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Abstract

Meta-analyses play an instrumental role in informing second language (L2) theory and
practice. However, current (i.e., classic) approaches to meta-analysis are limited in their
ability to do so because they often fail to capture the complexity inherent in primary studies’
research designs. As we argue in this article, when complex L2 studies are represented by
simplistic meta-analyses, the latter cannot reach its potential to contribute to the develop-
ment of cumulative knowledge. To mitigate this issue, we first discuss the fundamental
problems of the classic approaches to meta-analysis of complex L2 research. Second, we
introduce an alternative meta-analytic framework that will address those problems. Third,
we apply the meta-analytic framework discussed to a complex L2 domain. Fourth, we offer
free software to facilitate the conduct of the alternative meta-analytic approach described.
Finally, we discuss the implications of this alternative framework for making evidence-based
recommendations to the relevant stakeholders.

Introduction

In the last two decades or so, research syntheses have gained considerable traction in
second language (L2) research (Chong & Plonsky, 2023; Raeisi-Vanani et al., 2022). One
form of research synthesis that has become particularly popular in L2 research is the
classic meta-analysis. The appellation classic' is mainly due to the traditional methods of

'We use the term classic to generally refer to the methods of meta-analysis that predate meta-regression.
For studies with a complex research design (e.g., with multiple treatment groups, posttests, and outcomes),
classic methods of meta-analysis often require aggregating effect-size estimates in each study before meta-
analyzing them using a fixed- or a random-effects model. However, there is no unified framework as to how
that aggregation may be done (e.g., arithmetic averaging, weighted averaging, correlated weighted or
unweighted averaging). As a result, in practice there are several subjective actions that go into combining,
aggregating, or even discarding (i.e., selective outcome reporting) the data depending on one’s style, prior
experience, available software, convenience, and/or common traditions in a research domain. In addition,
due to the lack of a regression framework, classic methods of meta-analysis are not readily able to allow the
focal moderator(s) to interact with the main aspects of the research designs. For example, understanding how
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synthesizing the quantified evidence (i.e., effect-size estimates) obtained from the
primary studies (Lipsey & Wilson, 2001). The main goal behind classic meta-analysis
is to “summarize a stream of research with an average effect size” and make it available to
a wide audience of researchers, practitioners, and other stakeholders (Raudenbush &
Bryk, 1985, p. 94).

Undoubtedly, the common use of classic methods of meta-analysis has informed our
understanding of L2 theory, research, and practice (e.g., see Plonsky et al., 2021, for a
review of the state of meta-analysis in bilingualism). However, given the recent
methodological reform movement taking place in the field (Byrnes, 2013; Gass et al.,
2021; Norouzian, 2021; Norouzian et al., 2018, 2019; Norouzian & Plonsky, 2018) and a
growth in the complexity of research designs (e.g., use of multiple treatment groups,
multiple posttests, and multiple outcomes or measures) employed in L2 studies
(Norouzian, 2020, 2021), a few questions about the use of classic methods of meta-
analysis need to be addressed:

1- To what extent can classic methods of meta-analysis capture the complex nature
designs found in L2 research?

2- Ifto alimited extent, how can we modernize our methods of meta-analysis so as to
aptly capture the complex nature of L2 study designs?

3- What tools are available to L2 researchers for a transition into more flexible
methods of meta-analysis?

The remainder of this article seeks to provide practical answers to these questions.
First, we discuss the fundamental problems with the classic methods of meta-analysis
that prevent them from capturing the complex nature of the study designs used in L2
research. Second, we introduce an alternative framework, multivariate multilevel meta-
analysis (3M), for meta-analyzing L2 research with some of its additional capabilities
discussed in our supplementary document available at: https://rnorouzian.github.io/m/
3msup.html. Third, we apply the alternative framework to a well-known, yet complex
L2 literature. Fourth, we offer free software programs to enable the practical use of the
new framework discussed. Finally, we discuss the implications of this alternative
framework for making evidence-based recommendations to the relevant stakeholders.

Fundamental problems with classic meta-analysis of L2 research
Sampling dependence inherent in L2 studies is ignored

As Norouzian (2020) has discussed, the design of empirical L2 research has grown over
time in complexity. Specifically, L2 research often tends to involve one or more of the
following design aspects: (a) inclusion of multiple treatment groups along with a
control/comparison group, (b) measurement over multiple occasions, and
(c) measurement over multiple outcomes.

Take, for instance, Shintani and Ellis (2013). The study investigated the effect of
direct corrective feedback (D) and the metalinguistic explanation (M) on ESL (English

a focal moderator (e.g., proficiency) associates with the effect of a phenomenon of interest (e.g., corrective
feedback’s effect on written accuracy) may not be readily explored across measurement occasions (pre- and
posttests) even though the primary studies are longitudinal. Readers may refer to the section titled “Finding
may be biased” for more details.
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as a second language) writers’ implicit knowledge of the English indefinite article. To do
so, the researchers adopted the design depicted in Figure 1.

As shown in Figure 1, Shintani and Ellis (2013) randomly assigned their classes
(RC) to three groups (i.e., D, M, and control). Following an initial observation (O;) of
their participants” knowledge of English indefinite article, they provided their intended
treatments to each group. The two follow-up observations (O, and O3) were made to
measure the possible change in participants’” implicit knowledge of the English indef-
inite article over time in each group.

From this study, one can commonly obtain six effect-size estimates, in this case
standardized mean differences (SMD; i.e., Hedges’s g). Namely, we can obtain two
pre-feedback effect estimates at O;, two immediate, post-feedback effect estimates at
0,, and finally two delayed, post-feedback effect estimates at Oj, all comparing the
treatment groups with the same control group.

However, these effect-size estimates are likely dependent on (i.e., correlated with)
each other due to the design aspects (A) and (B) adopted in Shintani and Ellis (2013).
For instance, at each observation time, the effect-size estimates across the treatment
groups are likely dependent due to being obtained by comparing the performance of
each treatment group against that of the same control group (design aspect A). Being a
pivot point, if the control group put up a superior performance, all of the treatments’
effects would become smaller. Conversely, if the control group put up a low perfor-
mance, all treatments’ effects would become larger. Thus, treatments’ effects could vary
together (i.e., be correlated) to a measurable degree as a function of their common
control group’s performance.

Additionally, the effect-size estimates across the occasions for each treatment group
are also likely dependent due to being obtained over repeated measurements (design
aspect B). Specifically, because the same participants were measured over the three
occasions (O, O,, and O3) in each group, their measurements across these occasions
contain an estimable degree of correlation, likely more strongly so between the adjacent
occasions than those further apart (Trikalinos & Olkin, 2012). The same correlations
carry forward to any statistic that is obtained from these measurements’ summaries
such as effect-size estimates inducing dependence among them.

