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Determining the relative stability of leading-edge
vortices on nominally two-dimensional

flapping profiles
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It is hypothesized that the relative stability of leading-edge vortices (LEVs) on
flapping profiles can be improved by moderating LEV growth through spanwise
vorticity convection and vortex stretching. Moreover, it is hypothesized that the
reduced frequency k and profile sweep Λ are critical in predicting relative LEV
stability as determined by the aforementioned effects. These hypotheses are then
confirmed experimentally with phase-averaged particle image velocimetry (PIV) and
three-dimensional particle tracking velocimetry. In particular, more stable LEVs are
observed at higher reduced frequencies, which is argued to represent the ratio between
the limiting vortex size and the rate of vorticity feeding. The introduction of profile
sweep increased both relative LEV stability and spanwise vorticity transport. It is
thought that spanwise vorticity transport improved LEV stability by acting as a sink
for vorticity generated in the leading-edge shear layer.
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1. Introduction

In natural swimming and flying, rapid manoeuvring is generally achieved via
undulating or flapping fins, flukes or wings, often with a swept leading edge. In
particular, the flapping wings of insects are known to exploit leading-edge vortices
(LEVs) for lift enhancement, as discussed by Ellington et al. (1996). These LEVs are
the dominant contributor to circulation on stalled profiles at low Reynolds numbers,
as demonstrated by Pitt Ford & Babinsky (2013), and have been observed on rotating
and translating profiles over a broad range of Reynolds numbers (2006 Re6 60 000),
such as by Lentink & Dickinson (2009) and Garmann, Visbal & Orkwis (2013),
Strouhal numbers (0.1 6 St 6 0.6) and reduced frequencies (0.2 6 k 6 1), by Rival &
Tropea (2010) and Baik et al. (2012), and aspect ratios (2.9 6 AR 6 7.3), by Harbig,
Sheridan & Thompson (2013). The above parameters vary the lift and drag production
of an LEV, as observed by Garmann et al. (2013) with respect to Reynolds number,
or alter the propulsive efficiency, as observed by Taylor, Nudds & Thomas (2003)
with respect to Strouhal number. However, the parameter of rotation is unique in that
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FIGURE 1. A flat-plate profile undergoing a flapping motion has a spanwise variation
in effective velocity and spanwise flow, resulting in vortex stretching (ωz(∂w/∂z)) and
vorticity convection (w(∂ωz/∂z)). The balance between the spanwise transport of vorticity
and vorticity flux through the leading-edge shear layer is hypothesized here as the
mechanism of LEV stability.

rotating cases often exhibit vortex stability, where both the convection speed of the
LEV relative to the profile and the growth rate of the LEV are near zero, as observed
by Ozen & Rockwell (2012), Cheng et al. (2013) and Wojcik & Buchholz (2014), to
name a few.

A number of mechanisms for vortex stability have been proposed. Lentink &
Dickinson (2009) suggested that large rotational accelerations associated with
low-aspect-ratio profiles stabilized LEVs. However, Harbig et al. (2013) identified
stable LEVs on profiles in the range of aspect ratios 2.9 6 AR 6 7.3. Over a similar
aspect ratio range of 2 6 AR 6 4, Jones, Ford & Babinsky (2012) did not observe
LEV stability. It has been suggested by Ellington et al. (1996) that spanwise flow
transported vorticity to the tip vortex, and therefore was responsible for LEV stability.
However, by translating profiles at sweep angles as high as Λ= 45◦. Beem, Rival &
Triantafyllou (2012) showed that the spanwise flow in isolation was not responsible
for vortex stability, which corroborated previous findings by Birch & Dickinson
(2001) that spanwise flow was not responsible for LEV stability on rotating wings.
However, nominally two-dimensional spanwise flow, such as that investigated by Beem
et al. (2012), cannot result in three-dimensional effects such as the convection of
spanwise-oriented vorticity, which depends also on a gradient of vorticity magnitude.
Neglecting viscous diffusion, the transport of spanwise-oriented vorticity (ωz) is
governed by the spanwise component of the vorticity-transport equation:

∂ωz

∂t
+ u

∂ωz

∂x
+ v ∂ωz

∂y
+w

∂ωz

∂z
=ωx

∂w
∂x
+ωy

∂w
∂y
+ωz

∂w
∂z
, (1.1)

where the terms from left to right represent the rate of change of vorticity due
to unsteadiness, convection of vorticity in the streamwise (x), wall-normal (y) and
spanwise (z) directions, vortex tilting in the streamwise and wall-normal directions,
and vortex stretching, respectively. A hypothetical balance of vorticity is shown in
figure 1, where spanwise-oriented vorticity entering the LEV from the leading-edge
shear layer is balanced by a spanwise convection of vorticity.

