

Standard econometric model selection methods are based on four conceptual errors:
parametric vision, the assumption of a true data generating process, evaluation
based on fit, and ignoring the impact of model uncertainty on inference. Instead,
econometric model selection methods should be based on a semiparametric vision,
models should be viewed as approximations, models should be evaluated based
on their purpose, and model uncertainty should be incorporated into inference
methods. These problems have been examined individually but not jointly, and
my view is that future research into econometric model selection should attempt
to address all four issues.

1. INTRODUCTION

The theory of econometric model selection is underdeveloped, despite the fact
that applied econometrics needs sound model building and selection methods.
The state of affairs is illustrated by “A Dialogue Concerning a New Instrument
for Econometric Modeling” between Clive Granger and David Hendry (this
issue). The dialogue displays and reinforces the following conceptual errors:

(1) parametric vision

(2) assuming a true data generating process
(3) evaluation based on fit

(4) ignoring model uncertainty.

In this note I will discuss these four errors in the context of time-series model
selection and suggest alternatives and directions for needed research.

2. SEMIPARAMETRIC MODELING

An econometrician is faced with the time-series observations {y,, x,}. Let I,
denote the set {y,, x;, y1—1, X;—1,...}. The goal is to build a model for (some
feature of) the conditional distribution of y, given I,_;. We will use the term
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data generating process (DGP) to denote the true conditional distribution (which
may be time-varying) and the label model to denote a class of hypothetical
DGPs under consideration by the econometrician.

Equation (2) of Granger and Hendry describes PcGets as assuming that the
true DGP and the approximating models take the form

yi=B'z, + &, 1)
8t|1t71 NN(O’UZ)’ (2)

where z, is a finite subset of the variables in /,_,. This is a parametric structure,
for both the DGP and the approximating models.

In contrast, there are several reasonable semiparametric specifications for the
distribution of g,. The weakest is simply a projection error

E(z,&) =0, 3)

which, being just-identified, should not be viewed as a model or an assump-
tion, because we can always define B so that (3) holds true. Although this model
may be excessively weak, it is worth pointing out that this is one model for
which the standard ordinary least squares (OLS) estimator is semiparametri-
cally efficient.

Somewhat stronger than projection is uncorrelatedness, which adds

E(x,_;e) =0, 4)
E(yt—jgt) = 0

for all j = 1. This model makes the constructive claim that a finite vector z, is
sufficient to capture the serial correlation in y, (no further lags of y, or x, have
nonzero coefficients when included in (1)). It is an overidentified model, and
so generically the OLS estimator is asymptotically inefficient relative to the
generalized method of moments (GMM) or empirical likeihood (EL). How-
ever, the existence of a countably infinite set of moment restrictions makes effi-
cient estimation problematic. Kuersteiner (2002) has made advances toward
solving this vexing problem.

A stronger restriction is the assumption of a martingale difference sequence
(MDS), which specifies that

E(g,|l,_,) = 0. (%)

Under this condition (1) can properly be called a regression model, because the
index 'z, is the conditional mean of y, given I,_;.

The models (3)—(5) are all semiparametric. As the distribution of &, can rarely
be determined by economic theory, these are inherently the natural models for
economists. The models are semiparametric (rather than nonparametric) because
the focus is on the finite-dimensional parameter 8. The distinction between the
parametric model (2) and the semiparametric models (3)—(5) is critically rele-
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vant to model selection. The PcGets selection method exploits the Gaussian
assumption in its choice of testable hypotheses, test statistics, and sampling
distributions, and all of these choices change in a semiparametric framework.

The parametric modeling approach influences traditional model selection
methods also. The Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), for example, equal twice the negative log-likelihood of
the model plus a parameterization penalty. Although the AIC has useful prop-
erties in quasi-likelihood settings it is still focused on a parametric likelihood.
A natural alternative is to develop a model selection criterion based on the GMM
criterion, the EL criterion, or a similar semiparametric criterion. Steps in this
direction have been taken by Andrews and Lu (2001) and Hong, Preston, and
Shum (2003). This line of research should be pursued.

3. MODELS AS APPROXIMATIONS

In model selection, we posit a finite class of potential models. In most treat-
ments, the true DGP is assumed to be an element of this set of models. Given
this assumption, it is natural to ask the model selection procedure to be
consistent—to select the true DGP with probability approaching one as the sam-
ple size increases. In casual conversation, however, econometricians will typi-
cally assert that their models are approximations to the DGP. For example,
suppose our set of approximating models is the univariate linear autoregres-
sions AR (k) for k = 0,1,...,m, with the error a MDS. Suppose in contrast the
true DGP is an AR(o0), for example, a MA(1) process. Or suppose the true
conditional mean is a nonlinear autoregression. In either case, the correct view
is that the finite-order AR (k) model class is an approximating model to the true
DGP. In particular, the modeling assumption that the error is a MDS is false.
(The error in the AR (c0) might be a MDS, but the error in the approximating
model is not.) Once we accept that the model is an approximation, the concept
of consistent model selection ceases to be important. Rather, the goal should be
for the selected model to do a good job of approximating the true DGP.

