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Aberrant processing of deviant stimuli
in schizophrenia revealed by fusion of fMRI
and EEG data

Calhoun VD, Wu L, Kiehl KA, Eichele T, Pearlson GD. Aberrant
processing of deviant stimuli in schizophrenia revealed by fusion of fMRI
and EEG data.

Background: Aberrant electrophysiological and haemodynamic processing
of auditory oddball stimuli is among the most robustly documented
findings in patients with schizophrenia. However, no study to date has
directly examined linked patterns of electrical and haemodynamic
differences in patients and controls.
Methods: In a recent paper we demonstrated a data-driven approach, joint
independent component analysis (jICA) to fuse together functional
magnetic resonance imaging (fMRI) and event-related potential (ERP) data
and elucidated the chronometry of auditory oddball target detection in
healthy control subjects. In this paper we extend our fusion method to
identify specific differences in the neuronal chronometry of target
detection for chronic schizophrenia patients compared to healthy controls.
Results: We found one linked source, consistent with the N2 response,
known to be related to cognitive processing of deviant stimuli, spatially
localized to bilateral fronto-temporal regions. This source showed
significant between-group differences both in amplitude response and in
the fMRI/ERP distribution pattern. These findings are consistent with
previous work showing N2 amplitude and latency abnormalities in
schizophrenia, and provide new information about the linkage between
the two.
Conclusions: In summary, we use a novel approach to isolate and identify
a linked fMRI/ERP component which shows marked differences in chronic
schizophrenia patients. We also show that jointly using both fMRI and
ERP measures provides a fully picture of the underlying haemodynamic
and electrical changes which are present in patients. Our approach also has
broad applicability to other diseases such as autism, Alzheimer’s disease,
or bipolar disorder.
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Introduction

Key biological associations of schizophrenia include
abnormalities in brain function as revealed by
event-related potentials (ERPs) and functional mag-
netic resonance imaging (fMRI). These techniques
are essential tools used to illuminate the tempo-
ral sequence and cerebral locations of cognitive
and information processing deficits of schizophrenia
patients. One of the most robust probes for aberrant

brain function in schizophrenia is the auditory
oddball task (1–4).

The processing of auditory stimuli presented
during an oddball task requires detection of infre-
quent target stimuli within the context of frequently
presented standard stimuli (5,6). Brain activity dur-
ing oddball tasks is frequently measured by averag-
ing task-related electroencephalogram (EEG) record-
ings to produce ERPs. Over four decades ago it
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was reported that low probability, task-relevant audi-
tory stimuli elicited a characteristic ERP waveform
that includes several meaningful components, includ-
ing the mismatch negativity (7) related to sensory
trace memory, the N2 related to matching stim-
uli to an internally generated contextual template
(8,9), and the P3, which is generally thought to
reflect directed, effortful processing (10) and con-
textual updating of working memory processes (11).
ERPs reveal multiple abnormalities of sensory and
cognitive processes in schizophrenia. The major
ERP research measures associated with schizophre-
nia are the mismatch negativity (MMN, subcategory
of the N2) (12,13) and P3 (4,14–17). Also, the P3
abnormalities are identified as candidate biomark-
ers in other diseases, e.g. depression, Alzheimer’s,
alcoholism and epilepsy (18–20). Although P3 is
well-studied, it lacks consistency and specificity to
schizophrenia. In contrast, abnormality of the N2
component is much less explored or understood. The
relative neglect by schizophrenia researchers of N2
is mainly because of the lack of knowledge regard-
ing the clinical and neuropathological significance of
N2 abnormalities (21). The N2 potential is a poten-
tially important index of schizophrenia, because it
is connected to initial stimulus categorization in the
selective attention stream (9,21–26). Under the N2
category (which peaks at approximately 200 ms), the
mismatch negativity (MMN or N2a) subcomponent
originates in generators located in frontal-central and
temporal lobes (27–29). And the N2b (or N2/P3)
subcomponent, overlapping with MMN, is linked to
neuronal activity of fronto-central, fronto-temporal,
and parieto-temporal regions (25,26,30).