It has been shown by Rival et al. (2014) that LEV attachment is only topologically
compatible with vortices smaller than one chord length c in scale. The vorticity
generated in the leading-edge shear layer of a rotating profile must therefore be
balanced by either the transport or annihilation of vorticity in order to limit vortex
growth as a necessary condition for LEV stability. A recent study by Wojcik &
Buchholz (2014) conducted a vorticity balance within the LEV on a rotating profile,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.39


Stability of leading-edge vortices on two-dimensional flapping profiles 613

utilizing direct measurements of the circulation transport through the leading-edge
shear layer and via spanwise vorticity convection. It was concluded that spanwise
vorticity convection was insufficient to balance vorticity production, and that the
large residual in the vorticity balance must be accounted for by vorticity annihilation.
Similarly, Cheng et al. (2013) found that spanwise vorticity convection was negligible
relative to convection in the streamwise and wall-normal directions. However, in
natural swimming and flight, the full benefit of a stable LEV is realized when the
LEV is maintained for at least one half-stroke of motion, rather than an indefinite
period. Thus, it is sensible to measure the relative stability of an LEV in terms
of its convection speed relative to the profile, as opposed to a binary stable or
unstable condition. This relative LEV stability is an important characteristic of natural
swimming and flight that has not been investigated in terms of vorticity transport.
By comparing profiles of varying rotation rate and sweep angle, the current study
investigates the role of both vortex stretching and vorticity convection on relative
LEV stability.

2. The moderation of LEV growth with vorticity transport

Based on the limiting length-scale criterion of Rival et al. (2014), low vortex growth
rates represent more stable LEVs. This can be accomplished by reducing the LEV
feeding velocity, moderating LEV growth through vorticity convection, or contracting
LEV size through vortex stretching. Figure 1 shows the hypothetical vorticity balance
for a flapping profile. The rotational velocity Ω results in a spanwise variation in
vorticity magnitude ∂ωz/∂z, which couples with spanwise flow w from rotational
accelerations to convect vorticity down the span of the profile. This convection of
vorticity balances the flux of vorticity into the vortex from the leading-edge shear
layer. Vortex stretching acts to modify the size of the vortex, but does not alter the
balance of circulation on any two-dimensional slice. It is hypothesized that spanwise
vorticity convection moderates LEV strength, while simultaneously vortex stretching
can act to limit LEV growth.

2.1. The effect of reduced frequency on LEV saturation
In order to compare the growth rate of an LEV to the limiting length scale of one
chord c, it is necessary to produce an estimate for the circulation entering that LEV.
A model for the vorticity flux into a leading-edge vortex was proposed and validated
by Wong, Kriegseis & Rival (2013), shown in figure 2 for a profile experiencing an
effective velocity ueff and effective incidence αeff . In the vorticity-flux model, the mass
per unit span m′ entering the vortex was described as:

m′ = ρ
∫ t0

0

∫ d

0
u(ξ , t)dξdt, (2.1)

where ξ is the shear-layer coordinate as shown in figure 2, ρ is the fluid density, d
is the shear-layer thickness and u is the shear-layer velocity. Assuming that the shear-
layer velocity scales with the effective velocity ueff , this results in a mass flow into
the vortex proportional to:

∂m′

∂t
∝ ρdueff . (2.2)
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0
d lu

Integration path

FIGURE 2. (Colour online) The integration of vorticity within a shear-layer segment of
length l and thickness d. For a fluid of density ρ, this results in a rate of circulation
growth (∂Γ/∂t)= (∂Γ/∂m′)(∂m′/∂t) of approximately the square of effective velocity u2

eff .