Indeed, Shintani and Ellis (2013) also measured their participants using an addi-
tional grammar correction test as a way to examine the participants’ explicit knowledge
development on two occasions (O; and Os). This would be considered a second
outcome in the study. Thus, a new set of four effect-size estimates may be obtained
from the same participants on this additional grammar correction test, if explicit
knowledge development is of interest to the meta-analyst. If so, then this new set of
four effect-size estimates on explicit knowledge development would be correlated with

RC 01 D 02 O3

RC O M 02 O3

RC 01 02 03

Figure 1. Design of Shintani and Ellis (2013).
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each other due to the design aspects A and B. But now these effect-size estimates on
explicit knowledge development for each treatment group would also be correlated with
the previous set of effect-size estimates on implicit knowledge development (design
aspect C).

Because correlated effect-size estimates often stem from the use of the summary data
from the same sample of participants, this form of inherent dependence in the effect-
size estimates is sometimes referred to as sampling dependence (Stevens & Taylor,
2009). Note that sampling dependence can occur in correlational L2 studies, too. For
instance, if a correlational study examined the relationships of multiple subscales of L2
motivation with L2 achievement, the reported correlation coefficient estimates
(i.e., effect-size estimates) for the subscales would likely be correlated with each other.
This is because the same sample of participants has been measured on multiple
subscales (design aspect C).

Classic methods of meta-analysis are ill-equipped to account for the sampling
dependence inherent in effect-size estimates obtained from studies with one or more
of the design aspects discussed above. Consequently, meta-analysts often find them-
selves making ad hoc decisions that oversimplify the nature of L2 studies (for a review of
these decisions, see Hedges, 2019). In addition, ignoring the sampling dependence
threatens the validity of inferential conclusions regarding the summary effects and
accurately estimating the magnitude of the heterogeneity in the underlying effects
(Pustejovsky & Tipton, 2022).

Hierarchical dependence in underlying effects of L2 studies is ignored

That L2 studies can often produce multiple effect-size estimates due to the design
aspects discussed in the previous section introduces sampling dependence among them
prior to their meta-analysis. Another form of dependence may arise when we intend to
envision a meta-analytic model for such effect-size estimates obtained from the
literature.

Part of the job of a meta-analytic model is to statistically link the effect-size estimates
we obtain from the literature to their underlying population effects (i.e., true effects). In
its simplest form, when a group of L2 studies can each provide multiple effect-size
estimates, then, by virtue of belonging to the same study, their underlying true effects
are likely more similar in each study than those in other studies. This similarity
amounts to a measurable degree of overlap (i.e., correlation) among the true effects
in each study forming clusters of true effects across the studies. Because this second
form of correlation occurs owing to the clustered nature of the underlying true effects
envisioned for the meta-analysis of studies with complex research designs, it is
sometimes referred to as hierarchical® dependence (Stevens & Taylor, 2009).

Classic methods of meta-analysis, which to date are the norm in the field, are unable
to adopt a meta-analytic model for L2 studies that sufficiently allows for the hierarchical

23M is also capable of accommodating other forms of dependence in the true effects (or equivalently
random effects) that are not hierarchical. For instance, when meta-analysts have a theoretical reason and/or
empirical support (e.g., better model fit) that the different measures used within and across the individual
studies could themselves produce similarity (i.e., overlap) in the true effects for each unique measure, then the
dependence in true effects can separately arise at the study level as well as at the measure level, with no
hierarchy existing between these levels. It is customary to refer to the true effects separately structured for, in
this case, unique studies and measures as being crossed (or for true effects to be cross-classified by them)
rather than hierarchical (for details see Ferndndez-Castilla et al., 2019).
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dependence among their underlying true effects. This inability has negative effect on
the conclusion validity of our meta-analytic findings such as incorrect precision in
average effect estimates, inflated Type I error rates, incorrectly narrow confidence
intervals, and incomplete delineation among the sources of variation in the true effects
(Matt & Cook, 2019).

Comparison across categories of substudy moderators may be invalid:
The k situation

Perhaps one of the fundamental needs of L2 meta-analysts is to be able to compare
meta-analytic findings across the theoretically distinct categories of their moderators.
As Norouzian (2021) discussed, L2 moderators such as the type of treatment (e.g.,
direct feedback vs. meta-linguistic explanation) are often found at the substudy levels of
L2 studies. That is to say, such moderators can vary within the same studies. For
instance, L2 studies can each examine multiple types of treatment. Thus, comparing
different types of treatment in a literature often entails obtaining multiple effect-size
estimates from a combination of the same and different studies. This results in a
situation where the number of effect-size estimates (usually denoted by “k” in L2 meta-
analyses) obtained across the categories of a moderator (e.g., types of treatment)
exceeds the number of the studies associated with those categories. For example, in a
meta-analysis where 20 studies have employed direct feedback and/or indirect feed-
back, we may be able to obtain 20 effect-size estimates for direct feedback and 14 effect-
size estimates for indirect feedback (i.e., 34 effect-size estimates from 20 studies). We
refer to this situation as the “k situation.”

In the presence of a k situation, the effect-size estimates across the theoretically
distinct categories of a moderator are not independent of each other.® For instance,
effect-size estimates that make up the direct feedback category and those that constitute
the meta-linguistic feedback category are not independent of each other. This is because
some of these effect-size estimates have come from the same studies and carry along
their sampling dependence. Placing these dependent effect-size estimates into seem-
ingly independent categories (e.g., direct feedback vs. meta-linguistic explanation) and
then comparing across them via traditional tests (e.g., Qpetween test) to answer a research
question (see the next section) may lead to invalid conclusions depending on the extent
of the k situation.

Classic methods of meta-analysis are ill-suited to address the k situation. As noted
above, this inability is, once again, rooted in the lack of a framework to account for the
dependence among the effect-size estimates classified into seemingly independent
categories (see Plonsky et al., 2023).

Findings may be biased

Meta-analysts are often interested in examining the relation between the effect of a
phenomenon of interest (e.g., the effect of feedback on written accuracy) and a range of

*Aside from dependence, moderators found in the k situation by design vary within and across studies. As
a result, it is good practice to measure and distinguish between their within- and cross-study effects on (or
association with) the average meta-analytic effect because the two could potentially differ in magnitude and
direction. Frequently, their within-study effect (or association) is of immediate interest to researchers (for
details see Fisher & Tipton, 2015).
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other substantively moderating variables (Shadish et al., 2002). Cronbach’s (1982)
UTOS paradigm is what is often invoked as an organizing framework for this purpose
(Becker, 1996; Cook, 1991; Matt & Cook, 2019). Under this framework, substantively
moderating variables in the literature are divided into four dimensions, as applicable—
namely, participants or more broadly units (U), treatments (T), outcomes (O), and
settings (S). The meta-analyst then explores the association between instantiations of
each dimension and the effect of a phenomenon of interest (Cook, 1993, 2013).

