
research paper

Principles of the utilization of
polarization-invariant parameters for
classification and recognition of complex
radar objects

piet van genderen
1

, victor n. tatarinov
2

and sergey v. tatarinov
2

The paper presents the first attempt to develop parameters that are invariant to polarization, aimed at classification and rec-
ognition of complex radar objects. Both the simplest (two-point) model and multipoint models of a complex object are ana-
lyzed using the so-called emergence principle and a generalization of the interference laws. The polarization invariant
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I . I N T R O D U C T I O N

Research on the polarization properties of the electromagnetic
field scattered by a distributed radar object with the aim to
classify and recognize them is closely connected with the defi-
nition of the polarization properties of the scattered field on
the basis of the emergence principle and with the use of poss-
ible relations between polarization properties of the constitu-
ent parts of the complex radar object. We will use the term
“random complex radar object” (RCRO) if the object is com-
posed of a number of elementary scattering centers located
close to each other (i.e. within a radar resolution cell) at
random positions. Usually, RCROs are man-made objects
and their size is considerably less than a radar resolution
cell. When a radar object has many elementary scattering
centers randomly distributed over an area with a size not
less than a radar resolution cell, then we will name these
objects “distributed random objects” (DRO). Usually DROs
are scattering extended surfaces and volumes (sea, earth,
clouds, precipitations, and forest).

Many methods for classification of objects based on obser-
vation by radar exist. The ones that evaluate the profile power
in the echo of the objects suffer from a dependence on the

polarization used for the sounding signal. The paper explores
methods to use sounding signals and appropriate processing
of the received echoes resulting in profiles that are indepen-
dent of the polarization, hence the objective to find parameters
that are invariant to polarization.

The research leads to the concept of “generalized interfer-
ence laws”. The paper first presents the results of the theoreti-
cal and experimental investigation of parameters that are
invariant to polarization at the scattering of electromagnetic
fields by two-point and multipoint radar objects. Such a
two-point radar target is the simplest model of a distributed
object. The paper then demonstrates that the interference
process of the field scattered off multi-point RCROs leads to
polarization-energetic speckle. The polarization-energetic
response function of an RCRO can be considered to be a col-
lection of space harmonics. Every space harmonic of this col-
lection is initiated by one pair out of many pairs, which can be
formed by the points constituting the scattering RCRO. Every
space harmonic will have an amplitude, which will be deter-
mined by the value of the proximity (or distance) of the polar-
ization states of the points involved in the respective pair. The
positions of the elementary scatterers composing the RCRO
are stochastic, but they are constant for a fixed aspect angle,
since the RCRO is assumed to be a rigid structure. We have
a number of interfering pairs of elementary scatterers and
they exhibit stochastic space diversity. The polarization proxi-
mity of each pair of elementary scatterers also is a stochastic
parameter, and thus, even when the spatial separation
between points in a pair is the same, we will have a classical
stochastic process at each change of the aspect angle. The defi-
nitions of the so-called emergence principle and polarization
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proximity (distance) will be shown in the sequel of this paper.
Our approach to the problem is based on our preliminary pub-
lications [1–4] and it is formulated like this for the first time in
its integrated form with theory and related experiments.

The structure of the paper is that first a model is developed
showing the polarization parameters of a simple object con-
sisting of two points. The basic concepts of the so-called
emergence principle and the polarization proximity will be
established as they result from interference between elemen-
tary scatterers. The theory is illustrated by the experimental
results achieved using a polarimetric radar and a number of
known two-point objects (Section II). Then the two-point
object is generalized to an M-point object. The angular distri-
bution of the Stokes parameters is developed, showing that
some parameters can be found that are independent of the
polarization used by the radar and only by the object itself.
Also here, the theory is illustrated by experimental results
achieved using a polarimetric radar observing a complex
radar object (Section III). The discussion in this paper ends
with some conclusions.

I I . S I M P L E S T M O D E L O F A
C O M P L E X R A D A R O B J E C T : M A I N
D E F I N I T I O N S

First of all, we will consider the results of the theoretical and
experimental investigations of polarization- power parameters
at the scattering by two-point radar objects. Such a two-point
object is the simplest model of a distributed object. Here we
will also introduce the definitions of both the emergence prin-
ciple and its link with the analysis of parameters that are
invariant to polarization and the proximity and distance of
polarization states.

A) Definition of a complex radar object:
generalized interference laws, emergence
principle, and polarization proximity
(distance)
We will define a complex radar object using the Stratton–Chu
integral [4], which allows us to represent a field scattered
by this object as the sum of waves scattered by elementary
scatterers (“bright” or “brilliant” points), constituting the
complex object. An example of a man-made RCRO is
shown in Fig. 1(a). Figure 1(b) shows the result of the scatter-
ing process from this object that was obtained using a scaled
simulation method [3]. In this picture, one can see the collec-
tion of bright points both of the object and sea surface.

