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We perform inviscid and viscous, global, linear stability analyses of vortex rings which
are compared with asymptotic theories and numerical simulations. We find growth rates
of rings to be very sensitive to the details of vorticity distribution, in a way not accounted
for in asymptotic theories, clearly demonstrated in our analyses of equilibrated rings–ring
base flows initially obtained from Gaussian rings evolved to a quasi-steady state before
any instabilities set in. Such equilibrated rings with the same ε = a/R, the ratio of
core radius a to ring radius R, but evolved with different viscosities, have inviscid
growth rates differing by up to 9 %, though the differences in vorticity at any point are
small. In contrast, the growth rates of rings with a Gaussian vorticity distribution are
found to be up to 33 % smaller than the inviscid asymptotic theories over 0.4 > ε >

0.05. We attribute these differences to the nature of velocity fields at O(ε2), between
equilibrated and Gaussian rings, where the former shows a good quantitative match with
the asymptotic theories. Additionally, there are some differences with previous direct
numerical simulations (DNS), but in very close quantitative agreement with our DNS
results. Our calculations provide a new relation capturing the near-linear dependence of
growth rates on the reciprocal of a strain rate-based Reynolds number R̂e. Importantly,
our equilibrated ring calculations do tend to the inviscid limit of asymptotic theories, once
corrections for ring radius evolution and equilibrated distribution are imposed, unlike for
Gaussian rings.

Key words: vortex instability

1. Introduction

Vortex rings appear in a variety of flows when the vorticity in a layer adjacent to a
surface separates and rolls up, like at the exit orifice of a nozzle. In living systems, for
example, such rings appear at the periphery of a fluid parcel ejected from the mouth of
a system. In round jets the separating sheet of vorticity is inviscidly unstable to small
perturbations, and the ensuing redistribution results in vorticity accumulating into rings
while also being depleted between successive rings. The initial inviscid instability is a
form of the linear Kelvin–Helmholtz instability of vortex sheets, while the subsequent
roll-ups into rings is essentially a nonlinear process. Vortex rings are themselves unstable
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to azimuthal perturbations, whose inviscid asymptotic theories were developed in Widnall
& Sullivan (1973) and Widnall, Bliss & Tsai (1974), for slender rings whose core radius
a � R, the ring radius. These were later extended to viscous flows (Eloy & Le Dizés
2001; Fukumoto & Hattori 2005), while viscous growth rates have also been extracted
from direct numerical simulations (DNS) (Shariff, Verzicco & Orlandi 1994; Archer,
Thomas & Coleman 2008; Hattori, Blanco-Rodríguez & Le Dizés 2019). In this work a
detailed global, modal stability analysis of vortex rings for both inviscid and viscous flows
is performed where one of the primary aims is to clarify some of the existing discrepancies
between asymptotic theories and numerical simulations.

In a series of works with asymptotic theories of inviscid vortex rings, Widnall &
Sullivan (1973) first considered ε = a/R � 1 and uniform vorticity across the ring core
to show such vortex rings to be neutrally stable as a → 0. Here, the lowest ring azimuthal
modes n = 0, 1 have zero growth rates, while the higher modes were shown to execute
periodic oscillations. Results of Widnall & Sullivan (1973) agreed with earlier results
of Kelvin (see Thomson 1880, 1883), while further demonstrating a particular n to be
unstable over non-overlapping ranges of small, but finite, slenderness ratios ε. These
values of n(≥ 2) increased monotonically with a decrease in ε. Although the theoretical
growth rates matched well with the findings from initial experiments, the azimuthal mode
numbers n deviated. Moreover, the predicted instabilities were essentially for short waves
that clearly violated the requirement of small variations along the ring compared to across
its core. Later, when Widnall et al. (1974) accounted for short waves, predictions for n
improved. It was argued that instabilities occur when the self-induced rotation rate of the
vortex filaments vanishes, a condition apparently met only for the higher radial modes.
This yielded better agreements with the experiments once the instability was estimated
from the second radial mode.

An important contribution was due to Widnall & Tsai (1977), who considered the
systematic development of asymptotic theory for the inviscid vortex ring instabilities
with small ε as the order parameter. They obtained the essential mechanism of vortex
ring instabilities at O(ε2) due to a resonance between mode pairs, to be similar to a line
vortex in the strain field due to a second vortex (Moore & Saffman 1975; Tsai & Widnall
1976). This instability occurs for azimuthal mode pairs of the same frequency and axial
wavenumbers which is satisfied at intersections of dispersion curves for fixed azimuthal
modes. Expectedly, the maximum growths occur here at the zero frequencies. These
belong to a class of instabilities termed as elliptical instability, found in flows with elliptic
streamlines (Kerswell 2002). Note that although the ring curvature is an O(ε) effect,
there is still no destabilization, while the corresponding correction is just proportional
to the lowest-order stable solution. The calculated growth rates therefore include a small
contribution from the curvature effect. However, Fukumoto & Hattori (2005) have argued
that curvature effects can still destabilize a ring in an inviscid flow for a mode pair in
resonance when the azimuthal modes differ by 1, with an O(ε) velocity field. Although,
unlike the instability due to strain, the most unstable mode of curvature instability occurs
at the short-wavelength limit.

A set of recent advancements on instabilities of vortex rings is due to Blanco-Rodríguez
et al. (2015) and Blanco-Rodríguez & Le Dizés (2016, 2017) who extended the asymptotic
theories of Widnall & Tsai (1977) and Fukumoto & Hattori (2005) for swirling vortex
rings with Gaussian distribution. Here, the base velocity fields were computed up to
O(ε2), because the non-local effect due to self-induced velocities appear only at O(ε2)
(Blanco-Rodríguez et al. 2015).

Asymptotic theory extensions for viscous instabilities were first included in Eloy &
Le Dizés (2001), while exploring the response of a vortex in multipolar strain fields as
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viscosity ν ∼ τ , where τ is the strength of the strain field. For vortex rings and line
vortex pairs, this background strain field is dipolar, while for more general turbulent
flows that include influence from neighbouring vortices, a tripolar or quadrupolar model
may be used. For a dipolar field, it was found that, for small viscosities, resonance
between bending mode pairs (m = ±1, where m is the azimuthal mode of the line vortex)
is selected, while the pair of bulging (m = 0) and splitting modes (m = 2) dominate
at larger viscosities, before being cut-off at a critical viscosity. Fukumoto & Hattori
(2005) showed that when viscosity is included, curvature effects become effective above a
critical Reynolds number, larger than the critical Re of instability due to strain, which
again increases with a decrease in the slenderness ratio ε. Viscous effects and the
effect of curvature on the growth rates of elliptic instabilities were also considered in
Blanco-Rodríguez & Le Dizés (2016, 2017).

Direct numerical simulations of vortex rings were performed by Shariff et al. (1994)
who extracted growth rates during the early stages of unstable evolution. The initial
condition was that of a Gaussian vorticity distribution over the core with small amplitude
azimuthal perturbations superimposed. However, in two of the 18 cases reported by Shariff
et al. (1994), perturbations were added to an equilibrated ring that was obtained by
allowing the Gaussian distribution to evolve to a nearly steady state. There were qualitative
agreements with the inviscid results of Widnall & Tsai (1977), but the corresponding
growth rates were less, which was attributed to viscosity. Subsequently, Archer et al.
(2008) also performed DNS of vortex ring evolution, including two cases with the same
initial conditions as Shariff et al. (1994), but found still smaller growth rates which they
attributed to the use of axially periodic boundary conditions by Shariff et al. (1994). The
shed vorticity of the initial ring was superimposed on the adjacent rings which seem to
have altered the instability growth rates. Gargan, Rudman & Ryan (2016) integrated the
linearised Navier–Stokes equations beginning with an equilibrated velocity field due to a
vortex ring, and extracted growth rates which were in between the DNS of Shariff et al.
(1994) and Archer et al. (2008). Recently, Hattori et al. (2019) considered linearised and
full Navier–Stokes equations to study the evolution of base flow and perturbations for
swirling vortex rings, where curvature instability was found to dominate at large and small
values of Re and ε, respectively. Even though curvature instabilities are not explored in our
work, a few of our unstable modes are similar to the spiral modes of Hattori et al. (2019),
as we show in § 3.3.

In this work we perform global, linear stability analyses of vortex rings, both at finite
Re and inviscid conditions, for a range of slenderness ratios ε. To be consistent with the
asymptotic analyses of Widnall & Tsai (1977) and Blanco-Rodríguez & Le Dizés (2016),
we use a base flow obtained after solving the Poisson equation and further evolving it
to yield a skewed Gaussian vorticity distribution, which we refer to as the equilibrated
vortex ring. In addition, the Gaussian distribution by itself is also used as a second base
flow. Such a global stability analysis may have been difficult earlier because of the large
eigenvalue problems that must be solved for correct solutions. Initially, we use these
solutions to assess the quantitative accuracies of previous asymptotic solutions for the
inviscid instability of slender rings. Since typical unstable vortex rings in round jets are
neither quite slender, nor are inviscid, we also extend our calculations to viscous and
thicker rings. For some cases, we have done DNS to assess the accuracies of our stability
solutions.