However, to validly estimate such substantive associations, an additional nuisance
dimension needs to be accounted for as well. This additional nuisance dimension
merely reflects the nonsubstantive and/or methodological (collectively denoted by M)
differences across the studies selected for meta-analysis. As a result, the M dimension
itself is not of theoretical interest or a target for meta-analysis. Rather, this dimension
acts as a regulator to ensure obtaining unbiased substantive associations (Aloe et al.,
2020; Becker, 2017; Becker & Aloe, 2008; Cheung & Slavin, 2016).

For example, L2 studies in a meta-analysis sample might likely differ in several
substantive instantiations of UTOS dimensions (denoted by lower-case letters) such
as in (1) the characteristics of participants (u’s, e.g., their proficiency level), (2) the
types of treatment (f’s, e.g., types of corrective feedback), (3) the types of outcome
(0’s, e.g., types of linguistic features targeted), and (4) the context of the study (s’s,
e.g., language institute vs. university). However, the same L2 studies might also differ
in ways that merely reflect their nonsubstantive and/or methodological differences.
For instance, whereas some studies might have been able to randomly form their
study groups (a true experiment), others might have been unable to do so purely by
chance, for example, due to logistical constraints (i.e., a quasi-experiment). Or for
example, some studies might have taken longer to complete and others have taken
less time to complete (i.e., difference in study length). Such nonsubstantive and/or
methodological differences need to be always accounted for in the background so the
substantive association between UTOS dimensions and the effect of the phenomenon
of interest can be validly assessed in the foreground (Berlin & Antman, 1992; Tipton
et al,, 2019).

Classic methods of meta-analysis are not readily capable of accommodating
both the nonsubstantive and/or methodological confounds along with the substan-
tive moderators. This incapability is due to the classic methods’ fragmented approach
toward moderators in a meta-analysis. That is, classic methods can commonly take
one moderator at a time. This limitation is evident when, for example, we see tables
presenting the results of numerous isolated moderator analyses in an L2 meta-
analysis disregarding the connections between the substantive features of interest
and the methodological choices that produced them. Consequently, classic methods
of meta-analysis may not provide a valid picture regarding the association between
the UTOS moderators (e.g., proficiency) and the effect of the phenomenon of interest
(e.g., teacher feedback on written accuracy). In addition to biasing these associations,
such a shortcoming in classic methods of meta-analysis can also bias the amount of
heterogeneity in the effects explained by the UTOS moderators and, therefore, that
which cannot be explained by the UTOS moderators.

An alternative approach to meta-analysis in L2 research

It should seem obvious that a starting point for an alternative approach to meta-analysis
in L2 research, therefore, should account for the four main shortcomings of the classic
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methods of meta-analysis discussed earlier. In the next section, the specifics of this
alternative approach, multivariate, multilevel meta-analysis, will be discussed.

Multivariate, multilevel meta-analysis

The flexibility of regression analyses over the commonly used ANOVA techniques is
well established in L2 research (Plonsky & Ghanbar, 2018; Plonsky & Oswald, 2017).
Also well documented in L2 methodological literature is the fact that multilevel models
(MLMs) add new capabilities to the regression analyses by accounting for the various
types of dependence in the data (Cunnings, 2012; Gries, 2021). Multivariate, multilevel
meta-analysis (3M) is a flexible approach to meta-analysis that builds on the capabil-
ities of MLMs in the context of meta-analysis.

In its simplest formulation, 3M allows for examining the association between the
average size of the effect (dependent variable) of an L2 phenomenon of interest (e.g.,
effect of teacher feedback on written accuracy) and a set of (M)UTOS moderators
(independent variables) taking into account two important facts. First, studies could
produce multiple dependent effect-size estimates prior to their meta-analysis (sampling
dependence). Second, their corresponding underlying true effects are likely more
similar in each study than those in other studies forming clusters across the studies
(hierarchical dependence). The application of these two features in 3M is conceptually
explained in the next two sections.

Sampling dependence in 3M

Despite the available formulas to obtain the exact structure of the sampling dependence
among effect-size estimates due to certain design aspects (see Olkin & Gleser, 2009), in
practice, determining the exact structure of the sampling dependence in L2 studies
is often infeasible for at least two reasons. First, for design aspects B (repeated
measurements) and C (measuring multiple outcomes), accurate estimation of sampling
dependence requires estimates of the correlation coefficient for the participants’
measurements across multiple occasions and outcomes. Yet these required correlation
estimates are almost always absent in the primary L2 studies (Plonsky & Oswald, 2017).
Second, the three design aspects discussed in the previous sections could occur together
in any combination across the studies. This makes the construction of the sampling
dependence structure practically difficult and potentially prone to error. Acknowledg-
ing these limitations, 3M initially assumes a medium-high correlation (e.g., 7 = .60), as a
middle-of-the-way value, among effect-size estimates across all studies and later sub-
jects such an assumption to a sensitivity analysis (Pustejovsky & Tipton, 2022).

Hierarchical dependence in 3M

In theory, 3M is capable of envisioning many potential levels of hierarchical depen-
dence for the underlying true effects of our effect-size estimates. For instance, one
assumption to envision might be that the true effects of an L2 phenomenon of interest
(e.g., effect of corrective feedback on written accuracy) are more similar in each study
than those in other studies (study as a level). But when, for example, treatment groups
in each study are tested on multiple occasions, as in Shintani and Ellis (2013) discussed
earlier, one might also reason that the true effects for each treatment group in a study
are likely more similar than those for other treatment groups in that study (treatment
group as a level).
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In practice, however, (a) limitations in the number of studies and their effect-size
estimates and/or (b) having possibly several (M)UTOS moderators at various hierar-
chical levels (e.g., study level and treatment level) of the literature can curtail one’s
ability to encode the many potential levels of hierarchical dependence into a 3M model
(Hedges, 2019). For most purposes in L2 research, a general form of hierarchical
dependence might simply acknowledge that the underlying true effects of our effect-
size estimates are likely more similar in each study as a whole than those in other
studies. The product of such an acknowledgement is that we can obtain the random
variation in studies’ average true effects (study-level variation) and the random
variation in any given study’s own true effects (effect-level variation). We say “any
given study” because the effect-level variation is somewhat averaged across all studies,
thus representing such variation in any given study. Figure 2 symbolically depicts these
two sources of random variation with the first study at the top figuratively used as a
“given study.”

Importantly, these two sources of variation are called random because they account
for the variation in the underlying true effects of an L2 phenomenon of interest that
could not be systematically attributed to any of the (M)UTOS moderators used in a 3M
model (e.g., variation in magnitude of true effects beyond that attributable to profi-
ciency level differences). This formulation reinforces the belief that despite potentially
systematic reasons (i.e., [M]JUTOS moderators) for variation in the magnitude of true

Stud True Effects

Effect-level
™ variation

Study-level
variation |

Figure 2. Two sources of random variation captured by 3M.
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effects for an L2 phenomenon of interest, in the end studies as a whole and their
constituent effects could each potentially have their own unique but random differences
captured by these two sources of random variation.

For purposes of describing such a model, it is customary to refer to the studies’
average true effects as Level 1 (highest level), the underlying true effects of the studies’
effect-size estimates as Level 2 (middle level), and the studies’ own effect-size estimates
as obtained from the literature as Level 3 (lowest level). Thus, this would be an example
of a three-level, 3M model.