For the case when every elementary scatterer is character-
ized by its SM ‖Ṡm

in‖; (i, n ¼ 1, 2) the complex vector of the
scattered field can be defined in the form

�̇E
in

S u( ) = −
exp j2kR0

( )
R0

����
4p

√
∑M

m=1

Ṡ
in
m

∣∣∣ ∣∣∣�̇E 0 exp −j2kXmu
( )

, (1)

where Xm is the distance between the center of gravity of the
object and the mth bright point, R0 is the distance between the
radar and the center of gravity of the object, u is the aspect
angle of the object, and �̇E 0 is the complex vector of the
initial wave. It is useful to point out here that the expression

(1) represents the polarization properties of all individual scat-
terers, which together form the large complex radar object.
Unfortunately, the properties of a large system in principle
cannot be derived by simply adding the properties of the
elementary parts of the system. The properties of the integral
system appear after considering the relations between its
elements. These relations lead to the “emergence” of new
properties which do not exist for every element separately.
The concept of “emergence” is one of the main definitions
of the systems analysis [5]. So, we will try to find the polariz-
ation properties of the electromagnetic field scattered off a
complex radar object on the basis of the emergence principle,
using the possible relations between the polarization proper-
ties of all elementary scatterers constituting a complex radar
object. We will take into account that these elementary scat-
terers cannot be resolved by radar.

B) The generalized interference laws for a
two-point object, emergence principle, and
polarization proximity (distance). Angular
distribution of the space frequencies and
Stokes parameters at the scattering by a
complex object
Interference between electromagnetic waves leads to the redis-
tribution of the power mean density in space. This redistribu-
tion is due to the superposition of the electromagnetic waves.
According to the laws of interference [6, 7], interference does
not exist if the waves are polarized orthogonally. This fact can
be illustrated by the mean value of the unit matrix |‖djl‖ using
the notation of bra and ket Dirac vectors from quantum
mechanics. So, for the waves having coinciding and orthog-
onal polarizations, respectively, we can write

, Ė
∗
1Ė2 djl

∣∣ ∣∣ Ė1

Ė2
.=, E2

1 . + , E2
2 . , (2a)

Fig. 1. (a) Image of a navy ship. (b) Collections of bright points of the ship.
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, Ė
∗
10 djl

∣∣ ∣∣ 0
Ė2

.= 0. (2b)

However, besides the power, which can be found using
the expressions (2), we can find other bilinear combi-
nations of electromagnetic waves vectors projections – the
so-called Stokes parameters [6]. These parameters have the
dimension of power and can be found as mean values of
Pauli matrices

s1| | = 1 0
0 −1

∥∥∥∥
∥∥∥∥, s2| | = 0 1

1 0

∥∥∥∥
∥∥∥∥, s3

∣∣ ∣∣ = 0 −j
j 0

∥∥∥∥
∥∥∥∥,

S1 =, �̇E ∗ s1| |�̇E .= Ė
∗
1Ė1 − Ė

∗
2Ė2,

S2 =, �̇E ∗ s2| |�̇E .= Ė
∗
1Ė2 + Ė

∗
2Ė1,

S3 =, �̇E ∗ s3

∣∣ ∣∣�̇E .= −j[Ė
∗
1Ė2 − Ė

∗
2Ė1].

(3a,b,c)

In the far field, the wave transmitted by a radar system can
be regarded as a completely polarized plane wave. The signal
received by the radar, however, is seldom completely polar-
ized. This is because the received signal consists of the super-
position of a number of waves with different polarizations as
the result of the reflection off multiple scatterers. As opposed
to the zero Stokes parameter, the third Stokes parameter may
reveal the existence (or not) of interference when the polariz-
ations of the interfering waves are different.

Let us consider now the dependence of the polarization
parameters of the scattered field both on the spatial distri-
bution of the scatterers and on their possible interactions.
We will consider the simplest complex (distributed) radar
object, consisting of two closely spaced scatterers A and B
(reflecting elliptical polarizers), which cannot be resolved by
the radar. These scatterers are separated in space by a distance
l and are characterized by the scattering matrices (SMs) in the
Cartesian polarization basis

S1‖ ‖ = ȧ1 0
0 ȧ2

∥∥∥∥
∥∥∥∥, S2‖ ‖ = ḃ1 0

0 ḃ2

∥∥∥∥
∥∥∥∥. (4)

We will consider coherent scattering. The geometry is
shown in Fig. 2. As can be noted from (4) we are using the
diagonal form of the SM. The point is that we will use later
only the so-called invariant parameters of the SM, which are

dependent only on the eigenvalues ak¼1,2;bk¼1,2 of the SM
and are independent of the off-diagonal elements of these
matrices.