Mass entering the vortex has an associated circulation Γ , which can be determined
via a path integral around the shear layer. The rate of circulation growth within the
LEV is therefore approximately:

∂Γ

∂t
= ∂Γ
∂m′

∂m′

∂t
∝
(

ueff l
ρdl

) (
ρdueff

)= u2
eff . (2.3)

Didden (1979) derived a similar expression for the rate of circulation growth for a
vortex ring generated by a piston–cylinder apparatus:

∂Γ

∂t
= 1

2
U2, (2.4)

which scaled well with experimental data, where U was the piston velocity.
As vorticity-containing mass enters the LEV the vortex grows in size, and therefore

it reaches its limiting length scale c with an area of the order of c2. For a period of
motion T , comparing the resulting maximum allowable LEV growth of c2/T to the
circulation developed in one period of motion u2

eff T gives an analogous relationship
with reduced frequency k=πfc/U∞:

c2/T
u2

eff T
=
(

fc
ueff

)2

≈ 1
π2

(
πfc
U∞

)2

= 1
π2

k2, (2.5)

where f = 1/T is the frequency of motion and U∞ is the free-stream velocity.
Here, larger reduced frequencies represent a larger allowable vortex area for a given
expected circulation, or in other words a more stable LEV. This is in agreement with
the findings of Baik et al. (2012) that larger reduced frequencies result in more stable
LEVs in two-dimensional plunging and pitching cases. It is therefore reasonable to
expect that the same parameter is significant for LEV stability in flapping cases
as well.

2.2. The effect of vorticity convection on LEV circulation
In addition to having a larger limiting length scale for a given circulation, as estimated
by the reduced frequency k above, it is hypothesized that relative LEV stability can
be improved by moderating circulation growth with vorticity convection. As done by
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Wojcik & Buchholz (2014), the rate of circulation change due to vorticity convection
can be determined from the integral of the unsteady and spanwise convection terms
of the vorticity-transport equation across the vortex-core area:∫

∂ωz

∂t
dA=

∫
−w

∂ωz

∂z
dA. (2.6)

Using mean values across the vortex-core area, (2.6) reduces to:

∂Γ

∂t
=−w

∂ωz

∂z
A, (2.7)

where A is the cross-sectional area of the vortex core. The presence of the spanwise
flow w indicates that circulation transport, and in turn relative LEV stability, can be
improved by the presence of a sweep angle Λ, as suggested by Wong et al. (2013).

2.3. The effect of vortex stretching on LEV cross-sectional area

Vortex stretching acts to increase the centre-line vorticity of a vortex at a constant
circulation, such that the vortex must contract in size to conserve momentum. In this
way, vortex stretching can improve LEV stability by directly modifying the vortex size,
avoiding the critical length scale c. Assuming mean values, vorticity and circulation
are related through the vortex-core area:

ωz = ΓA , (2.8)

which can be differentiated with respect to time, while holding circulation constant:

∂ωz

∂t
= Γ ∂

∂t
1
A
=− Γ

A2

∂A
∂t
. (2.9)

This rate of change of vorticity can be substituted with the vortex stretching term of
the vorticity-transport equation:

ωz
∂w
∂z
=− Γ

A2

∂A
∂t
, (2.10)

which can be rearranged for the rate of vortex growth as:

∂A
∂t
=−ωz

∂w
∂z

A2

Γ
. (2.11)

Thus, three factors are expected to improve relative LEV stability: vortex stretching;
vorticity convection modified through profile sweep Λ; and increased reduced
frequency k. The experimental procedures for investigating these effects are detailed
in the following section.
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FIGURE 3. (Colour online) The prescribed velocity of the flat-plate profiles follows three
sections: a sinusoidal ramp-up from zero velocity to maximum velocity over a period tr;
a constant-velocity section over a period tc; and a sinusoidal ramp-down over a period tr.
The duration of the constant-velocity section is varied in order to vary Strouhal number.