EEG/Magnetoencephalography (MEG) and fMRI
have complementary strengths and weaknesses. The
advantages of techniques such as EEG and MEG
are their millisecond temporal resolution and abil-
ity to measure neuronal activity directly. In con-
trast, fMRI has excellent uniform spatial resolution
but measures an indirect metabolic correlate of neu-
ronal function – the blood oxygenation level depen-
dent signal, over a considerably longer time period
of seconds. To date, over a dozen fMRI experi-
ments have employed oddball paradigms to exam-
ine target-related neural activity (31–33). A recent
large scale (n = 100) auditory oddball fMRI study
found highly reliable activation in 38 regions for
target detection (34). Regions activated during pro-
cessing of target stimuli included portions of bilateral
temporal, lateral frontal, and lateral parietal lobes,
thalamus, amygdala, cerebellum, as well as motor-
related areas (34). The temporal resolution of fMRI,
though limited by the slow hemodynamic response,
has been used to examine delay differences on the
order of 100–200 ms (35,36) which is informative,

but much less precise than the temporal informa-
tion provided by EEG. In summary, though fMRI
and ERP both provide spatial and temporal infor-
mation, the strengths of each technique differ in
a complementary manner. Thus an approach which
combines fMRI and ERP can draw potentially on the
strengths of each and provide additional information
not afforded by either technique alone. Despite this
obvious motivation combining these two measures
has proven technically challenging, and is an ongoing
effort that employs a variety of approaches.

Our work (37–40) focuses on developing an effec-
tive multivariate fMRI/EEG data strategy aiming at
a systematic group separation/diagnosis using inde-
pendent component analysis (ICA), which maximizes
the independence between components and has been
used on both fMRI and EEG data separately. The
ICA approach models spatiotemporal data as a linear
combination of maps and time courses while attempt-
ing to maximize the independence between either
the maps (spatial ICA) or the time courses (tem-
poral ICA). The first application of ICA to fMRI
data used spatial ICA (41) to determine spatially dis-
tinct brain networks. It is possible to perform ICA in
either the temporal or spatial domain (42). For EEG
and ERP data, it is more common to use temporal
ICA, whereas for fMRI data it is more common to
use spatial ICA for various reasons, but primarily
because of the larger number of data points in these
domains (42). However, a joint estimation of the spa-
tial components revealed by fMRI (31) and of the
temporal components of the ERP response (43,44)
has seldom been attempted. In addition to extracting
obvious joint sources that are also accessible to con-
straint or prediction based methods of multimodal
integration, such an approach has the potential to
reveal electrical sources which may not be readily
visible in scalp ERPs or to expose brain regions that
have participatory roles in source activity, but may
not themselves be generators of the detected electri-
cal signal (45).

This work extends our previous studies detecting
the spatiotemporal relationship for healthy human
subjects (38,39) or for phantom simulation (37), in
that we emphasize the detection of group differences
between patients and controls, by jointly perform-
ing spatial ICA of fMRI data and temporal ICA of
ERP data. We apply this approach to a group of
23 healthy participants and 16 chronic schizophrenia
patients in order to derive a spatiotemporal decompo-
sition consisting of fMRI and ERP components, both
indicating when the respective signal is changing
with a specific focus upon joint differences between
patients and healthy controls. Consistent with our
previous work (2,46), we hypothesized that a small
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number of joint components would capture differ-
ences between the patients and controls and reveal
a joint network present in both groups. From previ-
ous work (2,25,46,47), we predicted that this network
would show both decreased activation and decreased
ERP amplitude in patients. Our proposed approach
provides a technique to examine linked hemody-
namic and electrical sources which reveal significant
differences between patients and controls.

Methods

Participants

Participants were recruited through advertisements,
presentations at local universities, and by word-of-
mouth. Twenty-three healthy participants (15 males,
8 females, age: 41 ± 14 years) and 16 outpatients
(11 males, 5 females, Age 38 ± 11 years) with
chronic schizophrenia, currently in complete or par-
tial remission and on stable medication regimens,
provided written, informed, Institutional Review
Board-approved consent at Hartford Hospital and
were compensated for participation. See demo-
graphic details in Table 1. Prior to inclusion in the
study, healthy participants were screened to ensure
they were free from Diagnostic Statistical Manual
(DSM)-IV-TR Axis I or Axis II psychopathology,
assessed using the structured clinical interview for
DSM disorders (SCID) (48) and also interviewed to
determine that there was no history of psychosis in
any first-degree relatives. Patients met criteria for
schizophrenia in the DSM-IV-TR Axis I disorders
based on a SCID and review of the case file. All
participants had normal hearing (assessed by self-
report), and were able to perform the task success-
fully during practice prior to the scanning session.

