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We provide a detailed mathematical analysis of a model for phase separation on biological mem-
branes which was recently proposed by Garcke, Rätz, Röger and the second author. The model is an
extended Cahn–Hilliard equation which contains additional terms to account for the active transport
processes. We prove results on the existence and regularity of solutions, their long-time behaviour,
and on the existence of stationary solutions. Moreover, we investigate two different asymptotic
regimes. We study the case of large cytosolic diffusion and investigate the effect of an infinitely large
affinity between membrane components. The first case leads to the reduction of coupled bulk-surface
equations in the model to a system of surface equations with non-local contributions. Subsequently,
we recover a variant of the well-known Ohta–Kawasaki equation as the limit for infinitely large
affinity between membrane components.
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1 Introduction

Because of their importance for many physical or biological systems, phase separation processes
have been thoroughly studied and depending on the concrete application, different mathematical
models have been developed to model such behaviour. In material science, common models are
the Allen–Cahn [2] and Cahn–Hilliard equation [6,7], which are based on the Ginzburg–Landau
energy, or the Ohta–Kawasaki equation [28], which is derived from an additional non-local
contribution to the Ginzburg–Landau energy. There are many articles discussing the derivation
and properties of these models, e.g. [5, 8–10] in the case of the Allen–Cahn equation, [26] and
[12,24,25,36] for the Cahn–Hilliard equation, and [11,27,31] in the case of the Ohta–Kawasaki
equations.

In contrast to the examples from material science above, models for microphase separation on
biological membranes are relatively new. We refer the reader to the overview articles [14,30,34]
for a comprehensive introduction to several phenomenological models.
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One main aspect of phase separation in this context is the emergence of microdomains with a
length-scale below the system size. It has been argued that cell membranes are affected by active
cellular processes which contribute to this behaviour and effectively keep the phase separation
process from reaching its equilibrium [14, 16, 19, 30].

In [17], Garcke et al. derived a model for phase separation on biological membranes from
thermodynamics which includes such non-equilibrium contributions.

To the best knowledge of the authors, recent contributions emphasise the derivation of models
and qualitative behaviour or simulations while neglecting other aspects of a detailed mathemat-
ical analysis. For the lipid raft model proposed in [17], we will carry out such an analysis of its
mathematical properties in this paper. In particular, we prove existence and regularity for solu-
tions and give a result establishing a connection between the model in [17] and the well-known
Ohta–Kawasaki equations.

Biological membranes generally consist of bilayers of phospholipid molecules, but can also
include other molecules such as cholesterols or proteins. Phospholipids are molecules composed
of two hydrophobic fatty acids which are linked through a hydrophilic phosphate group. They
arrange themselves in a bilayer, i.e. in two layers of lipid molecules with the hydrophobic tails
pointing towards each other. In eukaryotic cells, such a bilayer cell membrane encloses the
cytosol, the cellular fluid inside the cell.

Cell membranes are highly heterogeneous, containing lipids with either saturated or unsat-
urated tails as well as cholesterols, proteins and other molecules. The lateral organisation of
these different components is important for the functioning of the cell, contributing to protein
trafficking, endocytosis, and signalling [15, 30].

A lot of attention in this context is given to the emergence of so-called lipid rafts. These rafts
are intermediate-sized domains (10–200 nm), characterised as regions consisting mainly of sat-
urated lipid molecules enriched with cholesterols [29]. We refer the reader to the overview [34]
and the list of references therein for a discussion of the experimental evidence for their existence.

From a mathematical point of view, these lipid rafts have the striking feature that they do not
merge in such a way that the area of the phase boundary is minimised. Instead, they develop into
several finite-size domains. This behaviour differs from other phase separation processes and
models for lipid raft formation need to capture this behaviour.

Due to their structure with a semirigid tail, cholesterol molecules have a strong affinity for
saturated lipids, and regions with a high concentration of saturated lipids, which are enriched
in cholesterol are much more ordered than regions in which cholesterol is absent [33]. As such,
active transport processes of membrane components like cholesterol and lipids must be taken
into account as non-equilibrium contributions when discussing lipid raft formation from a ther-
modynamical point of view. In particular, it has been observed that the formation of lipid rafts is
linked to the presence of cholesterols in the membrane [22].