3. Methods
All experiments were conducted in a horizontal free-surface water tunnel at

the University of Calgary, while model kinematics were produced with a custom
six-degree-of-freedom hexapod manipulator. A detailed description of these facilities
can be found in Wong et al. (2013). The water-tunnel test section has a diverging
rectangular cross-section with a mean width of 385 mm. Water depth was maintained
at 432 mm. The hexapod manipulator was mounted above the water-tunnel test
section. The current study investigates root-flapping kinematics on aluminium flat-plate
profiles. These flat-plate profiles were oriented vertically with zero geometric angle
of attack relative to the free stream. In order to minimize free-end effects such as
the inboard-directed spanwise flow or vortex compression observed by Hartloper,
Kinzel & Rival (2013), the model pierced the free surface in each test case and
maintained a tip gap with the water-tunnel floor of less than 3 mm. The axis of the
root-flapping motion was in the streamwise direction and fixed at the water-tunnel
floor, maintained as a virtual hinge by the hexapod. The reference rotation profile for
all test cases is shown in figure 3, where the profile starts from rest and undergoes
a sinusoidal ramp-up over a period of time tr to the peak rotational speed Ωmax. The
peak rotational speed Ωmax is then maintained for a set period of time tc, and then
finally the profile is returned to rest with a sinusoidal ramp-down over tr.

In order to compare the rotating cases investigated here to two-dimensional cases
from the literature, it is possible to define a modified Strouhal number based on the
displacement of the midspan of the flapping profile:

St∗ = (Rφmax)f
U∞

, (3.1)

where φmax is the maximum angular displacement of the profile, R is the physical
profile span and f is the frequency of motion. Rφmax is therefore the displacement
of the half-span R/2 over a range of ±φmax. In order to determine the point at which
St∗ diverges from St, a large range of modified Strouhal numbers St∗ and reduced
frequencies k were investigated using phase-averaged planar particle image velocimetry
(PIV). Subsequently, vorticity transport on swept and unswept profiles at the specific
modified Strouhal number St∗ that diverged from two-dimensional cases (St∗ = 0.54)
were investigated using three-dimensional particle tracking velocimetry (3D-PTV). The
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FIGURE 4. The k–St∗ parameter space for the current study. The k–St parameter space
of the two-dimensional study by Baik et al. (2012) is superimposed for comparison. The
first stage of this study is to determine when three-dimensional effects begin to dominate
vortex growth.

details of the exact parameter space, as well as a detailed description of the PIV and
3D-PTV set-ups, are found below.

3.1. Parameter space
The range of modified Strouhal numbers St∗ and reduced frequencies k that were
investigated in this study are shown in figure 4. The parameter space of Baik et al.
(2012) is superimposed, as it is used as a reference in § 4 in order to determine the
effect of the modified Strouhal number St∗ in comparison to the Strouhal number St.
In order to vary the flapping frequency without changing the effective angle of attack
αeff , the velocity profile was modified from the reference profile shown in figure 3 by
varying the duration of constant rotational speed tc while maintaining the ramp-up and
ramp-down duration tr. By simultaneously varying the profile chord length and peak
speed duration tc, both reduced frequency and modified Strouhal number could be
varied independently over the range St= 0.33, 0.45 and 0.54 and k= 0.45, 0.89 and
1.33. The varying chord length resulted in varying Reynolds numbers; however, the
effect of Reynolds number on LEV convection speed is secondary within the range
200 6 Re 6 60 000, as shown by Garmann et al. (2013). Nevertheless, the variation
in Reynolds number was kept as small as possible by varying the water-tunnel
temperature between 20 and 40 ◦C, resulting in a range of 1875 6 Re 6 7500 for all
cases. Following the identification of the modified Strouhal numbers St∗ and reduced
frequencies k with large three-dimensional effects, a sweep angle Λ was included
as an additional parameter to vary spanwise vorticity convection. Two sweep angles
were considered: Λ= 0◦ and 45◦.