Experimental design

The auditory oddball task required subjects to press
a button when they detected an infrequent sound
within a series of regular and different sounds. Three
stimuli were presented; frequent low-tone stimuli
(standards), infrequent task-irrelevant stimuli (nov-
els) and infrequent task-relevant stimuli (targets)
requiring a button-press response. In the present

Table 1. Demographic details

Controls Patients

Age (years) [mean (SD)] 41 (14) 38 (11)
Gender (male : female) 15:8 11:5
Mean NART IQ (SD) 106.20 (6.09) 99.72 (9.37)
Handedness (R : L) 21:2 13:3

L, left; R, right; NART, national adult reading test; IQ, intelligence quotient.

experiment, the standard stimulus was a 500 Hz tone,
the target stimulus was a 1000 Hz tone, and the
novel stimuli consisted of non-repeating random dig-
ital noises (e.g. tone sweeps, whistles) (Fig. 1). Two
runs of auditory stimuli were presented to each par-
ticipant by a computer stimulus presentation system
through insert earphones embedded within 30 dB
sound attenuating magnetic resonance (MR) com-
patible headphones for fMRI recording and standard
headphones for EEG recording.

The target and novel stimuli each occurred with
a probability of .10; the standard stimuli occurred
with a probability of .80. The stimulus duration was
200 ms with a 2000 ms inter-stimulus interval. The
intervals between stimuli of interest (target/novel)
were allocated in a pseudorandom manner. All stim-
uli were presented at approximately 80 decibels
above the standard threshold of hearing. All par-
ticipants reported that they could hear the stimuli
and discriminate them from the background scan-
ner noise. Prior to entry into the scanning room or
ERP booth, each participant performed a practice
block of 10 trials to ensure each subject understood
the instructions. The participants were instructed
to respond as quickly and accurately as possi-
ble with their right index finger every time they
heard the target stimulus and not to respond to the
non-target stimuli or the novel stimuli. An MRI
compatible fiber-optic response device (Lightwave
Medical, Vancouver, BC, USA) was used to acquire
behavioural responses for the task in both the fMRI
and the ERP experiments. The stimulus paradigm,
data acquisition techniques, and previously found
stimulus-related activation are described more fully
elsewhere (4,31,49).

Data acquisition

fMRI and ERP data were acquired on the same
day in two different sessions, at the Olin Neuropsy-
chiatry Research Center at the Institute of Living,
using identical stimuli and counterbalancing the order
of the fMRI or ERP sessions between individuals.
The fMRI data were collected on a Siemens Alle-
gra 3T dedicated head scanner equipped with 40
mT/m gradients and a standard quadrature head coil.
The functional scans were acquired using gradient-
echo echo-planar-imaging with the following param-
eters [repeat time (TR) = 1.50 s, echo time = 27 ms,
field of view = 24 cm, acquisition matrix = 64 ×
64, flip angle = 70 ◦, voxel size = 3.75 × 3.75 ×
4 mm, gap = 1 mm, 29 slices, ascending acquisi-
tion]. Six ‘dummy’ scans were performed at the
beginning to allow for longitudinal equilibrium, after
which the paradigm was automatically triggered to
start by the scanner. The ERP data was collected
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Fig. 1. Auditory oddball paradigm: auditory oddball event-related fMRI task.

using an SA bioelectric amplifier system capable
of amplifying electrical activity from 64 separate
single-ended channels. Amplifiers were connected to
a 16-bit A/D conversion using a custom program
(Digitize) implemented on a Pentium II microcom-
puter running Solaris for Intel. The Digitize pro-
gram recorded the EEG data and all stimulus and
behavioural response codes for later analysis.

Preprocessing

fMRI. fMRI data were preprocessed using the
software package statistical parametric mapping
(SPM)2 (http://www.fil.ion.ucl.ac.uk/spm/). Images
were realigned using INRIalign – a motion correc-
tion algorithm unbiased by local signal changes (50).
Next, data were spatially normalized into standard
Montreal Neurological Institute space (51), spatially
smoothed with a 12 × 12 × 12 mm full width at
half-maximum Gaussian kernel. The data (originally
acquired at 3.75 × 3.75 × 4 mm) were slightly sub-
sampled to 3 × 3 × 3 mm, resulting in 53 × 63 × 46
voxels.

