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1. Introduction

This work is concerned with an extension of a well-known inequality due to
Dı́az and Saa [5] to certain quasilinear elliptic operators that are pointwise p(x)-
homogeneous, but anisotropic, in general, such as the p(x)-Laplacian Δp(x)u ≡
div(|∇u|p(x)−2∇u) with a variable exponent p(x) ∈ (1, ∞). Such operators have
been studied extensively, for example, in Diening et al. [6], and in Rădulescu
and Repovš [18]. Interesting applications to a model of electrorheological fluids
are presented in [6, § 14.4, pp. 470–481] and the monograph by Růžička [19].
However, to our best knowledge, the Dı́az and Saa inequality [5] still has not
been extended from the original case of a constant exponent p(x) ≡ p = const ∈
(1, ∞) to a variable exponent p(x). This inequality turns out to be equiva-
lent with the convexity of a p(x)-power type energy functional, as suggested in
Brézis and Oswald [3] for p(x) ≡ p = 2, and generalized in Fleckinger et al. [12]
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to any constant p(x) ≡ p ∈ (1, ∞). In applications to quasilinear elliptic opera-
tors (with p constant, 1 < p < ∞), this equivalence played a decisive role in the
works by Girg and Takáč [13, § 4.1, pp. 289–292] and Takáč, Tello, and Ulm
[22, lemma 2.4, p. 79].

To be more specific, the functional in question, W : W → R+, is defined by

W(v) ≡ Wp(x),r(v) def=
∫

Ω

r

p(x)

∣∣∣∇(|v(x)|1/r)
∣∣∣p(x)

dx (1.1)

for every function v ∈ Lp(x)/r(Ω) such that |v|1/r ∈ W
1,p(x)
0 (Ω); the set of all such

functions v : Ω → R is denoted by W ≡ Wp(x),r. Here, we assume that Ω ⊂ R
N is

a bounded domain in R
N (N � 1) whose boundary is a compact manifold (with

smoothness to be specified later if N � 2), r ∈ [1, ∞) is a given constant, and
p ∈ L∞(Ω) is an essentially bounded function satisfying p(x) > 1 and p(x) � r for
almost all x ∈ Ω (whose smoothness will be specified later, as well). We will show
in § 2 that this functional is convex on the cone

•
V

def= {v : Ω → (0,∞) : v ∈ W} ⊂ W (1.2)

of all positive functions v ∈ W . The convexity of the restriction W :
•
V → R+ to

•
V is

well-known to be equivalent with the monotonicity of its (set-valued) subdifferential

∂W(v) at v ∈
•
V that is a nonempty set only for certain elements v ∈

•
V which might

not be easy to determine; cf. Girg and Takáč [13, § 4.1, pp. 289–292]. To avoid this
problem, we restrict ourselves only to certain directional derivatives of W which
exist in the classical sense.

We consider two functions v1, v2 ∈
•
V such that v1/v2, v2/v1 ∈ L∞(Ω). Conse-

quently, also v
def= (1 − θ)v1 + θv2 ∈

•
V is valid for all θ ∈ (−δ, 1 + δ), where δ ∈

(0, 1) is small enough. The function

θ �→ Φ(θ) def= W(v) = W ((1 − θ)v1 + θv2) : (−δ, 1 + δ) → R+

is convex and differentiable with the derivative

Φ′(θ) =
∫

Ω

∣∣∣∇(|v(x)|1/r)
∣∣∣p(x)−2

∇(|v(x)|1/r) · ∇
(

v2 − v1

v1−(1/r)

)
dx; (1.3)

see theorem 2.2 below. The monotonicity of the derivative θ �→ Φ′(θ) :
(−δ, 1 + δ) → R yields Φ′(1) − Φ′(0) � 0, that is,〈

− Δp(x)(v1(x)1/r)
v1(x)(r−1)/r

+
Δp(x)(v2(x)1/r)

v2(x)(r−1)/r
, v1 − v2

〉

=
∫

Ω

(
− Δp(x)(v1(x)1/r)

v1(x)(r−1)/r
+

Δp(x)(v2(x)1/r)
v2(x)(r−1)/r

)
(v1 − v2) dx � 0,

(1.4)

provided the integration by parts in equation (1.3) can be justified. In this case,
we may substitute wi = v

1/r
i > 0 in W

1,p(x)
0 (Ω); i = 1, 2, to derive the following
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extension of the Dı́az and Saa inequality (theorem 2.5 below):

∫
Ω

(
− Δp(x)w1(x)

w1(x)r−1
+

Δp(x)w2(x)
w2(x)r−1

)
(wr

1 − wr
2) dx � 0 (1.5)

for all pairs w1, w2 ∈ W
1,p(x)
0 (Ω), such that w1 > 0, w2 > 0 a.e. in Ω and both

w1/w2, w2/w1 ∈ L∞(Ω). The special case p(x) ≡ r = const ∈ (1, ∞) yields the
classical Dı́az and Saa inequality established in [5].

To verify inequality (1.5), in § 2 below (theorem 2.5), we slightly modify the
method used in [12,13,22]. Our proof inequality (1.5) is based on the convex-

ity of the restriction of the functional W to the cone
•
V ⊂ W . Finally, in § 3, we

present a few applications of our main results to some nonlinear boundary value
problems with the Dirichlet p(x)-Laplacian Δp(x) and the power-type nonlinear-
ity |u(x)|q(x)−2u(x), where the following (uniform) ‘subhomogeneity’ condition is
assumed:

1 < q(x) � r � p(x) for almost every x ∈ Ω, (1.6)

with a suitable (uniform separation) constant r ∈ (1, ∞). This condition is related
to abstract subhomogeneity conditions introduced in the well-known monograph
by Krasnosel’skĭı and Zabrĕıko [14] in several different abstract settings in ordered
Banach spaces.

2. Main results and their proofs

It is easy to see that the set
•
V defined in equation (1.2) is a convex cone, that is,

(i) λ ∈ (0, ∞), f ∈
•
V ⇒ λf ∈

•
V ; and (ii) f, g ∈

•
V ⇒ f + g ∈

•
V .

Definition 2.1. A functional W :
•
V → R will be called ray-strictly convex

(strictly convex , respectively) if it satisfies

W ((1 − θ)v1 + θv2) � (1 − θ) · W(v1) + θ · W(v2) (2.1)

for all v1, v2 ∈
•
V and for all θ ∈ (0, 1),

where the inequality is strict (<) unless v2/v1 ≡ const > 0 is a constant (for W
‘strictly convex’ always strict if v1 
= v2).

We assume that Ω ⊂ R
N is either a bounded open interval in R

1 (N = 1) or
else a bounded domain in R

N (N � 2) whose boundary ∂Ω is a compact manifold
of class C1,α for some α ∈ (0, 1). Additional hypotheses on the smoothness of the
boundary ∂Ω (such as interior sphere condition at ∂Ω) will be added later in the
applications (§ 3).
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For the sake of simplicity, we assume that r ∈ [1, ∞) is a given constant and
p : Ω → (1, ∞) is a continuous function, such that

1 < p−
def= inf

Ω
p(x) � p+

def= sup
Ω

p(x) < ∞ and 1 � r � p−. (2.2)

We assume that the function A of (x, ξ) ∈ Ω × R
N extends to a continuous and

nonnegative function A : Ω × R
N → R+, and it verifies the following hypothesis:

For every fixed x ∈ Ω, the function A(x, · ) : R
N → R+ is positively p(x)-homoge-

neous, that is,

A(x, tξ) = |t|p(x) A(x, ξ) for all t ∈ R, ξ ∈ R
N . (2.3)

It is evident from equation (2.3) that

A(x, ξ) = A

(
x,

ξ

|ξ|
)
· |ξ|p(x), for all ξ ∈ R

N \ {0},

determines the growth of A(x, ξ) with respect to ξ ∈ R
N \ {0}, for any fixed x ∈ Ω.

Let S
N−1 def= {ξ ∈ R

N : |ξ| = 1} denote the unit sphere in R
N centred at the origin

0 ∈ R
N . We remark that the ‘coefficient’ A (x, ξ/|ξ|) in the last equation above is

bounded from above by a positive constant, thanks to A : Ω × S
N−1 → R+ being

continuous on the compact set Ω × S
N−1 ⊂ R

N × R
N .

The simpliest example of A is, of course, A(x, ξ) = |ξ|p(x) for (x, ξ) ∈ Ω × R
N , in

which case A(x, ξ) = 1 for all (x, ξ) ∈ Ω × S
N−1. This case leads to the functional

W defined in equation (1.1).
The next theorem is our main result on the functional WA : W → R+ defined by

WA(v) ≡ WA,p(x),r(v) def=
∫

Ω

r

p(x)
A
(
x, ∇(|v(x)|1/r)

)
dx (2.4)

=
∫

Ω

r

p(x)
A

(
x,

∇(|v|1/r)∣∣∇(|v|1/r)
∣∣
)

·
∣∣∣∇(|v|1/r)

∣∣∣p(x)

dx

for every function v ∈ W ; see equation (1.1) in § 1.

Theorem 2.2 (Convexity). Let r ∈ [1, ∞) and p : Ω → (1, ∞) satisfy (2.2).
Assume that A : Ω × R

N → R+ is continuous and satisfies the p(x)-homogeneity
hypothesis (2.3). In addition, assume that the function

ξ �→ N(x, ξ) def= A(x, ξ)r/p(x) : R
N → R+ (2.5)

is strictly convex for every x ∈ Ω. Then the restriction of the functional WA : W →
R+ to the convex cone

•
V is ray-strictly convex on

•
V .

Furthermore, if p(x) 
≡ r in Ω, that is, if r = p− ≡ p(x) ≡ p+ does not hold in Ω,

then WA is even strictly convex on
•
V .