Based on this assumption, several theoretical models for the formation of lipid rafts have been
proposed (see [14, 30, 34]).

2 Problem statement and main results

In this section, we give the exact statement of the lipid raft model considered in this paper and
present our main results. The results are part of the second author’s PhD thesis [20].
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A short introduction to the lipid raft model is sufficient for the mathematical analysis in the
present paper. A comprehensive discussion and the full derivation from thermodynamics are
given in [17].

Let B ⊂R
3 be a bounded domain with smooth boundary � := ∂B. The domain B and the

surface � represent the cell and its outer membrane, respectively. The basic quantities in the
model are the rescaled relative concentration ϕ of saturated lipids in the membrane, the relative
concentration v of membrane-bound cholesterol and the relative concentration u of cytosolic
cholesterol. We normalise ϕ such that ϕ = 1 represents the pure saturated lipid phase and ϕ =
−1 within the pure unsaturated lipid phase. Moreover, v = 1 and u = 1 correspond to maximal
saturation for the cholesterol concentrations.

Let now for ε, δ > 0

F(v, ϕ) =
ˆ

�

ε

2
|∇ϕ|2 + ε−1W (ϕ) + 1

2δ
(2v − 1 − ϕ)2 dH2, (2.1)

with the double-well potential W (s) = (1 − s2)2. The functional F consists of two parts. The
first part

´
�

ε
2 |∇ϕ|2 + ε−1W (ϕ) dH2 is a classical Ginzburg–Landau energy, modeling the phase

separation between the two lipid phases. The second part 1
2δ

´
�

(2v − 1 − ϕ)2 dH2 accounts for
the affinity between saturated lipid molecules and membrane-bound cholesterol.

We now assume that the evolution of the membrane quantities is driven by chemical potentials
derived from the functional F . Namely, we introduce

μ := δF
δϕ

= −ε��ϕ + ε−1W ′(ϕ) − δ−1(2v − 1 − ϕ),

θ := δF
δv

= 2

δ
(2v − 1 − ϕ),

and say that F is the surface free energy functional of the model.
We then consider the following bulk–surface system consisting of a surface Cahn–Hilliard

equation coupled by an exchange term q to a bulk–diffusion equation:

∂tu = D�u in B × (0, T], (2.2)

−D∇u · ν = q on � × (0, T], (2.3)

∂tϕ = ��μ on � × (0, T], (2.4)

μ = −ε��ϕ + ε−1W ′(ϕ) − δ−1(2v − 1 − ϕ) on � × (0, T], (2.5)

∂tv = ��θ + q = 4

δ
��v − 2

δ
��ϕ + q on � × (0, T], (2.6)

θ = 2

δ
(2v − 1 − ϕ) on � × (0, T], (2.7)

with initial conditions for u, ϕ and v. Here we denote by ν the outer unit normal vector of B on
�, D > 0 is the diffusion coefficient, and T ∈ (0, ∞) is arbitrary. The exchange term q will be
specified later.

A few comments on the basic ideas included in these equations are in order. From a ther-
modynamical viewpoint, (2.4) and (2.6) are mass balance equations for the surface quantities.
Equations (2.2) and (2.3) model the evolution of the cytosolic cholesterol by a simple diffusion
equation with diffusion coefficient D > 0. The important part is the inclusion of Neumann bound-
ary conditions for the cytosolic diffusion. Depending on the characterisation of the exchange term
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q, the cholesterol flux from the cytosol B onto the membrane � appears as a source term for the
evolution of the membrane-bound cholesterol v in equation (2.6). Equation (2.6) also includes a
cross-diffusion, which stems from the cholesterol–lipid affinity in the surface energy F . Finally,
equations (2.4) and (2.5) constitute Cahn–Hilliard dynamics for the lipid concentration and allow
for a contribution from the cholesterol evolution via the last term. We note that the parameter
δ effectively controls how much the preferred binding between saturated lipids and cholesterols
influences the system.