ERP. Scalp potentials were recorded from tin elec-
trodes (ElectroCap International, Eaton, OH, USA)
placed over 62 electrode sites according to the 10–20
electrode system placement and some supplemen-
tal sites. Vertical and horizontal electro-oculograms
were monitored from electrodes located on the
lateral and supra-orbital ridges of the right eye.
All electrodes were referenced to the nose. Elec-
trical impedances were maintained below 10 k-
ohms throughout the experiment. The EEG channels
(SA Instruments, San Diego, CA, USA) were ampli-
fied (20 000 gain) with a bandpass of 0.1–100 Hz,
digitized on-line at a rate of 500 samples per second,
and recorded on computer hard disk. EEG data were
preprocessed using ICA to remove ocular artifacts
from the EEG data (52). Data were then digitally
filtered with a 20 Hz low pass filter to reduce elec-
tromyographic activity and ERPs were constructed

for trials in which participants correctly identified tar-
get stimuli. The recording epoch was 1400 ms long
with a 200 ms pre-stimulus baseline. Data from a
midline central site (Cz) was included in the ICA
fusion analyses because it appeared to be the best
single channel to detect both anterior and posterior
sources (results were nearly identical when scalp site
Pz was used instead of Cz).

Joint fMRI/ERP data fusion

Joint ICA analysis tries to explain between-subject
variations in data features in terms of underlying
sources that cause those features. In this application,
the data features include both spatial (fMRI) and tem-
poral (EEG) components. The spatial features were
contrast images of targets versus baseline for each
subject generated using SPM2 software; providing a
spatial map of oddball responses. The temporal data
features were the ERP feature selected from the cen-
tral electrode (Cz) from each subject; characterizing
the temporal pattern of the oddball response. Fur-
thermore, because we included both control subjects
and schizophrenic patients in the analysis, an impor-
tant source of variability in the underlying sources
was the between-group differences in the neuronal
expression of the oddball responses. It was these dif-
ferences we wanted to assess.

We use an extended algorithm based upon the
Infomax principle (53,54). The Infomax algorithm
employs a natural gradient ascent algorithm to
maximize the entropy of the output of a single layer
neural network (54). We start with the assumption
of joint spatial or temporal independence of the
fMRI and ERP sources approximately, respectively,
using the following generative model for the data,
which maps from sources to observed data features:
xF = AsF and xE = AsE. For the case of two sources
and two subjects, xF = [

xF
1 xF

2

]T
is the mixed data

for the fMRI modality for the two subjects, xE =[
xE

1 xE
2

]T
is the mixed data for the ERP modality

for the two subjects, A =
[

a11 a12
a21 a22

]
is a shared
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linear mixing matrix, and sF and sE are the respective
fMRI and ERP sources. Instead of running ICA
on each modality separately, we rewrite this as a
single equation by forming a data vector for each
subject as xi = [

xF
i xE

i

]
, which includes both the

spatial (fMRI) and temporal (EEG) features side by
side, and likewise for a source vector si = [

sF
i sE

i

]
.

If we imagine that there are only two sources
of the coupled data features, then the unknown
sources would correspond to two row vectors (s1, s2)
encoding the degree to which each coupled source
was expressed in each subject. The mixing matrix A
(in this simple case) would be two column loading
parameters encoding the spatiotemporal pattern this
coupled source would cause over features. In reality,
of course, there are many different sources of
variability between subjects. The resulting update
equation for the algorithm to compute the shared
unmixing matrix W (i.e. the inverse of A) and
the fused fMRI and ERP sources, uFand uE, is as
follows:

�W = η
{
I − 2yF(uF)T − 2yE(uE)T}

W, (1)

where yF = g(uF), yE = g(uE), and g(x) = 1/(1 +
e−x) is the non-linearity in the neural network (53).
The basic idea underlying ICA is to assume that these
sources are independent and distributed sparsely,
encoded by the cumulative density function g. These
assumptions allow one to estimate the unmixing
matrix W in a maximum likelihood sense, without
knowing the sources. When applied to the data fea-
tures this provides estimates of the sources for each
subject. Note that the sources have to explain both
the data modalities and therefore this estimation rep-
resents the inversion of a multimodal fusion model,
under sparsity and independence constraints. Notice
also that this procedure is entirely data-led in the
sense that the model does not know whether each
subject belongs to one group or another. Therefore, it
may identify group differences that would be missed
in conventional between-group comparisons. Mean-
while, our reason for using a single optimal unmixing
coefficient to maximize the joint likelihood function
is that it makes intuitive sense not to compute the
parameters independently, because the ICA results
from the two different measures are derived from the
same participant (2,38,46). We thus have a single W
that fuses together the joint source (or alternatively,
the basis vector common to the two measures). The
main advantage of this approach is that maximiz-
ing the joint likelihood function provides a different
(and more reasonable) solution from one that does
not utilize the joint statistics.