Remark 2.3. (i) In the classical setting with p(x) ≡ p ∈ (1, ∞) being a constant
and r = 1 (cf. Takáč [21]), N(x, ξ) ≡ N(ξ) = |ξ| = ‖ξ‖�2 (ξ ∈ R

N ) is the standard
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Euclidean norm in R
N . Hence, the functional WA : W → R+ defined in (1.1) and

(2.4) takes the form

WA(v) ≡ WA,p,1(v) =
1
p

∫
Ω

|∇v(x)|p dx =
1
p
‖v‖p

W 1,p
0 (Ω)

for every v ∈ W = W 1,p
0 (Ω), thanks to |∇|v|| = |∇v| a.e. in Ω.

(ii) In fact, Part (i) was the motivation for expressing the function ξ �→ A(x, ξ) =
N(x, ξ)p(x)/r : R

N → R+ as a power (p(x)/r � 1) of the (strictly convex) function
ξ �→ N(x, ξ) : R

N → R+ that may be taken to be a strictly convex norm on R
N

depending on x ∈ Ω; cf. Takáč, Tello, and Ulm [22, remark 2.1, p. 78].
(iii) We note that (in theorem 2.2 above) the function ξ �→ A(x, ξ) =

N(x, ξ)p(x)/r : R
N → R+ is strictly convex for each fixed x ∈ Ω, thanks to the

power function t �→ tp(x)/r : R+ → R+ being strictly monotone increasing and con-
vex. Consequently, A(x, ξ) > A(x, 0) = 0 for all x ∈ Ω and ξ ∈ R

N \ {0}, and
A : Ω × S

N−1 → R+ is bounded below and above on the compact set Ω × S
N−1 ⊂

R
N × R

N by some positive constants; hence, the ‘coefficient’ A (x, ξ/|ξ|) in the inte-
grand in equation (2.4), if ξ = ∇(|v|1/r) 
= 0, is bounded from below and above by
some positive constants c1, c2 ∈ (0, ∞),

0 < c1 � A
(
x, ξ

|ξ|
)

� c2 < ∞.

This shows that also the ratio of the functionals in (2.4) and (1.1) is bounded from
below and above by the same positive constants as above, that is,

c1 · W(v) � WA(v) � c2 · W(v) for every v ∈
•
V .

Proof of theorem 2.2. Recalling definition 2.1, let us consider any v1, v2 ∈
•
V and

θ ∈ (0, 1). Let us denote v = (1 − θ)v1 + θv2; hence, v ∈
•
V . We obtain easily

∇(vi(x)1/r) =
v
1/r
i

r

∇vi

vi
for i = 1, 2, and

∇(v(x)1/r) =
1
r

(1 − θ)∇v1 + θ∇v2

[(1 − θ)v1 + θv2]1−(1/r)

=
v1/r

r

(1 − θ)∇v1 + θ∇v2

v

=
v1/r

r

[
(1 − θ)

v1

v
· ∇v1

v1
+ θ

v2

v
· ∇v2

v2

]
,

with the convex combination of positive coefficients (1 − θ) v1/v and θ v2/v,

(1 − θ)
v1

v
+ θ

v2

v
= 1.
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Now let x ∈ Ω be fixed. Since ξ �→ N(x, ξ) is strictly convex, by our hypothesis, we
may apply the identities from above to conclude that

N

(
x, (1 − θ)

v1

v
· ∇v1

v1
+ θ

v2

v
· ∇v2

v2

)

� (1 − θ)
v1

v
· N
(

x,
∇v1

v1

)
+ θ

v2

v
· N
(

x,
∇v2

v2

)
.

(2.6)

The equality holds if and only if

∇v1(x)
v1(x)

=
∇v2(x)
v2(x)

, which is equivalent to ∇
(

v2(x)
v1(x)

)
= 0. (2.7)

Notice that the homogeneity conditions (2.3) and (2.5) yield

N(x, tξ) = |t|r N(x, ξ) for all t ∈ R, ξ ∈ R
N . (2.8)

Consequently, we multiply inequality (2.6) by v/rr to obtain the following
equivalent inequality,

N
(
x,∇(v(x)1/r)

)
=

v

rr
· N
(

x, (1 − θ)
v1

v
· ∇v1

v1
+ θ

v2

v
· ∇v2

v2

)

� (1 − θ)
v1

rr
· N
(

x,
∇v1

v1

)
+ θ

v2

rr
· N
(

x,
∇v2

v2

)

= (1 − θ) · N
(
x,∇(v1(x)1/r)

)
+ θ · N

(
x,∇(v2(x)1/r)

)
.

(2.9)

Finally, by remark 2.3, we conclude that inequality (2.9) entails

A
(
x,∇(v(x)1/r)

)
� (1 − θ) · A

(
x,∇(v1(x)1/r)

)
+ θ · A

(
x,∇(v2(x)1/r)

)
.

(2.10)
We multiply the last inequality, (2.10), by r/p(x), then integrate the product

over Ω to derive the convexity of the restriction of the functional WA to the convex

cone
•
V ⊂ W .

To derive that WA is even ray-strictly convex on
•
V , let us consider any pair

v1, v2 ∈
•
V with v1 
≡ v2 in Ω. We observe that the equality in the convexity inequal-

ity (2.1) forces both conditions, (2.7) and p(x)/r = 1, to hold simultaneously at
almost every point x ∈ Ω. These conditions are then equivalent with v2/v1 ≡ const
(
= 1) in Ω and p(x) ≡ r in Ω. Thus, if p(x) 
≡ r in Ω, then WA is even strictly

convex on
•
V . �

Our second theorem is concerned with the extension of the Dı́az and Saa
inequality as formulated inequality (1.5). Here, we need to assume a more spe-
cific form of the function A : Ω × R

N → R+. Besides the homogeneity hypothesis
(2.5), we assume that A and its partial gradient ∂ξA ≡ (∂A/∂ξi)

N
i=1 with respect to

ξ ∈ R
N satisfy the following structural hypothesis, upon the substitution a(x, ξ) def=

(1/p(x)) ∂ξA(x, ξ) with ai = (1/p(x)) (∂A/∂ξi) :
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Hypothesis 2.4. (A) Given any fixed x ∈ Ω, the function A(x, · ) : R
N → R+

verifies the positive p(x)-homogeneity hypothesis (2.3). Furthermore, we assume
that A ∈ C(Ω × R

N ) ∩ C1(Ω × R
N ) and its partial gradient ∂ξA : Ω × R

N → R
N

satisfies 1/p (∂A/∂ξi) = ai ∈ C1(Ω × (RN \ {0})) for all i = 1, 2, . . . , N , together
with the following ellipticity and growth conditions: There exist some constants
γ, Γ ∈ (0, ∞) such that

N∑
i,j=1

∂ai

∂ξj
(x, ξ) · ηiηj � γ · |ξ|p(x)−2 · |η|2, (2.11)

N∑
i,j=1

∣∣∣∣∂ai

∂ξj
(x, ξ)

∣∣∣∣ � Γ · |ξ|p(x)−2, (2.12)

for all x ∈ Ω, all ξ ∈ R
N \ {0}, and all η ∈ R

N .

Owing to the homogeneity hypothesis (2.5), it suffices to assume that the
inequalities in (2.11) and (2.12) hold for all ξ ∈ S

N−1 only.

Theorem 2.5 (The Dı́az and Saa inequality). Let r ∈ [1, ∞) and p : Ω → (1, ∞)
satisfy (2.2). Assume that A : Ω × R

N → R+ satisfies Hypothesis (A) and, in
addition, the function ξ �→ N(x, ξ) = A(x, ξ)r/p(x) : R

N → R+ is strictly convex for
every x ∈ Ω. Then the following inequality

∫
Ω

(
− div a(x,∇w1(x))

w1(x)r−1
+

div a(x,∇w2(x))
w2(x)r−1

)
(wr

1 − wr
2) dx � 0 (2.13)

holds (in the sense of distributions) for all pairs w1, w2 ∈ W
1,p(x)
0 (Ω), such that

w1 > 0, w2 > 0 a.e. in Ω and both w1/w2, w2/w1 ∈ L∞(Ω). Moreover, if the equality
(=) in (2.13) occurs, then we have the following two statements:

(a) w2/w1 ≡ const > 0 in Ω.

(b) If also p(x) 
≡ r in Ω, then even w1 ≡ w2 holds in Ω.

Remark 2.6. The distributional inequality (2.13) has to be interpreted in the
following way: ∫

Ω

a(x,∇w1(x)) · ∇
(

w1 − wr
2

wr−1
1

)
dx

�
∫

Ω

a(x,∇w2(x)) · ∇
(

wr
1

wr−1
2

− w2

)
dx

(2.14)

for all pairs w1, w2 ∈ W
1,p(x)
0 (Ω), such that w1 > 0, w2 > 0 a.e. in Ω and both

w1/w2, w2/w1 ∈ L∞(Ω). Both integrals above are defined as Lebesgue integrals,
thanks to the inequalities in (2.11) and (2.12) combined with the following standard
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identities,

∇
(

wr
2

wr−1
1

)
= r

(
w2

w1

)r−1

∇w2 − (r − 1)
(

w2

w1

)r

∇w1,

∇
(

wr
1

wr−1
2

)
= r

(
w1

w2

)r−1

∇w1 − (r − 1)
(

w1

w2

)r

∇w2,

where w1/w2, w2/w1 ∈ L∞(Ω) and all gradients belong to Lp(x)(Ω), whence also
wr

2/wr−1
1 , wr

1/wr−1
2 ∈ W

1,p(x)
0 (Ω).

Proof of theorem 2.5. Recalling definition 2.1, let us consider any pair w1, w2 ∈
W

1,p(x)
0 (Ω), such that w1 > 0, w2 > 0 a.e. in Ω and both w1/w2, w2/w1 ∈ L∞(Ω).

Consequently, there is a number δ ∈ (0, 1), sufficiently small, such that

v
def= (1 − θ)wr

1 + θwr
2 ∈

•
V and v1/r ∈ W

1,p(x)
0 (Ω) for all θ ∈ (−δ, 1 + δ).