Applying 3M to a complex literature

To promote the use of 3M in L2 research, we apply it to one of the most polemic areas in
instructed second language acquisition (ISLA) research: the effectiveness of written
corrective feedback (WCF) in improving L2 writers’ accuracy. Because of the nature of
the so-called WCF debate, a large and often complex body of studies has contributed to
the WCF literature. For substantive purposes, Brown, Liu, & Norouzian (2023)
extensively reviewed the details of and meta-analyzed a large set of WCF studies. For
the methodological purposes of this article, we randomly selected 35 studies from the
full set of the WCF studies in Brown et al.

Eligibility criteria

As in Brown et al. (2023), the WCF studies in the selected sample have all (1) collected
data through writing tasks, (2) investigated WCF administered only by teachers and/or
researchers, (3) focused on linguistic errors (lexical, morphological, and/or syntactic),
(4) measured the effectiveness of WCF through accuracy in participants’ new pieces of
writing, (5) employed objective measures (e.g., target language use, normed error
frequency, ratio of error-free units) to measure development in linguistic accuracy,
(6) employed a (quasi-)experimental research design, (7) reported descriptive statistics
(e.g., group means and standard deviations or related test statistics such as ¢ values) for
the calculation of effect sizes, and (8) were written in English.

A brief review of the design complexities of the selected WCF studies will prove
crucial in understanding the meta-analytic challenges in this literature. Below, we
explore some of the design complexities of the selected sample of WCE studies in more
detail.

Design complexities of WCF studies

The WCEF literature includes studies with a variety of design features. From those
features, four in particular are worth mentioning here. First, WCF studies usually
employ multiple treatment groups (group) receiving different types of WCF all
compared against a control/comparison group. Second, the studies often involve
multiple measurements of the same participants (time) to assess the durability of
WCF’s effect on learners’ written accuracy. Third, they can also measure multiple
outcomes to study WCF’s effect on multiple types of linguistic errors (err_type). Finally,
given the debates over the treatment of the control group’s members (e.g., whether they
should only engage in writing practice or receive feedback on content) and its subse-
quent influence on the results of WCF studies (Truscott, 1996, 2004), occasionally
studies (Van Beuningen et al., 2012) tend to use more than one type of control group
(cont_type) against which all WCF-receiving groups are compared. Figure 3 examines,
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classifies, and visually displays these design features for our selected WCF studies
(to reproduce Figure 3, see: https://github.com/rnorouzian/i/blob/master/1.r).

In Figure 3, each panel represents a unique combination of the design features found
in the WCF literature. Changes in color denote multiplicity in the design feature titled
above each column (e.g., group, time). For instance, we see that all the studies in the
WCEF literature have measured their participants on more than one occasion (pre- and
posttests). This is because across all the panels, time always changes in color. In
contrast, in panel F, there are 11 studies that have used only one control group, one
treatment group, and one error type. The numbers in each box denote the identifiers
(e.g., 0 for cont_type = the control group only engaging in writing practice) or indices
(1 for group = the first treatment group in the study) used by the meta-analyst to code
these design features in each study in the coding sheet.

Inspecting Figure 3 a bit further, we also realize that the use of multiple control
groups (cont_type) is very infrequent in our WCF study pool, occurring in only two
studies (Panel A). Conversely, having multiple treatment groups is a quite common
design feature in the WCF studies appearing in twenty studies (Panels A, B, and C).
Additionally, studying WCF’s effect on multiple error types (outcomes) occurs in a
handful of studies (Panels B and D). Other design features can also be examined in a
similar manner. However, notice that all studies have invariably produced multiple
effect-size estimates, as indicated by the multiple row indices (effect; row-wise location
of each effect-size estimate in the data) in each panel.

In short, these design complexities may give rise to (a) having several effect-size
estimates from each WCF study, (b) the fact that these estimates are likely dependent on
one another in a variety of ways in each study, and potentially, and (c) the existence of
both systematic and random variation (i.e., heterogeneity) in the true effects of WCF on
written accuracy both at the study and the effect levels. From these three consequences,
the last one differs in nature from the other ones in that it involves using a range of
(M)UTOS moderators backed by theory and/or prior research. Specifically, to explore
the degree to which the heterogeneity in the magnitude of the true effects of WCF might
be due to the features systematically distinguishing the studies as a whole and/or finer
elements within the studies (e.g., participants) from each other, a number of candidate
(M)UTOS moderators may be considered. A selection of these moderators is provided
in the next section.

The (M)UTOS moderators

In theory, there may be alarge number of (M)UTOS moderators that can potentially
account for the systematically explainable heterogeneity in the magnitude of the
true effects of WCF. In practice, however, a smaller set may be found and consis-
tently coded in the WCEF literature along each dimension of (M)UTOS. For the
purposes of this study, Table 1 provides 10 (M)UTOS moderators, two instantia-
tions of each (M)UTOS dimension. Table 1 also includes the general as well as the
coding definitions of these moderators (for a fuller list of potential moderators see
Brown et al., 2023).

Although space limitation prevents us from applying 3M to all the moderators
listed in Table 1, we try to offer a road map by applying the 3M to a substantive
moderator (i.e., proficiency) and examine the critical decision points encountered
along the way. A description of the data set used for this purpose is presented in the
next section.
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Table 1. Coding scheme for the selected moderators

(M)UTOS
Abbreviation  category  General definition Coding definition
prof u Participants’ Beginner; Intermediate; Advanced
proficiency level
age u Participants’ age Teen (12-17); Adult (18-35)
group
wcf_type t Type of feedback Direct (correction given); Indirect (error’s
provided location indicated); Coded (coding symbols
used next to errors); Meta-linguistic
(indirect feedback + grammar notes); Meta-
linguistictdirect
wcf_scope t Range of linguistic Unfocused (> 5 structures); Mid-focused (2-5
structures structures); Highly focused (1 structure)
feedback targeted
err_type o Type of linguistic Mixed (multiple types measured together);
structures receiving Articles;
feedback Prepositions; Verb tense; Other types
time o Outcome Baseline; Posttest 1; Posttest 2
measurement
timing

lang_setting s

res_setting s

Language learning
context of study

Research setting of
study

Foreign language setting; Second language
setting

High school; College;

Language institute

Length of study in Continuous
weeks from first to
last measure

Type of study design

study_length m

des_type m True experiment; Quasi-experiment

Table 2. Distribution summary of effect-size estimates across studies

Effects Min effects in a study Max effects in a study Average effects in a study

245 2 24 7

The wcf data set

The data set used in this article is called wc £. In addition to the (M)UTOS moderators
described in Table 1, the wcf data set includes 245 effect-size estimates in the
standardized mean difference (SMD) unit (Hedges’s g), which is a common metric
used in applied linguistics research. As shown in Table 2, all studies contributed more
than one effect-size estimate to the database such that, on average, each WCF study
provided seven effect-size estimates.