Furthermore, the true DGP is unlikely to be time-invariant and is more likely
to be evolving. Quite simply, change happens. It follows that any time-invariant
model must be viewed as an approximation to the evolving DGP. Flexibility
can be added to models by allowing for coefficient drift, but even these models
are fundamentally time-invariant. (For example, if the AR coefficient follows
the random walk B, = B,_; + u, with u, ~ (0,2), the time-invariant parameters
are By and 3.)

These points have been recognized in the model selection literature. Model
selection based on the BIC is consistent when the true DGP is an element of
the assumed model class but tends to underselect when the true DGP is not in
this class. In contrast, model selection based on the AIC is inconsistent when
the true DGP is an element of the assumed model class but has some optimality
properties when viewed as an approximation. See Berk (1974), Lewis and Rein-
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sel (1985), and Hannan and Deistler (1988). Phillips (1995) has discussed model
determination in the context of evolving DGPs.

An analogy for model selection when viewed as approximations can be taken
from nonparametric kernel density estimation. The important choice facing the
econometrician is the magnitude of the bandwidth. For a fixed bandwidth, we
can think of the kernel estimator as estimating a misspecified model, as the
expectation of the estimator is a smoothed version of the true density and thus
is the approximating model. One way to reduce this bias is to shrink the band-
width to zero. However, estimation variance increases as the bandwidth
decreases, so an optimal choice of bandwidth is intermediate.

In any finite sample, any nonparametric estimator can be viewed as an esti-
mator of a particular approximating parametric model. What distinguishes the
nonparametric approach from the parametric approach is the attitude, interpre-
tation, and distribution theory. The nonparametric approach acknowledges the
bias induced by the approximation, whereas the parametric approach ignores
the bias. Ideally, we should view models as approximations to the true DGP
and adopt the goal of selecting a model that provides the best approximation to
the true DGP. Once we adopt this goal, we are forced to ask: What is meant by
the “best approximation”? This leads us to our next topic.

4. FOCUSED EVALUATION

If the goal of model selection is to discover the true DGP, we are led to evalu-
ate models based on their fit. In a parametric setting, the natural measure of fit
is the log-likelihood, leading to the popular penalized-likelihood criterion, the
AIC and BIC. The program PcGets takes a broader view of fit, examining mod-
els from multiple angles and specification checks, but still the goal is to find a
model that fits the sample distribution well.

However, once we switch to a view that models are approximations, we might
wish to focus attention on the dimensions and features of a model that are impor-
tant to us for our potential application, not on unessential features. Global fit
may be important in some applications but not generically. Often, a model is
designed and estimated for a purpose. It follows that when we are explicit about
the intended purpose, we should design model selection optimally for this
purpose.

In many settings, the goal is to measure some feature of the distribution and
thus can typically be written as a low-dimensional function of the model param-
eters. For example, consider the class of linear autoregressive models

V=pt Byt By T e,
E(e|I,-,) = 0.

Let 6 = g(B) be a real-valued parameter of interest. For example, # may be an
individual B;, the long-run variance, or an impulse response at a particular hori-
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zon. Adopting a loss function such as mean-squared error (MSE) we can express
the goal of model selection as the desire to find an estimator 6 for 6 to mini-
mize the expected loss, for example, E (é — #)2. This is a focused criterion, as
it is explicit about the purpose of the model.

Indeed, finite-sample optimal model selection can be quite sensitive to the
choice of parameter of interest. We illustrate this with a simple example where
the approximating models are AR (k) for k € {0,1,..., kn.}, yet the true DGP
is a Gaussian ARMA(1,1):

yw=ayte —vye

g, ~ N(0,1).