3.2. PIV set-up
A 1 W continuous-wave laser (λ = 532 nm) was used to illuminate a spanwise-
oriented plane at the half-span of each test case. The flow was seeded with
silver-coated hollow glass spheres of 100 µm diameter, with a Stokes number of
2.4× 10−3. Images of the flow were captured with a Photron SA4 high-speed camera
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FIGURE 5. (Colour online) Swept and unswept flat-plate profiles (A) manoeuvre through
the cylindrical PTV control volume of length l = 200 mm and diameter d = 80 mm.
The volume is illuminated with the aid of a mirror (B) reflecting light upstream from a
high-intensity discharge light source collimated with 40 mm and 300 mm lenses (C). Also
shown are the four pco.edge sCMOS cameras (D) and the hexapod manipulator (E). The
mirror (B) was moved upstream relative to the real experimental set-up for the purposes
of this photo. (a) Experimental set-up; (b) schematic of control volume.

at a frame rate of 250 Hz and a pixel resolution of 1024× 1024. The images were
subsequently processed with LaVision DaVis 8.1.3. Profile motions were repeated
and captured ten times per test case, and the results were then ensemble-averaged
in order to produce the final vector fields. Vortex-core identification followed the γ1
criterion detailed by Graftieaux, Michard & Grosjean (2001):

γ1(P)= 1
N

∑
S

sin θM, (3.2)

where θM is the angle formed between the velocity u(M) at point M and the direction
PM to the point M from the point of interest P, while N is the number of points M
inside the region S.

3.3. 3D-PTV set-up
The features of the 3D-PTV set-up are illustrated in figure 5. A high-intensity
discharge lamp was used as a light source to illuminate a streamwise-oriented
cylindrical control volume centred at the midspan of each test profile, after being
collimated with a 300 mm primary and 40 mm secondary lens. The measurement
volume had a diameter of 80 mm and a length of approximately 200 mm. The light
column entered the water tunnel vertically and was reflected into the streamwise
direction with a mirror approximately 15 chords downstream of the test profiles. The
effect of the mirror on the flow within the control volume was tested by measuring
the flow in an otherwise empty channel and checking that the pathline curvature
was in fact negligible, and that the flow velocity was undisturbed. The same seeding
particles were used as in the PIV experiments, but at a substantially lower seeding
density. Images of the flow were captured with four pco.edge sCMOS cameras at a
frame rate of 165 Hz and a pixel resolution of 2560×1280. The Lagrangian velocities
and accelerations were determined by differentiation of the particle tracks. The mean
interparticle distance was approximately 3 mm during the experiments. For each test
case ten Lagrangian datasets were superimposed and interpolated onto an Eulerian
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grid with 4 mm grid spacing. Vortex-core identification followed a normalized helicity
criterion detailed by Levy, Degani & Arnan (1990):

Hn = u · ω

|u| |ω| , (3.3)

where in the limiting case of Hn = ±1, the local vorticity and velocity vectors are
parallel.

4. Results
In the following we will test the hypotheses proposed in § 2 with direct

measurements of vorticity transport. However, the modified Strouhal numbers and
reduced frequencies that produce strong spanwise vorticity transport will first be
determined via planar PIV at the midspan position.

4.1. The effect of the modified Strouhal number and reduced frequency on vortex
development

Vortices were tracked over the range of modified Strouhal numbers St∗ = 0.33,
0.45 and 0.54, and reduced frequencies k = 0.45, 0.89 and 1.33 utilizing the γ1
criterion, as shown in figure 6 for t/T = 0.5. Vortex-core convection speed decreases
with increasing reduced frequency, similar to two-dimensional plunging cases. The
dependence on reduced frequency is seen much more clearly in figure 7, which
shows the displacement of the γ1 peak over the range of phases 0.1 6 t/T 6 0.5.
Here it is shown that vortex-core displacement varies only with respect to reduced
frequency, while the modified Strouhal number plays no role. The dependence on
reduced frequency suggests that the ratio between the maximum allowable growth
rate of the LEV and the feeding of circulation into the LEV (from the leading-edge
shear layer) determines LEV stability, as suggested by (2.5).