These effect-size estimates are all corrected for a systematic bias inherent in them,
especially when obtained from small-sized group comparisons. As is customary, we
refer to these bias-corrected effect-size estimates as Hedges’s g and denote them by g in
the wcf data set.

Accompanying these effect-size estimates are their sampling variances, denoted by
var in the wcf data set. Sampling variances are simply the squared version of the
estimates’ standard errors (Viechtbauer, 2007). They denote how dispersed, in the
variance metric, the distribution of effect-size estimates might be, if the exact same
group comparisons used to obtain the effect-size estimates were to be replicated
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infinitely many times. Although these sampling variances indicate how much each
effect-size estimate in a study might vary in its replication sampling, they convey no
information regarding how different estimates in that study might covary with one
another likely due to the design aspects discussed earlier (see Sampling dependence
inherent in L2 studies is ignored).

The wcf data set also uses the name of the study authors as the identifier for each
study. Thus, variable study provides a unique name for each study. Needing to be
unique to each study, if the same authors contributed more than one study to the study
pool, their names for each study were distinguished from one another by appropriate
suffixes (e.g., Author A vs. Author B).

Similar to studies, each effect-size estimate is associated with a numeric identifier.
This variable, which is called e f fect in the wc £ data set, simply denotes the row-wise
location of the effect-size estimates. For example, the first effect-size estimate in the first
row gets a value of 1, the second one gets a value of 2, and so on. Therefore, such
numbers have no real numeric value. We will need this variable to be able to distinguish
the effect-level variation from the study-level variation in the true effects (see preceding
text).

Together with all the (M)UTOS moderators shown in Table 1, the wcf data set is
built into the R programs introduced in the next section. Thus, readers will automat-
ically have access to the data set, once they install the programs in the next section.

Fitting 3M models with software

One common goal* in meta-analysis is to describe the relation of each UTOS moderator
to the magnitude of the average effect of a phenomenon of interest (e.g., WCF on
written accuracy), one relation at a time controlling for the M moderators. Consistent
with this descriptive goal, research questions (RQs) may then take a general form,
leaving the door open for each moderator to be tested in a separate 3M model. For
instance, a general RQ might be to what extent do the characteristics of learners or,
more broadly, units (U), treatments (T), outcomes (O), and settings (S) influence the
effect of X (e.g., WCF) on Y (e.g., written accuracy)?

To fit 3M models for research questions similar to what was mentioned above, we
suggest using the following suite of R programs accessible by running the following in R
or RStudio:

(1) source ("https://raw.githubusercontent.com/rnorou
zian/i/master/3m.r")

These functions use the metafor package (Viechtbauer, 2010) and the clubSandwich
package (Pustejovsky, 2022) in R (R Core Team, 2022). As noted above, to achieve our
descriptive goal, moderators listed in Table 1 shall be separately fit using a 3M model. In
doing so, it is highly advisable (see Findings may be biased) to always include the M
moderators in each model to ensure a higher degree of conclusion validity in the results.

*We say one common goal because there could be other goals as well. For example, it is possible for L2
meta-analysts to attempt to find the smallest set of (M)UTOS moderators that most strongly associate with
the magnitude of the average effect of a phenomenon of interest. This is helpful then in informing teachers
and other stakeholders of the main UTOS factors that are most important in moderating the effectiveness of
the phenomenon of interest (teacher feedback on writing accuracy). The details of this approach fall outside
the scope of this introductory article.
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A 3M model may be fit in two steps. First, recall that sampling dependence was
inherent in the effect-size estimates obtained from the WCEF literature due to the
studies’ own designs prior to their meta-analysis. As such, prior to meta-analysis, we
need to introduce this dependence among the effect-size estimates using the following
inR:

(2) V = with(wcf, impute covariance matrix(var, study,
r=.6))

To better understand the above R function, recall that we already have the sampling
variances (var) for our effect-size estimates in our wcf data set, as we always should
for any meta-analysis. However, we need to build the sampling covariances around
them to account for the inherent sampling dependence among the effect-size estimates
in each study. The R function impute covariance matrix () helps adding
these sampling dependencies (i.e., covariances) around those sampling variances. To do
so, we need to supply the function with the sampling variances (var), the level in the
data where the dependencies among effect-size estimates occur (in our case study, as
effect-size estimates in each study are likely correlated), as well as a value or a set of
values for the correlations among those effect-size estimates in each study (r). As
indicated earlier, the idea is to use a medium-high correlation (r = .60), as an initial
guesstimate to represent a constant sampling dependence among effect-size estimates
(Pustejovsky & Tipton, 2022). These elements (i.e., var, study, and r) are what we
inputto impute covariance matrix () inRcode(2). For more details regard-
ing impute covariance matrix (), readers can refer to the function’s help
page by running ? impute covariance matrix() inR

The second step involves setting up the 3M model in R. The model consists of three
main parts: (1) a place for defining the (M)UTOS moderators of interest and the effect-
size estimates (argument yi); (2) a place for defining the structure of sampling
variances and, if any, sampling dependencies (argument V); and (3) a place for defining
the structure of hierarchical dependence (argument random).

To better understand this second step, suppose that we want to examine the extent to
which proficiency influences the effect of WCF on written accuracy over time (i.e., from
pre to posttest) in the WCF literature. Part one of the model using Table 1 (M)UTOS
moderator abbreviations may be defined in R as follows:

(3) yi=g~prof*time + study length +des type

This formulation includes the effect size (g), the focal UTOS moderator (prof), the
outcome measurement timing (time) interacted (*) with the focal moderator to
understand the moderator’s influence on effect size over time, and our two method-
ological (M) moderators study length and des_ type, which will need to be
always controlled for as nuisance variables (see Findings may be biased). Notice that
methodological moderators are always added using + signs to properly function their
controlling role.

Part two is to simply supply the sampling dependencies (V) defined earlier in R code
(2) above. Finally, part three is to provide the structure of the hierarchical dependence.
With respect to hierarchical dependence, we recognize that true effects are clustered
(i.e., nested) within each study leading to the estimation of two sources of random
variation (see Hierarchical dependence in 3M). Part three for our 3M model may be
defined in R as follows:
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(4) random = ~1 | study/effect

In addition to these steps, it is highly recommended that hypothesis tests from the
model use the potentially more conservative (i.e., smaller) degrees of freedom (dfs)
offered by the “contain” method® (see Viechtbauer, 2010) in the R package metafor:

(5) dfs ="contain"

Tying these steps together, the 3M explores the extent to which proficiency influences
the effect of WCF on written accuracy over time, which may be defined in R as follows:

(6) m_prof = rma.mv (yi=yi, V=V, random=random, dfs=dfs,
data=wcf)

Detecting outliers in 3M models

Before finalizing our 3M model, a critically important step is to ensure that the model is
not negatively affected by outlying estimates of effect size. A useful approach to do sois to
examine how each effect-size estimate interactively influences a 3M model (Viechtbauer,
2021). Interactive outliers are those that from multiple perspectives are considered
outlying. Three such perspectives include an effect estimate (1) having a standardized
deleted residual that exceeds = 1.96 (such estimates do not fit the 3M model well),
(2) exerting a large influence on the results once deleted (an estimate’s Cook’s distance
exceeding the upper limit of a box plot of all estimates’ Cook’s distances), and (3) leverag-
ing considerable influence on its own predicted true effect value given the meta-analytic
weight and the moderator values attached to it (an estimate’s Hat value exceeding the
upper limit of a box plot of all estimates’ Hat values).