In Fig. 2 the distances R1, R2 between the scatterers and
an arbitrary point Q in far field can be written under the
condition 0.5l ≪ R0 as R2,1 ≈ R0 + 0.5l sinu ≈ R0 + 0.5lu.
Using these expressions, we can find the Jones vector of the
scattered field for the case of the radiated signal having a
linear polarization at an inclination angle 458. It should be
mentioned here that we are using the Cartesian (linear) polar-
ization basis both for the scattered matrices and for the Jones
vector of the scattered field.

�̇E S u( ) =
��
2

√

2

ȧ1 exp jj
( )

+ ḃ1 exp −jj
( )

ȧ2 exp jj
( )

+ ḃ2 exp −jj
( )

∣∣∣∣∣
∣∣∣∣∣, (5)

where j ¼ klu. The angular dependence of the
polarization-energetic response functions in the form of the
Stokes parameters S0, S3 is

S0 u( ) = ĖX u( )Ė∗
X u( ) + ĖY u( )Ė∗

Y u( ),

S3 u( ) = j[ĖX u( )Ė∗
Y u( ) − ĖY u( )Ė∗

X u( )].

The expanded form of the energetic response function
S0(u) can be found as

S0 u( ) = 0.5 Sa
0 + Sb

0

[ ]
+

��������������������������������������
a2

1b2
1 + a2

2b2
2 + ȧ∗1 ȧ2ḃ1ḃ∗2 + ȧ1ȧ∗2 ḃ∗1 ḃ2

√
× cos 2j+ h1

( )
, (6)

where h1 ¼ arctg{[Im(ȧ1ḃ1
∗ + ȧ2ḃ2

∗)/Re(ȧ1ḃ1∗ + ȧ2ḃ2
∗)]} and

S0
a ¼ a1

2 + a2
2, S0

b ¼ b1
2 + b2

2. The values S0
a and S0

b are
the Stokes zero-parameters of the elementary scatterers “a”
and “b”.

As can be seen from (6), the S0(u) parameter
includes the sum of the Stokes parameters S0

a and S0
b, and a

term that represents a function that is harmonic in space
with the angular dependence cos(2klu + h1). This latter
term has an initial phase h1 and amplitude

2
���������������������������������������
a2

1b2
1 + a2

2b2
2 + ȧ1ȧ∗2 ḃ∗1 ḃ2 + ȧ∗1 ȧ2ḃ1ḃ∗2

√
that is connected

with the eigenvalues of the elements of the SM.
For the definition of a generalized approach to an analysis

of the polarization-energetic parameters of the electromag-
netic field due to interference, we will consider now the
angular dependence of the Stokes parameter S3(u) of this
field. It can be found as

S3 u( )= 0.5 Sa
3 + Sb

3

[ ]
+2

���������������������������������������
a2

1b2
1 +a2

2b2
2 − (ȧ∗1 ȧ2ḃ1ḃ∗2 + ȧ1ȧ∗

2 ḃ∗1 ḃ2)
√

× sin 2j+h2

( )
, (7)

where h2 = arctg{[Im(ȧ1ḃ∗2 − ȧ2ḃ∗1)/Re(ȧ1ḃ∗2 − ȧ2ḃ∗1)]},Sa
3 =

−0.5j ȧ1ȧ∗
2 − ȧ∗

1 ȧ2
( )

, and Sb
3 =−0.5j(ḃ1ḃ∗2 − ḃ∗1 ḃ2) are the

third Stokes parameters of elementary scatterers “a” and “b”.
Thus, the angular distribution of the Stokes parameter S3

of the electromagnetic field due to interference is alsoFig. 2. Scattering geometry for the two-point radar object.
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the sum of interference elements the third Stokes par-
ameters and a space harmonic periodic function sin (2klu +
h2), which has an initial phase h2 and amplitude

2
����������������������������������������
a2

1b2
2 + a2

2b2
1 − (ȧ1ȧ∗2 ḃ1ḃ∗2 + ȧ∗

1 ȧ2ḃ∗1 ḃ2)
√

.

Expressions (6) and (7) are generalized Fresnel–Arago
interference laws for waves having arbitrary polarizations.

It is useful to briefly highlight a physical understanding
of these laws. The angular harmonic functions cos(...) and
sin(...) in the expressions (6) and (7) represent the influence
of the spatial separation l on the distribution of the
polarization-energetic parameters of scattered field in the far
zone. The derivative of the full phase c(u) ¼ 2klu + hi (i ¼
1,2) of the angular harmonic function along the angular vari-
able is the space frequency

fSP = 1
2p

dc u( )
du

= 1
2p

d
du

2klu+ hk

[ ]
= 2l

l
. (8)

Thus, the space frequency in the complex radar object
theory equals twice the distance between the elementary scat-
terers constituting the radar object, normalized to the
wavelength.