The function

θ �→ Φ(θ) def= W(v) = WA ((1 − θ)wr
1 + θwr

2) : (−δ, 1 + δ) → R+

is convex and differentiable with the derivative

Φ′(θ) =
∫

Ω

a(x,∇(v(x)1/r)) · ∇
(

wr
2 − wr

1

v1−(1/r)

)
dx. (2.15)

To provide a rigorous proof of the convexity claim, one has to consider two
arbitrary points θ1, θ2 ∈ R, such that −δ < θ1 < θ2 < 1 + δ, and all their convex
combinations θ = (1 − t)θ1 + tθ2 ∈ (−δ, 1 + δ) with t ∈ [0, 1]. For 0 � θ1 < θ2 � 1
the convexity is known, by theorem 2.2. However, if at least one of the follow-
ing inequalities holds, −δ < θ1 < 0 and/or 1 < θ2 < 1 + δ, the convexity inequality
Φ(θ) � (1 − t)Φ(θ1) + tΦ(θ2) still remains to be verified. Of course, the number
δ > 0 needs to be taken small enough. We leave this easy exercise to the reader.

The monotonicity of the derivative θ �→ Φ′(θ) : (−δ, 1 + δ) → R yields Φ′(0) �
Φ′(1), which is equivalent with inequality (2.14), thanks to v = wr

1 if θ = 0, and
v = wr

2 if θ = 1. It is now easy to see that inequality (2.13) is a distributional
interpretation of (2.14) after integration by parts.

Finally, let us assume that the equality (=) in (2.13) is valid. This forces
Φ′(0) = Φ′(1) above; hence, Φ′(θ) = Φ′(0) for all θ ∈ [0, 1], by the monotonicity
of Φ′ : [0, 1] → R. It follows that Φ : [0, 1] → R must be linear, that is, Φ(θ) =
(1 − θ)Φ(0) + θΦ(1) ∈ R for all θ ∈ [0, 1]. Recalling our definition of Φ above and
theorem 2.2, we conclude that w2/w1 ≡ const > 0 in Ω. This proves statement (a).

To verify statement (b), suppose that the constant above w2/w1 ≡ const 
= 1
in Ω. Then the equality in both inequalities, (2.9) and (2.10), is possible only if
p(x) ≡ r in Ω. Statement (b) follows. �

Our third (and last) theorem is a weak comparison principle for positive solutions
u ∈ W

1,p(x)
0 (Ω) of the following (uniformly) ‘subhomogeneous’ Dirichlet boundary
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value problem:{ − div a(x,∇u(x)) = f(x)u(x)r−1 for x ∈ Ω; u > 0 a.e. in Ω;

u = 0 for x ∈ ∂Ω.
(2.16)

Here, f ∈ L∞(Ω) is a given nonnegative function, f � 0 a.e. in Ω.

Theorem 2.7 (Weak comparison principle). Let all r ∈ [1, ∞), p : Ω → (1, ∞),
A : Ω × R

N → R+, and the function ξ �→ N(x, ξ) = A(x, ξ)r/p(x) : R
N → R+ sat-

isfy the same hypotheses as in theorem 2.5 above. In addition, assume that p(x) 
≡ r
in Ω, that is, p(x) > r on a subset of Ω with positive Lebesgue measure.

Finally, let ui ∈ W
1,p(x)
0 (Ω) be a positive solution of the Dirichlet boundary value

problem (2.16) (in the sense of distributions) with f = fi ∈ L∞(Ω) for i = 1, 2,
respectively, where 0 � f1 � f2 a.e. in Ω. If u1/u2, u2/u1 ∈ L∞(Ω) then we have
also u1 � u2 a.e. in Ω.

Remark 2.8. Conditions u1/u2, u2/u1 ∈ L∞(Ω) imposed on the solutions u1 and
u2 are easy to verify for f1 
≡ 0 (hence, also f2 
≡ 0) in Ω, by the regularity results in
Fan and Zhao [10, theorem 4.1, p. 312] and Fan [7, theorem 1.2, p. 400] combined
with the Hopf boundary point lemma from Zhang [23, theorems 1.1 and 1.2, p. 26];
see our proof of theorem 3.4 below.

It will be obvious from our proof of theorem 2.7 below that the following simple
generalization of this theorem to weak sub- and supersolutions is a direct conse-
quence of the proof. (We leave the details concerning only the last two inequalities
of the proof to an interested reader.)

Theorem 2.9 (Weak comparison principle for sub- and supersolutions). Let all
r ∈ [1, ∞), p : Ω → (1, ∞), A : Ω × R

N → R+, and the function ξ �→ N(x, ξ) =
A(x, ξ)r/p(x) : R

N → R+ satisfy the same hypotheses as in theorem 2.5 above. In
addition, assume that p(x) 
≡ r in Ω, that is, p(x) > r on a subset of Ω with positive
Lebesgue measure.

Finally, let ui ∈ W
1,p(x)
0 (Ω) (i = 1, 2) be a pair of positive functions satisfying

u1/u2, u2/u1 ∈ L∞(Ω) together with the following inequalities (in the sense of dis-
tributions) with fi ∈ L∞(Ω) for i = 1, 2, respectively, where 0 � f1 � f2 a.e. in
Ω:{ − div a(x,∇u1(x)) � f1(x)u1(x)r−1 for x ∈ Ω; u1 > 0 a.e. in Ω;

u1 = 0 for x ∈ ∂Ω.
(2.17)

{ − div a(x,∇u2(x)) � f2(x)u2(x)r−1 for x ∈ Ω; u2 > 0 a.e. in Ω;

u2 = 0 for x ∈ ∂Ω.
(2.18)

Then also u1 � u2 a.e. in Ω holds.

We quote a well-known fact from the theory of distributions that any nonnegative
distribution in D′(Ω) may be identified with a nonnegative Radon measure on Ω.
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This result shows that the left-hand side of both inequalities (2.17) and (2.18) must
be a Radon measure on Ω.

Proof of theorem 2.7. We proceed in analogy with the proof of theorem 2.5 above.
We set wi = ui; i = 1, 2, and define

v ≡ v(θ) def= ur
2 + θ(ur

1 − ur
2)

+ for all θ ∈ (−δ, 1 + δ),

where δ ∈ (0, 1) is a sufficiently small number, such that v ∈
•
V for every θ ∈

(−δ, 1 + δ). As usual, the symbol ξ+ = max{ξ, 0} � 0 stands for the positive part
of a real number ξ ∈ R. Hence, we have also v1/r ∈ W

1,p(x)
0 (Ω). Notice that

v =

{
ur

2 if u1 � u2,

ur
2 + θ(ur

1 − ur
2) if u1 > u2.

On the contrary to our claim u1 � u2 a.e. in Ω, let us assume that (ur
1 − ur

2)
+ > 0

holds on a subset Ω+ = {x ∈ Ω : u1(x) > u2(x)} ⊂ Ω of positive Lebesgue measure.
By theorem 2.2, thanks to our hypothesis p(x) 
≡ r in Ω, the function

θ �→ Φ(θ) def= W(v) = WA

(
ur

2 + θ(ur
1 − ur

2)
+
)

: (−δ, 1 + δ) → R+

is strictly convex and differentiable with the derivative

Φ′(θ) =
∫

Ω

a(x,∇(v(x)1/r)) · ∇
(

(ur
1 − ur

2)
+

v1− 1
r

)
dx. (2.19)

The strict convexity of Φ : (−δ, 1 + δ) → R and the monotonicity of its derivative
Φ′ yield Φ′(0) < Φ′(1), which is equivalent with

∫
Ω

a(x,∇u2(x)) · ∇
(

(ur
1 − ur

2)
+

ur−1
2

)
dx

<

∫
Ω

a
(
x,∇

[
(ur

2 + (ur
1 − ur

2)
+)1/r

])
· ∇
(

(ur
1 − ur

2)
+

(ur
2 + (ur

1 − ur
2)+)1−(1/r)

)
dx.

By remark 2.6, the last inequality has the following distributional interpretation,

−
∫

Ω

div a(x,∇u2(x))
u2(x)r−1

(ur
1 − ur

2)
+ dx

< −
∫

Ω

div a
(
x,∇ [(ur

2 + (ur
1 − ur

2)
+)1/r

])
(ur

2 + (ur
1 − ur

2)+)1−
1
r

(ur
1 − ur

2)
+ dx.

(2.20)

As it is well-known from the theory of Sobolev spaces of type W
1,p(x)
0 (Ω), both

integrands above vanish almost everywhere in the Lebesgue measurable set Ω− =
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{x ∈ Ω : u1(x) � u2(x)} ⊂ Ω. Consequently, inequality (2.20) reads

∫
Ω+

(
− div a(x,∇u2(x))

u2(x)r−1
+

div a(x,∇u1(x))
u1(x)r−1

)
(ur

1 − ur
2) dx < 0. (2.21)

By our hypotheses, we have

− div a(x,∇u2(x))
u2(x)r−1

+
div a(x,∇u1(x))

u1(x)r−1
= f2(x) − f1(x) � 0 for a.e. x ∈ Ω.

Since also ur
1 − ur

2 > 0 a.e. in Ω+, inequality (2.21) leads to a contradiction.
Thus, we have proved that the set Ω+ must have Lebesgue measure equal to

zero. �

3. Applications to differential equations

In this section, we give two applications of theorems 2.2 and 2.5. Throughout this
section, we impose the following hypotheses on Ω and p(x):

Hypothesis 3.1 (Ω). If N = 1 then Ω is a bounded open interval in R
1. If N � 2

then Ω is a bounded domain in R
N whose boundary ∂Ω is a compact manifold of

class C1,α for some α ∈ (0, 1), and Ω satisfies also the interior sphere condition at
every point of ∂Ω.

It is clear that for N � 2, Hypothesis (Ω) is satisfied if, for instance, Ω ⊂ R
N is

a bounded domain with C2 boundary. We write Ω = Ω ∪ ∂Ω for the closure of Ω in
R

N .

Hypothesis 3.2 (p). We assume that p : Ω → (1, ∞) is α1-Hölder-continuous,
that is, p ∈ C0,α1(Ω) for some α1 ∈ (0, 1), and p satisfies (2.2) with a given constant
r ∈ [1, ∞), that is,

1 < p−
def= inf

Ω
p(x) � p+

def= sup
Ω

p(x) < ∞ and 1 � r � p−.