Baik et al. (2012) observed that LEV circulation decreased with increasing reduced
frequency for two-dimensional plunging cases, which is also observed for the flapping
cases in the current study, again seen in figure 7. However, while two-dimensional
plunging cases showed that circulation had only a low dependence on Strouhal
number, the St∗ = 0.54 cases exhibit a drastically increased circulation to that of
the other modified Strouhal numbers. The large variation in circulation with respect
to St∗ suggests that the investigated flapping cases cannot be approximated as bulk
two-dimensional at these increasingly faster motions. Therefore, as the St∗ = 0.54
cases bear the least resemblance to two-dimensional plunging, these cases will
be investigated with 3D-PTV below in order to determine how spanwise vorticity
transport affects LEV stability.

4.2. The effect of vorticity transport on vortex development
Despite the divergence between St and St∗ for St∗> 0.54, LEV stability is determined
by the reduced frequency k alone, similar to two-dimensional plunging cases.
Therefore, at first glance the influence of vorticity transport on LEV stability appears
to be secondary. In order to reconcile this observation with the hypotheses in § 2, a
profile sweep Λ can be introduced in order to vary vorticity convection by varying
the spanwise flow, thus acting as a vorticity sink. Figure 8 shows isosurfaces of
vorticity magnitude and vorticity convection for two sweep angles Λ = 0◦ and 45◦
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FIGURE 6. (Colour online) Vortex-core locations were determined with the |γ1| criterion
and tracked through time, shown here for all modified Strouhal numbers St∗ and reduced
frequencies k tested, at the phase t/T= 0.5. The modified Strouhal number does not effect
vortex convection speed.
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(a)  (b)

FIGURE 7. (Colour online) (a) Vortex locations are tracked, relative to t/T = 0.1,
showing a collapse of LEV displacement as a function of reduced frequency k. (b) Vortex
circulation is affected by both modified Strouhal number St∗ and reduced frequency k:
larger k results in a lower circulation Γ ; sensitivity to St∗ is low until St∗= 0.54, at which
point dramatic increases in circulation are observed.

and two reduced frequencies k= 0.89 and 1.33, as measured with 3D-PTV. Vorticity
convection magnitude is found to increase both with increasing reduced frequency
and increasing profile sweep, which can also be seen in figure 9. The spanwise flow,
circulation, vorticity transport and vortex convection shown in figure 9 were measured
at the midspan of each profile, and values for vorticity convection, vortex stretching
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FIGURE 8. (Colour online) (a, c, e, g) Isosurfaces of vorticity magnitude (ωc/U∞ =
5, 10 and 20) for phase t/T = 0.5. (b, d, f, h) Isosurfaces of vorticity convection
(w(∂ωz/∂z)(c2/U2

∞)= 20, 50 and 100). The four cases shown are: (a,b) k= 0.89, Λ= 0◦;
(c,d) k= 1.33, Λ= 0◦; (e, f ) k= 0.89, Λ= 45◦; and (g,h) k= 1.33, Λ= 45◦.

and spanwise flow were determined from the average value within an isolevel of
vorticity ωzc/U∞ = 5. The vortices are tracked using the maximum normalized
helicity criterion over the range 0.2 6 t/T 6 0.4, as a strong peak of normalized
helicity was observed across this interval.

The ability of profile sweep to modulate spanwise vorticity transport agrees with
the findings of Wong et al. (2013). Increased spanwise vorticity transport corresponds
to a reduced LEV convection speed, and both higher sweep angles and higher
reduced frequencies result in a slower streamwise vortex convection. However, the
effect of vortex stretching and vorticity convection on streamwise vortex convection
is not linear. For instance, the Λ= 45◦, k = 0.89 case and the Λ= 0◦, k = 1.33 case
have nearly identical vortex convection paths despite having very different levels
of vorticity convection and vortex stretching. In other words, relative LEV stability
is increased by two mechanisms: (i) the addition of vorticity sinks, such as from
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FIGURE 9. (Colour online) Spanwise flow, vortex circulation, vorticity transport and vortex
location for four test cases: (a) spanwise flow; (b) circulation; (c) vorticity convection;
(d) vortex stretching; (e) streamwise vortex convection; (f ) wall-normal vortex convection.
Streamwise vortex position shows a large dependence on both sweep angle and reduced
frequency. This sensitivity to reduced frequency can be explained in terms of the limiting
length scale of the profile chord for stable LEV growth.

profile sweep; or (ii) the reduction of vorticity feeding for a given limiting length
scale c. This latter mechanism of increasing LEV stability is governed by the reduced
frequency, as shown in § 2.