Remark 2.1 The discussion in [17] shows that the model is thermodynamically consistent for
arbitrary constitutive choices for the exchange term q. The authors derive the model from mass
balance equations for the relative lipid concentration ϕ and the cholesterol concentration v on
the surface � as well as the mass balance for the cytosolic cholesterol concentration u. In both
the cholesterol mass balance equation on � and the cholesterol mass balance equation in B, the
exchange term q is treated as an external source.

Remark 2.2 Equation (2.4) implies that the total mass of surface lipids
´

�
ϕ dH2 is constant in

time. Similarly, equations (2.2), (2.3) and (2.6) yield that the combined total mass of surface and
cytosolic cholesterol

´
B u dx + ´

�
v dH2 is conserved. We will always denote the total lipid and

cholesterol mass by m and M , respectively, i.e. for all times
ˆ

�

ϕ dH2 = m,
ˆ

B
u dx +

ˆ
�

v dH2 = M . (2.8)

Moreover, the time derivative of the sum of surface and bulk energy fulfills

d

dt

(
F(v(·, t), ϕ(·, t)) + 1

2

ˆ
B

u(·, t)2

)
≤
ˆ

�

q(θ − u) dH2. (2.9)

In particular, whether F(v(·, t), ϕ(·, t)) + 1
2

´
B u(·, t)2 is decreasing in time or not depends on the

choice of the exchange term q. It is possible to prove that the energy stays bounded on finite
time intervals under suitable growth assumptions on q. This will be the key ingredient for our
following existence proof:

Define

W :=WB ×W1
� ×W1

� ×W2
� ×W2

� ,

where

WB := L2
(
0, T ; H1(B)

)∩ H1
(

0, T ;
(
H1(B)

)′)
,

W1
� := L2(0, T ; H1(�)) ∩ H1(0, T ; H−1(�)), and W2

� := L2(0, T ; H1(�)).

Theorem 2.3 (Existence of Weak Solutions)
Let T ∈ (0, ∞). Let ϕ0 ∈ H1(�), v0 ∈ L2(�) and u0 ∈ L2(B). Moreover, assume that the exchange
term q : R2 →R is continuous and fulfils

|q(u, v)| ≤ C(1 + |u| + |v|) ∀ u, v ∈R, (2.10)
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for some C > 0. Then there exist functions (u, ϕ, v, μ, θ ) ∈W which are a weak solution
to problem (2.2)–(2.7), i.e. they fulfil for all ξ ∈ L2(0, T ; H1(B)) and η ∈ L2(0, T ; H1(�)) the
equations

ˆ T

0
〈∂tu, ξ 〉(H1(B))

′,H1(B) = −
ˆ T

0

ˆ
B

∇u · ∇ξ −
ˆ T

0

ˆ
�

q(u, v)ξ , (2.11)

ˆ T

0
〈∂tϕ, η〉H−1(�),H1(�) = −

ˆ T

0

ˆ
�

∇�μ · ∇�η, (2.12)

ˆ T

0

ˆ
�

μη = −
ˆ T

0

ˆ
�

[
ε∇�ϕ · ∇�η + 1

ε
W ′(ϕ)η − 1

δ
(2v − 1 − ϕ) η

]
, (2.13)

ˆ T

0
〈∂tv, η〉H−1(�),H1(�) = −

ˆ T

0

ˆ
�

∇�θ · ∇�η +
ˆ T

0

ˆ
�

q(u, v)η, (2.14)

θ = 2

δ
(2v − 1 − ϕ) a.e. on � × (0, T). (2.15)

The initial values are attained in L2(B) and L2(�), respectively. Moreover,

F(v(·, t), ϕ(·, t)) + 1

2

ˆ
B

u(·, t)2 +
ˆ t

0

ˆ
B

D

2
|∇u|2 +

ˆ t

0

ˆ
�

(|∇�μ(·, t)|2 + |∇�θ (·, t)|2)
≤ C(ε, δ, �, T , D0, v0, ϕ0, u0). (2.16)

holds for any D ≥ D0 > 0 and all t ∈ (0, T].