Our first application is the following nonlinear Dirichlet boundary value problem
taken from Diening et al. [6, equation (13.3.2), p. 418],{ − Δp(x)u = f(x, u) in Ω;

u = 0 on ∂Ω, u > 0 in Ω.
(3.1)

We impose the following hypotheses on the function f :

(f1) f : Ω × R+ → R+ is a nonnegative continuous function such that f(x, 0) = 0
for all x ∈ Ω.

(f2) The function s �−→ f(x, s)/sr−1 : (0,∞) → R+ is strictly monotone decreas-
ing for every x ∈ Ω.
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(f3) The following two limits are uniform with respect to x ∈ Ω:

f(x, s)
sr−1

−→ +∞ as s → 0 + and
f(x, s)
sr−1

−→ 0 as s → +∞.

Equivalently, we require

1
sr−1

· inf
x∈Ω

f(x, s) −→ +∞ as s → 0 + and

1
sr−1

· sup
x∈Ω

f(x, s) −→ 0 as s → +∞.

A typical example of the function f satisfying all Hypotheses (f1)–(f3), with
f(x, s) = h(x) sq(x)−1 for x ∈ Ω and s ∈ R+, is given below in example 3.6. Here,
h ∈ C(Ω) is a positive function and q ∈ C(Ω) satisfies 1 � q(x) � q+

def= supΩ q(x) <
r = p− for every x ∈ Ω. In fact, we may choose any number r ∈ (q+, p−] while
requiring q+ < p−. As a consequence, in this example we must have 1 � q+ < r �
p− whence r > 1.

We remark that Hypothesis (f3) implies the following asymptotic behaviour of
the function s �→ f(x, s) : (0, ∞) → R+ as s → 0+: Given any ε > 0, there is a
constant sε ∈ (0, ∞) such that

f(x, s) � 1
ε

sr−1 holds for all (x, s) ∈ Ω × [0, sε]. (3.2)

In contrast, Hypotheses (f1) and (f3) limit the asymptotic behaviour of f(x, · ) as
s → +∞ as follows: Given any ε > 0, there is a constant Cε ∈ (0, ∞) such that

0 � f(x, s) � ε sr−1 + Cε holds for all (x, s) ∈ Ω × R+. (3.3)

We define the notion of a nonnegative weak solution to problem (3.1) as follows:

Definition 3.3. A nonnegative function u ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω) is called a

nonnegative weak solution of problem (3.1) if, for every test function φ ∈
W

1,p(x)
0 (Ω), the following equation holds,∫

Ω

|∇u(x)|p(x)−2∇u(x) · ∇φ(x) dx =
∫

Ω

f(x, u(x))φ(x) dx. (3.4)

If u satisfies also u > 0 throughout Ω, we call u a positive weak solution.

Problem (3.1) has already been treated in Fan and Zhang [9] where the existence
of a weak solution in W

1,p(x)
0 (Ω) is proved; see also Diening et al. [6, theorem 13.3.3,

p. 418]. Of course, the trivial solution u ≡ 0 in Ω is a nonnegative weak solution to
problem (3.1).

The following theorem describes the solvability of the boundary value
problem (3.1) for positive weak solutions.

Theorem 3.4. Under the Hypotheses (Ω), (p), and (f1)–(f3), problem (3.1) pos-
sesses a unique nonnegative and nontrivial weak solution u ∈ W

1,p(x)
0 (Ω) ∩ L∞(Ω).
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This solution belongs to the class C1,β(Ω), for some β ∈ (0, α), and satisfies also
the Hopf maximum principle,

u(x) > 0 for all x ∈ Ω and
∂u

∂ν
(x) < 0 for all x ∈ ∂Ω. (3.5)

Of course, u = 0 on the boundary ∂Ω. Hence, u is also a positive weak solution.

As usual, the symbol ν(x) ∈ R
N stands for the unit outward normal to the

boundary ∂Ω at the point x ∈ ∂Ω.

Proof. We extend the domain of f to all of Ω × R by setting f(x, s) = 0 for (x, s) ∈
Ω × (−∞, 0). We define the potential F for the function f as follows:

F (x, u) def=
∫ u

0

f(x, s) ds =

{∫ u

0
f(x, s) ds if 0 � u < ∞;

0 if −∞ < u < 0,
(3.6)

for (x, u) ∈ Ω × R. Hence, f(x, s) = (∂F/∂u)(x, s) for (x, s) ∈ Ω × R. Clearly, for
each fixed x ∈ Ω, F (x, · ) : R → R+ is a monotone increasing function, owing to
(∂F/∂u)(x, s) = f(x, s) � 0.

Next, we obtain a nonnegative weak solution to problem (3.1) from a global
minimizer of the energy functional E : W

1,p(x)
0 (Ω) → R defined by

E(u) ≡ Ep(x)(u) def=
∫

Ω

1
p(x)

|∇u(x)|p(x) dx −
∫

Ω

F (x, u(x)) dx (3.7)

for every function u ∈ W
1,p(x)
0 (Ω). This functional is well-defined, by the Sobolev

embedding W
1,p(x)
0 (Ω) ↪→ Lr(Ω), which is even compact, and the estimate in (3.3).

The reader is referred to the monograph by Diening et al. [6, §§ 8.3 and 8.4] for
Sobolev embeddings and their compactness. Furthermore, E : W

1,p(x)
0 (Ω) → R is

coercive thanks to inequality (3.3) and r � p−, that is,

‖u‖
W

1,p(x)
0 (Ω)

def= ‖∇u‖Lp(x)(Ω) −→ +∞ =⇒ E(u) → +∞. (3.8)

It is also weakly lower semicontinuous, by [6, § 13.2, pp. 412–417]. Thus, by a basic
result from the calculus of variations (Struwe [20, theorem 1.2, p. 4]), E possesses
a global minimizer u0 ∈ W

1,p(x)
0 (Ω). Since also |u0| ∈ W

1,p(x)
0 (Ω) with the Sobolev

gradient ∇|u0| = ∇u0 almost everywhere in the set Ω+ = {x ∈ Ω : u0(x) � 0}, and
∇|u0| = −∇u0 almost everywhere in Ω− = {x ∈ Ω : u0(x) � 0}, we have |∇|u0|| =
|∇u0| a.e. in Ω = Ω+ ∪ Ω−. From this equality, combined with F (x, u) > 0 for u > 0
and F (x, u) = 0 for u � 0, we deduce that E(|u0|) � E(u0) which shows that also
|u0| is a a global minimizer for E on W

1,p(x)
0 (Ω). This means that E(u0) � E(|u0|) �

https://doi.org/10.1017/prm.2018.91 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.91
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E(u0) which forces

E(u0) =
∫

Ω

1
p(x)

|∇u0(x)|p(x) dx −
∫

Ω

F (x, u0(x)) dx

= E(|u0|) =
∫

Ω

1
p(x)

∣∣∇|u0(x)|∣∣p(x) dx −
∫

Ω

F (x, |u0(x)|) dx.

The arguments above yield∫
Ω−

F (x, |u0(x)|) dx =
∫

Ω−
F (x, u0(x)) dx = 0.

Hence, we get u0(x) = 0 for a.e. x ∈ Ω−. We have proved that u0 � 0 a.e. in Ω.
We now exclude the possibility that u0 ≡ 0 in Ω, that is, u0 = 0 a.e. in Ω. Since

E(0) = 0, we only need to find a function u1 ∈ W
1,p(x)
0 (Ω) such that E(u1) < 0.

Then E(u0) � E(u1) < 0 prevents the case u0 ≡ 0 in Ω with E(u0) = 0. To this
end, choose φ ∈ C1

c (Ω) to be an arbitrary nonnegative C1-function with compact
support in Ω, φ 
≡ 0 in Ω. For 0 < t � 1 we estimate

E(tφ) =
∫

Ω

tp(x)

p(x)
|∇φ(x)|p(x) dx −

∫
Ω

F (x, tφ(x)) dx (3.9)

� tp−

p−

∫
Ω

|∇φ(x)|p(x) dx −
∫

Ω

F (x, tφ(x)) dx.

In order to estimate the last integral, from inequality (3.2) we deduce that, given
any ε > 0, there is a constant tε ∈ (0, 1] such that

F (x, tφ(x)) � 1
rε

[t φ(x)]r holds for all (x, t) ∈ Ω × [0, tε]. (3.10)

We apply this estimate to inequality (3.9) and recall that 1 < r � p−, thus
arriving at

E(tφ) � tr

r

∫
Ω

|∇φ(x)|p(x) dx − tr

rε

∫
Ω

φ(x)r dx

= − tr

r

(
1
ε

∫
Ω

φ(x)r dx −
∫

Ω

|∇φ(x)|p(x) dx

)

for all t ∈ [0, tε]. Choosing ε > 0 small enough, we conclude that E(tφ) < 0 when-
ever 0 < t � tε. In addition to u0 � 0 a.e. in Ω, we have proved also u0 
≡ 0
in Ω.

Since u0 ∈ W
1,p(x)
0 (Ω) is a global minimizer for the functional E : W

1,p(x)
0 (Ω) →

R, it is also a critical point for E and, hence, a nonnegative weak solution to
problem (3.1) provided u0 ∈ L∞(Ω).

Now let u ∈ W
1,p(x)
0 (Ω) be any nonnegative critical point for E , u 
≡ 0 in Ω.

This means that u is a weak solution to problem (3.1) in the sense of Fan and
Zhao [10, definition 4.1, p. 311]. We may apply their regularity result [10, theorem
4.1, p. 312] (and its proof) to conclude that u ∈ L∞(Ω). This means that u is a
nonnegative weak solution to problem (3.1) also in the sense of our definition 3.3
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above. Moreover, we get u ∈ C0,β′
(Ω) for some β′ ∈ (0, α), by [10, theorem 4.2,

p. 315]. Furthermore, thanks to our Hypothesis (p) on p, that is, p ∈ C0,α1(Ω) for
some α1 ∈ (0, 1), we may apply a stronger regularity result due to Fan [7, theorem
1.2, p. 400] to obtain u ∈ C1,β(Ω) for some β ∈ (0, α). Finally, we apply the strong
maximum principle and the Hopf boundary point lemma, respectively, from Zhang
[23, theorems 1.1 and 1.2, p. 26] to conclude that both inequalities claimed in (3.5)
are valid.