5. Discussion
In § 2 it was predicted that both larger reduced frequencies and larger sweep angles

would result in more stable LEVs on flapping profiles. Even in the rotating cases
investigated here, the reduced frequency was found to govern the ratio between the
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limiting growth rate of the LEV (c2/T) and the feeding of circulation into the LEV
from the leading-edge shear layer (u2

eff T). Meanwhile, larger sweep angles result in
larger spanwise vorticity transport, acting as a vorticity sink.

For rotating cases, the vorticity feeding rate is a function of the profile span.
Therefore, while aspect ratio sensitivity was not investigated explicitly in this study,
the reduced frequency is analogous to the aspect ratio AR for rotating profiles:

k≈ πfc
ueff
≈ πfc
ΩR
≈ πf
ΩAR

, (5.1)

where R is the profile span. Larger reduced frequencies k represent larger allowable
LEV growth rates relative to shear-layer feeding, and thus more stable LEVs. In turn,
the most stable LEVs also correspond to the smallest aspect ratios, similar to the
findings of Lentink & Dickinson (2009). This analogy between the aspect ratio AR
and the reduced frequency k of course neglects effects such as vorticity convection and
vortex stretching, which have been shown here to also improve relative LEV stability.

In addition to vorticity transport, Wojcik & Buchholz (2014) found that vorticity
annihilation was a significant mechanism for regulating LEV growth and was generally
much larger in magnitude than vorticity convection. However, as an extension to
these findings, it has been shown here that relative LEV stability can be improved
by moderating LEV growth through vorticity convection and vortex stretching.

Finally, with respect to the findings of Beem et al. (2012) that profile sweep does
not affect LEV stability for plunging cases, it was found that profile sweep did, in
fact, affect LEV stability for flapping cases in contrast with plunging cases. The
addition of spanwise flow from profile sweep increased the vorticity transport that
was already present for the rotating, unswept cases, in agreement with the findings of
Wong et al. (2013). Beem et al. (2012) had ignored rotating cases in their study on
purely plunging profiles. The current result demonstrating the effect of profile sweep
alludes to the evolutionary convergence of swept profiles found in nature, ranging
from large marine animals down to small flapping birds, and provides us with a step
forward towards designing more efficient autonomous vehicles and energy extraction
devices.

6. Conclusions

In this study relative LEV stability on impulsively started flapping profiles was
proposed and tested using phase-averaged planar PIV and volumetric 3D-PTV
measurements. The circulation flux into an LEV from the leading-edge shear layer
was moderated by the spanwise convection of vorticity. Moreover, vortex stretching
was observed to limit LEV growth and further enhance relative LEV stability.

This study resulted in the following primary conclusions:

(i) The ratio between the limiting length scale of an LEV (the profile chord) and
the shear-layer feeding rate can be approximated by the reduced frequency k,
with larger reduced frequencies increasing LEV stability. In the specific case of
rotating profiles, the shear-layer feeding rate is a function of the profile span. It
is therefore speculated that the ratio between the limiting length scale of an LEV
and the shear-layer feeding rate depends on the aspect ratio AR, with smaller
aspect ratios increasing LEV stability in agreement with Lentink & Dickinson
(2009).
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(ii) In addition to the above ratio, LEV stability can be improved by draining
vorticity through spanwise vorticity transport. Spanwise vorticity transport, and
therefore LEV stability, can be increased by introducing profile sweep. This
effect may explain the ubiquity of profile sweep in natural swimming and flying,
throughout length scales ranging from the wings of small birds to the flukes of
whales.

Acknowledgements

The authors gratefully acknowledge the support of the US Air Force Office
of Scientific Research under grant number FA9550-13-1-0117, monitored by
Dr D. Smith.

REFERENCES

BAIK, Y., BERNAL, L., GRANLUND, K. & OL, M. 2012 Unsteady force generation and vortex
dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 37–68.

BEEM, H., RIVAL, D. E. & TRIANTAFYLLOU, M. S. 2012 On the stabilization of leading-edge
vortices with spanwise flow. Exp. Fluids 51, 511–517.