The results of present modal analysis are entirely consistent with the theories of Widnall
& Tsai (1977) and Blanco-Rodríguez & Le Dizés (2016), and show the same qualitative
trends in both inviscid and viscous analyses. Our calculations with equilibrated vortex
rings show that small differences in the vorticity distribution, due to equilibration carried
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out at different Re, of these rings can give a ∼9 % difference in growth rate for ε ≈ 0.29
and ∼3.5 % for ε ≈ 0.19. However, in spite of these differences, the growth rates from
inviscid modal analysis with equilibrated vortex rings are found to be quite close to
the asymptotic theories of Widnall & Tsai (1977) and Blanco-Rodríguez & Le Dizés
(2016) (range of differences being ∼0.1–10 % and ∼2–5 % for thicker and thinner rings,
respectively, also depending upon which asymptotic theory we compared against). There
are, however, several quantitative differences between the asymptotic theory and the results
of inviscid modal analysis for inviscid instability of Gaussian rings. Generally, growth
rates from inviscid modal analysis are ∼14–33 % smaller than that from the asymptotic
theories over a range of ε ∼ 0.4–0.05. In this work we explore in detail the origin of these
differences which will be primarily attributed to the respective nature of the vorticity and
induced velocity distributions.

In what follows, the base flows for the stability equation are discussed and analysed
in § 2. The equilibrated base flow follows from the incompressible flow DNS and these
are described in §§ 2.1 and 2.2, while the Gaussian base flow is in § 2.3. The base flows
are analysed and compared in §§ 2.4 and 2.5. The global stability results are presented in
§ 3 with a brief overview of numerical methods in § 3.1. In § 3.2 we assess the accuracy
of our global stability results by comparing with our DNS results, while § 3.3 contains a
summary of all the important results of this work, which are directly compared with other
relevant data from the literature where a new viscous correction is also introduced. Growth
rates are seen to be smaller and occurring for a smaller range of modes as Re is decreased,
with the instabilities disappearing below a critical Re. The fact that our calculated inviscid
growth rates are different from the asymptotic theories for the Gaussian rings is explored
in §§ 3.4 and 3.5, where the effects of base flow vorticity distribution and slenderness
ratios, respectively, on inviscid growth rates are demonstrated. Here, equilibrated vortex
rings are shown to yield growth rates that are very close to theoretical predictions.
The effects of viscosity are further discussed in § 3.6 while the conclusions are in § 4.
Finally, appendix A describes the standard stability equations, corresponding eigenvalue
problem and details of the stability matrices, while appendix B shows the validation and
convergence studies of our global stability solver and appendix C discusses the stability
of line vortices and their dispersion curves showing the connection with stability of
vortex rings.

2. Stability problem base flows

In this work we use a Cartesian box (x, y, z) within which the undisturbed ring is placed,
as used in the DNS, but also in our stability calculations where a Poisson solver initially
yields the base flow velocity distribution (see figure 1a,b). In our simulations the ring
travels along the ring axis (i.e. x-axis), while its positions on the transverse y–z plane
are also described via its polar coordinates (r, θ). The latter system is primarily used for
our stability calculations, as described in the following and visualized in figure 1(a,b).
Additionally, the initial azimuthal vorticity distribution over the ring is specified via a
second polar coordinate system (s, φ) with its origin at the centre of the ring core (at
r = 1, x = xc, see figure 1(a), with xc = 2.5 fixed for all our stability calculations) and
radial ordinate as s = (x2 + ( y − 1)2)1/2 (see figure 1a). Later, when modal analysis of a
line vortex is described in appendix C to connect certain mechanistic similarities between
the ring and line vortices, we also use this (s, φ, z) system, with the line vortex axis located
along the z direction. Here, quantities are scaled with the initial vortex ring radius R of
the circle through its core centre and the corresponding circulation Γ . The vortex ring
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ūx

ūr

FIGURE 1. The base flow of a typical Gaussian vortex ring as used in this work for ε = 0.4131
showing (a) streamlines on the x–y plane in a reference frame moving at the velocity Δūx , (b) the
corresponding schematic in the y–z plane, (c) the Gaussian vorticity (ω̄θ ) distribution and (d) the
base flow velocity profiles along x = xc (indicated via a vertical dotted line in a) with ūx (——)
and ūr (– – –) indicated. In (a,b) the vortex core is indicated by a grey disk and semi-annulus,
respectively (not to scale).

evolution is further specified by a Reynolds number Re = Γ/ν, where ν is the kinematic
viscosity.

The (Cartesian) solution domain size is 0 < x < Lx and −Ly/2 < y, z < Ly/2,
discretised via Nx × Ny × Nz equispaced mesh points with Ny = Nz. The solution is
periodic in y and z while along x we use inflow–outflow boundary conditions. The initial
velocity distribution is obtained by solving a Poisson problem for the vector potential with
each component of vorticity as source terms. In this work this is done using Incompact3d
(Laizet & Lamballais 2009; Laizet & Li 2011), a freely available incompressible, viscous
flow solver.

2.1. Direct numerical simulations methodology
The base flow for the equilibrated vortex rings (see § 2.2) are obtained from DNS using
Incompact3d with Gaussian vorticity core initial conditions. For a Gaussian distribution,
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the base flow azimuthal vorticity (see figure 1c) is

ω̄θ (s) = 1
πε2

exp (−s2/ε2), (2.1)

where ε = a/R is the slenderness ratio, a key parameter for the vortex rings considered
here, with a being the radius of the vortex core. The DNS for the vortex ring is carried out
on the region Lx × Ly × Lz = 15 × 10 × 10 via ensuring errors near the outflow region do
not affect the flow field in the neighbourhood of the ring. During the simulation, following
Archer et al. (2008), a time varying inflow condition is enforced to maintain the ring
stationary with respect to its centroid of enstrophy. Here, two distinct simulations are
performed, one for obtaining the equilibrated base flow (discussed next in § 2.2), while
the other for extracting the DNS growth rates. For the latter, the initial vortex ring is
perturbed along the core centreline via a sum of the first 24 Fourier components, each
with unit amplitude and a random phase. For relatively thicker rings, for example, vorticity
is shed from the initial ring, following nearly stationary flow before perturbations acquire
significant amplitude. Growth rates are then extracted using the procedure detailed in § 3.2
during this nearly stationary flow. Note that our streamwise direction is not periodic so that
there is no contamination from adjacent rings of a periodic solution.

2.2. Equilibrated vortex rings
The primary base flow for our stability calculations is also obtained via the technique
described in § 2.1, where the initial velocity distribution corresponding to the Gaussian
vorticity (2.1) is now evolved for a finite time in the incompressible Navier–Stokes solver
without imposing any centreline perturbations. The ring eventually attains a quasi-steady
state, after an initial vorticity shedding, and the velocity field at this state is extracted from
the region x ≥ 5, to ensure consistent geometric properties across all cases considered
here, which is then transformed and interpolated using cubic splines to a cylindrical
domain Lx × Lr = 10 × 5 (centred on the ring) and averaged azimuthally. This technique
yields an equilibrated velocity field (a quasi-steady solution of Euler equations) on the
cylindrical (r, θ, x) grid (see figure 1b) for our stability calculations. This grid is clustered
about the vortex ring core using a mapping strategy by Bayliss & Turkel (1992) and
Bayliss, Class & Matkowsky (1995). In this work cases utilizing this particular type of
base flow are indicated by the notation EI() or EV(), depending on whether the inviscid or
viscous stability equations, respectively, are used. For the equilibrated ring, the ring and
core radii are obtained from the integrals (Saffman 1970)

Rθ = 1
Γ

∫
rω̄θ dr dx, (2.2)

a2
θ = 2(R2

2 − R2
θ ), (2.3)

respectively, where

R2
2 = 1

Γ

∫
r2ω̄θ dr dx, Γ =

∫
ω̄θ dr dx and r2 = y2 + z2. (2.4a–c)

For these rings, the slenderness parameter is ε∗ = aθ/Rθ , where such equilibrated
quantities for the equilibrated base flow calculations are distinguished with an ()∗. In this
work, results of stability analysis of the equilibrated ring are compared with the asymptotic
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results of Widnall & Tsai (1977) and Blanco-Rodríguez & Le Dizés (2016), which would
show the growth rates for equilibrated rings to be quite close to that from the asymptotic
theories.

2.3. Gaussian vortex rings
A second type of base flow is obtained by adding a uniform axial velocity (Saffman 1970)

Δūx = 1
4π

[
ln

8
ε

− 0.558
]

(2.5)

to the velocity distribution corresponding to (2.1), which we also use in this work and
denote such cases as GI() or GV(). Streamlines of a typical Gaussian base flow are shown
in figure 1(a). Axial and radial velocity profiles on lines through the centre of the ring’s
core are shown in figure 1(d). It proved convenient to use this base flow to understand grid
requirements and for mode convergence studies that are discussed later in appendix B.2.
Gaussian vortex ring results are also used here to compare with previous DNS results of
Shariff et al. (1994) and Archer et al. (2008) that use a Gaussian vorticity core as the initial
condition. A more detailed study of the instability of Gaussian vortex rings are found in
Naveen (2021).

2.4. Comparison of base flows
Recall that the asymptotic theory of Widnall & Tsai (1977) yielded an inviscid steady
base flow for the vortex ring for a uniform circular core of azimuthal vorticity along with
corrections to O(ε) and O(ε2), where the latter correction accounts for the strain rate field
that supports the elliptical instability. Later, Blanco-Rodríguez et al. (2015) obtained the
corresponding base flow for a Gaussian core to the leading order. When the velocity field
due to a vortex ring with a Gaussian core is obtained by solving the Poisson problem, as
described in § 2.3, an O(ε2) contribution due to non-local effects gets included. A further
contribution to O(ε2) is required due to the O(ε2) part of the vorticity distribution, which,
however, is absent for this base flow. This local O(ε2) part of the vorticity comes from the
deformation of the vortex ring core, which is due to the strain field of induced velocity.
Although it naturally appears in the perturbation solutions of Widnall & Tsai (1977) and
Blanco-Rodríguez et al. (2015), being exact solutions of the Euler equation at all orders,
the fact that the vorticity distribution (2.1) has only the leading order part precludes its
inclusion in the calculated Poisson solutions. A fully consistent base flow is still obtained
when the Gaussian vortex is allowed to equilibrate, as described in § 2.2.