Next we will analyze the amplitudes of angular
harmonic functions cos[2klu + h1], sin[2klu + h2] to assess
the impact of the polarization properties of the elementary
scatterers on the polarization-energetic parameters of the
field scattered by the complex radar object. Let us write
the polarization ratios ṖA ¼ ȧ2/ȧ1 and ṖB ¼ ḃ2/ḃ1, which
are characterizing the point radar objects A and B in the
complex plane of radar objects [6]. Using stereographic
projection, we can find the spherical distance between
the points SA, SB, laying on the surface of the Riemann
sphere having unit diameter, which are connected
with points ṖA, ṖB of radar object’s complex plane. The coor-
dinates of the points SA, SB on the surface of the sphere
are X1 = ReṖ/(1 + |Ṗ|2); X2 = ImṖ/(1 + |Ṗ|2); X3 = |Ṗ|2/
(1 + |Ṗ|2) and the spherical distance between these points
can be found as

rS(SA, SB) =
ṖA − ṖB

∣∣ ∣∣�����������
1 + ṖA

∣∣ ∣∣2
√ �����������

1 + ṖB

∣∣ ∣∣2
√

=

��������������������������������
ṖA

∣∣ ∣∣2+ ṖB

∣∣ ∣∣2− ṖAṖ∗
B + Ṗ∗

AṖB
( )√

�����������
1 + ṖA

∣∣ ∣∣2
√ �����������

1 + ṖB

∣∣ ∣∣2
√ ,

(9)

where ṖA − ṖB

∣∣ ∣∣ is the Euclidian metric in the complex plane
of radar objects. After substitution of the polarization ratios
ṖA = ȧ2/ȧ1and ṖB = ḃ2/ḃ1 into (9), we can write

rS(SA, SB) =

����������������������������������������
a2

1b2
1 + a2

2b2
2 − (ȧ∗

1 ȧ2ḃ1ḃ∗2 + ȧ1ȧ∗2 ḃ∗1 ḃ2)
(a2

1 + a2
2)(b2

1 + b2
2)

√
. (10)

The value

D = a2
1b2

1 + a2
2b2

2 − (ȧ∗
1 ȧ2ḃ1ḃ∗2 + ȧ1ȧ∗

2 ḃ∗1 ḃ2)
(a2

1 + a2
2)(b2

1 + b2
2)

(11)

is the so-called polarization distance between two waves (or

radar objects), having different polarizations [6]. When
the waves have coinciding polarizations (ṖA ¼ ṖB) the
polarization distance value is D ¼ 0 and when the
waves have orthogonal polarizations (ṖB ¼2 1/ṖA

∗) the polar-
ization distance value is D ¼ 1. Thus, it follows from (9) and
(10) that

a2
1b2

1 + a2
2b2

2 − (ȧ∗1 ȧ2ḃ1ḃ∗2 + ȧ1ȧ∗2 ḃ∗1 ḃ2)

= D a2
1 + a2

2

( )
b2

1 + b2
2

( )
.

We can use also so-called polarization proximity value N
that can be defined as N ¼ 1 2 D. Then

N = 1 − D = a2
1b2

1 + a2
2b2

2 + ȧ∗1 ȧ2ḃ1ḃ∗2 + ȧ1ȧ∗2 ḃ∗1 ḃ2

(a2
1 + a2

2)(b2
1 + b2

2)
. (12)

The waves with coinciding polarizations (ṖA ¼ ṖB) have a
polarization proximity value N ¼ 1 and the waves with
orthogonal polarizations (ṖB ¼ 21/ṖA

∗) have a polarization
proximity value N ¼ 0. Then we can write

a2
1b2

1 + a2
2b2

2 + ȧ∗1 ȧ2ḃ1ḃ∗2 + ȧ1ȧ∗
2 ḃ∗1 ḃ2

= N a2
1 + a2

2

( )
b2

1 + b2
2

( )
.

If we compare the amplitudes of the space harmonic oscil-
lations with the expressions (11) and (12), we can see that the
expressions (4) and (5) can be rewritten as

S0 u( ) = 0.5 Sa
0 + Sb

0 + 2
���
Sa

0

√ ���
Sb

0

√ ���
N

√
cos 2j+ h1

( )[ ]
, (13a)

S3 u( ) = 0.5 Sa
3 + Sb

3 + 2
���
Sa

0

√ ���
Sb

0

√ ��
D

√
sin 2j+ h2

( )[ ]
. (13b)

We can consider these expressions as generalized interfer-
ence laws [7]. It follows from the expression (13) that the
orthogonally polarized waves cannot give an interference
picture in case the polarization proximity value N ¼ 0.
However, the expression (13b) demonstrates that in this
case the third Stokes parameter will have the maximal value
of this interference picture visibility.