BIRCH, J. M. & DICKINSON, M. H. 2001 Spanwise flow and the attachment of the leading-edge
vortex on insect wings. Nature 412, 729–733.

CHENG, B., SANE, S. P., BARBERA, G., TROOLIN, D. R., STRAND, T. & DENG, X. 2013 Three-
dimensional flow visualization and vorticity dynamics in revolving wings. Exp. Fluids 54 (1),
1–12.

DIDDEN, N. 1979 On the formation of vortex rings: rolling-up and production of circulation.
Z. Angew. Math. Phys. 30, 101–116.

ELLINGTON, C. P., VAN DEN BERG, C., WILLMOTT, A. P. & THOMAS, A. L. R. 1996 Leading-edge
vortices in insect flight. Nature 384 (6610), 626–630.

GARMANN, D. J., VISBAL, M. & ORKWIS, P. D. 2013 Three-dimensional flow structure and
aerodynamic loading on a revolving wing. Phys. Fluids 25, 034101.

GRAFTIEAUX, L., MICHARD, M. & GROSJEAN, N. 2001 Combining PIV, POD and vortex
identification algorithms for the study of turbulent swirling flows. Meas. Sci. Technol. 12,
1422–1429.

HARBIG, R. R., SHERIDAN, J. & THOMPSON, M. C. 2013 Reynolds number and aspect ratio effects
on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166–192.

HARTLOPER, C., KINZEL, M. & RIVAL, D. E. 2013 On the competition between leading-edge and
tip-vortex growth for a pitching plate. Exp. Fluids 54, 1447.

JONES, A. R., FORD, C. W. P. & BABINSKY, H. 2012 Three-dimensional effects on sliding and
waving wings. J. Aircraft 48 (2), 633–643.

LENTINK, D. & DICKINSON, M. H. 2009 Rotational accelerations stabilize leading edge vortices on
revolving fly wings. J. Expl Biol. 212, 2705–2719.

LEVY, Y., DEGANI, D. & ARNAN, S. 1990 Graphical visualization of vortical flows by means of
helicity. AIAA J. 28 (8), 1347–1352.

OZEN, C. & ROCKWELL, D. 2012 Three-dimensional vortex structure on a rotating wing. J. Fluid
Mech. 707, 541–550.

PITT FORD, C. W. & BABINSKY, H. 2013 Lift and the leading edge vortex. J. Fluid Mech. 720,
280–313.

RIVAL, D. E., KRIEGSEIS, J., SCHAUB, P., WIDMANN, A. & TROPEA, C. 2014 Characteristic length
scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp.
Fluids 55 (1), 1–8.

RIVAL, D. & TROPEA, C. 2010 Characteristics of pitching and plunging airfoils under dynamic-stall
conditions. J. Aircraft 47, 80–86.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.39


Stability of leading-edge vortices on two-dimensional flapping profiles 625

TAYLOR, G. K., NUDDS, R. L. & THOMAS, A. 2003 Flying and swimming animals cruise at a
Strouhal number tuned for high power efficiency. Nature 425, 707–710.

WOJCIK, C. J. & BUCHHOLZ, J. H. J. 2014 Vorticity transport in the leading-edge vortex on a
rotating blade. J. Fluid Mech. 743, 249–261.

WONG, J. G., KRIEGSEIS, J. & RIVAL, D. E. 2013 An investigation into vortex growth and
stabilization for two-dimensional plunging and flapping plates with varying sweep. J. Fluids
Struct. 43, 231–243.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.39

	Determining the relative stability of leading-edge vortices on nominally two-dimensional flapping profiles
	Introduction
	The moderation of LEV growth with vorticity transport
	The effect of reduced frequency on LEV saturation
	The effect of vorticity convection on LEV circulation
	The effect of vortex stretching on LEV cross-sectional area

	Methods
	Parameter space
	PIV set-up
	3D-PTV set-up

	Results
	The effect of the modified Strouhal number and reduced frequency on vortex development
	The effect of vorticity transport on vortex development

	Discussion
	Conclusions
	Acknowledgements
	References