Because the DGP is equivalent to an AR(o0), all finite-order AR (k) models are
approximations. For the parameter of interest, we consider impulse responses,
as these are well defined across the approximating models and the DGP. In the
true DGP, the mth impulse response is

6,, = (a—7y)a""

In the approximating AR (k) models, the impulse response can be calculated
recursively from the coefficients 8 = (By,..., Bi)-

We explore the issue of optimal model order k using simulation. A hundred
thousand samples were drawn from the ARMA DGP for samples of length n =
200 using the ARMA parameters

(e,7) €1{-0.9,-0.7,—-0.5,—0.3,—0.1,0.1,0.3,0.5,0.7,0.9}

(100 parameterizations). Note that when a = 7y the model reduces to y, = g, so
these 10 models are identical. Table 1 displays the MSE-minimizing AR order
k for the second and sixth impulse response coefficients. There are some major
differences in optimal AR order between the two parameters. To take an extreme
case, when a = 0.5 and 8 = 0.9 the optimal AR orders for the second and sixth
impulse responses are 10 and 0, respectively!

How can an optimal model be selected? An interesting recent recommenda-
tion is the focused information criterion (FIC) of Claeskens and Hjort (2003).
Their FIC is an asymptotic estimate of the MSE of the estimator 6 of the param-
eter of interest. Claeskens and Hjort have a general expression for the FIC for
a broad class of problems. Consider the special case of the linear model

i=ptpx te, (6)

where x; is k X 1 and demeaned and the intercept w is the only parameter that
is included in all models. A submodel m of (6) takes the form

yt = /‘L +Br/nxmt + 8{’
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TABLE 1. Impulse responses 2 and 6: MSE-minimizing AR order

B

-09 -07 -05 -03 -01 01 03 05 0.7 0.9

-09 0/0 4/5 4/5 3/5 2/3 2/t 2/t 2/t 2/3 9/4
-0.7 7/2 0/0 4/3 2/2 2/1 /2 1/3 4/3 2/3  2/1
-0.5 8/0 3/0 0/0 1/1 1/1 /0 1/0 1/0 1/0 2/0
-03 7/0 3/0 0/0 0 /0 1/0 2/0 3/0 4/0 1/0

a —01 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4/0
0.1 4/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

03 1/0 4/0 3/0 2/0 /0 1/0 0/0 0/0 3/0 8/0

05 2/0 1/0 1/0 1/0 /0 1/0 1/2 0/0 3/0 10/0

0.7 2/1 2/3 2/3 1/3 /1 2/t 2/2 4/3 0/0 8/2

09 11/4 2/3 2/1 2/1 2/t 2/2 2/4 3/5 4/5 0/0

where x,,, = S/, x, and B,, = S.,8 with S,, a k X g selector matrix. Let 8 =
(X'X)""(X'Y) be the estimator of the full unconstrained model, ,ém =
(X! X,)" (X!, Y) be the estimator of model m (using standard matrix notation),
and 62 be the residual variance from the full model.

Recalling that the parameter of interest is = g(B), define the k X 1 vector
D = (3/3B)g(B). Let D = (3/B)g(B*) be an estimator of D using an estimate
B* of B. Claeskens and Hjort (2003) are not specific concerning the choice of
B*. Based on some preliminary simulation results, I suggest using 8;, = S, B
the constrained estimator, which varies across models m. After some manipu-
lations it can be shown that the Claeskens—Hjort FIC for model m is simply

FIC, = (D'(B — S,,Bw)* +262D'S,,(X,,X,,) "' S,,D.

The FIC choice for m is the value that minimizes FIC,, across the models m.
The criterion is computationally simple. The only complication over the tradi-
tional AIC or BIC is that it involves the partial derivative D.

Returning to the simulation example introduced previously, 50,000 samples
were drawn from each parameterization, the model order selected by the AIC,
BIC, and FIC, the selected models estimated. The root MSE for the second and
sixth impulse response coefficient was calculated. Typically the AIC had lower
MSE than the BIC, so I focus on the comparison between the FIC and AIC.
The ratio between their root MSEs is reported in Tables 2 and 3. Values of
unity imply equal precision, whereas values over one indicate that the AIC pro-
duces a lower MSE, and conversely for values under one.

We see that neither the FIC nor the AIC uniformly dominates the other. For
the second impulse response, the FIC-selected model has lower MSE for « close
to B, and the AIC-selected model has lower MSE in most other cases. On one
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TABLE 2. Impulse response 2: Root MSE of FIC relative to AIC

B

-09 —-07 -05 —-03 —0.1 0.1 03 05 07 09

-09 018 114 098 096 1.05 1.04 1.00 1.00 1.01 1.05
-07 183 018 105 115 115 120 115 1.17 117 1.14
-0.5 317 148 0.18 081 1.03 140 155 196 227 221
-03 331 253 113 018 052 0.77 1.01 1.31 154 1.63
a —01 228 227 162 081 018 053 092 1.19 125 1.20
0.1 1.14 120 1.15 088 049 0.18 0.84 1.64 229 228