The idea behind detecting interactive outliers is to find effect-size estimates that
simultaneously meet the three perspectives discussed above. For our m_prof model,
we can achieve this goal by running the following in R with the results shown in
Figure 4:

(7) out = interactive outlier (m prof)

If detected, interactive outliers are indicated by their row-wise location in the
Figure generated by the R function interactive outlier. In our case, out of
245 estimates of effect size obtained from the WCEF literature, only one effect-size
estimate (not an entire study) on row 116 is identified as an interactive outlier. The
interactive outlier function automatically removes the interactive outliers
and provides the new data set:

(8) wcf new =out$new data

Because this new data set is smaller than the original one due to the removal of one
interactively outlying effect-size estimate, we also need to redefine our sampling
dependence structure initially defined in R code (2) with this new data set:

*For details, readers are referred to the “Tests and Confidence Intervals” section of the metafor package
documentation by running the following in R or Rstudio: ? rma . mv.
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Figure 4. Detection of interactive outliers.

9) V_new=with(wcf new, impute covariance matrix(var,
study, r=.6))

Finally, we can update our original 3M model (m_prof) with this new data set
(wcf new) and the new sampling dependence structure (V_new):

(10) m_prof new=update (m_prof, V=V new, data=wcf new)

Exploring results from a 3M model

At its core, a 3M model is a multilevel regression model (see multivariate, multilevel
meta-analysis). This means that the output will largely resemble that from multilevel
regression analyses. However, this output is often perceived to be difficult to interpret
for researchers in applied linguistics (Plonsky & Oswald, 2017) as well as those in other
fields of study (Fox & Weisberg, 2018). The interpretations become particularly subtle
as moderators in the model, including the categorical and the continuous ones, grow in
number.

Additionally, recall that in addition to the moderators involved in our research
question (i.e., how does proficiency influence the effect of WCF on written accuracy
over time?), other variables (i.e., M moderators) in the 3M simply act as bias-controlling
agents. Such bias-controlling agents, as noted previously, do not necessarily merit an
interpretation and may be adjusted for in the background (Berlin & Antman, 1992;
Tipton et al., 2019).

The R function post_rma () helps us obtain a piece of output that is focused on
our research question, keeping the M moderators adjusted for in the background. For
our research question, the function may be used as follows:

(11) post prof =post rma(m prof new, ~prof*time)
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Table 3. 3M results for the influence of proficiency on WCF effect over time

Proficiency Time Mean SE Lower Upper t P Sig.
1 Advanced Baseline —0.500 0.307 -1.136 0.137 —1.628 118
2 Beginner Baseline 0.575  0.485  -0.432 1.581 1.184 249
3 Intermediate Baseline 0.112  0.138 -0.175 0.399 0.812 426
4 Advanced Postl 0.156 0.307 -0.481 0.793 0.509 .616
5 Beginner Postl 0.685 0.492 -0.336 1.705 1.391 178
6 Intermediate Postl 0.660 0.140 0.370 0.949 4.727 .000 ek
7 Advanced Post2 —0.144 0.445 -1.066 0.778 —0.324 749
8 Beginner Post2 1.071 0.671 -0.319 2.462 1.598 124
9 Intermediate Post2 0.654 0.147 0.350 0.959 4.456 .000 ek

In(11),m prof new representsour fitted 3M model in R code (9). The ~prof* -
time part indicates the moderators involved in our research question. These primary
moderators are also the ones defined in our 3M model in R code (3). The output from
post rma is displayed in Table 3.

The column titled Mean represents the meta-analytic average effects found for each
proficiency level at each measurement time in the WCF literature, SE represents the
standard errors for those average effects, and Lower and Upper represent the 95%
confidence intervals for the estimates of Mean. The column ¢ is the ¢ value resulting
from testing the null hypothesis that each Mean is in reality nonexistent (here 0). Thus,
the p values indicate whether we can reject such null hypotheses using some decision
rule for statistical significance (e.g., p < .05).

Similar to a primary study, it would be helpful to visualize the patterns represented
in Table 3 for our meta-analytic study. The R function plot rma () is designed for
this purpose. We can direct the function to plot the proficiency groups’ Mean effects
over time (prof~time):

(12) plot rma(m prof new, prof~time, xlab ="Time")

Such visuals have other benefits as well. For instance, looking at Figure 5, we realize
that in the WCF literature, low-proficiency learners are likely quite understudied
relative to intermediate and advanced learners. This is evident in that the confidence
intervals for the beginners are much wider than are those for the other proficiency
levels. Additionally, not only have WCF studies largely focused on intermediate
learners, this proficiency level has been more longitudinally studied than others have.
This is seen in the confidence intervals for the intermediate learners, which are much
narrower on the second posttest than those for the other proficiency levels.

Despite these benefits, it is often difficult to compare the groups in any precise
manner by solely looking at visualizations such as Figure 5. This is why it is necessary to
conduct post-3M comparisons to better explore the findings of the study.

Post-3M comparisons

Although Table 3 and Figure 5 provide useful information about how WCF has worked
for each proficiency level at a given measurement time, knowing precisely how WCF’s
effect compares within and across the proficiency levels requires making post-3M
comparisons. Some of these comparisons may be simple (e.g., Prior to receiving WCF,
how do the proficiency groups differ at the pretesting occasion?). Others may be more
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Figure 5. Average meta-analytic effects for proficiency levels over time.

Table 4. Difference between proficiency groups at the pretest

Contrast Estimate SE Lower  Upper t p Sig.

Advanced baseline — beginner —1.074 0.597 —2.313 0.164 —1.799 .086
baseline

Advanced baseline — intermediate  —0.612 0.337 -—1.311 0.087 —1.817 .083
baseline

Beginner baseline — intermediate 0.462 0.507 —0.589  1.514 0912 372
baseline

complex (e.g., How does WCF’s effect for proficiency groups differ from pre- to the
final posttest?).

For simple comparisons such as comparing groups at the pretesting time, a pairwise
comparison involving the first three Means (include=1: 3) in Table 3 results, which
focus on the proficiency groups’ average effects at the pretesting occasion, is all that is
needed. To do so, we may use the pairwise functionality of post rma:

(13) post_rma(m_prof new, pairwise~prof*time, include=
1:3)

As can be seen in Table 4, no statistically significant differences are found across the
proficiency groups at the pretesting occasion (i.e., prior to receiving WCF). This finding
may, however, be taken with a grain of salt. This is so because the ClIs for the differences
are fairly wide, indicating a potential inability to detect such differences, when some
could in reality exist (i.e., Type II error in decision making).