It follows from expressions (13a), (13b) that every Stokes
parameter has some constant component, which is defined
by the respective Stokes parameters of both objects (“a” and
“b”), and space harmonics functions cos[2klu ¼ h1]
and sin[2klu ¼ h2], having amplitudes

���
Sa

0

√ ���
Sb

0

√ ���
N

√
and���

Sa
0

√ ���
Sb

0

√ ��
D

√
, respectively, and space initial phase hk. So,

the polarization-energetic properties of complex radar
objects cannot be found using only the properties of its
individual elements. The properties of the integral system
appear by taking the relations between the individual
elements into account. These relations in our case are
the polarization distance and the polarization proximity.
The use of these values leads to the “emergence” of new
properties, which did not exist for every element separately
[4, 5].
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We define the instantaneous visibility of the generalized
interference law as

W = SMAX
0 u( ) − SMIN

0 u( )
SMAX

0 u( ) + SMIN
0 u( ) = 2

���
SA

0

√ ���
SB

0

√
SA

0 + SB
0

���
N.

√
(14)

This equation is similar to the well-known expression for
the Fresnel–Arago interference law:

W = IMAX u( ) − IMIN u( )
IMAX u( ) + IMIN u( ) = 2

��
I1

√ ��
I2

√

I1 + I2
g12, (15)

where I1, I2 are integrated powers (energies) of the waves, and
g12,g12 are the degree of coherences. If I1 ¼ I2 then the visi-
bility of the interference law is defined by the degree of coher-
ence of second order.

So, we can state that from a physical point of view the par-
ameter N can be considered as a polarization coherence par-
ameter, which defines the proximity of the polarization
states of elementary scatterers, and in the same way a degree
of coherence of stochastic waves is summarized. In this case,
we have an “instantaneous” value of the polarization coher-
ence, while at the same time the coherence degree g12 is the
correlation value.

We can interpret as the simplest meaning of the polariz-
ation proximity that it is the scalar product of four-
dimensional Stokes vectors, according to the radar object’s
elements. When this product is zero – the proximity will be
zero, and the distance will be one. If this product is one –
the proximity will be one, and the distance will be zero.

C) Experimental investigation of the
polarization-energetic properties of
electromagnetic waves scattered by a two-point
radar object
A measurement campaign to investigate jointly the general-
ized Fresnel–Arago interference laws and the polarization-
energetic properties of the electromagnetic field scattered by
reflecting interferometers (man-made radar objects consisting
of two elements) was realized by the International Research
Centre for Telecommunications and Radar of TU Delft [8].
In this paper, a small part of the results is presented and inter-
preted from the point of view of the generalized Fresnel–
Arago interference laws and the emergence principle with
respect to the power and polarization harmonics S0(u), S3(u)
corresponding to the space frequency caused by the distribu-
ted radar object used in the campaign.

The radar used for the experiment was capable of transmit-
ting a polarized electromagnetic wave at any polarization,
switchable from radar sweep to sweep. On receive it was fit
with two parallel receivers, operating in orthogonal polariz-
ations. The radar operated with two separate antennas, one
for transmit and one for receive. The settings of the polariz-
ation on transmit and on receive were independent. In the
actual experiment reported in this paper, the settings were
for a linear (H,V) orthogonal basis. However, this is not a fun-
damental choice, since after calibration the data can be con-
verted from one polarization basis into any other one. The
resolution of the radar was set at 6 m, while the carrier fre-
quency was approximately 10 GHz.

Concerning the basic properties of radar required to assess
the elements of the Stokes vector, it should be mentioned that
both coherent methods and non-coherent methods (measur-
ing powers only) exist. The theory underlying this measure-
ment technique is beyond the scope of this paper [9].

A collection of two-element man-made distributed radar
objects with known polarization properties of their elements
was used in the campaign. The difference between the proper-
ties of the various elements constituting the distributed radar
objects leads to different values of the polarization proximity
or polarization distance of these elements. The following com-
binations of two-element man-made distributed radar objects
were used:

(N1) Two empty trihedral corner reflectors (N ¼ 1; D ¼ 0).
(N2) Two trihedrals, where the first one was empty, and the

second was fitted with a linear polarizer consisting of a
special polarizing grid (N ¼ 0.5; D ¼ 0.5).

(N3) Two trihedrals, where the first one was empty, and the
second was fitted with an elliptic polarizer consisting of a
special polarizing grid. The transmission coefficients
along the OX and OY axes are bY ¼ 0.5bX and the mutual
phase shift between the polarizer’s eigen axes is wXY ¼ p/2
(PA ¼ 1; ṖB ¼ j0.5; N ¼ 0.5; D ¼ 0.5); This object is
shown in Fig. 3.

(N4) Two trihedrals, where the first one was fitted with a
linear polarizer, and the second was fitted with an elliptic
polarizer (PA ¼ 0; ṖB ¼ j0.5; N ¼ 0.8; D ¼ 0.2).

The phase centers of the trihedrals were separated by
100 cm, while the wavelength of the radar was 3 cm. For
these parameters the space frequency and space period are
fSP ¼ 2l/l (rad)21, TSP ¼ 0.015rad (or 0.8558). The mechan-
ical construction, on which the trihedrals were mounted,
rotated with an angular step of 0.258.