For further proof, we now compare the velocity profile from the asymptotic analysis
of Blanco-Rodríguez et al. (2015) with those obtained via solving the Poisson equations.
Figures 2 and 3 show this comparison for the equilibrated and Gaussian rings, respectively,
up to O(ε2). This is obtained by polar transforming the individual velocity components to
(s, φ) (see figure 1a) with its origin at the core centre (i.e. stagnation point), followed by
azimuthal Fourier transforms on concentric circles with their centres coinciding with the
core centre (more details are in Blanco-Rodríguez et al. (2015)). In this coordinate system
if the radial and azimuthal velocity components are

ūs(s, φ) = ū(0)
s (s) + εū(1)

s (s, φ) + ε2ū(2)
s (s, φ) + · · · (2.6)

and
ūφ(s, φ) = ū(0)

φ (s) + εū(1)
φ (s, φ) + ε2ū(2)

φ (s, φ) + · · · , (2.7)
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FIGURE 2. Comparison of velocity fields obtained from the asymptotic analysis of
Blanco-Rodríguez et al. (2015) with the equilibrated ring at (a) leading order, (b) O(ε) and
(c) O(ε2) for ε∗ = 0.1866. The radial and azimuthal velocity components are shown in thin
and thick lines, respectively, with ——, case EI5 from table 3 and - - - -, asymptotic analysis
(Blanco-Rodríguez et al. 2015). The grey shaded region indicates the vortex core.
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FIGURE 3. Same as in figure 2 but for the Gaussian ring, showing ——, the ε = 0.1545 case
from table 6.

respectively, the assumption of dipole and quadrupole fields at O(ε) and O(ε2) yield

ū(1)
s (s, φ) = ǔ(1)

s (s) sin φ, ū(1)
φ (s, φ) = ǔ(1)

φ (s) cos φ (2.8a,b)

and

ū(2)
s (s, φ) = ǔ(2)

s (s) sin 2φ, ū(2)
φ (s, φ) = ǔ(2)

φ (s) cos 2φ, (2.9a,b)

respectively, where lengths and velocities are scaled with a and Γ/(2πa), respectively.
From figure 2, it is clear that the equilibrated ring base flow matches quite well with the

asymptotic base flow of Blanco-Rodríguez et al. (2015), at all ε orders, especially inside
the vortex core. On the other hand, as expected, figure 3 shows that the Gaussian ring base
flow profile shows large differences, more so inside the core, except at the leading order,
where there is an exact match.

As the elliptic instability occurs due to the velocity field at O(ε2), the difference between
the asymptotic and Gaussian base flows at this order is plotted in figure 4 for different ε

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.581


Global stability of vortex ring 902 A9-9

0 1 2 3 4 0 1 2 3 4

0.02

0.04

0.06

0.08

0.10

s

ε2 u
s(2

) | d
ˇ

ε2 u
φ(2

) | d
ˇε

0.02

0.04

0.06

0.08

0.10

s

ε

(b)(a)

FIGURE 4. Difference between the velocity fields obtained from the asymptotic analysis and
Gaussian rings at O(ε2) for (a) radial and (b) azimuthal velocity components for different values
of ε: —— (thin), 0.4033; - - - - (thin), 0.2368; —— (thick), 0.1545 and - - - - (thick), 0.0504.
All these cases are tabulated in table 6. The grey region shows the vortex core, while the arrow
indicates the direction of increase of ε.

using the relation

()|d =
√

{()|t − ()|g}2, (2.10)

where ()|t and ()|g denote base velocity fields from asymptotic analysis and Gaussian rings,
respectively. Clearly, the difference at O(ε2) reduces as ε → 0 (see figure 4), although the
form of the velocity profile for the Gaussian rings remains unchanged owing to the absence
of core deformation for all ε.

2.5. Comparison with vortex dipoles
In this context, it is worthwhile to mention the work of Sipp, Jacquin & Cosssu (2000)
which has shown the existence of a family of quasi-steady Euler solutions for the growth
of vortex dipoles. They obtained a family of vortex dipoles characterized solely via a/b
(core radius a, separation b), irrespective of their initial vorticity distributions (including
Gaussian). This follows from the fact that with time, there is very little change in either b
or Γ , while a follows the simple viscous diffusion law a2 = a2

0 + 4νt (a0 is the initial core
radius). Similar evolution of peak vorticity is also observed, which follows via viscous
effects. Unlike in vortex dipoles, the initial slenderness ratio ε of the vortex rings is
a deciding factor on the nature of their subsequent evolution, which is via two distinct
stages.

(a) Vortex shedding. Unlike thinner rings, for thicker vortex rings, the initial period of
evolution is dominated by vigorous vorticity shedding leading to a skewed Gaussian
distribution (from an initial Gaussian vorticity distribution), which is also sensitive
to Re. This stage is completely absent in vortex dipoles.

(b) Viscous diffusion. Even the effect of viscous diffusion is different for thin and thick
rings. For thicker rings, ε is almost unchanged, as both a and R change at similar
rates. For the thinner ring evolution, a directly follows viscous diffusion law, while
R remains almost unchanged, thus, very similar to vortex dipole evolution.

It is thus clear that the slenderness ratio of the vortex ring ε has an important role to play
in its evolution (also reported by Archer et al. 2008) and a family of Euler solutions (like
vortex dipoles) parametrized via ε is not possible here. This may be further confirmed
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from table 3 in § 3.3 where the thicker ring cases, EI2–EI4, after undergoing equilibration
at different initial conditions lead to different solutions at the same ε∗, which is even true
for the thinner cases (EI5–EI7), although the differences are smaller in the latter (see also
figure 10 in § 3.4). Of course, if ε � 1 it is possible to obtain a family of quasi-steady
Euler solutions, but our present work is not restricted to this limit.

3. Global stability results

The incompressible global stability equations and the corresponding eigenvalue
problem along with the stability matrices are described in appendix A. With the validation
and convergence studies of our stability solver deferred to appendix B, some of the
important numerical details are first briefly described in § 3.1, before moving to the
detailed results and discussion.

3.1. Numerical methods and solutions
Both our base flow Poisson equation solutions and DNS use Incompact3d, which
implements high-resolution, sixth-order compact differences for derivatives and
third-order Runge–Kutta for time stepping to solve the incompressible Navier–Stokes
equations. The solver is known to scale well for up to O(105) processors (Laizet & Li
2011). The primary purpose of the DNS is to compare some of the growth rates extracted
from these studies with the modal growth rates from our stability calculations, as means
of validating the latter (see § 3.2). We also compare our results with the earlier DNS of
Shariff et al. (1994) and Archer et al. (2008), both of whom had used second-order finite
differences in their simulations.

The matrices of the stability equations (A 2) and (A 4) (see (A 5), (A 6), (A8), (A9)
and (A11) in appendix A) are discretised using Chebyshev polynomials at their respective
Gauss–Lobatto points. In our parallel computations, sub-matrices of (A 5), (A 6) and (A11)
are first obtained via the PETSc libraries (see Balay et al. 1997; Balay 2015a,b) which are
then solved using the SLEPc libraries (see Hernandez, Roman & Vidal 2005; Roman et al.
2017) and MATLAB, which uses the Krylov–Schur iterative algorithm with shift-invert
spectral transformation to overcome the singular nature of the matrix (A11).

Boundary conditions on q̂ are specified at the r = 0 plane as compatibility conditions
(Batchelor & Gill 1962; Khorrami, Malik & Ash 1989) at the r = Lr and x = 0 surfaces
to be q̂ = 0, while values at x = Lx are obtained via linearly extrapolating from the two
neighbouring interior points.

The stability solver is checked first via reproducing the stability spectrum for the
classical Hagen–Poiseuille flow (see appendix B.1). Next, convergence of modes and
growth rates are examined with respect to the Gaussian core rings, using cases from table 4
in § 3.3. In each case of our vortex ring stability calculations, as discussed in this section,
converged eigenvalues are identified for a specified tolerance with spurious ones discarded
first by varying the number of points along the radial and axial directions and then using
different shift values during the iterative procedure (full details appear in appendix B.2).
The results presented in this work are from discretisations with at least 100 points along
both x and r directions. Our inviscid calculations are converged up to a numerical tolerance
of at least 10−2, with the thinner rings showing better convergence (∼10−4), while the
viscous calculations are converged up to at least 10−4.

A typical eigenspectrum from these calculations are shown in figure 5 for a Gaussian
core vortex ring of ε = 0.4131 (see case GV1 of table 4 in § 3.3) with n = 6, Nx × Nr =
100 × 100 and sh = 0.1. The three unstable discrete eigenmodes are separately marked
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FIGURE 5. The converged eigenspectrum of a Gaussian core vortex ring with ε = 0.4131 (case
GV1 of table 4 in § 3.3) for n = 6, Nx × Nr = 100 × 100 and sh = 0.1, identifying the following
modes: •, stationary mode S; �, rotating modes R and ◦, stable modes with ——, α = 0 and
- - - -, σ = 0.

in the figure, which are now classified based on their respective frequencies σ . The one
with σ = 0 is labelled as the stationary mode S. The other two modes, appearing in
pairs, with σ /= 0 are referred to as rotating modes R. Depending upon their sense of
rotation, these may be further classified into clockwise (σ/n < 0) and counter-clockwise
(σ/n > 0) rotating modes. In this work the zero frequency stationary modes appear to be
the dominant mode type; therefore, this is the mode type we will be referring to throughout
unless explicitly mentioned otherwise.