Component estimation

The number of independent components in the
joint data was estimated to be 12, using a method
based on the minimum description length crite-
ria (55,56). Independent components were estimated,
and ranked by their contribution to the average
ERP time courses by first regressing the components
onto the average ERP data, then computing the
maximum absolute peak of the fitted time courses.
A leave-one-out cross-validation approach (38,57)
was used to assess the robustness of the results; mean
results are reported.

Analysis of patient and control data

For comparison with the joint independent compo-
nent analysis (jICA) results, we averaged the ERP
data time locked to the target stimuli and also car-
ried out a standard random-effects analysis within
SPM2 by computing voxel-wise t-tests between the
patient and control fMRI contrast images (58,59). To
ensure similar consideration (weights) for both mea-
sures, the fMRI and ERP features were normalized
by dividing each modality by its average standard
deviation and then the ERP data (time courses) were
upsampled to the same level as the fMRI (voxels).
We interpolated the ERP data to provide a balanced
representation of ERP and fMRI features. The fMRI
dimension is about 75 000 voxels, while the ERP
dimension is about 1000 timepoints. We show in
extensive simulations in (37) that this works well.
The jICA procedure was then performed on the
fMRI/ERP joint data from the patient and control
groups together. Correspondingly, within the com-
parison groups (patient or control), the identification
of components with shared loading parameters, and
the comparison of the associated maps, becomes a
key means to identify couplings between brain image
components of different measures of data; while
between the comparison groups (patient and control),
the differences of amplitude, latency and location
of each data component become a significant evi-
dence of the variation of schizophrenia patients from
healthy controls. After the jICA analysis, we tested
within each component for a significant difference
between patients and controls using a two-sample t-
test. Only one significant component was found and
interpreted (p < .001, see the section on Joint ICA
Analysis) (Fig. 3). We further examined the joint data
using a cross-modality 2D histogram analysis. Sig-
nals that were significant in the jICA analysis for
either of the two measures were used to generate a
joint histogram of the fMRI and ERP data. These
histograms were examined in group averages along
with marginal distributions (Fig. 4).
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Fig. 2. Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) group analyses. Group fMRI SPM contrast
images (left) and ERP (right) results for the target response. The SPM2 software was used to generate a contrast image of
target-related activation for each subject. These images are then entered into a one-sample, voxel-wise t -test and thresholded at
p < .001 (corrected for multiple comparisons) to produce the resulting image with T -values shown in colour. The ERP plot was
generated by averaging the data time locked to the target stimuli. Standard error is shown and peaks are labelled with the standard
naming convention (e.g. N1 is the first negative peak).

Results

Behavioral data

Performance on the auditory oddball task was nearly
identical within the fMRI and ERP but differed
between control and patient groups. The number of
trials was 50 for both ERP and fMRI sessions. Mean
and standard deviations are reported for (a) reaction
time, controls (fMRI 430.7 ± 90.4 ms; ERP 431.5 ±
93.6 ms, p > .9 paired t-test) and patients (fMRI
518.3 ± 116.5 ms; ERP 577.7 ± 149.0 ms, p > .4
(.3667) paired t-test) and (b) accuracy for target
detection, controls (fMRI 99.5± 0.01%; ERP 99.5
± 0.02%, p > .99 paired t-test) and patients (fMRI

88.9 ± 16.5%; ERP 93.2 ± 14.4%, p > .4 (.4390)
paired t-test).

Group analysis

fMRI SPM contrast images [controls: Fig. 2(left),
patients: Fig. 2(middle)] and ERP group averag-
ing [Fig. 2(right)] are shown for the target stimuli.
Translation and rotation corrections for each partic-
ipant did not exceed half a voxel (i.e. 2 mm) or
2.0 ◦, respectively. We also qualitatively examined
each statistical contrast image to ensure there were
no obvious motion artifacts (i.e. edge artifacts
were not apparent) (38,46). There was no signifi-
cant difference in movement between patients and