With this Type II error possibility, comparing the proficiency groups at any
posttesting occasion (e.g., final posttest) without considering their pretesting status
may provide an invalid picture regarding how WCF has worked for different profi-
ciency groups at that point. Consistent with this view, we can instead compare the gains
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each proficiency group has made from the pretest to any posttesting occasion of
interest. This is precisely what our second comparison (i.e., How does WCF’s effect
for proficiency groups differ from pre- to the final posttest?) is targeting. To address our
second comparison, we can define the long-term gain for each proficiency group
between pre- and second posttest as follows:

(14) Gain = second posttest — pretest

Our guiding plan then is to compare each pair of proficiency groups on such a gain,
which will require testing the following contrasts:

(15) Gain (beginner) — Gain (advanced)
(16) Gain (beginner) — Gain (intermediate)
(17) Gain (intermediate) — Gain (advanced)

Such customized contrasts, however, may not be readily tested by statistical software.
Instead, we will need to locate the Means from Table 3 to form the gains for each
proficiency group and then contrast them with one another. For example, for contrast
(15) we can easily see that the difference in the gains entails the following mean
locations from Table 3:

(18) 8—-2)—(7-1
The above, in words, reads

(19) (2nd Mean subtracted from 8th Mean) — (1st Mean subtracted from 7th
Mean)

Contrast (18) can be simplified by applying the — sign between its parentheses:
(20) 8—2—-7+1)

Similarly, for contrasts (16) and (17), we will, respectively, obtain the following Mean
locations from Table 3:

(21) (8—2—-9+3)
(22) (9—3—7+1)

Having determined the location of the Means in Table 3 for contrasts (15) through (17),
we can test them using contrast_rma. To do so, we will supply the function with the
Table 3 results (post prof) and the Mean locations indicated in (20) through
(22) for our customized contrasts:

(23) contrast rma(post prof, list
"Gain (beginner — advanced)"=c
"Gain (beginner — intermediate
"Gain (intermediate — advanced

1_21_71 l) ’
"=C(8I_2I_9I3) ’
"=C(9I_31_7I 1) ))

—_ — .~
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Table 5. Difference in long-term gains across proficiency levels

Contrast Estimate SE Lower Upper t p

Gain(beginner — advanced) 0.141 0.656 —1.220 1.502 0.215 .832
Gain(beginner — intermediate) —0.045 0.549 —1.183 1.092 —0.082 .935
Gain(intermediate — advanced) 0.186 0.384 —0.610 0.983 0.486 .632

The results are shown in Table 5. Based on these results, long-term gains for the
proficiency groups in the WCEF literature are not statistically different from one
another. Once again, however, the fairly wide CIs for these differences prevent us from
placing full trust in these results. We, as indicated previously, know that the bulk of
WCEF research has been focused on intermediate learners, with the other two profi-
ciency groups remaining largely understudied. And this is the underlying reason we
tend to see a fair amount of uncertainty in our results.

Note, however, that our customized contrasts focused on the difference in gains (not
gains themselves) from WCF across the proficiency groups to determine whether WCF
might have differentially benefited the proficiency groups. Thus, the lack of a statisti-
cally significant finding should not mean that WCF has not produced any benefit for
each proficiency group per se. Indeed, we can easily obtain the long-term gains from
WCE per equation (14) for each proficiency group using contrast rma. To do so,
we can again supply contrast rma with the relevant Mean locations for each
proficiency group’s long-term gain from Table 3 (e.g., 8 — 2 for beginners’ gain):

(24) gain prof = contrast rma(post prof, list(
"Gain (beginner)"=c(8,-2),
"Gain (intermediate)"=c(9,-3),
"Gain (advanced)"'=c(7,-1)))

The results in Table 6 show that the long-term gain in written accuracy from WCF is
statistically significant for intermediate learners and so with a reasonable level of
certainty, 95% CI [.356, .729]. For other understudied proficiency groups, however,
the high level of uncertainty, indicated by wide confidence intervals, prevents a precise
estimate of the long-term gains in written accuracy.

Exploring variation (heterogeneity) in 3M

Besides exploring WCF’s mean effects for various proficiency levels, our 3M model
allows us to examine how much of the total variation (i.e., sum of ¢ study- and ¢ effect-
level variations) in the underlying WCF effects is systematically due to proficiency
adjusting for the M moderators. Stated differently, we can ask the question: to
what extent the variation in the magnitude of underlying WCEF effects is because they

Table 6. Long-term gains in writing accuracy across proficiency levels

Contrast Estimate SE Lower Upper t p Sig.
Gain(beginner) 0.497 0.540 -0.624 1.617 0.919 .368
Gain(intermediate) 0.542 0.095 0.346 0.738 5.730 .000 o
Gain(advanced) 0.356 0.372 -0.416 1.127 0.956 .350
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Table 7. Variation in underlying WCF effects accounted for by the fitted 3M

Model o total o study o effect p R?
No (M)UTOS 0.738 0.529 0.514
m_prof_new 0.699 0.548 0.434 .000 5.200%

come from different proficiency levels controlling for the methodological differences in
the WCF studies? To answer this, it is customary to compare our existing model with
one that has no (M)UTOS moderator in it. This procedure is akin to obtaining the R*in
regression analyses. To achieve this, we can use R2_rma ():

(25) R2 rma(m prof new)

Table 7 displays the results. As can be seen, our model (m prof new) has
accounted for 5.2% of the total variation (in SD unit; ¢ total) in underlying WCF
effects given its moderators. These moderators also tend to collectively be statistically
significant (p < .05). Clearly, the rest of the variation in the underlying WCF effects
remains unexplained by proficiency, perhaps a reason for the meta-analyst to explore
other moderators in subsequent analyses.