The proof of Theorem 2.3 is given in Section 3.1.

Remark 2.4 (Uniqueness) If additionally to the assumptions above q is globally Lipschitz con-
tinuous, one can prove in a straightforward manner that weak solutions are unique. To this end,
one tests (2.2) for the difference u = u1 − u2 of two weak solutions (uj, ϕj, vj, μj, θj), j = 1, 2,
with u in L2(B), tests (2.4) with �−1ϕ = �−1(ϕ1 − ϕ2) in L2(�), (2.5) with ϕ and (2.6) with
v = v1 − v2. Moreover, one uses compactness of the trace operator tr� : H1(B) → L2(�) together
with Ehrling’s lemma and of course Gronwall’s inequality. Uniqueness also holds true if q is
only locally Lipschitz continuous and the weak solutions are essentially bounded. The existence
of bounded weak solutions follows from the next result under suitable assumptions.

Once we know that solutions exist on any finite time interval, we can address their regular-
ity. Provided that the exchange term q fulfils additional growth assumptions, we obtain higher
regularity for solutions to the lipid raft model.

Theorem 2.5 (Higher Regularity)
Let u0, v0 and ϕ0 be as in Theorem 2.3. Assume that q ∈ C1(R2) such that

|q(u, v)| ≤ C(1 + |u| + |v|),
|Duq(u, v)| , |Dvq(u, v)| ≤ C

(
1 + |u|2/3 + |v|) ∀ u, v ∈R, (2.17)
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for some C > 0. Then there exists a weak solution (u, ϕ, v, μ, θ ) to problem (2.2)–(2.7) such that

u ∈ L2(0, T ; H2(B)),

v ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H3(�)),

ϕ ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H5(�)),

μ ∈ L∞(0, T ; H3(�)) ∩ L2(0, T ; H5(�)), and

θ ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)),

as well as

∂tu ∈ L∞(0, T ; L2(B)) ∩ L2(0, T ; H1(B)),

∂tϕ ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H3(�)), and

∂tθ ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)).

The proof of Theorems 2.5 is postponed to Section 3.3.
In the modelling process, the parameter D was the diffusion constant associated with the

cytosolic diffusion. This diffusion is often much higher than the lateral diffusion on the cell
membrane. The energy bound (2.16) implies that ‖∇u‖L2((0,T);L2(B)) → 0 as D → ∞. Hence, we
expect u to be spatially constant in the limit D → ∞. Thus, it is reasonable to view the limit
D → ∞ as a reduction of the system (2.2)–(2.7).

If we formally send D → ∞ in (2.2)–(2.7), we derive the following system:

∂tu = − 1

|B|
ˆ

�

q(u, v) for t ∈ (0, T], (2.18)

∂tϕ = ��μ on � × (0, T], (2.19)

μ = −ε��ϕ + ε−1W ′(ϕ) − δ−1(2v − 1 − ϕ) on � × (0, T], (2.20)

∂tv = ��θ + q(u, v) on � × (0, T], (2.21)

θ = 2

δ
(2v − 1 − ϕ) on � × (0, T]. (2.22)

In the resulting system, u is spatially constant and its evolution in time is governed by an ordinary
differential equation which is coupled to the surface diffusion for v. Hence, we reduced the
coupled bulk-surface system into a system of surface equations with nonlocal contributions,
namely via the integral on the right-hand side of (2.18).