3.2. Comparing global modes with DNS
We first compare our global stability results with DNS that should provide further
confidence in our stability calculations. The comparison is done between two pairs of
cases, whose details are in table 1, the first for a thick ring at ε∗ = 0.315 and then for a
thin ring at ε∗ = 0.213.

Growth rates are computed from the DNS solutions of a perturbed ring, as described in
§ 2.1, by first interpolating the velocity fields onto a cylindrical domain L′

x × Lr = 5 × 5,
centred on the ring. The energy of perturbations in this cylindrical domain is

E = 1
2

∫ L′
x /2

−L′
x /2

∫ Lr

0

∫ 2π

0
[u′

r
2 + u′

θ

2 + u′
x

2]r dθ dr dx, (3.1)

where the primed quantities denote the velocity perturbations obtained via subtracting
the instantaneous velocity from the initial unperturbed velocity field. Now, on taking the
azimuthal Fourier transform of the velocity fields, the energy of mode n is simply

En = π

∫ L′
x /2

−L′
x /2

∫ Lr

0
[F{u′

r}2
n + F{u′

θ }2
n + F{u′

x}2
n]r dr dx, (3.2)

where F{∗}n denotes the Fourier coefficient of mode n. The growth rate of mode n is then
αn = (1/2)(1/En) dEn/dt. The growth rates so-obtained are averaged over the interval
45 ≤ t ≤ 60, where linear growth is observed in the simulations, which is thus expected
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Case ε∗ Lx Ly Nx Ny n α

D1 0.315 15 10 385 256 6 0.075
EV 1 0.315 10 10 257 256 6 0.076
D2 0.213 15 10 385 256 9 0.105
EV 2 0.213 10 10 257 256 9 0.102

TABLE 1. Growth rates of the fastest growing modes at Re = 5500 extracted from DNS during
an interval of linear growth (cases D1 and D2) compared with the corresponding growth rates
from modal analyses over the same interval (cases EV1 and EV2) (see text).

0 5 10 15

0.04

0.08

n
0 5 10 15

0.05

0.10

n

α

(a) (b)

FIGURE 6. Comparison of growth rates from DNS and stability calculations for the cases of
table 1 showing (a) for ε∗ = 0.315: ◦, D1; �, EV1 and (b) for ε∗ = 0.213: ◦, D2; �, EV2. In both
figures the n corresponding to the maximum α is indicated via a vertical line.

to correspond to the modal growth rates obtained next. The DNS cases are listed as D() in
table 1.

For the stability cases of table 1, in order to use a comparable base flow, the velocity
field of the unperturbed equilibrated vortex ring is extracted at the midpoint of the
aforementioned DNS averaging interval (t = 52.5). Here, after an initial rapid decrease
of core radius from ε = 0.4131 due to vigorous vorticity shedding, followed by a steady
increase due to viscous diffusion of vorticity, at t∗ = 52.5, the slenderness ratio attains
ε∗ = 0.315, based on local values of ring radius and core size, as computed using (2.2) and
(2.3). A second pair of cases (D2 and EV2) is done starting from a thinner ring (ε = 0.2 at
t = 0), which grows slightly to ε∗ = 0.213 at t∗ = 52.5.

Table 1 clearly shows that in both cases the maximum growths occur at identical
azimuthal mode orders (n = 6 and 9, respectively) between the DNS and stability analyses
while the actual maximum growth rates α easily match up to two decimal places. Growth
rates for several azimuthal modes for the above thick and thin rings are shown in figure 6,
which re-emphasizes the excellent match for the respective fastest growing modes (as
expected), while also showing the lesser agreements with the other modes. For the thinner
vortex in figure 6(b), the range of unstable modes is higher as n = 16 is also unstable.
Note that the modes n = 5, 6 in figure 6(b) are actually rotating modes, while the rest are
stationary.

3.3. Comparison with previous calculations: viscous growth rate
In this section we summarize our most important stability results where we directly
compare these against other relevant data for vortex rings (see table 2). Here, we include
the results of Shariff et al. (1994) and Archer et al. (2008), who extracted growth rates
from their DNS (viscous) calculations, prior to breakdown to turbulence. We also compare
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Case Base flow Re Re∗ ε∗ n α

1 Widnall & Tsai (1977) E — ∞ 0.303 7 0.098
2 Blanco-Rodríguez & Le Dizés (2016) E — ∞ 0.303 7 0.089
3 EI1 E 10 000 ∞ 0.303 7 0.097

4 Archer et al. (2008) [A2] E 10 000 9040 — 6 0.082
5 Gargan-Shingles et al. (2016) E 10 000 9030 0.344 6 0.087
6 EV 3 E 10 000 10 000 0.303 6 0.085
7 GV 3 of table 4 G 10 000 — — 6 0.074

8 Shariff et al. (1994) [1] G 5500 — — 6 0.092
9 GV 1 of table 4 G 5500 — — 6 0.066
10 Archer et al. (2008) [A1] E 5500 4934 0.363 6 0.072
11 D1 of table 1 E 5500 4925 0.315 6 0.075
12 EV 1 of table 1 E 5500 5500 0.315 6 0.076

TABLE 2. Growth rates and azimuthal modes of the fastest growing modes for viscous and
inviscid vortex rings with ε = 0.4131. The base flow types are either Gaussian ‘G’ or equilibrated
‘E’, where for the latter type growth rates are extracted at Re∗ and ε∗ for stability calculations.
For cases from the literature, numbers in parenthesis indicate the original case designations. For
cases 1 and 2, the equilibrated relations of (3.6) and (3.7), respectively, are applied and n = κ/ε
with κ = 2.261 (see appendix C).

against the work of Gargan-Shingles et al. (2016), who report growth rates from solutions
of linearised Navier–Stokes equations for Re = 10 000, while our inviscid results are
matched against classical analytical solutions of Widnall & Tsai (1977) and also with the
recent calculations of Blanco-Rodríguez & Le Dizés (2016). Table 2 lists a few of these
selected cases, all with initial ε = 0.4131 since the DNS data of Shariff et al. (1994) and
Archer et al. (2008) are available only at this slenderness ratio.

At the inviscid limit, the growth rates from our stability calculations with equilibrated
rings appear to be about 1 % smaller and 9 % larger than the asymptotic theory results of
Widnall & Tsai (1977) (corrected for equilibrated core via 3.6) and Blanco-Rodríguez &
Le Dizés (2016) (compare cases 1 and 2, respectively, with our case 3 in table 2). This
difference, explored in the next section, reduces as ε → 0, which is where the theories of
Widnall & Tsai (1977) and Blanco-Rodríguez & Le Dizés (2016) are strictly valid. Note
here that cases 3 and 6 of table 2 are, respectively, inviscid and viscous stability results
from the same base flow, obtained by equilibrating the Gaussian ring of ε = 0.4131 at
Re = 10 000, using procedures discussed in § 2.2.

The viscous growth rates of the equilibrated rings obtained from our stability
calculations match quite well with the maximum growth rates of Archer et al. (2008)
(compare case 4 with our case 6 for Re = 10 000 and case 10 with our cases 11 and
12 for Re = 5500 in table 2). In fact, this was quite expected after our discussion in
§ 2.4 and observations in § 3.2 where our DNS calculations showed a good match with
the corresponding equilibrated base flow stability results. At Re = 10 000, the calculated
equilibrated ring growth rate (case 6 in table 2) falls in between those of Archer et al.
(2008) and Gargan-Shingles et al. (2016) (compare our case 6 with cases 4 and 5
in table 2). Here, Gargan-Shingles et al. (2016) evolved perturbations via linearised
Navier–Stokes over an arbitrary time period while growth rates were found from changes
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in perturbation amplitudes over that period, so that their growth rates are slightly higher
than Archer et al. (2008). On the other hand, maximum growth rates obtained by Shariff
et al. (1994) are larger (compare between cases 8 and 10 of table 2), which has been
attributed by Archer et al. (2008) to the use of streamwise periodic conditions by Shariff
et al. (1994) that allowed vorticity shed from the adjacent ring to alter the flow around the
original ring, especially at later times when (linear) growth rates were extracted. Moreover,
even though Shariff et al. (1994) started with a Gaussian core distribution in their rings,
by the time their growth rates were extracted, the corresponding velocity profiles would
have rather resembled some sort of an ‘equilibrated’ distribution. Our stability calculations
with Gaussian core clearly shows this where the α obtained from our case 9 of table 2
does not match the corresponding case 8 of Shariff et al. (1994). Note here that, in their
work Shariff et al. (1994) had obtained nearly identical growth rates for both Gaussian and
equilibrated-core vortex rings with negligible differences in their energy evolution post the
initial transients. At the higher Re, the viscous case 7 of table 2 is not allowed to equilibrate
before its base flow is used for stability calculations, whose computed maximum α is again
clearly different to those seen in cases 4–6 of table 2.

A comparison of eigenfunctions between equilibrated and Gaussian core vortex rings,
shown in figure 7 for cases 12 and 7, respectively, of table 2, are qualitatively quite
similar even though these are at different Re. The process of equilibration although
yields a slightly smaller core for case 12 (see figure 7a). Note that these are typical
eigenfunctions for vortex rings subjected to elliptic instability, which are also reported
elsewhere (Gargan-Shingles et al. 2016; Hattori et al. 2019). A couple of eigenfunctions
of the rotating modes that look qualitatively similar to the spiral modes of Hattori et al.
(2019) are shown in figure 8. We could track these modes only for the viscous Gaussian
cases (see table 4), while neither for the corresponding inviscid cases nor for any of the
equilibrated cases were these found. In this work we make no attempt to study these modes
any further, whereas a more detailed study can be found in Naveen (2021). Eigenfunctions
for case 9 of table 2 are shown in appendix C in the context of establishing a connection
between the vortex ring and line vortex dynamics.