Clearly, the global minimizer u0 ∈ W
1,p(x)
0 (Ω) for the functional E obtained above

enjoys analogous regularity and positivity properties as does u. As a simple con-
sequence, both ratios u/u0 and u0/u are continuous positive functions over the
domain Ω and can be extended to positive continuous functions over the closure Ω,
by l’Hospital’s rule,

lim
x→x0

u(x)
u0(x)

= lim
t→0+

u (x0 − tν(x0))
u0 (x0 − tν(x0))

=
∂u

∂ν
(x0)

/
∂u0

∂ν
(x0) > 0, (3.11)

where x0 ∈ ∂Ω is an arbitrary boundary point and x ∈ Ω ranges inside Ω near
x0, for example, x = x0 − tν(x0) with t > 0 small enough. The last ratio, x0 �→
(∂u/∂ν)(x0)/(∂u0/∂ν)(x0), being positive and continuous over the compact bound-
ary ∂Ω, we conclude that both ratios, u/u0 and u0/u, can be extended to positive
continuous functions over the closure Ω. Consequently, both ratios are bounded.
We apply our theorem 2.5 (the Dı́az and Saa inequality) to arrive at the uniqueness
of a nonnegative and nontrivial weak solution u ∈ W

1,p(x)
0 (Ω) ∩ L∞(Ω) to prob-

lem (3.1), that is, u = u0, as follows. Setting w1 = u and w2 = u0 in theorem 2.5,
the left-hand side inequality (2.13) becomes∫

Ω

( − Δp(x)u

u(x)r−1
− − Δp(x)u0

u0(x)r−1

)
(u(x)r − u0(x)r) dx

=
∫

Ω

(
f(x, u(x))
u(x)r−1

− f(x, u0(x))
u0(x)r−1

)
(u(x)r − u0(x)r) dx � 0, (3.12)

since the function s �→ f(x, s)/sr−1 : (0,∞) → R+ is strictly monotone decreasing
for every x ∈ Ω, by Hypothesis (f2). However, inequality (2.13), precisely the oppo-
site inequality ‘�’ must be valid. We conclude that the equality in (3.12) above
must hold. That is possible only if u(x) = u0(x) at almost every point x ∈ Ω, by
Hypothesis (f2), that is, u ≡ u0 in Ω, by the regularity derived above.

Our proof of theorem 3.4 is now complete. �

Remark 3.5. In our proof of theorem 3.4 above, we have proved that any nonne-
gative critical point u ∈ W

1,p(x)
0 (Ω) for the energy functional E : W

1,p(x)
0 (Ω) → R

defined by equation (3.7) must be bounded, that is, u ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω).

Hence, u is a nonnegative weak solution to problem (3.1) in the sense of our
definition 3.3 above. The decisive argument here is the regularity result in Fan
and Zhao [10, theorem 4.1, p. 312].

Example 3.6. (a) A typical example of the function f satisfying all conditions
in theorem 3.4 is f(x, s) = h(x) sq(x)−1, with a positive function h ∈ C(Ω) and
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q ∈ C(Ω) such that

1 � q(x) � q+
def= sup

Ω
q(x) < r = p− for every x ∈ Ω.

Consequently, f satisfies Hypotheses (f1)–(f3) with r = p−.
(b) Our condition on r, that is, q(x) < r = p− for every x ∈ Ω, is trivially

sharp in the following sense: If q(x) ≡ r ≡ p(x) is a constant in Ω, 1 < r < ∞,
and h(x) ≡ λ1,r(Ω) is the first eigenvalue of the ‘positive’ r-Laplacian −Δru =
−div(|∇u|r−2∇u) in Ω with zero Dirichlet boundary conditions, and ϕ1,r ∈ W 1,r

0 (Ω)
denotes the associated first eigenfunction normalized by ϕ1,r(x) > 0 in Ω and∫
Ω

ϕ1,r(x)r dx = 1, then any nonnegative multiple tϕ1,r (t ∈ R+) is a nonnegative
weak solution to problem (3.1); hence, this problem admits an infinite number of
solutions.

In contrast, if 0 � h(x) < λ1,r(Ω) holds for all x ∈ Ω, then the variational
characterization of the first eigenvalue λ1,r(Ω) by the Rayleigh quotient

λ1,r(Ω) = min
u�≡0

∫
Ω
|∇u(x)|r dx∫

Ω
|u(x)|r dx

with every minimizer ϕ ∈ W 1,r
0 (Ω) taking the form ϕ = tϕ1,r for some t ∈ R \ {0},

leaves only the trivial zero solution to problem (3.1) with f(x, s) = h(x) sr−1.
(c) Furthermore, if 1 � q(x) � r = p− = infx∈Ω p(x) holds for every x ∈ Ω, with

p(x) > r for all x ∈ Ω0 in a subset Ω0 ⊂ Ω of positive Lebesgue measure, then
problem (3.1) possesses at most one nonnegative and nontrivial weak solution u ∈
W

1,p(x)
0 (Ω) ∩ L∞(Ω). Any such weak solution u belongs to the class C1,β(Ω), for

some β ∈ (0, α), and satisfies also the Hopf maximum principle (3.5). Of course,
u = 0 on the boundary ∂Ω. Hence, u is also a positive weak solution. This claim
follows easily from the fact that the reaction function f(x, s) = h(x) sq(x)−1 has the
following properties:

(f1’) f : Ω × R+ → R+ is a nonnegative continuous function satisfying f(x, 0) = 0
for all x ∈ Ω with q(x) > 1.

(f2’) The function

s �−→ f(x, s)
sr−1

=
h(x)

sr−q(x)
: (0,∞) → R+

is strictly monotone decreasing for every x ∈ Ω1 = {x ∈ Ω : q(x) < r}, while
being = h(x) for all x ∈ Ω \ Ω1 = {x ∈ Ω : q(x) = r}.

Recall that h > 0 in all of Ω. Consequently, if there were two distinct positive weak
solutions, say, u0 and u as in our proof of theorem 3.4 above, then inequality (3.12)
would force u(x) = u0(x) for every x ∈ Ω1. Moreover, by theorem 2.5, Part (b), we
have even u(x) = u0(x) for every x ∈ Ω, thanks to p(x) > r for all x ∈ Ω0.

(d) Similarly to case (c) above, if 1 � q(x) � r = p− ≡ p(x) holds for every x ∈ Ω,
with p(x) ≡ r ∈ (1, ∞) being a constant and q(x) < r for all x ∈ Ω1 in a subset
Ω1 ⊂ Ω of positive Lebesgue measure, then problem (3.1) possesses at most one
nonnegative and nontrivial weak solution u ∈ W

1,p(x)
0 (Ω) ∩ L∞(Ω). The reasoning
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for this is similar as in case (c): First, we may take Ω1 = {x ∈ Ω : q(x) < r}; its
Lebesgue measure is > 0. Again, inequality (3.12) forces u(x) = u0(x) for every
x ∈ Ω1. Moreover, by theorem 2.5, Part (a), we have even u(x) = c · u0(x) for almost
every x ∈ Ω, where c ∈ (0, ∞) is a constant. But Ω1 ⊂ Ω has positive Lebesgue
measure which yields c = 1. The uniqueness result follows.

(e) Finally, in Mihăilescu and Rădulescu [15], the nonuniqueness of weak
solutions is established in case 1 < minx∈Ω q(x) < p− < maxx∈Ω q(x) (see also some
other related results in case p(x) = q(x) in Fan, Zhang, and Zhao [11]).

Remark 3.7.

(i) Theorem 3.4 solves the open problem raised in Fan [8] (see remark 2.3 on
p. 1443) and improves the uniqueness results given for problem (3.1) in [8].

(ii) The uniqueness property does not hold for solutions with changing sign, even
if p is a constant. For more details, we refer to examples exhibiting two distinct
critical points of the energy functional Eλ, with λ > 0, defined on W 1,p

0 (Ω) by

Eλ(u) def=
1
p

∫
Ω

|∇u|p dx − λ

p

∫
Ω

|u|p dx −
∫

Ω

f(x)u dx.

Such examples were constructed in del Pino, Elgueta, and Manásevich [17,
equation (5.26) on p. 12] for 2 < p < ∞ and in Fleckinger, Hernández, and
Takáč [12, example 2 on p. 148] for 1 < p < 2.

(iii) The easiest problem of type (3.1), with the right-hand side f(x, u) ≡ f(x)
being independent from the unknown function u = u(x), f ∈ L∞(Ω), can be
treated in a similar way as in theorem 3.4; one has to take r = 1 in the proof,
particularly in theorem 2.5 when applying it to an anlogue of inequality (3.12).
Then this inequality is actually an equality with the right-hand side = 0. The
uniqueness of a weak solution to problem

− Δp(x)u = f(x) in Ω; u = 0 on ∂Ω, u > 0 in Ω,

then follows by theorem 2.5, Part (a). But this uniqueness result is valid
for any (possibly sign-changing) weak solution u ∈ W

1,p(x)
0 (Ω), by a classical

argument that takes advantage of the strict convexity of the functional WA ≡
WA,p(x),1 on W

1,p(x)
0 (Ω) (r = 1); see, for example, [6, theorem 13.3.3, p. 418]

or [9, theorem 4.3, p. 1848].

Our second example is the following simple generalization of problem (3.1):{−Δp(x)u + g(x, u) = f(x, u) in Ω;
u = 0 on ∂Ω, u > 0 in Ω.

(3.13)

Here, we have a new monotone nonlinear operator on the left-hand side, − Δp(x)u +
g(x, u), whose homogeneity properties with respect to the function u are similar
to those of − Δp(x)u = − div

(|∇u|p(x)−2∇u
)
. We recall that p : Ω → (1, ∞) is a

continuous function, such that it satisfies Hypothesis (p) together with inequalities
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(2.2), where r ∈ R is a given constant, 1 < r � p−. The function f : Ω × R+ → R+

is assumed to satisfy all Hypotheses (f1)–(f3).
We impose the following hypotheses on the function g:

(g1) g : Ω × R+ → R+ is a nonnegative continuous function such that g(x, 0) =
0 for all x ∈ Ω and g(x, s) > 0 for all (x, s) ∈ Ω × (0, ∞).