03 161 149 126 09 074 053 0.18 1.16 255 33
05 230 235 202 161 140 1.04 084 0.18 151 3.15
07 123 125 128 125 130 125 123 1.84 0.18 1.83
09 107 103 102 1.02 1.02 107 1.01 1.09 124 0.18

extreme, for (o, B) = (0.3,—0.9), the root MSE of the FIC-selected model is
3.3 times that of the AIC-selected model. On the other extreme, for & = 3, the
root MSE of the FIC-selected model is less than one-fifth of that of the AIC-
selected model. For the sixth impulse response, the FIC yields lower MSE for
most parameterizations. Most notably, for the white noise case @ = (3, the root
MSE of the FIC estimator is less than 5 of that of the AIC estimator, a dra-
matic increase in efficiency. The message from Tables 2 and 3 is that the FIC is
an intriguing challenger to existing model selection methods and deserves atten-
tion and scrutiny.

TABLE 3. Impulse response 6: Root MSE of FIC relative to AIC

B

-09 -07 -05 -03 —-01 0.1 03 05 07 09

-09 000 161 174 099 095 1.02 1.00 1.03 099 0.98
—-0.7 048 000 075 097 088 0.88 097 0.99 1.00 0.98
-05 016 0.14 0.00 0.18 023 049 0.69 087 093 0.95
-03 0.04 0.03 002 0.00 0.02 0.12 023 041 059 0.75

a —01 014 008 0.04 0.01 000 0.01 0.07 0.14 029 043
0.1 043 028 0.14 006 0.01 000 0.01 0.04 0.08 O0.15

03 074 056 039 021 0.10 0.10 0.00 0.02 0.03 0.05

05 093 091 084 064 046 024 0.18 0.00 0.13 0.16

07 098 099 098 096 086 087 1.00 0.77 0.00 0.47

09 100 100 102 1.00 103 095 1.03 180 1.54 0.00
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Unfortunately, the Claeskens—Hjort FIC has several limitations. One is that
their derivation is for parametric (likelihood) problems. The FIC estimates the
variance of 8,, by 62(X/,X,,)"!, which is generally invalid. As discussed in
Section 2, it would be useful to generalize their formula to semiparametric esti-
mators. Second, their analysis is limited in scope because they use a technical
assumption that the true model is contained in the set of models under consid-
eration. Although they argue that the latter assumption is not critical to the use
of the FIC in practice, for econometric applications it would be constructive to
more fully investigate the effects of model approximation, as discussed in
Section 3.

5. MODEL UNCERTAINTY

The act of model selection can have unwanted distributional implications. For
example, Potscher (1991) shows that the distributions of estimators and test
statistics are dramatically affected by the act of model selection. Ideally, these
distortions from standard theory should not be ignored in inference. Unfortu-
nately, incorporating the effect of model selection on inference methods is very
challenging, and effective methods have yet to be developed. To illustrate the
difficulty of the problem, Leeb and Pétscher (2003a, 2003b) show that no
estimator of either the unconditional or conditional distribution of the post-
model-selection estimator can be uniformly consistent. Methods to success-
fully surmount this obstacle are an important topic for future research.

From another angle, it is possible to argue that model selection itself is a
misguided goal. It is quite common to find that confidence intervals from dif-
ferent plausible models are nonintersecting, raising considerable inferential uncer-
tainty. Fundamentally, the uncertainty concerning the choice of model is not
reflected in conventional asymptotic and bootstrap confidence intervals.

Although the problem is obvious, the solution is not. One proposal is the
method of Bayesian model averaging, which has grown in interest over the past
decade. Basically, the relevant models are estimated, and then the posteriors
are averaged. See Hoeting, Madigan, Raftery, and Volinsky (1999) for a review.
Unfortunately, as with all Bayesian methods, there are many arbitrary deci-
sions regarding priors and unfortunate paradoxes involving parameter transfor-
mation, rendering practical use of their methods difficult. In a recent contribution,
Hjort and Claeskens (2003) propose a frequentist form of model averaging.
This is a welcome addition and should be pursued as a viable supplement to
model selection methods.

6. CONCLUSION

My recommendations: Econometric DGPs should be semiparametric, not para-
metric; models should be viewed as approximations, and econometric theory
should take this seriously; model selection criteria should ideally be based on
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the purpose of the model, not on a global measure of fit; finally, the impact of
model selection on inference should not be ignored. Unfortunately, although
each of these goals has been studied and solutions proposed, we currently do
not have concrete model selection and inference methods that simultaneously
achieve all four goals. Considerable theoretical work will be required to merge
and extend the existing theory and methods. My personal view is that this dif-
ficult task is well worth the effort, as achieving the goal could be of great value
to applied econometric practice.
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