When the object includes the trihedral with the elliptic
polarizer and the empty trihedral (combination N3), we can
find the theoretical estimation of the polarization proximity
and distance as N ¼ D ¼ 0.5. In Figs 4(a) and 4(b), the exper-
imental angular harmonics functions (generalized interfer-
ence pictures) S0(u), S3(u) are shown. It follows from these
figures that the visibility for interference picture S0(u) is
W0 ≈ 0.3 corresponding to a polarization proximity N0 ¼

0.54 (note that the theoretical estimation is N ¼ 0.5). The visi-
bility forS3(u) is W3 ¼ 1, corresponding to a polarization dis-
tance D ¼ 0.5.

For the system including the trihedral arranged by the
linear polarizer and empty trihedral (object N2), we can
find from theory the estimated visibility values W0 ¼ 0.66;
W3 ¼ 1. These correspond to polarization proximity values
N0 =

����
W0

√
= 0.82; N3 =

����
W3

√
= 1. These values should

be compared with the ones obtained from the experiments,
N0 ≈ 0.85; N3 ¼ 1.

Fig. 3. Two-point radar object N3.
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So, one may conclude that there is a close correspondence
between the theory and the experimental results providing
supporting evidence to the validity of the approach.

I I I . M U L T I P O I N T M O D E L A N D
C O R R E L A T I O N T H E O R Y

As a next step, this section addresses the statistical analysis of
the energetic speckle of polarization parameters of the electro-
magnetic field at the scattering by a multipoint RCRO.

A) The angular distribution of the power
of the electromagnetic field at the scattering
by a distributed object
The field, scattered by a multipoint radar object having a SM
‖Ṡm

in‖; (i,n ¼ 1,2) was already shown by equation (1). Let us
now consider the formation of the distribution of the
polarization-energetic parameters of the electromagnetic field
resulting from the interference process at the scattering by
the RCRO. To this end, we will analyze the scattering process
by a multipoint RCRO that is composed of M scattering
centers. Our approach will be to first derive an expression for
the distribution of the power for the case of M ¼ 4 scattering
centers and then to generalize the case of arbitrary M centers.

Without loss of generality we will assume that the point scat-
terers constituting the RCRO, are located on a line (see Fig. 5).

For the example of Fig. 5, where M ¼ 4, we will find that
the electrical vector of the field, scattered by the four-points

complex object, observed in a point Q located in the far
field for the case of coinciding linear polarization both for
transmission and reception is

ĖS u( ) = −
exp j2kR0

( )
Ė0

R0
����
4p

√
∑4

i=1

���
si

√
exp −j2kXiu

( )
. (16)

Then we can find the instantaneous distribution of the
power of the scattered field in space as a function of the pos-
itional angle u as

P u( ) = ĖS u( )Ė∗
S u( ) = s1 + s2 + s3 + s4

+ 2
������
s1s2

√
cos 2kd12u( ) + 2

������
s1s3

√
cos 2kd13u

( )
+ 2

������
s1s4

√
cos 2kd14u

( )
+ 2

������
s2s3

√
cos 2kd23u

( )
+ 2

������
s2s4

√
cos 2kd24u

( )
+ 2

������
s3s4

√
cos 2kd34u

( )
.

(17)

So, the instantaneous distribution of the power of the scat-
tered field in space as a function of the positional angle u is
formed by the sum of the radar cross-section of the elemen-
tary scatterers (four terms) plus six cosine oscillations. It
can be seen that all of these cosine terms are caused by the
interference effect between the fields scattered by all pairs of
elementary scatterers constituting the RCRO. The number
of these pairs can be found by the binomial coefficient

CN
M = M!

N! M − N( )! ,

where M is the total number of points, and N is the number of
points in each combination. In our case, where M ¼ 4, N ¼ 2,
we have C4

2 ¼ 6. So, the angular response function of the
complex radar object considered will include six space harmo-
nic functions as a result of the interference, summarized in the
expression (15). There the values

d12 = X1 − X2; d13 = X1 − X3; d14 = X1 − X4,

d23 = X2 − X3; d24 = X2 − X4; d34 = X3 − X4

represent the spatial distance between the scattering elements
for every interfering pair. The space harmonic function�����
sisl

√
cos (2kdilu) corresponds to the definition given in

Section IIB. According to this definition, the harmonic oscil-
lation in space with a shape cos(2kdu) is defined by the full
phase c(u) ¼ 2kdu ¼ (2p/l)2du, the derivative of which is
(1/2p)(dc/du) ¼ 2d/l ¼ fSP. It represents the space frequency
with dimension [rad21]. The period TSP ¼ 1/fSP ¼ l/2d
having the dimension [rad] corresponds to this frequency.

So, the full power distribution of the field scattered by a
complex radar object is the sum of the interference patterns
formed by a collection of elementary two-points interfering
scatterers.