(g2) The function s �−→ g(x, s)/sr−1 : (0,∞) → R+ is monotone increasing for
every x ∈ Ω, but not necessarily strictly monotone increasing.

(g3) The following limit is uniform with respect to x ∈ Ω:

lim sup
s→+∞

g(x, s)
sm(x)−1

� C ≡ const < ∞ for all x ∈ Ω,

where m : Ω → R+ is some suitable continuous function that satisfies 1 <
m(x) < p∗(x), where

p∗(x) def=

{ Np(x)
N−p(x) if p(x) < N ;

+ ∞ if p(x) � N.

The authors in [6, § 8.3, pp. 265–272] call p∗(x) ∈ [1, +∞] the Sobolev con-
jugate exponent and prove the Sobolev embedding W

1,p(·)
0 (Ω) ↪→ Lp∗(·)(Ω) for

p+ = supΩ p(x) < N ([6, § 8.3, theorem 8.3.1, p. 265]) under the additional regular-
ity hypothesis on p(x) requiring p ∈ P log(Ω), cf. [6, § 4.1, definition 4.1.4, p. 101],
that is, 1/p(x) is globally log-Hölder-continuous in Ω. This additional hypothesis
(log-Hölder continuity) is always satisfied in our situation, provided p : Ω → (1, ∞)
is a continuous function that obeys our hypotheses above, that is, p satisfies Hypoth-
esis (p) together with inequalities (2.2), where we now assume also p+ < N , in
addition to 1 < r � p−.

It is worth noticing that Hypotheses (g1) and (g2) imply

(g2’) Also s �−→ g(x, s) : R+ → R+ is a strictly monotone increasing function for
every x ∈ Ω.

Moreover, Hypotheses (g1) and (g2) combined entail

g(x, s) � C0 sr−1 holds for all (x, s) ∈ Ω × [0, s0]. (3.14)

Here, s0 ∈ [1, ∞) is an arbitrary number and

C0 = C0(s0) =
supx∈Ω g(x, s0)

sr−1
0

< ∞

is a positive constant depending solely on s0.
We remark that Hypotheses (g1) and (g3) limit the asymptotic behaviour of

g(x, · ) as s → +∞ as follows: Given any ε > 0, there is a constant C ′
ε ∈ (0, ∞)
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such that

0 � g(x, s) � (C + ε) sm(x)−1 + C ′
ε holds for all (x, s) ∈ Ω × R+. (3.15)

In analogy with our definition 3.3 adapted to problem (3.1), we define the notion
of a nonnegative weak solution to problem (3.13) as follows:

Definition 3.8. A nonnegative function u ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω) is called a non-

negative weak solution of problem (3.13) if, for every test function φ ∈
W

1,p(x)
0 (Ω), the following equation holds,

∫
Ω

|∇u(x)|p(x)−2∇u(x) · ∇φ(x) dx +
∫

Ω

g(x, u(x))φ(x) dx

=
∫

Ω

f(x, u(x))φ(x) dx.

(3.16)

If u satisfies also u > 0 throughout Ω, we call u a positive weak solution .

Problem (3.13) fits into a more general class of variational problems treated in
Fan and Zhao [10, equation 4.1, p. 310]. However, the authors are interested only
in some standard regularity properties of weak solutions, like (local and global)
boundedness and Hölder continuity ([10, § 4, pp. 310–317]).

We now generalize the existence and uniqueness result in theorem 3.4 to the
boundary value problem (3.13) for positive weak solutions.

Theorem 3.9. Under the Hypotheses (Ω), (p), (f1)–(f3), and (g1)–(g3), prob-
lem (3.13) possesses a unique nonnegative and nontrivial weak solution u ∈
W

1,p(x)
0 (Ω) ∩ L∞(Ω). This solution belongs to the class C1,β(Ω), for some β ∈

(0, α), and satisfies also the Hopf maximum principle (3.5),

u(x) > 0 for all x ∈ Ω and
∂u

∂ν
(x) < 0 for all x ∈ ∂Ω.

Of course, u = 0 on the boundary ∂Ω. Hence, u is also a positive weak solution.

Proof. First, let us recall that the potential F for the function f has been defined
in equation (3.6). We define the potential G for the function g in a similar way:
First, we extend the domain of g to all of Ω × R by setting g(x, s) = 0 for (x, s) ∈
Ω × (−∞, 0). Then we define the potential G for the function g by

G(x, u) def=
∫ u

0

g(x, s) ds =
{∫ u

0
g(x, s) ds if 0 � u < ∞;

0 if −∞ < u < 0,
(3.17)

for (x, u) ∈ Ω × R. Hence, g(x, s) = (∂G/∂u)(x, s) for (x, s) ∈ Ω × R. Clearly, for
each fixed x ∈ Ω, G(x, · ) : R → R+ is a monotone increasing function, owing to
(∂G/∂u)(x, s) = g(x, s) � 0.
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Again, we obtain a nonnegative weak solution to problem (3.13) from a global
minimizer of the energy functional Ê : W

1,p(x)
0 (Ω) → R defined by

Ê(u) ≡ Êp(x)(u) def=
∫

Ω

1
p(x)

|∇u(x)|p(x) dx

+
∫

Ω

G(x, u(x)) dx −
∫

Ω

F (x, u(x)) dx

(3.18)

for every function u ∈ W
1,p(x)
0 (Ω). By our proof of theorem 3.4, the first and last

summands on the right-hand side of equation (3.18) are well-defined. The same
is true of the second summand, thanks to inequalities (3.14) and (3.15) supple-
mented by the Sobolev embedding W

1,p(·)
0 (Ω) ↪→ Lp∗(·)(Ω) for p+ < N ([6, § 8.3,

theorem 8.3.1, p. 265]).
By the standard properties of the ‘smaller’ functional E(u) = Ê(u) −∫

Ω
G(x, u(x)) dx defined in equation (3.7), that have been verified in the proof

of theorem 3.4 above, also our present functional Ê : W
1,p(x)
0 (Ω) → R is coercive

thanks to inequality (3.3) and r � p−, that is, it satisfies an analogue of (3.8),

‖u‖
W

1,p(x)
0 (Ω)

def= ‖∇u‖Lp(x)(Ω) −→ +∞ =⇒ Ê(u) → +∞.

It is also weakly lower semicontinuous, by [6, § 13.2, pp. 412–417]. Consequently, a
basic result from the calculus of variations yields the existence of a global minimizer
u0 ∈ W

1,p(x)
0 (Ω) for E . We claim that u0 � 0 a.e. in Ω. Clearly, also its positive part,

u+
0

def= max{u0, 0} � 0, is in W
1,p(x)
0 (Ω) and thus satisfies Ê(u+

0 ) � Ê(u0). Denoting
Ω+ = {x ∈ Ω : u0(x) � 0} and Ω− = {x ∈ Ω : u0(x) � 0}, we calculate

Ê(u0) =
∫

Ω

1
p(x)

|∇u0(x)|p(x) dx

+
∫

Ω

G(x, u0(x)) dx −
∫

Ω

F (x, u0(x)) dx,

Ê(u0) =
∫

Ω+

1
p(x)

|∇u0(x)|p(x) dx +
∫

Ω−

1
p(x)

|∇u0(x)|p(x) dx

+
∫

Ω+
G(x, u0(x)) dx −

∫
Ω+

F (x, u0(x)) dx

= Ê(u+
0 ) +

∫
Ω−

1
p(x)

|∇u0(x)|p(x) dx

� Ê(u0) +
∫

Ω−

1
p(x)

|∇u0(x)|p(x) dx � Ê(u0).

These inequalities force ∇u−
0 (x) = −∇u0(x) ≡ 0 a.e. in Ω−, whence u−

0 (x) ≡ 0 a.e.
in Ω−. We have proved u0 � 0 a.e. in Ω as claimed.

In order to exclude the possibility that u0 ≡ 0 in Ω, we now construct a function
u1 ∈ W

1,p(x)
0 (Ω) such that Ê(u1) < 0 = Ê(0). First, we take an arbitrary nonnega-

tive C1-function φ ∈ C1
c (Ω) with compact support in Ω, φ 
≡ 0 in Ω. For 0 < t � 1,
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we estimate

Ê(tφ) =
∫

Ω

tp(x)

p(x)
|∇φ(x)|p(x) dx +

∫
Ω

G(x, tφ(x)) dx −
∫

Ω

F (x, tφ(x)) dx (3.19)

� tp−

p−

∫
Ω

|∇φ(x)|p(x) dx +
∫

Ω

G(x, tφ(x)) dx −
∫

Ω

F (x, tφ(x)) dx.

We estimate the difference of the last two integrals as follows. We combine inequal-
ities (3.2) and (3.14) to deduce that, given any ε > 0 small enough, ε < 1/C0, there
is a constant t′ε ∈ (0, 1] such that

F (x, tφ(x)) − G(x, tφ(x)) � 1
rε

[t φ(x)]r − C0

r
[t φ(x)]r

=
ε−1 − C0

r
[t φ(x)]r

(3.20)

holds for all (x, t) ∈ Ω × [0, t′ε].
Applying this estimate to inequality (3.19), we arrive at

Ê(tφ) � tr

r

∫
Ω

|∇φ(x)|p(x) dx − tr

r
(ε−1 − C0)

∫
Ω

φ(x)r dx

= − tr

r

(
(ε−1 − C0)

∫
Ω

φ(x)r dx −
∫

Ω

|∇φ(x)|p(x) dx

)

for all t ∈ [0, t′ε]. Choosing ε > 0 small enough, we conclude that Ê(tφ) < 0 when-
ever 0 < t � t′ε. In addition to u0 � 0 a.e. in Ω, we have proved also u0 
≡ 0 in Ω,
thanks to Ê(u0) � Ê(tφ) < 0 = Ê(0).