Figure 9 includes more cases from Shariff et al. (1994), Archer et al. (2008) and our
stability calculations (listed in tables 3, 4 and 6), which additionally shows a set of viscous
growth corrections. For the latter, Shariff et al. (1994) proposed an empirical correction

α = αW(ε)

[
1 − α̂1

R̂e

]
, (3.3)

where αW is the inviscid growth rate of the ring, due to Widnall & Tsai (1977) that include
corrections due to a Gaussian core vorticity, explained later in §§ 3.4 and 3.5 where we
discuss inviscid solutions (see 3.6 and 3.8, respectively, for equilibrated and Gaussian
rings), with

R̂e = Re
3ε2

1

16π

[
ln

(
8
εe

)
− 17

12

]
, (3.4)

based on strain rates proposed by Saffman (1978). Here, for equilibrated rings, ε1 = a∗
1/R∗

θ

and εe = a∗
e/R∗

θ (see table 3), while for Gaussian rings ε1 = 1.12141ε and εe = 1.3607ε.
Furthermore, in (3.3), Shariff et al. (1994) used α̂1 = 18, as calculated by them by varying
R̂e and ε over the following ranges: 19 ≤ R̂e ≤ 110 and 0.2066 ≤ ε ≤ 0.4131, while
Archer et al. (2008) proposed a lower value α̂1 = 8 (both corrections shown in figure 9).
In contrast, our equilibrated core vortex ring calculations yield α̂1 = 11.66 in (3.3),
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FIGURE 7. Viscous eigenfunctions for (a) case 12 and (b) case 7 of table 2 showing eight equally
spaced Re(ûθ ) contours spanning ±0.02 (excluding zero). The negative contours are dashed. The
grey disk is the corresponding vortex core, shown in figure 1(a).

obtained using growth rate data from the corresponding viscous stability analysis,
discussed later in § 3.4 and tabulated here in table 3.

In fact, our calculated viscous growth rate data, shown in figure 9, supports a new
two-parameter formula

α = αW(ε)

[
α̂2 − α̂1

R̂e

]
, (3.5)

with α̂1 = 11.66, α̂2 = 1.0 for equilibrated rings and α̂1 = 12.61, α̂2 = 0.709 for Gaussian
rings. For the Gaussian ring data in figure 9, we use the first three cases of table 4 and
other viscous cases corresponding to vortex rings of ε = 0.4033, 0.3 and 0.2141, all from
table 6 in § 3.5, where for each ε, stability analyses are performed for Re = 20 000, 10 000
and 5500. Note here that for all these viscous cases, the maximum growth azimuthal mode
n matches the corresponding inviscid n listed in table 6. The value of α̂2 = 0.709 for the
Gaussian rings implies a ∼30 % difference when compared with the theory. Again, this
growth rate mismatch for Gaussian core rings was expected as the asymptotic theories
effectively yield equilibrated base rings and so there is a significant error for the Gaussian
rings (recall the discussion in § 2.4), which is confirmed here from their respective growth
rates in table 2. As we investigate in the next two sections, this difference is reconfirmed
to be due to the differences in their respective velocity profiles (see § 2.4). Note that α̂1
(i.e. the slopes of 3.3 and 3.5) from our global stability results are almost identical across
equilibrated and Gaussian rings, while they are in between the values obtained by Archer
et al. (2008) and Shariff et al. (1994). The slope for our cases also matches reasonably
well with the small viscosity extensions of Widnall & Tsai (1977) theory, as proposed by
Fukumoto & Hattori (2005). In their version of (3.3), α̂1 is a weak function of ε, so that
for ε = 0.4131 and 0.2141, we get α̂1 = 12.63 and 13.39, respectively, for a ring corrected
for Gaussian vorticity distribution. The critical Reynolds number based on the strain R̂ec,
calculated from our viscous corrections (also marked in figure 9), lies in between those
obtained by Shariff et al. (1994) and Archer et al. (2008).

3.4. Sensitivity to base flows
We may expect vortex rings equilibrated at different Re for a given ε to be close to the
asymptotic solution (though inviscid), but they prove to be sufficiently different to effect
significant differences in growth rates, as we show in this section. Here, vortex rings with
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FIGURE 8. Eigenfunctions of a Gaussian vortex ring with ε = 0.2141 for (a) Re = 20 000,
n = 14, ω = 0.3257 + 0.1175i and (b) Re = 10 000, n = 14, ω = 0.3317 + 0.1009i, both from
table 6, showing eight equally spaced Re(ûθ ) contours spanning ±0.005 (excluding zero). The
rest is the same as figure 7.
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FIGURE 9. Growth rates of the most unstable mode for viscous vortex rings, showing the
DNS cases of , Shariff et al. (1994) and , Archer et al. (2008) compared with our stability
calculations with equilibrated (•, ε∗ = 0.2899; , ε∗ = 0.1866) and Gaussian (◦, ε = 0.4131;

, ε = 0.4033; , ε = 0.3; , ε = 0.2141) core rings. The viscous correction lines shown are
(see 3.3) —— (thin), 1 − 18/R̂e (Shariff et al. 1994) and - - - - (thin), 1 − 8/R̂e (Archer et al.
2008) compared with (3.5), showing —— (thick), 1 − 11.66/R̂e (equilibrated) and - - - - (thick),
0.709 − 12.61/R̂e (Gaussian). The critical Reynolds numbers (R̂ec) for each of the viscous
corrections are also indicated.

Gaussian core distributions are evolved via procedures described in § 2.2 at Re = 5500,
10 000 and 20 000 till a stationary field with an equilibrated vortex is obtained. Table 3
in § 3.3 shows two sets of such base flow data corresponding to a thicker ε∗ = 0.2899
and a thinner ε∗ = 0.1866 equilibrated ring. In each of these cases the initial value of ε

is suitably chosen to reach one of these ε∗(= a∗
θ/R∗

θ ) values at time t∗, irrespective of the
initial Re. Inviscid stability analysis is then performed with the equilibrated base flows,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.581


Global stability of vortex ring 902 A9-17

Case Re ε Re∗ ε∗ t∗ a∗
θ /R R∗

θ /R R∗
c/R a∗

1/R a∗
e/R f ∗ Nx Ny

EI2 20 000 0.4131 18 038 0.2899 65 0.3001 1.035 1.13 0.4153 0.8058 1.384 769 512
EI3 10 000 0.3785 9121 0.2899 65 0.2982 1.0285 1.1225 0.4049 0.7728 1.356 385 256
EI4 5500 0.3185 5119 0.2899 65 0.2943 1.0151 1.1085 0.3901 0.7160 1.323 385 256
EI5 20 000 0.25 19 484 0.1866 55 0.1868 1.0011 1.0601 0.2836 0.4383 1.518 961 640
EI6 10 000 0.2171 9815 0.1866 55 0.1856 0.9950 1.0538 0.2783 0.4211 1.499 577 384
EI7 5500 0.1587 5446 0.1866 55 0.1840 0.9862 1.044 0.2748 0.4011 1.493 385 256

TABLE 3. Details of global stability cases for the equilibrated vortex rings as used in figure 9
including several parameters during the time of equilibration listed with an ()∗. The stability
analyses results shown in figure 9 are performed at corresponding Re∗ values. Here Ny = Nz for
all cases.

Case Re Lx Ly Nx Ny n α

GV 1 5500 10 10 257 256 6 0.0655
GV 2 2500 10 10 257 256 5 0.0431
GV 3 10 000 10 10 257 256 6 0.0742
GV 4 5500 20 20 257 256 6 0.0646
GV 5 5500 20 20 513 512 6 0.0646
GI1 ∞ 10 10 257 256 6 0.0840

TABLE 4. List of global stability cases for the Gaussian vortex rings with ε = 0.4131 as used in
figure 9 and in appendix B.2. Only the azimuthal mode n that has the maximum growth rate α is
listed. The dimensions and mesh along the y and z directions are identical. The last three cases
are only used for the grid and domain convergence studies, discussed in appendix B.2.

which for the same slenderness ratios ε∗ are only slightly different, nearly steady solutions
of the Navier–Stokes equations (shown in figure 10). The small differences in the vorticity
fields are because they have evolved and become stationary at different Re∗ (see table 3).
Table 3 also lists other geometric parameters of the rings, including a∗

1 and a∗
e , which

are extracted from our simulations using methods suggested by Archer et al. (2008) and
used in the viscous growth correction expressions of § 3.3. Furthermore, R∗

c is the distance
from the centre of the ring to the location where ūx(r, xc) = 0, the stagnation point in
axial velocity, used in the theory of Blanco-Rodríguez et al. (2015) as an estimate for the
equilibrated ring radius.