Thus, by inference from (17) we can write the random
angular representation of the scattered power, depending on
the positional angle as

P u( ) =
∑M

m=1

s2
m + 2

∑C

c=1

�����
sisl

√
cos 2kdilu( ), (18)

Fig. 4. (a) Generalized interference law for the Stokes parameter S0(u) (object
N3). (b) Generalized interference law for the Stokes parameter S3(u) (object N3).

Fig. 5. Scattering geometry for the multipoint radar object.
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where C ¼ CM
2 is the number of pairs consisting of the

elementary scatterers i and l, and M is the total number of
elementary scatterers constituting the RCRO.

B) The angular distribution of the Stokes
parameters of the electromagnetic field
scattered by a random complex object
It was demonstrated in (13) that the angular distribution
of the Stokes parameter S0, S3 of the electromagnetic field scat-
tered by a two-point distributed object has the form

S0 u( ) = Sa
0 + Sb

0 + 2
���
Sa

0

√ ���
Sb

0

√ ����
Nab

√
cos 2j+ h1

( )
,

S3 u( ) = Sa
3 + Sb

3 + 2
���
Sa

0

√ ���
Sb

0

√ ����
Dab

√
sin 2j+ h2

( )
.

(19)

It follows from (19) that the space harmonics functions are
having amplitudes

���
Sa

0

√ ���
Sb

0

√ ����
Nab

√
and

���
Sa

0

√ ���
Sb

0

√ ����
Dab

√
. Here the

values Nab, Dab are, respectively, the proximity and distance of
the polarization states of the elementary scatterers of the dis-
tributed object [5].

Taking this into account, we can write the angular distri-
bution of the Stokes parameters of the field, scattered by
RCRO as the sum of the generalized interference patterns,
which are formed by a collection of elementary two-point
interfering scatterers

S0 u( ) =
∑M

m=1

Sm
0 + 2

∑C

1

������
S0iS0l

√ ����
Nil

√
cos 2jil + hil

( )
, (20a)

S3 u( ) =
∑M

m=1

Sm
3 + 2

∑C

1

������
S0iS0l

√ ����
Dil

√
sin 2jil + hil

( )
, (20b)

where C ¼ CM
2 is the number of pairs consisting of the

elementary scatterers i and l. The amplitudes of the space har-
monics and the initial space phases of these harmonics will be
stochastic values. Thus, further analysis must be based on
statistics.

C) A theoretical definition of the
autocorrelation function of the angular
distribution of the Stoke parameters of the
scattered field. Space spectra
Now we will develop a theoretical form of the autocorrelation
function of the angular distribution of the Stokes parameter
S3(u) of the scattered field.

Since we would like to find the autocorrelation function
(not the covariance function!), we must eliminate a random
constant term

∑
m¼1
M S3

m from the stochastic function S3(u)
to ensure a zero mean value. Taking into account that the
value

∑
m¼1
M S3

m can be a non-stationary stochastic function,
the average must be found using a sliding window. After
elimination of the non-stationary mean value and subsequent
normalization, we can write the stochastic function S3 (u) as

S3 u( ) =
∑C

1

����
Dil

√
cos 2j+ hil

( )
. (21)

Let us suppose that the function (19) is stationary stochas-
tic function. If this function is not stationary, we can exclude a
non-stationary part, using the average by a sliding window.
Then its autocorrelation function can be found as

BS Du( )

=
∑C

N=1

∑C

L=1

����
DN

√ ���
DL

√
cos 2kdNu+h

[ ]
cos 2kdL(u+Du)+h

[ ]
.

(22)

Here the space harmonics amplitudes
��
D

√
and space initial

phase h are random values, which can be characterized by a
two-dimensional probability distribution density W2(

��
D

√
, h)

and Du ¼ u1 2 u2. We will suppose that random amplitudes
and phases are independent variables. Using the orthogonality
condition we can rewrite the expression (22) into

BS Du( )

=
∑C

N=1

����
DN

√( )2
cos 2kdNu+ h

[ ]
cos 2kdN (u+ Du) + h

[ ]
.

(23)

Considering that the initial stochastic realization S3(u) is a
function of the random variables

��
D

√
, u, we will use for the

definition of the autocorrelation function of this realization
the expression for the mean value of two random variables

M y x1, x2( )
{ }

=
∫1

−1

∫1

−1

y x1, x2( )W2 x1, x2( )dx1dx2. (24)

Using this expression we can write the autocorrelation
function (22) as:

BS Du( ) =
∑C

N=1

∫1

−1

∫1

−1

����
DN

√( )2
cos 2kdNu+ h

[ ]

× cos 2kdN (u+ Du) + h
[ ]

W2

��
D

√
, h

( )
× d

��
D

√( )
dh.

(25)

For the calculation of the double integral in the expression
(24) we will use the condition W2(

��
D

√
, h) = W1(

��
D

√
)W1(h)

and the assumption W(h) ¼ 1/2p,so a uniformly distributed
phase over (2p,p). Such an assumption is common for all
statistical radio technical and statistical radio physical
problems.