Since u0 ∈ W
1,p(x)
0 (Ω) is a global minimizer for the functional Ê : W

1,p(x)
0 (Ω) →

R, it is also a critical point for Ê and, hence, a nonnegative weak solution to
problem (3.13) provided u0 ∈ L∞(Ω).

Now let u ∈ W
1,p(x)
0 (Ω) be any nonnegative critical point for Ê , u 
≡ 0 in Ω.

This means that u is a weak solution to problem (3.13) in the sense of Fan and
Zhao [10, definition 4.1, p. 311]. We may apply their regularity result [10, theorem
4.1, p. 312] (and its proof) to conclude that u ∈ L∞(Ω). This means that u is a
nonnegative weak solution to problem (3.1) also in the sense of our definition 3.3
above. By another result in [10, theorem 4.4, p. 317], u is even Hölder-continuous
in Ω, u ∈ C0,β′

(Ω) for some β′ ∈ (0, α).
The regularity property u ∈ C1,β(Ω) for some β ∈ (0, α) and l’Hospital’s rule

(3.11) are obtained by the same arguments as in the proof of theorem 3.4 above.
In particular, the continuity and boundedness of both ratios, u/u0 and u0/u, in
the closure Ω follows. Thus, it remains to apply our theorem 2.5 (the Dı́az and
Saa inequality) to arrive at the uniqueness of a nonnegative and nontrivial weak
solution u ∈ W

1,p(x)
0 (Ω) ∩ L∞(Ω) to problem (3.13), that is, u = u0.

Setting w1 = u and w2 = u0 in theorem 2.5, the left-hand side of inequality (2.13)
becomes ∫

Ω

( − Δp(x)u

u(x)r−1
− − Δp(x)u0

u0(x)r−1

)
(u(x)r − u0(x)r) dx
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=
∫

Ω

[(
f(x, u(x))
u(x)r−1

− f(x, u0(x))
u0(x)r−1

)

−
(

g(x, u(x))
u(x)r−1

− g(x, u0(x))
u0(x)r−1

)]
(u(x)r − u0(x)r) dx � 0,

as the function s �→ [f(x, s) − g(x, s)]/sr−1 : (0,∞) → R+ is strictly monotone
decreasing for every x ∈ Ω, by Hypotheses (f2) and (g2). Since the opposite inequal-
ity ‘�’ must be valid, by inequality (2.13), we conclude that the equality above
must hold. This forces u(x) = u0(x) at almost every point x ∈ Ω, by Hypotheses
(f2) and (g2), that is, u ≡ u0 in Ω.

The proof of theorem 3.9 is finished. �

Theorem 3.9 has the following interesting special case.

Corollary 3.10. Assume that p ∈ C0,α1(Ω) for some α1 ∈ (0, 1) and the constant
r ∈ [1, ∞) satisfy Hypothesis (p) together with r < p−, that is,

1 � r < p−
def= inf

Ω
p(x) � p+

def= sup
Ω

p(x) < ∞.

Let h, � ∈ C(Ω) and q, Q ∈ C(Ω) be two pairs of strictly positive functions such
that ⎧⎨

⎩1 � q−
def= infΩ q(x) � q+

def= supΩ q(x)

< r < p−
def= infΩ p(x) � p+

def= supΩ p(x) < ∞,
(3.21)

r � Q−
def= inf

Ω
Q(x) � Q+

def= sup
Ω

Q(x) < ∞. (3.22)

Let f, g : Ω × R+ → R+ be defined by f(x, s) = h(x) sq(x)−1 and g(x, s) =
�(x) sQ(x)−1 for (x, s) ∈ Ω × R+. Then the conclusion of theorem 3.9 for prob-
lem (3.13) taking the following special form,{

−Δp(x)u + �(x)uQ(x)−1 = h(x)uq(x)−1 in Ω;

u = 0 on ∂Ω, u > 0 in Ω,
(3.23)

is valid.

Proof. It is a matter of easy, direct calculations that functions f and g satisfy
all Hypotheses (f1)–(f3) and all Hypotheses (g1)–(g3), respectively. Notice that
1 � q(x) < r � min{p(x), Q(x)} holds for all x ∈ Ω. �

Our last application concerns a nonlocal boundary value problem of Kirch-
hoff’s type involving local and nonlocal nonlinearities treated for example in Chen,
Kuo, and Wu [4]. This problem is motivated by the stationary (elliptic) case of
an evolutionary hyperbolic equation that arises in the study of string or mem-
brane vibrations, where u = u(x, t) stands for the displacement at x ∈ Ω and time
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t ∈ R+, cf. [4, equation (1.2), p. 1877]. The mathematical model for the stationary
displacement u = u(x) at x ∈ Ω takes the following form,⎧⎨

⎩− M
(∫

Ω
|∇u(x)|p(x)

p(x) dx
)

Δp(x)u = f(x, u) in Ω;

u = 0 on ∂Ω, u > 0 in Ω.
(3.24)

In the original physics problem, p(x) ≡ 2 is constant.
In addition to our Hypotheses (f1)–(f3) imposed on the function f at the

beginning of this section, we impose the following hypotheses on the function M :

(M1) M : R+ → R+ is a nonnegative continuous function with M(0) > 0.

(M2) M : R+ → R+ is monotone increasing, but not necessarily strictly monotone
increasing.

(M3) M : R+ → R+ is bounded, that is, the monotone limit M(s) ↗ M(+∞) < ∞
as s ↗ +∞ is finite.

As a consequence of Hypothesis (M2) we obtain also

M(0) t � M̂(t) def=
∫ t

0

M(s)ds � M(+∞) t for every t ∈ R+. (3.25)

Clearly, M̂ : R+ → R+ is strictly monotone increasing and convex (possibly not
strictly convex). Recalling the potential F introduced in equation (3.6), we observe
that problem (3.24) corresponds to the Euler equation for a critical point u ∈
W

1,p(x)
0 (Ω) of the energy functional J : W

1,p(x)
0 (Ω) → R+ defined by

J (u) ≡ Jp(x),f (u) def= M̂

(∫
Ω

|∇u(x)|p(x)

p(x)
dx

)
−
∫

Ω

F (x, u(x)) dx (3.26)

for every function u ∈ W
1,p(x)
0 (Ω). This functional is well-defined, by the Sobolev

embedding W
1,p(x)
0 (Ω) ↪→ Lr(Ω), which is even compact, and by the estimate in

(3.3). The reader is referred to the monograph by Diening et al. [6, §§ 8.3 and 8.4]
for Sobolev embeddings and their compactness. It is coercive thanks to inequalities
(3.3), (3.25), and r � p−, that is, it satisfies an analogue of (3.8),

‖u‖
W

1,p(x)
0 (Ω)

def= ‖∇u‖Lp(x)(Ω) −→ +∞ =⇒ J (u) → +∞.

Furthermore, it is easy to see that J is Gâteaux-differentiable on W
1,p(x)
0 (Ω) with

the Gâteaux derivative

[J ′(u)] (x) = M̂ ′
(∫

Ω

|∇u(x)|p(x)

p(x)
dx

)
·
[
− div

(
|∇u|p(x)−2∇u

)]

− f(x, u) (3.27)

= M

(∫
Ω

|∇u(x)|p(x)

p(x)
dx

)
· (−Δp(x)u) − f(x, u), x ∈ Ω,
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which may be interpreted as a distribution over Ω, that is, it belongs to the locally
convex space D′(Ω) of all distributions over Ω which is the dual space of D(Ω) =
C∞

c (Ω).
We have the following analogue of theorems 3.4 and 3.9 for positive weak solutions

to the boundary value problem (3.24):

Theorem 3.11. Under the Hypotheses (Ω), (p), (f1)–(f3), and (M1)–(M3), the
nonlocal Kirchhoff problem (3.24) possesses a unique nonnegative and nontrivial
weak solution u ∈ W

1,p(x)
0 (Ω) ∩ L∞(Ω). This solution belongs to the class C1,β(Ω),

for some β ∈ (0, α), and satisfies also the Hopf maximum principle (3.5),

u(x) > 0 for all x ∈ Ω and
∂u

∂ν
(x) < 0 for all x ∈ ∂Ω.

Of course, u = 0 on the boundary ∂Ω. Hence, u is also a positive weak solution.

Proof. Although we could generalize the Dı́az and Saa inequality (1.5) (proved in
theorem 2.5) to the class of nonlocal quasilinear elliptic operators as suggested in
the Kirchhoff problem (3.24), we prefer to give a direct proof of our theorem which,
however, follows very closely the same ideas as does our proof of theorem 2.5.

We begin with the following trivial observation; we use the same notation as does
our convexity result in theorem 2.5:

The composition functional M̂ ◦WA : W → R+ is given by

[
M̂ ◦WA

]
(v) ≡ M̂

(WA,p(x),r(v)
)

(3.28)

= M̂

(∫
Ω

r

p(x)
A

(
x,

∇(|v|1/r)∣∣∇(|v|1/r)
∣∣
)

·
∣∣∣∇(|v|1/r)

∣∣∣p(x)

dx

)

for every function v ∈ W ; see equations (1.1) (§ 1), (2.4), and (3.25). In particular,
concerning the Kirchhoff problem (3.24), we take A(x, ξ) = |ξ|p(x) for (x, ξ) ∈ Ω ×
R

N , in which case A(x, ξ) = 1 for all (x, ξ) ∈ Ω × S
N−1.

By our convexity result in theorem 2.2, the restriction of the functional WA :

W → R+ to the convex cone
•
V is ray-strictly convex on

•
V . Recall from above

that M̂ : R+ → R+ is strictly monotone increasing and convex. Consequently, an
easy exercise in elementary analysis reveals that also the composition functional

M̂ ◦WA : W → R+ must be ray-strictly convex on
•
V . By our Hypotheses (f1) and

(f2) on f , for every fixed x ∈ Ω, also the function t �→ − F (x, t1/r) : R+ → R+ is
strictly convex, owing to the partial derivative

t �→ ∂

∂t
F (x, t1/r) =

1
r

t−1+(1/r) · ∂F

∂s
(x, t1/r) =

1
r
· f(x, t1/r)

(t1/r)r−1
: (0,∞) → R+
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being strictly monotone decreasing on (0, ∞). From these two convexity results, we
deduce that also the functional

v �−→ Ĵ (v) def= J
(
|v|1/r

)
=
[
M̂ ◦WA

]
(|v|1/r) −

∫
Ω

F
(
x, |v(x)|1/r

)
dx (3.29)

= M̂

(∫
Ω

r

p(x)
·
∣∣∣∇(|v|1/r)

∣∣∣p(x)

dx

)
−
∫

Ω

F
(
x, |v(x)|1/r

)
dx

must be strictly convex on
•
V .