Using variation (heterogeneity) for evidence-based recommendations

Understanding the magnitude and sources of variation in the underlying WCF effects
also provides a window into the distribution of effects in that domain of research
(Mathur & VanderWeele, 2019). Supplementing this information with the Mean effects
(Table 3) or the effects from our main comparisons (e.g., gains in Table 6) provides a
highly useful means of offering evidence-based recommendations to the audience of
our meta-analysis. For example, we could predict how likely it would be, on average, for
L2 learners to positively benefit (i.e., gain) from teachers’ written feedback given their
proficiency levels. To do so, we can feed Table 6 results (gain prof) for proficiency
groups’ long-term gains (gain=TRUE) into function prob rma () with the results
shown in Table 8:

(26) prob rma(gain prof, gain=TRUE)

Based on Table 8, intermediate learners are, on average, ~81% (column Probability)
likely to positively benefit from teachers’ written feedback in the long run. But a positive
gain could include any amount of gain even as small as to be considered practically
insignificant. Thus, we can define a minimum threshold for that gain to be practically
more meaningful. For instance, we could predict how likely it would be for learners, on
average, to gain at least as large as 0.2 on the effect-size scale from teachers’ written

Table 8. Prediction for WCF benefitting learners given their proficiency

Term Target effect Probability Min Max

Gain(beginner) 0 or larger 79.08% 18.73% 99.87%
Gain(intermediate) 0 or larger 81.13% 68.87% 91.52%
Gain(advanced) 0 or larger 71.89% 27.70% 98.20%
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Table 9. Prediction for WCF benefitting learners by a target effect given their proficiency

Term Target effect Probability Min Max

Gain(beginner) 0.2 or larger 68.57% 12.05% 99.58%
Gain(intermediate) 0.2 or larger 71.12% 58.23% 84.17%
Gain(advanced) 0.2 or larger 60.03% 19.04% 95.78%

feedback given their proficiency levels. To do so, we can provide prob _rma with our
target effect of .20 with the results shown in Table 9:

(27) prob_rma(gain prof, target effect=0.2, gain=TRUE)

Now, we can see that the likelihood of benefitting from teachers’ written feedback
for intermediate learners, on average, decreases from ~81% to ~71% in the long
run (i.e., from pre- to the second posttest controlling for the differences in the studies’
lengths). This decrease in likelihood is, of course, expected given that we have set a
higher expectation for learning gains from teachers’ written feedback. Notice also that
in both Tables 8 and 9, our ability to make such easy-to-understand evidence-based
recommendations depends, among other things, on the amount of the evidence
supporting these benefits. For instance, because beginners and advanced learners
are understudied in the WCEF literature, the minimum (column Min) and maximum
(column Max) bounds on how much they, on average, can benefit from teachers’
written feedback in the long-run are quite far apart. As a result, evidence-based
recommendations in this respect may be made with caution (e.g., perhaps using or
emphasizing the Min probabilities).

Sensitivity of 3M to sampling dependence

Recall from our discussion on sampling dependence (see Sampling dependence in 3M)
that the medium-high correlation (r = .60) assumed for effect-size estimates in each
study was more of a guesstimate. As such, we may want to subject this value to a
sensitivity analysis. This means that we would want to assume a range of different
correlations for effect-size estimates in each study to see how robust the result of the 3M
model (m_prof new) will be to the change in such a guesstimate.

To achieve this goal, we can use the sense rma () function in R, which uses our
initial Table 3 results (post prof) as well as the name of the variable in our data
denoting the sampling variances (var):

(28) sense_ rma (post prof, var name = "var")

Table 10 shows the results of our sensitivity analysis under five different degrees of
correlation assumed for effect-size estimates in each study. The last column assesses
the variability (in SD unit) in the results under all these degrees of correlation.
Although there is no preset cut point, almost all mean effects (except for beginner
post2) are close to one another, resulting in their variability (column SD) being
fairly small.

For the total variation (in SD unit) in true WCEF effects (last row), we do see a bit of
sensitivity. Specifically, as r becomes larger, the total variation decreases in magnitude
at a faster rate than that in other terms in Table 10. Ultimately, the point is to
acknowledge the fact that our addressing the dependencies in individual studies, at
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Table 10. Sensitivity of 3M results to different amounts of sampling dependence

Term r=0.3 r=0.4 r=0.5 r=0.6" r=0.7 SD

Advanced baseline —0.496 —0.497 —0.498 —0.500 —0.501 0.002
Beginner baseline 0.594 0.587 0.581 0.575 0.568 0.010
Intermediate baseline 0.145 0.134 0.123 0.112 0.101 0.017
Advanced Postl 0.142 0.147 0.152 0.156 0.161 0.007
Beginner Postl 0.720 0.708 0.696 0.685 0.673 0.019
Intermediate Postl 0.689 0.679 0.669 0.660 0.650 0.015
Advanced Post2 —0.149 —0.147 —0.146 —0.144 —0.142 0.003
Beginner Post2 1.170 1.137 1.104 1.071 1.039 0.052
Intermediate Post2 0.684 0.675 0.665 0.654 0.644 0.016
Total variation in SD 0.743 0.728 0.714 0.699 0.686 0.023

Note. The asterisk denotes the r value used in the current model.

least in some ways, is not and perhaps will never be perfect. Rather, it to some extent is
sensitive to the degree of correlation assumed for the evidence collected from our
complex studies. However, these small sensitivities, in the end, often outweigh a
complete ignorance of the dependent nature of the evidence collected from such
studies.

The steps illustrated above are important in describing the role of proficiency as a
critical variable in WCEF effectiveness. But they also provide a road map for exploring all
other moderators listed in Table 1. Also, due to space limitation other moderators are
not demonstrated here, so the interested readers are encouraged to implement the steps
described in the present article for other moderators given the open-data-and-materials
nature of the present article.

Conclusion

The alternative view of meta-analysis introduced in this article feels and looks a lot like
that of primary study analysis. That is, we collect data according to some plan (e.g., first
selecting relevant studies, then selecting relevant evidence within those studies);
identify substantive and confounding variables; fit appropriate regression models
involving those variables; examine and, if needed, modify the model for outliers; plot
the findings; and test various hypotheses to answer our specific research questions.
Although a meta-analysis can be as good as the individual studies that form its basis,
in this article, we argued that even with high-quality L2 studies forming its basis, a
meta-analysis can misrepresent those studies. This misrepresentation stems from
ignoring the evidence dependencies that are due to the studies’ design complexities.
For instance, we saw that evidence for implicit knowledge development and that for
explicit knowledge development could be inherently correlated in L2 studies (see
Sampling dependence). Yet this methodologically induced relationship has nothing to
do with a substantive relationship that could potentially exist between the two concepts,
as indicated by theory (e.g., interface hypothesis, see Ellis, 2008). Rather, it merely arises
from the design of the studies investigating those concepts. Such design complexities
should be addressed in L2 meta-analyses so that the substantive phenomena can be

®Besides outliers, another issue not covered here, due to space limitation, is publication bias. Readers are
referred to Rodgers and Pustejovsky (2021) for more details.
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empirically examined. This is especially crucial in the era of evidence-based social
sciences to which meta-analysis often seeks to contribute.

It should also be noted that there is far more flexibility to the 3M meta-analysis that
falls beyond the scope of this introductory article (but see our supplementary document
at: https://rnorouzian.github.io/m/3msup.html where we expand on the basic 3M
model introduced in this article). However, as a general framework, we would recom-
mend the approach illustrated in this article for use in L2 research. It is certainly our
hope that with this alternative approach to meta-analysis, applied linguists would be
better able to offer easy-to-understand, evidence-based recommendations to
researchers, teachers, teacher trainers, policy makers, and other stakeholders in the
language learning and teaching world. The present article, we believe, is a step in that
direction.

Data availability statement. The experiment in this article earned Open Data and Open Materials badges
for transparent practices. The materials and data are available at https://github.com/rnorouzian/i/blob/
master/3m.r.
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