The growth rate results for these cases tabulated in table 5 show a ∼9 % difference
in growth rates for the thicker ε∗ = 0.2899 ring and ∼3.5 % for the thinner ring when
evolved from different initial conditions and at different Re∗. Growth rates from the
asymptotic theory found using (3.8) with ε∗ are still ∼14 %–25 % higher than the growth
rates obtained from our global stability analysis. However, in order to use (3.8) for the
equilibrated rings two corrections are incorporated: (a) the whole expression is multiplied
with Γ ∗/R∗2

θ and (b) different values of correction factor f ∗ = a∗
1/a∗

θ are used in contrast
to the constant f of (3.8). The first correction takes into account the change in circulation
and radius of the ring, while the second one accounts for the change in core shape. This
corrected growth rate is then

α∗
W = Γ ∗

2πR∗2
θ

√(
0.428 ln

(
8

f ∗ε∗

)
+ 0.0788 − 0.534

)2

− 0.33672, (3.6)
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FIGURE 10. Base flow of equilibrated vortex rings showing five equally spaced azimuthal
vorticity contours for (a) ε∗ = 0.2899, spanning from −0.2 to −2 (outside to inside) for ——,
EI2; - - - -, EI3; · · · · · ·, EI4 and (b) ε∗ = 0.1866, spanning from −0.5 to −4.5 (outside to inside)
for ——, EI5; - - - -, EI6; · · · · · ·, EI7 cases of table 3. In each figure the grey disk is the vortex
core after equilibration.

Case n α αW |1 − α/αW | α∗
W |1 − α/α∗

W | α∗
B |1 − α/α∗

B|
EI2 7 0.1014 0.1355 25.2 % 0.1010 0.4 % 0.0936 8.3 %
EI3 7 0.1049 0.1355 22.6 % 0.1048 0.1 % 0.0959 9.4 %
EI4 7 0.1106 0.1355 18.4 % 0.1114 0.7 % 0.1004 10.2 %
EI5 9 0.1393 0.1674 16.8 % 0.1415 1.6 % 0.1441 3.33 %
EI6 9 0.1406 0.1674 16 % 0.1452 3.2 % 0.1470 4.4 %
EI7 10 0.1442 0.1674 13.9 % 0.1494 3.5 % 0.1510 4.5 %

TABLE 5. Sensitivity of the calculated inviscid growth rates for the cases of table 3
compared with the asymptotic theories of Widnall & Tsai (1977) and Blanco-Rodríguez & Le
Dizés (2016).

with f ∗ tabulated in table 3 for different rings. This corrected theoretical growth rate is now
at the worst about 3.5 % higher than the growth rates obtained from our global stability
analysis with the thinner ring while at the best just about 0.1 % lower for the thicker rings
(see table 5). The corresponding corrected growth rate for (3.9) is

α∗
B = Γ ∗

2πR∗2
c

(
0.5171 ln

(
8R∗

c

a∗
θ

)
− 0.9285

)
, (3.7)

which yields growth rates from global stability analysis to be within ∼3 % of the
theoretical values of Blanco-Rodríguez & Le Dizés (2016) for the thinner equilibrated
rings (see table 5). Although the differences with (3.7) are slightly higher than when using
(3.6), the errors largely reduce for the thinner ring considered here. Note that unlike in
§ 3.5, we do not attempt to obtain αm (see figure 11 and table 6) over a range of ε for the
equilibrated rings here, as there is a better match with both the theories for the chosen
values of ε∗.
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FIGURE 11. Sensitivity of inviscid growth rates over varying ranges of ε corresponding to
several azimuthal mode numbers n (maximum growths) shown for , n = 6; , n = 8;

, n = 10; , n = 11; , n = 15; , n = 22; , n = 35; , n = 45,
where - - - - in each indicate extrapolations by fitting on a parabola. The inviscid growth rates
from asymptotic theories are indicated by thick grey lines including ——, Widnall & Tsai (1977)
(see 3.8) and - - - -, Blanco-Rodríguez & Le Dizés (2016) (see 3.9). Insets A and B, as labelled,
are magnified views for n = 45 and n = 35 cases.

n ε κ/n |1 − ε
κ/n | αm αW |1 − αm/αW | αB |1 − αm/αB| Nx Ny

6 0.4033 0.3768 7 % 0.0843 0.1110 24.1 % 0.0981 14.1 % 257 256
8 0.3 0.2826 6.2 % 0.0925 0.1330 30.5 % 0.1224 24.4 % 257 256
10 0.2368 0.2261 4.7 % 0.1016 0.1503 32.4 % 0.1419 28.4 % 513 512
11 0.2141 0.2055 4.2 % 0.1058 0.1575 32.8 % 0.1502 29.6 % 513 512
15 0.1545 0.1507 2.5 % 0.1204 0.1808 33.4 % 0.1771 32 % 769 768
22 0.1041 0.1028 1.3 % 0.1409 0.2087 32.5 % 0.2096 32.8 % 769 768
35 0.06494 0.06459 0.5 % 0.1686 0.2418 30.3 % 0.2484 32.1 % 1025 1024
45 0.0504 0.05024 0.3 % 0.1846 0.2594 28.8 % 0.2693 31.5 % 1025 1024

TABLE 6. Peak growth rates αm for different azimuthal mode numbers n, as shown in figure 11
compared with the αW and αB of the asymptotic theories of Widnall & Tsai (1977) and
Blanco-Rodríguez & Le Dizés (2016), respectively. Here, κ = 2.261 at the intersection point
L1 in figure 17(a), but for an inviscid line vortex. Also, Ny = Nz.

3.5. Sensitivity to slenderness ratio
As the slenderness ratio ε decreases, the azimuthal mode number n with the largest growth
rate increases (see table 1), which is the azimuthal variation that soon dominates the
dynamics. For a line vortex in a strain field, Tsai & Widnall (1976) had found instability
to occur for a band of axial wavenumbers, whose width is proportional to the strength of
the strain field τ , about the wavenumber at the intersection of the respective dispersion
curves (see also the discussion in appendix C). The width of this band does not vary with
ε, but as ε becomes smaller the increased n ensures resonance over smaller ranges of ε. In
table 6, results from inviscid, global stability analyses for a large number of vortex rings
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FIGURE 12. Inviscid eigenfunction for (a) n = 6, ε = 0.4033, showing eight equally spaced
contours spanning ±0.0008 (excluding zero) and (b) n = 45, ε = 0.0504, showing eight equally
spaced contours spanning ±0.015 (excluding zero), both from table 6. The rest are the same as
in figure 7.

confirm this expectation of (a) instability with the same azimuthal mode n for a range of ε

with a local peak αm in the growth rate, and (b) that this range diminishes monotonically
as ε → 0 (visually depicted in figure 11). For example, it suffices to obtain growth rates
for n = 6 when ε = 0.4131, though there are other modes with non-negative but smaller
growth rates. Such fastest growing modes are tracked with varying ε in figure 11. The
domain size for base flow computations in all these cases are identical to case GI1 of
table 4, while the corresponding grid sizes are as in table 6 with Nz = Ny . Note that for
very thin rings much finer grids are needed in our Poisson solver to obtain the base flow.
For the corresponding stability analyses, e.g. for the n = 6 cases, Nx × Nr = 120 × 120
points are used, while for the others Nx × Nr = 100 × 100 points suffice since the growth
rates converged much faster as ε is reduced (see also figure 12).

As ε is varied, growth rates for the several azimuthal modes 6 ≤ n ≤ 45 shown in
figure 11, clearly indicate αm changes little for thicker rings (ε ≈ 0.4). We observe the
sensitivity to increase monotonically as ε → 0. If the line vortex results of appendix C are
used for the rings, we may expect the value of ε at which vortex ring perturbations have
the maximum growth rate to be close to κ/n, where κ = 2.261 is the relevant inviscid
resonance wavenumber. From the values of κ/n listed in table 6, we observe the difference
|ε − κ/n| to be about 7 % of ε for n = 6, but only 0.3 % for n = 45. Such observations
lead to expectations that growth rate estimates from the asymptotic theory should be better
for thinner rings. But, our computed values from table 6 clearly show that, for all ring
thicknesses, growth rates from our stability analyses αm are about 24 % to 33 % smaller
than the corresponding αW from the theoretical prediction (Widnall & Tsai 1977) with

αW = 1
2π

√(
0.428 ln

(
8
f ε

)
+ 0.0788 − 0.534

)2

− 0.33672, (3.8)

where f = 1.12141 corrects for the Gaussian core (proposed by Shariff et al. (1994)).
Furthermore, when our growth rates are compared with the theoretical growth rates of
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FIGURE 13. Effects of viscosity on growth rates of the most unstable mode of the vortex ring
with ε = 0.4131, σ = 0 for azimuthal modes 0 ≤ n ≤ 15 shown for �, case GV1; �, case GV2
and ◦, case GV3 of table 4. In addition, DNS data of �, case 1 of Shariff et al. (1994) and �, case
A1 of Archer et al. (2008) are shown (see table 2). Vertical lines indicate the peaks n = 6, 10
and 14.

Blanco-Rodríguez & Le Dizés (2016),

αB = 1
2π

(
0.5171 ln

(
8
ε

)
− 0.9285

)
, (3.9)

our αm are still about 14 % to 33 % smaller (see table 6). Obviously, this is due to the
absence of the critical O(ε2) part in the Gaussian vorticity distribution, as discussed in
§ 2.4. Even though as ε → 0, the differences between the Gaussian and asymptotic base
profiles reduce (see figure 4) for all the cases discussed here and listed in table 6 the
corresponding velocity profiles are qualitatively similar to that shown in figure 3. As these
calculated growth rates are shown to be extremely sensitive to the exact details of the
velocity profiles (see § 3.4), it is not surprising to observe the huge differences in growth
rates, even for rather small-ε Gaussian rings, for the cases in table 6.