Fig. 3. Functional magnetic resonance imaging/event-related potential (fMRI/ERP) jICA analysis. The only joint component which
showed significantly different loading parameters (p < .001) for patients versus controls. Left: thresholded fMRI part of the joint
component showing bilateral temporal and frontal lobe regions. Right: average ERP (yellow) plots along with the ERP part of the
identified joint component (pink).
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Fig. 4. Cross-modality 2-D histograms. Joint 2-D histograms for event-related potential/functional magnetic resonance imaging
(ERP/fMRI) identified in the joint independent component analysis (jICA). Group average histograms (with controls in the top
middle and patients in the top right) are provided along with the marginal histograms for the ERP (top left) and for the fMRI
(bottom). In the marginal histograms it is clear that controls (yellow) tend to have higher fMRI activation, whereas patients (cyan)
tend to have higher ERP (positive) values.

controls. We applied standard random-effects analy-
ses by entering the features into a voxel-wise one-
sample t-test for patients and controls separately
(p < .001, corrected for multiple comparisons using
the false discovery rate (60). The ERP plot was gen-
erated by averaging the data time locked to the target
stimuli. Results are largely consistent with previ-
ous findings for both measures (4,34,61). The fMRI
data show main reductions in bilateral frontal and
temporal lobes, inferior parietal lobe, cerebellum,
plus motor planning and execution regions. The ERP
data show significant reductions at N1, N2 and P3
peaks (marked on Fig. 2).

Joint ICA analysis

Results from the jICA analysis of both measures are
presented in Fig. 3. Among 12 components for both
groups, only one joint component was found to dis-
tinguish groups using a two-sample t-test (p < .001)
on patient and control loading parameters, which we
interpret as a difference in the degree/magnitude of
two linked brain functional features (fMRI/EEG) in
the two groups. This identified component shows a
clear difference in fMRI at bilateral fronto-temporal
regions implicated in schizophrenia [Fig. 3(left)] and

in ERP in times during the N2 (MMN/N2b, see
in the Discussion) peak [Fig. 3(right)] which have
been previously implicated in patients. It is impor-
tant to note that the maps of controls and patients
separately show a main effect, whereas the statistical
comparison for the joint analysis is testing for a dif-
ference between groups. Talairach coordinates for the
fMRI/ERP jICA analyses are presented in Table 2.

To examine the joint task activity in more details,
a joint histogram was computed as follows, a similar
strategy that applied in our old studies (2,46). Sig-
nals surviving the threshold for the fMRI of the joint
source were sorted in descending order by the com-
ponent voxel values (the same was done for signals
in the ERP part of the joint source). This procedure
resulted in two sets of signal coordinates. Histograms
were then generated by pairing these two signal sets.
For example, the first point for Participant 1 is the
voxel value for the fMRI activation data (at the posi-
tion that is maximum in the fMRI part of the jICA
source) versus the signal value for the ERP activation
data (at the position that is maximum in the ERP part
of the jICA source). Then, we computed the within-
group average of the histograms for the control and
the patient groups (shown in Fig. 4 with the controls
in the top middle and the patients in the top right).
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Table 2. Talairach coordinates for auditory oddball fMRI/ERP jICA analysis

Anatomic label Brodmann area∗ Volume (cc): L/R Max T (x,y,z): L/R

Increases
Superior frontal gyrus 6 0.5/2.6 4.3 (−3, 38, 62)/5.5 (24, 1, 69)
Superior temporal gyrus 21, 22, 38, 13 1.9/2.8 4.0 (−53, 2, −10)/4.4 (62, −12, −4)
Middle temporal gyrus 21, 22 0.9/1.9 4.0 (−50, 2, −10)/4.4 (62, −15, -4)
Middle frontal gyrus 6, 46, 10, 47 0.0/1.1 ns/4.0 (33, 0, 64)
Inferior frontal gyrus 45, 47, 46 0.9/0.3 3.9 (−65, 18, 2)/3.3 (56, 53, 6)
Precentral gyrus 44 0.1/0.1 3.8 (−65, 15, 2)/3.2 (62, 12, 5)

Decreases
Middle frontal gyrus 6, 9 0.0/0.2 ns/3.6 (50, 2, 41)
Precentral gyrus 6 0.0/0.2 ns/3.4 (50, 2, 44)
Thalamus 0.1/0.0 3.1 (−3, −20, 7)/ns
Cingulate gyrus 31 0.0/0.0 3.0 (−24, −39, 38)/ns

Voxels above the threshold for Fig. 2 were converted from the Montreal Neurological Institute to Talairach coordinates and entered into a database to provide anatomic and
functional labels for the left (L) and right (R) hemispheres. Both increasing (top) and decreasing (bottom) voxels are reported. The volume of activated voxels in each area is
provided in cubic centimeters (cc). Within each area, the maximum t value and its coordinate are provided.
NS, not significant.
∗Brodmann areas (BA) are only approximate, based upon the Talairach Atlas.