As a result, we can write the theoretical form of the auto-
correlation function of the angular distribution of the Stokes
parameter of the scattered field as

BS Du( ) = 0.5
∑C

N=1

DN cos 2kdNDu( ). (26)

Taking into account that every term of the sum in (26) is
the autocorrelation function for an isolated space harmonic
oscillation SN (u) =

����
DN

√
cos(2kdNu+ hN ) having random
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amplitude
����
DN

√
and random initial space phase hN, i.e.

BSN Du( ) = 0.5DN cos 2kdNDu( ), (27)

it can be seen that the autocorrelation function of the stochas-
tic realization of the Stokes parameters is the sum of the indi-
vidual autocorrelation functions of all space harmonics, which
are contributing to this stochastic realization.

Let us now develop an expression for the averaged space
spectra of the complex radar object using expression (27)
for the autocorrelation function of the polarization-angular
response.

The power spectrum in the case of isolated space harmo-
nics can be found as the Fourier transform of the above auto-
correlation function (27):

P VSP( ) =
∫1

−1

BSN Du( ) exp −jVSPDu
( )

d Du( )

= DN

2
d −V

N
SP

( )
+ d +V

N
SP

( )[ ]
,

(28)

where VSP ¼ 2pfSP ¼ 2p(2d/l) is the space frequency. The
spectral lines are located at the distances +VSP

N from the
origin of the co-ordinate system and their positions are
defined by the space frequency fSP

N ¼ 2dN/l of a two-point
radar object. This space frequency depends on the spatial sep-
aration of two reflectors distributed in the space. The intensity
of the power spectral lines is determined by the polarization
distance between the polarization states of two scatterers
forming the radar object.

The full space spectra of the stochastic polarization-angular
response, i.e. the Fourier transform of the autocorrelation
function (26), is

P VSP( ) = 0.5
∑C

N=1

DN d −VN
SP

( )
+ d +VN

SP

( )[ ]
. (29)

So, the power spectra of the polarization angular response
function have a discrete form. It is caused by the discrete
structure of the RCRO. Besides, man-made distributed radar
objects have a finite extension. In this context, we have to
emphasize that the power spectra of radar objects have a
limited character.

As it was demonstrated in [10], the so-called equivalence
principle “on the average” exists for the RCRO “on the
average”. This principle associates some two-element
radar objects to a real RCRO. In this case, the distance

between elements of the model is connected with the
mean-square sizes of an RCRO and the polarization-angular
response function of this object is a harmonic function of
the object’s positional angle. It also follows both from theor-
etical and from experimental investigations that the
polarization-angular response function of an RCRO in the
form of the angular dependence of the third Stokes parameter
corresponds to a narrow-band random process. For example,
the experimental realization, having the form of narrow-band
angular dependence S3(u) ¼ A(u)cos[2pf SR

0 u + w(u)] is
shown in Fig. 6. The angular interval for this dependence is
+208. A rotated Caterpillar heavy construction vehicle with
the sizes 5.5 × 2.5 × 1.5 m was used as a complex radar
object here.

D) Experimental investigation of the
measured autocorrelation functions (ACF)
and space spectra
The ACF and space spectra of the stochastic polarization-
angular response of a rotated complex radar object, the
Caterpillar vehicle mentioned before, are shown in Figs 7
and 8. Figure 7 shows the autocorrelation function in the
angular interval +208 w.r.t. the object’s side view (dashed
line) and the autocorrelation function over the same interval
w.r.t. the rear view of the object (solid line). The measurements
in these directions allow us to consider the difference in the
radar object’s space spectral bands when it is observed in
areas from the side (dashed line) and from the rear (solid
line). It can be seen from Fig. 7 that the RCRO’s mean power
spectra have a two-mode form. It shows that the so-called
equivalence principle can be used “on the average” in order
to describe a model of an RCRO [10] as two distributed
scatterers.

Fig. 6. Experimental realization of S3(u), having the form of a narrow-band stochastic process of angular variable.

Fig. 7. ACF of the RCRO stochastic polarization-angular response.
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I V . C O N C L U S I O N S

In this paper, we have elaborated a theory on parameters that
describe properties of an object that are invariant to the polar-
ization. For a two-point object it was possible to perform an
experiment with a known object and compare the experimen-
tally achieved results with the theoretically expected values. It
was shown that good correspondence was achieved between
theory and experiment.

We have developed a theory as well for multipoint complex
radar objects and we have shown the results of experiments
with such an object.

The results of this paper confirm that the formation of the
polarization-power parameters of the electromagnetic field at
the scattering by RCRO can be regarded as an interference
process. This fact allows us to find both the polarization-
angular stochastic response autocorrelation function and the
RCRO space power spectra. These quantities give us the possi-
bility of recognition and classification of distributed radar
objects using the object geometry and the polarization par-
ameter distribution along an object.
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Fig. 8. Mean power space spectra of RCRO.
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