In this context it is interesting to compare the inviscid eigenfunctions for the two extreme
cases of table 6 (n = 6 and n = 45, shown in figure 12a and b, respectively), which are
still qualitatively similar to the viscous eigenfunctions of figure 7. For the thicker rings,
there appears to be an asymmetry in the eigenfunctions about the respective core centres
(see figures 7 and 12a), which is absent for the thinner ring of figure 12(b), more closely
resembling that of a line vortex (compare figure 12b with figure 18b in appendix C).
The small oscillations in the eigenfunction of figure 12(a) are due to relatively poor
convergence.

3.6. Effects of viscosity
The effects of viscosity on the vortex rings are qualitatively similar for both types of base
flow explored in this work, as our fitted viscous growth correction curves defined via (3.5)
seem to attest, with similar slopes for the two (α̂1 = 11.66 for equilibrated and 12.61 for
Gaussian rings). Hence, for brevity, here we study the effects of viscosity on growth rates
of the Gaussian rings only. Growth rates listed in table 4 show a monotonic rise with
increasing Reynolds number for the same mode n. The effect of viscosity is similar for
other unstable modes too. Growth rates for a range of n is shown in figure 13 for cases
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GV1, GV2 and GV3 of table 4. Unstable modes exist for n ≥ 5, but the range of unstable
modes decreases as Re decreases. At Re = 10 000 (case GV3), the growth rate peaks at
n = 6, 10 and 14, while as Re is lowered to Re = 5500, we find unstable modes only for
n ≤ 12 with peaks at n = 6 and 10 (case GV1). At the still lower value of Re = 2500 (case
GV2), the corresponding n ≤ 7 with a peak at 5. The distribution of growth rates with
multiple peaks can be understood from the resonance mechanism discussed in Widnall
& Tsai (1977), which is discussed in the context of stability results for line vortices in
appendix C.

Figure 13 also shows results from the DNS of Shariff et al. (1994) and Archer et al.
(2008) for the conditions of GV1 of table 4. While the results of Archer et al. (2008) are
closer to ours, growth rates of Shariff et al. (1994) are consistently larger at all n except
n = 9, but the peaks still occur at the same n. This is not unexpected after the discussions
in § 3.3 where our stability calculations are shown to match better with the cases of Archer
et al. (2008) for both Gaussian and equilibrated cases (see table 2). Note here that Shariff
et al. (1994) extracted unstable modes for n = 1 and n = 4, though not for n = 2 or n = 3,
whereas our modal analysis yields stable stationary modes for n < 5, although we do find
unstable rotating modes for n = 3 and n = 4 with smaller growth rates.

4. Conclusions

In this work a series of global stability analyses for both inviscid and viscous vortex
rings with two types of base vorticity distributions have confirmed the following.

(i) The asymptotic theory of Widnall & Tsai (1977) considered uniform vorticity core
rings that are physically impractical, while even the Gaussian core based asymptotic
theories yielded quite a poor match for the growth rates with our Gaussian base
flow based global stability calculations. The reason being such Gaussian base flow
vorticity models are not exact solutions to the Navier–Stokes (Euler) equations, e.g.
in Blanco-Rodríguez & Le Dizés (2016) these are exact solutions up to O(ε2) and so
the resulting velocity distribution inside the core is very different to the asymptotic
theory based base flows. In our DNS such initial Gaussian base states naturally
evolved to an equilibrated state over a finite period of time.

(ii) As was also demonstrated by our DNS results, global stability analysis with
equilibrated core rings (after starting with Gaussian distributions) easily gives the
best match with these inviscid asymptotic theories, once the latter are also corrected
for the equilibrated distribution. This directly follows from the superb match such
equilibrated ring base flows show with the asymptotic theories, especially inside the
ring core, at all orders of ε. Here, the Re∗ of equilibration matters less, although they
seem to be more sensitive to ε∗ for one of the asymptotic theories (Blanco-Rodríguez
& Le Dizés 2016), where thinner rings tend to yield a better match of growth rates.

(iii) Furthermore, although the asymptotic theories work well for small slenderness
ratios, our results demonstrate a small ε to be not a prerequisite for estimating
correct growth rates, unless the correct base flow (i.e. equilibrated) is also used in
the calculations. As ε is lowered, although the differences between the base flow
velocity fields of Gaussian rings and asymptotic analysis reduce, the differences in
growth rates with Widnall & Tsai (1977) and Blanco-Rodríguez & Le Dizés (2016)
persist. This is due to the absence of a local contribution of vorticity at O(ε2) in the
Gaussian base flows that is naturally present in the asymptotic analysis. However,
the process of equilibration accounts for this contribution thus yielding a base flow
that is close to the asymptotic solutions (Blanco-Rodríguez et al. 2015).
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(iv) The effect of viscosity is along expected lines where the range of unstable modes
decrease as Re decreases, which can also be explained via the stability of Kelvin
waves in line vortices.

(v) A new two parameter viscous correction is proposed from our vortex ring data,
which for equilibrated core rings nearly match the correction by Shariff et al. (1994)
at the inviscid limit.
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Appendix A. Incompressible stability equations and their solutions

The incompressible base flow includes velocity components and pressure, q̄ =
[ūr, ūθ , ūx , p̄]T, while the corresponding perturbations are q′ = [u′

r, u′
θ , u′

x , p′]T, assumed
to have the form

q′(r, θ, x, t) = q̂(r, x) exp[i(nθ − ωt)], (A 1)

where n is the azimuthal mode number, ω is the frequency and q̂(r, x) is the global
(two-dimensional) eigenfunction. In a temporal analysis, on substituting (A 1) into the
linearised Navier–Stokes equations for incompressible flow, we obtain a generalized
eigenvalue problem

Aq̂ = ωBq̂, (A 2)

with ω = σ + i α as the eigenvalue for a specified n. The growth rates α and frequencies
σ of the global mode are found for several n by numerically solving (A 2), as described in
§ 3.1. The full matrices A and B of (A 2) are given below.

In the modal analysis of a line vortex, the length scale is vortex radius a, with a time
scale of Γ/a2, while perturbations are now

q′(s, φ, z, t) = q̃(s) exp[i(mφ + κz − ωt)], (A 3)

where (s, φ) are, respectively, the radial and angular coordinates of the vortex
cross-section, m is the azimuthal mode and κ the axial wavenumber. The corresponding
eigenvalue problem is

Cq̃ = ωBq̃ (A 4)

for the eigenvalue ω = σl + i αl and specified m and κ .
The full matrices A, B and C are now given containing, in order, terms from the

continuity, r, θ and x momentum equations, respectively. To better emphasize the effects
of viscosity, the matrix A is written as A = A1 + 1/Re A2 , thus separating the terms
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depending upon Re. A similar procedure is also carried out for matrix C. The matrices
A1, A2 , C1, C2 and B are

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂r
+ 1

r
in
r

∂

∂x
0

F1 + ∂ ūr

∂r
−2ūθ

r
∂ ūr

∂x

∂

∂r
∂ ūθ

∂r
+ ūθ

r
F1 + ūr

r
∂ ūθ

∂x

in
r

∂ ūx

∂r
0 F1 + ∂ ūx

∂x

∂

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A 5)

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

G1 + 1
r2

2in
r2

0 0

−2in
r2

G1 + 1
r2

0 0

0 0 G1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A 6)

where

F1 = ūr
∂

∂r
+ ūx

∂

∂x
+ inūθ

r
, G1 = n2

r2
−

[
∂2

∂r2
+ 1

r
∂

∂r
+ ∂2

∂x2

]
, (A7a,b)

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
ds

+ 1
s

im
s

iκ 0

F2 + dūs

ds
−2ūφ

s
0

d
ds

dūφ

ds
+ ūφ

s
F2 + ūs

s
0

im
s

dūz

ds
0 F2 iκ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A8)

C2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

G2 + 1
s2

2im
s2

0 0

−2im
s2

G2 + 1
s2

0 0

0 0 G2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.581


Global stability of vortex ring 902 A9-25

σ α

Khorrami et al. (1989) 0.64526 –0.129205
Present global analysis 0.64526149 –0.12920543

TABLE 7. Eigenvalues of the least stable mode of Hagen–Poiseuille flow for axial wavenumber
κ = 1, azimuthal mode n = 1, Re = 200 from local and global analysis.

where

F2 = ūs
d
ds

+ iūzκ + imūφ

s
, G2 = m2

s2
−

[
d2

ds2
+ 1

s
d
ds

− κ2

]
, (A10a,b)

and

B =

⎡⎢⎣ 0 0 0 0
i 0 0 0
0 i 0 0
0 0 i 0

⎤⎥⎦ . (A11)

Appendix B. Validation and convergence studies

B.1. Validation of stability solver
In this section we validate our global stability solver with the standard Hagen–Poiseuille
flow, while in the next section we demonstrate numerical convergence by varying several
numerical parameters. The axial extent is Lx = 2π/κ , where κ is the axial wavenumber of
the mode from the local analysis we compare against. At r = 0 compatibility conditions
are applied, while at r = Lr velocity and the normal pressure gradients disappear. Periodic
boundary conditions are used for velocity and pressure eigenfunctions at x = 0 and x =
Lx . Results for the least stable mode at Re = 200, κ = 1 and azimuthal mode n = 1 is
shown in table 7 where the agreement with the local analysis of Khorrami et al. (1989)
appears to be exact. In our stability solver, for Nx × Nr = 100 × 30 points, Krylov–Schur
iterations are done for a tolerance of 10−8 thus yielding eigenvalues that converged to eight
significant digits. For κ ≥ 1, the global solver is capable of converging all eigenmodes up
to the maximum represented by the corresponding streamwise discretisation. At higher
Re = 5000 the standard A, P and S branches of the local spectrum are reproduced via our
global solver in figure 14. Here, eigenvalues coincide for κ = 1, while the eigenvalues in
figure 14 that are not matched are for κ = 2, 3, . . . , which converges additional global
eigenvalues depending upon the streamwise discretisations.