The 2-D histogram can be considered an estimate of
the joint distribution function for the two measures
[e.g. p(ffmri, ferp), where ffmri,erp indicates the sig-
nal amplitude for the fMRI or ERP, respectively]. We
also computed the marginal estimated distributions
p(ffmri) and p(ferp) [Fig. 4(top left, bottom)]. Note
that both fMRI and ERP are showing a group dif-
ference as seen by the marginal distributions for the
two modalities. In the marginal histograms it is clear
that controls (yellow) tend to have higher fMRI acti-
vation, whereas patients (cyan) tend to have higher
ERP (positive) values. This is also visible on the
group average 2-D histograms in Fig. 4 (the con-
trol histogram is located above and to the left of the
patient histogram).

Discussion

Schizophrenia is hypothesized to be a disease involv-
ing impaired brain interaction (62). A number of
explanatory models have been proposed, with many
studies implicating regions in temporal lobe, cere-
bellum, thalamus, basal ganglia and lateral frontal
regions (62–66). Discoordination (63), heteromodal
association(67,68) as well as fronto-temporal discon-
nection models (69) have been suggested. Recent
work attempts to capture both spatial and tem-
poral properties of neuronal activity and shown
promising results (70–75). Examining the correspon-
dence between fMRI and EEG (ERP) combines the
strengths of both techniques and provides a more
detailed probe into human brain function. However,
the gap between these two different measures still
presents an issue because of the technical difficulty
and computational complexity. Here, we show a
new technique for studying the linked fMRI/ERP

signals impacted by schizophrenia, using jICA of
separate recordings of the same subjects. Our pre-
vious work (38) focused on using this approach
for localization and chronometry of target detec-
tion in healthy participants. In this work, using the
jICA algorithm, we focus upon joint ERP/fMRI
sources which differentiate schizophrenia patients
from healthy controls during the performance of an
auditory oddball task. It is important to emphasize
is that in this paper we are studying the linkage
between ERP/fMRI signals (specifically we identify
linear relationships between the two data sets using a
data-driven approach) and there has been very little
work on this in schizophrenia.

Our novel joint spatiotemporal analysis revealed
several interesting findings compared to traditional
analyses. First, consistent with our hypotheses, the
jICA results identified fMRI group differences in
bilateral temporal and frontal regions activated by
the auditory oddball target stimulus, tightly associ-
ated with the N2 complex in ERP time course. The
N2 peak latency was between 180 and 200 ms win-
dow, and likely contains contributions from both the
MMN and the N2b subcomponents (25–30,76,77)
as well as the possible latency shifts of the those
peaks (78). Schizophrenia patients demonstrated sig-
nificant decreased amplitude for the linked fMRI
spatial component and ERP temporal component.
This finding suggests that bilateral fronto-temporal
neuronal activity may serve as a pathophysiologi-
cal substrate for changes in the N2 peak of ERP
as probed by the auditory oddball target stimuli in
schizophrenia. This idea is consistent with previous
research (21,79,80). In addition, the region show-
ing the largest group difference is associated with
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the N2 component in the jICA analysis (the sec-
ond largest is associated with the P3 component,
although it did not reach significance). This find-
ing emphasizes the pathological importance of N2
generators. To date, schizophrenia, researchers have
focused mainly on the P3 as the most significant
biomarker of decision making, with many reports,
especially in chronic schizophrenia 4,14,15,17,81).
The N2 performs a variety of functions in mismatch
detection and cognitive control (9), and although
likely serving as a marker of psychosis classification,
remains largely unstudied in this group (21). Our
finding suggests that the N2 component is an elec-
trophysiological marker of disturbance in stimulus
classification and attention processes in schizophre-
nia. Our results are consistent with O’Donnell and
Kayser’s reports (21,25,26).