Now we are ready to prove the uniqueness claim in our theorem: On the con-
trary, let us assume that u1, u2 ∈ W

1,p(x)
0 (Ω) ∩ L∞(Ω) are two different nonnegative

and nontrivial weak solutions to problem (3.24) that satisfy also the Hopf maxi-
mum principle (3.5). In particular, we have J ′(u1) = J ′(u2) = 0 in D′(Ω). Setting
v1 = ur

1 and v2 = ur
2, we get also the Gâteaux derivatives Ĵ ′(v1) = Ĵ ′(v2) = 0 as

distributions in D′(Ω). Moreover, we have v1, v2 ∈
•
V and v1/v2, v2/v1 ∈ L∞(Ω).

Consequently, also v
def= (1 − θ)v1 + θv2 ∈

•
V is valid for all θ ∈ (−δ, 1 + δ), where

δ ∈ (0, 1) is small enough. The function

θ �→ Φ(θ) def= Ĵ (v) = Ĵ ((1 − θ)v1 + θv2) : (−δ, 1 + δ) → R+

is strictly convex and differentiable with the derivative

Φ′(θ) = M

(∫
Ω

r

p(x)
·
∣∣∣∇(|v|1/r)

∣∣∣p(x)

dx

)

×
∫

Ω

∣∣∣∇(|v(x)|1/r)
∣∣∣p(x)−2

∇(|v(x)|1/r) · ∇
(

v2 − v1

v1−(1/r)

)
dx (3.30)

− 1
r

∫
Ω

f(x, |v(x)|1/r) · v2 − v1

v1−(1/r)
dx.

The monotonicity of the derivative θ �→ Φ′(θ) : (−δ, 1 + δ) → R yields

0 � Φ′(t) − Φ′(0) � Φ′(1) − Φ′(0) for every t ∈ [0, 1].

But Ĵ ′(v1) = Ĵ ′(v2) = 0 in D′(Ω) forces Φ′(0) = Φ′(1) = 0 whence Φ′(t) = 0 for
every t ∈ [0, 1]. We conclude that Φ(t) = Φ(0) for every t ∈ [0, 1] which contradicts
the strict convexity of Φ on [0, 1].

The uniqueness part of our theorem is proved.
To verify the existence part, we apply analogous arguments as in our proofs of the-

orems 3.4 and 3.9. Recalling that the energy functional J defined in equation (3.26)
is coercive and weakly lower semicontinuous on W

1,p(x)
0 (Ω), by [6, § 13.2, pp. 412–

417], we conclude that it possesses a global minimizer u0 ∈ W
1,p(x)
0 (Ω), by [20,

theorem 1.2, p. 4]. To verify u0 � 0 a.e. in Ω, we first observe that also its positive
part, u+

0
def= max{u0, 0} � 0, is in W

1,p(x)
0 (Ω) and thus satisfies J (u+

0 ) � J (u0).
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Recalling Ω+ = {x ∈ Ω : u0(x) � 0} and Ω− = {x ∈ Ω : u0(x) � 0}, we calculate

J (u0) = M̂

(∫
Ω

|∇u0(x)|p(x)

p(x)
dx

)
−
∫

Ω

F (x, u0(x)) dx

= M̂

(∫
Ω+

|∇u0(x)|p(x)

p(x)
dx +

∫
Ω−

|∇u0(x)|p(x)

p(x)
dx

)

−
∫

Ω+
F (x, u0(x)) dx

� M̂

(∫
Ω+

|∇u0(x)|p(x)

p(x)
dx

)
−
∫

Ω+
F (x, u0(x)) dx = J (u+

0 ) � J (u0).

In fact, these inequalities must be equalities. Since M̂ : R+ → R+ is strictly mono-
tone increasing with M̂ ′ = M > 0 in R+, by Hypothesis (M1), the equalities above
force ∇u−

0 (x) = −∇u0(x) ≡ 0 a.e. in Ω−, whence u−
0 (x) ≡ 0 a.e. in Ω−. We have

proved u0 � 0 a.e. in Ω as claimed.
In order to exclude the possibility that u0 ≡ 0 in Ω, we construct a function

u1 ∈ W
1,p(x)
0 (Ω) such that J (u1) < 0 = J (0). To this end, we take an arbitrary non-

negative C1-function φ ∈ C1
c (Ω) with compact support in Ω, φ 
≡ 0 in Ω. In analogy

with inequality (3.19), for 0 < t � 1, we invoke Hypothesis (M1) to estimate

J (tφ) = M̂

(∫
Ω

tp(x)

p(x)
|∇φ(x)|p(x) dx

)
−
∫

Ω

F (x, tφ(x)) dx (3.31)

� M̂

(
tp−

p−

∫
Ω

|∇φ(x)|p(x) dx

)
−
∫

Ω

F (x, tφ(x)) dx.

Recall that 1 � r � p− = infΩ p(x), by our Hypothesis (p), inequality (2.2). We
take advantage of inequalities (3.25) (for M̂) and (3.10) (for F ) to estimate the last
two terms inequality (3.31) above,

J (tφ) � M(+∞)
tr

r

∫
Ω

|∇φ(x)|p(x) dx − tr

rε

∫
Ω

φ(x)r dx

= − tr

r

(
1
ε

∫
Ω

φ(x)r dx − M(+∞)
∫

Ω

|∇φ(x)|p(x) dx

)

for all t ∈ [0, tε]. Choosing ε > 0 small enough, we conclude that J (tφ) < 0 when-
ever 0 < t � tε. In addition to u0 � 0 a.e. in Ω, we have proved also u0 
≡ 0
in Ω.

Since u0 ∈ W
1,p(x)
0 (Ω) is a global minimizer for the functional J : W

1,p(x)
0 (Ω) →

R, it is also a critical point for J and, hence, a nonnegative weak solution to
problem (3.24) provided u0 ∈ L∞(Ω). As

M0 = M

(∫
Ω

|∇u0(x)|p(x)

p(x)
dx

)

is a positive constant, 0 < M(0) � M0 � M(+∞) < ∞, the Dirichlet prob-
lem (3.24) for u = u0 is identical with that in (3.1) with f(x, u0) replaced
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by M−1
0 f(x, u0). The rest of the proof now follows from the conclusion of

theorem 3.4. �

Remark 3.12. The question of uniqueness of general, possibly sign-changing weak
solutions to problems of type (3.1) was studied in a number of articles; see, for
example, Antontsev, Chipot, and Xie [1], Antontsev and Shmarev [2], Motreanu
[16], and references therein. There, the function f(x, u) on the right-hand side
of our problem (3.1) is replaced by a somewhat more general reaction function
f(x) − b(x, u) for x ∈ Ω and u ∈ R, where s �→ b(x, s) : R → R is assumed to be
continuous and monotone increasing (i.e., nondecreasing) for almost every x ∈ Ω.
Some of the most recent results in [16] require that s �→ b(x, s) be even strictly
monotone increasing, although two weak comparison results in [16, theorems 4.1
and 4.2] are proved for s �→ b(x, s) being nondecreasing only.

All these results are based on the fact that the quasilinear operator u �→ −
Δp(x)u + b(x, u(x)) is monotone with respect to the L2(Ω)-induced duality between
W

1,p(x)
0 (Ω) and its dual space. Of course, a mild additional condition guaranteeing

some kind of strict monotonicity must be imposed in order to obtain the desired
uniqueness result. These hypotheses on the quasilinear operator may be reformu-
lated in terms of convexity properties of the corresponding energy functional; cf.
equation (3.7).

According to the original observation in Brézis and Oswald [3] for p(x) ≡ 2 (a
constant), much stronger convexity properties of this energy functional can be
proved for positive solutions to problem (3.1): Namely, those first observed in Fle-
ckinger et al. [12] for p(x) ≡ p ∈ (1, ∞) (a constant) and generalized in the present
paper for a variable exponent p(x). The mechanism of this approach, based on
[3], composes the standard convex energy functional Wp(x),1 : W

1,p(x)
0 (Ω) → R+

defined in equation (1.1) for r = 1 with the Nemytskii operator given by the con-
cave function s �→ s1/r : R+ → R+ (1 < r � p− = infΩ p). Somewhat surprisingly,
when restricted to the (convex) cone of positive functions in W

1,p(x)
0 (Ω), this compo-

sition is still convex, even ray-strictly convex, as proved in our theorem 2.2. Unlike in
Motreanu [16], we are then able to treat problem (3.1) with s �→ b(x, s) : R → R

strictly monotone decreasing (in the notation of [16]); see Hypothesis (f2) and
example 3.6.
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variable exponents. Lecture Notes in Mathematics, vol. 2017, (Berlin-Heidelberg: Springer-
Verlag, 2011).

7 X.-L. Fan. Global C1, α regularity for variable exponent elliptic equations in divergence
form. J. Diff. Equ. 235 (2007), 397–417.

8 X.-L. Fan. Existence and uniqueness for the p(x)-Laplacian-Dirichlet problems. Math.
Nachr. 284 (2011), 1435–1445.

9 X.-L. Fan and Q.-H. Zhang. Existence of solutions for p(x)-Laplacian Dirichlet problem.
Nonlinear Anal. 52 (2003), 1843–1852.

10 X. Fan and D. Zhao. A class of De Giorgi type and H”older continuity. Nonlinear Anal. 36
(1999), 295–318.

11 X. Fan, Q. Zhang and D. Zhao. Eigenvalues of p(x)-Laplacian Dirichlet problems. J. Math.
Anal. Appl. 302 (2005), 306–317.
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