B.2. Convergence of global stability modes
In addition to the validation studies discussed above, here we show the numerical
convergence of our stability solver by varying several numerical parameters. Toward
that aim we choose a vortex ring case of Gaussian core vorticity distribution with the
slenderness ratio ε = 0.4131, a relatively thick ring that becomes unstable for azimuthal
modes n = 5 or 6, depending upon Re. This particular case has been reported in the DNS
studies of both Shariff et al. (1994) and Archer et al. (2008). The several cases for this
vortex ring with Gaussian base flow (see § 2.3 for discussion on Gaussian base flows)
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FIGURE 14. Eigenspectra of Hagen–Poiseuille flow for azimuthal mode n = 1 and Re = 5000
showing •, from local analysis (Schmid & Henningson 2012) at axial wavenumber κ = 1 and ◦,
from our global analysis. The standard A, P and S branches are labelled.
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FIGURE 15. Convergence of eigenspectra shown for (a) case GI1 for sh = 0.1 with varying
Nx × Nr: ◦, 100 × 100; �, 110 × 110; �, 120 × 120; (b) case GV1 for sh = 0.1 with varying
Nx × Nr: ◦, 80 × 80; �, 90 × 90; �, 100 × 100; (c) case GV1 for Nx × Nr = 100 × 100 with
varying sh: ◦, 0.0; �, 0.1; �, 0.2 and (d) only the most unstable mode across different cases: ◦,
case GV4; �, case GV5; �, case GV1 with Nx × Nr = 100 × 100, sh = 0.1 and 5 ≤ n ≤ 10. The
arrow in (a) locates the converged portion of the inviscid eigenspectrum of interest, while ——,
α = 0 and - - - -, σ = 0.

considered in this work are listed in table 4, ending with the inviscid version. In each
of these cases, growth rates are obtained for one azimuthal mode n at a time, only the
azimuthal mode number for which the maximum growth α occurs is listed in table 4.

Now, first consider the inviscid case GI1 and viscous case GV1 at Re = 5500 of table 4,
both of which show maximum growth rates for n = 6. To obtain convergence, we varied
the number of discretisation points and used different shifts which are detailed in figure 15.
In figure 15(a) we show the computed inviscid eigenspectra for three different Chebyshev
discretisations, all for a shift of sh = 0.1, the corresponding one for case GV1 is in
figure 15(b), while figure 15(c) shows convergence for three different shift values at the
highest resolution (Nx × Nr = 100 × 100) for the viscous case. Note here that a specific
shift sh indicates choosing (0.0 + sh i) as the shift for spectral transformations during
eigenvalue computations using SLEPc libraries. The eigenspectra of figure 15(a–c) show
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FIGURE 16. Decrease of relative errors with increased number of Chebyshev points for several
unstable modes with σ = 0 shown for cases (a) GI1 and (b) GV1 for the following n: − ◦ −, 5;
−�−, 6; − � −, 7; −�−, 8.

both the discrete and continuous modes, where the latter appear to be more sensitive to the
resolution of discretisation (but less sensitive to the shift in figure 15c, not shown for case
GI1). The inviscid spectrum shows a large number of unconverged spurious modes, but the
physical mode at σ = 0 is still clearly converged (also marked in figure 15a). In this work
we only focus on the unstable discrete spectrum, which are well converged in figure 15,
while the damped continuous modes are not considered. We next show results from cases
GV4 and GV5 of table 4 (figure 15d), both of which are variations of case GV1, in that the
former has a domain twice as large, while the latter, in addition, also has twice the number
of points along each direction. From figure 15(d), it is obvious that the growth rates for all
5 ≤ n ≤ 10 for these cases are almost identical and, hence, the numerical parameters for
case GV1 of table 4 are considered to be adequate.

Furthermore, for cases GI1 and GV1, the drop in relative errors of the corresponding
eigenvalues for several n, as the grids are refined are shown in figure 16. Here, for the
inviscid case the relative errors are within ∼10−2 (figure 16a), while for the viscous case,
except for n = 8, the relative errors for all other azimuthal modes are less than 10−3

(figure 16b).

Appendix C. Stability of line vortices: connection to vortex rings

Apart from its intrinsic value, stability results for line vortices provide a simple way
to understand the instability of vortex rings. An isolated, inviscid line vortex is neutrally
stable. When embedded in a strain field, such as that of a line vortex pair, the configuration
can be unstable owing to resonant interactions. Here, resonance requires the corresponding
mode pairs to satisfy a few conditions on frequencies, axial wavenumbers and azimuthal
modes that include

σl,2 = σl,1; κ2 = κ1; m2 = m1 + 2, (C 1a–c)

respectively, for modes ‘1’ and ‘2’ following conventions introduced in (A 3). Tsai &
Widnall (1976) found zero frequency modes with m1 = 1 and m2 = −1 to offer the
maximum growth rates at κ = 2.5, 4.35, . . . for a constant vorticity core (see also Moore
& Saffman 1975). Note that at zero frequency a bending perturbation can grow in a fixed
plane since the self-induced rotation of the bend vortex is exactly opposed by the outside
strain field. In fact, Widnall et al. (1974) used this physical model to initially estimate
instabilities of slender vortex rings (ε � 1), which was later included in their vortex ring
asymptotics (Widnall & Tsai 1977).

We perform stability analysis of an isolated line vortex at Re = 5500 with a Gaussian
vorticity distribution (a Lamb–Oseen vortex) using available empirical relations for the
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FIGURE 17. Stability of a line vortex with a Gaussian vorticity core at Re = 5500 shown for
the first three radial modes in (a) where the zero frequency intersections between ——, m = 1
and - - - -, m = −1 are labelled as •, L1 (κ = 2.26); �, L2 (κ = 3.98) and �, L3 (κ = 5.73),
respectively. In (b) growth rates αl for the zero frequency inviscid and viscous line vortices are
shown for the same radial modes as in (a), while the vertical dashed line is at Re = 5500.

base flow (see Kundu, Cohen & Dowling 2012, p. 85). Three branches are tracked (see
figure 17) for m = ±1 as κ is varied till the modes disappeared inside the continuous
spectra. It turns out that these three radial branches are identical to the first three
branches (the ‘L1’ family) in Fabre, Sipp & Jacquin (2006). Dispersion relations σl(κ)

for the m = ±1 modes, shown in figure 17(a), also identify intersection points at
zero frequencies, labelled as L1, L2 and L3, that indicate resonant interactions, thereby
yielding inviscid instability. Here, L1 is the second radial mode of Tsai & Widnall
(1976) corresponding to two extrema in the eigenfunction along radial directions from
the core centre (see figure 18b), while L2 and L3 are the third and fourth radial modes,
respectively. Figure 18(a,c) show eigenfunctions for the case GV1 of table 4 for azimuthal
mode numbers (n = 6 and 10) with peak growth rates (see figure 13). The eigenfunction
shown in figure 18(c) shows the third radial mode for n = 10. Note that Tsai & Widnall
(1976) obtained κ(L1) = 2.5 for a line vortex with uniform vorticity core that is close to
κ(L1) = 2.263 obtained for the Gaussian core vortex in figure 17(a). The analysis is next
repeated for the other two Reynolds numbers Re = 10 000 and 2500 of table 4. Growth
rates αl plotted in figure 17(b) for the first three radial modes at zero frequency shows
the line vortex to be stable for viscous flows, while it is neutrally stable in inviscid flow.
The decay rate of modal growth increases monotonically with the decrease in Re, while it
increases with the radial mode number for a given Re.

To use vortex line results for the ring, the axial wavelength 2πa/κ of the line vortex
mode is equated to the azimuthal wavelength 2πR/n of the ring, which yields n = κ/ε.
Of course, since n is an integer, κ extracted from intersection points (see figure 17a)
perhaps yields a maximum growth rate for a specific ε. At other locations the resonance
is not exact, however, detuning allows for smaller growth rates in an O(τ ) neighbourhood.
The eigenfunctions of line vortices shown in figure 18(b,d) with identical initial core
distributions as the rings are qualitatively quite similar.

In closing, we point out some of the similarities between stability properties of vortex
rings and lines. Qualitative similarities between the shapes of their eigenfunctions in
figure 18 are consistent with elliptic instability being the dominant mechanism in both
the structures due to resonant mode interactions. The peaks in growth rates in figure 13
correspond to such resonance conditions, comparable to the L1, L2, . . . of the zero
frequency crossings in dispersion curves of a line vortex (figure 17a). Elsewhere, Fabre
et al. (2006) discusses nine such branches for m = 1, leading to nine possible intersections
at zero frequencies, implying the presence of at least nine growth peaks in n for a vortex
ring. The decay in growth rates with decreased Re and for a given n is consistent with the
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FIGURE 18. Eigenfunction Re(ûθ ) of the vortex ring, case GV1 of table 4 shown for (a) n =
6, with eight equally spaced contours spanning ±0.02 (excluding zero), and (c) n = 10, with
contour levels in ±0.025. Eigenfunction Re(ũz(s) exp(iφ)) of the line vortex at Re = 5500, m =
1 shown at (b) the resonance condition L1 of figure 17(a), with eight contours spanning ±0.08
(excluding zero) and (d) the condition L2, with contour levels in ±0.22. The negative contours
are dashed. The grey disk is the vortex core of figure 1.

observations of figure 17(b). Furthermore, at lower Re fewer large n modes are expected to
be unstable since the decay rates of L3 (that corresponds to higher n) is much larger than
the other branches, as Re is lowered (see figure 17b).
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