Our approach provides several advantages. (a)
Compared to the traditional fMRI activation region
and direct EEG peak inspections, our method cuts
down the spatial and temporal overlaps of differ-
ent brain areas at different time course activities.
(b) Contrasted with other common methods, e.g.
principal component analysis (PCA), the derived
joint fMRI/ERP components from our approach
have spatial/temporal projections that are maximally
higher-order independent, distinct but not necessar-
ily orthogonal. (c) Our approach does not require the
use of a threshold for the fMRI data nor assump-
tions about the number of dipoles or the modelling of
dipole fitting for EEG, which relaxes the constraints
of the algorithm and is computationally straightfor-
ward (d) We illustrate an approach for combining
data from fMRI and ERP measures, two methods
with different strengths and advantages, in a sym-
metric analytic framework that does not favour one
modality, but reveals changes which may manifest
in fMRI only, ERP only, or both fMRI and ERP.
(e) We perform a joint decomposition of both mea-
sures which are linked or fused by a common mixing
parameter. This enables investigators to explore the
relationship between electrophysiology and haemo-
dynamic cognitive processes. (f) Our approach also
separates the data into joint components, each with
an fMRI and an ERP portion. Decomposing the
data into joint components may provide a useful
way to examine component specific differences, e.g.
patient versus control groups or modified task ver-
sions. Here, we utilize a feature-based approach, pro-
viding a straightforward way to take advantage of
data modelled at the subject level. These features
are then queried for shared dependence, which is not
detectable with a simple voxel-wise subtractive or
conjunction approach. (g) The shared mixing coeffi-
cient provides a way to examine individual or group

differences in coupling. Currently, we chose a pri-
ori to analyse only the component(s) that revealed a
statistical difference between groups. In future work
it would be interesting to develop approaches for
understanding the full ICA decomposition (e.g. to
examine all the components). In addition, given pre-
vious interest in laterality differences in schizophre-
nia (82,83), it would be interesting to examine the
laterality of these joint sources.

There are some limitations to our approach. First,
given the heterogeneity of the spatial and temporal
data in schizophrenia, it is important to address issues
of statistical power for a joint analysis, which may
be different than for an individual analysis. This is
especially important if findings from a joint anal-
ysis are to become clinically relevant (84). Second,
the potentially useful information from the first level
may be not neglected in the source separation when
we are carrying out a joint second-level (group) anal-
ysis of features, and we have begun working towards
first level single trial analysis with parallel and joint
ICA models (Eichele IJP 2008, Moosmann IJP 2008).
Third, in the current framework, for practical reasons,
we assume that both voxels and timepoints are inde-
pendent and identically distributed. Although, most
ICA models for fMRI/ERP data perform quite well
under this assumption, it can be potentially useful to
incorporate some additional prior information (such
as correlation) as well as to include different distribu-
tions for different features into the model. We incor-
porated this attempt in our recent papers (85,86).
Fourth, in this work we analyse data from a sin-
gle electrode. We have extended our methods to
incorporate multiple EEG electrodes in some prior
work (37,39,40). Fifth, we focus on analysing tar-
get response in this study, it would be reasonable
to compare the responses to target tones with those
of non-target tones (standard and novel) in future,
in order to delineate brain regions which are specif-
ically related to attending and responding to target
tones. Sixth, the ERP and fMRI data were acquired in
two separate sessions, instead of a concurrent session,
which might induce the differences into the analysis.
In order to minimize the difference, we collected the
fMRI and ERP data on the same day, using identical
stimuli and the order of the sessions was counter-
balanced between individuals; and we verified that
all subjects had nearly identical performance on the
task for both the ERP and fMRI sessions. The same
strategy has been used successfully in several other
published studies (38).

It is interesting to observe the differences between
separate and joint analyses. When analysing the
fMRI and ERP data separately, fMRI activity shows
significant reductions in frontal and temporal lobes
plus cerebellum, while the ERP data show significant
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reductions at N1, N2 and P3 peaks (Fig. 2). In the
jICA analysis, we see only one significant N2 reduc-
tion associated with the fMRI activity reduction in
fronto-temporal regions.

In summary, we have demonstrated a novel
method for examining joint haemodynamic and elec-
trical data to visualize the neural systems involved
during different portions of the auditory ‘oddball’
target detection response. This approach has enabled
us to ask novel questions about fMRI/EEG data and
revealed several interesting findings in an application
to data collected from healthy controls and patients
with schizophrenia that were missed by a standard
analysis approach, which may greatly help us diag-
nose/understand the pathophysiology of schizophre-
nia. The development of models for jointly analysing
multimodal data has been largely overlooked and
may be a useful tool for assessing how brain func-
tion during different cognitive probes and in different
regions can vary systematically between measures.
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