Based on the energy estimate (2.16), we have the following rigorous convergence result as
D → ∞:

Proposition 2.6 Let {Dn}n∈N ⊂ (0, ∞) be a sequence with limn→∞ Dn = ∞ and denote by
(uDn , ϕDn , vDn , θDn , μDn ) the weak solution from Theorem 2.3 with D = Dn and initial data
independent of n. Then there exists a subsequence (again denoted by {Dn}n∈N) such that

uDn ⇀ u in L2(0, T ; H1(B)) ∩ H1
(

0, T ;
(
H1(B)

)′)
with u(t) ∈R∀t ∈ (0, T),

ϕDn ⇀ ϕ in L2(0, T ; H1(�)) ∩ H1(0, T ; H−1(�)),

vDn ⇀ v in L2(0, T ; H1(�)) ∩ H1(0, T ; H−1(�)),

θDn ⇀ θ in L2(0, T ; H1(�)),

μDn ⇀ μ in L2(0, T ; H1(�)),
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and such that the limit functions are weak solution to the reduced problem (2.18)–(2.22), i.e. they
fulfil for all η ∈ L2(0, T ; H1(�)) the equations

∂tu = − 1

|B|
ˆ

�

q(u, v) for a.e. t ∈ (0, T),

ˆ T

0
〈∂tϕ, η〉H−1(�),H1(�) = −

ˆ T

0

ˆ
�

∇�μ · ∇�η,

ˆ T

0

ˆ
�

μη = −
ˆ T

0

ˆ
�

ε∇�ϕ · ∇�η + 1

ε

ˆ T

0

ˆ
�

W ′(ϕ)η − 1

δ

ˆ T

0

ˆ
�

(2v − 1 − ϕ) η,

ˆ T

0
〈∂tv, η〉H−1(�),H1(�) = −

ˆ T

0

ˆ
�

∇�θ · ∇�η +
ˆ T

0

ˆ
�

q(u, v)η,

ˆ T

0

ˆ
�

θη = 2

δ

ˆ
�

(2v − 1 − ϕ) η.

The initial values are attained in L2(B) and L2(�), respectively.

The proof can be found in Section 3.2.
The motivation behind the model (2.2)–(2.7) was the formation of lipid rafts in biological

membranes, i.e. to derive evolution equations that display mesoscale patterns as time evolves. It
is thus a natural question to study the qualitative behaviour of the model (2.2)–(2.7). In [17], the
authors identified two different qualitative regimes, based on the choice of the exchange term q.

The inequality (2.9) allows to identify two different classes of constitutive laws for the
exchange term q. Every constitutive law which implies that

´
�

q(θ − u) is non-positive also
implies that the energy of the coupled system is decreasing. In this case, we expect the evo-
lution to approach an equilibrium of F as t → ∞. Hence, choices for q that lead to a decreasing
energy such as q(u, v) = −c(θ − u) for c ≥ 0 are referred to as equilibrium cases.

On the other hand, there are choices for q such that
´

�
q(θ − u) does not need to be non-

positive. For systems including such an exchange term q, it is not reasonable to expect the
evolution to converge to an equilibrium point of F as t → ∞, as it is a priori not certain that
solutions exist for all times or that F is bounded in time. Hence, these systems are called
non-equilibrium models.

One possible approach leading to a non-equilibrium model is to see the cholesterol attachment
to the membrane as a ‘reaction’ between free sites on the membrane, namely regions of low
membrane-bound cholesterol concentration v and the cytosolic cholesterol, whereas the detach-
ment from the membrane can be considered to be proportional to v. This was suggested in [17]
and results in the constitutive choice

q(u, v) := c1u(1 − v) − c2v, (2.23)

with positive constants c1, c2 ∈R.

Remark 2.7 We note that the exchange term q as in (2.23) does not fulfil the linear growth
condition required in Theorem 2.3. However, for M as in Remark 2.2 and a smooth, monotone
increasing and uniformly bounded function η : R→R such that η(s) = s for |s| ≤ M |B|−1 we
can define an alternative exchange term q̃ as

q̃(u, v) = c1u − c1η(u)v − c2v.
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We note that q̃ fulfils the linear growth assumption and coincides with

q(u, v) = c1u(1 − v) − c2v = c1u − c1uv − c2v,

if 0 ≤ u|B| ≤ M . For solutions of the reduced model the latter conditions is preserved in time,
which can be seen as follows. The mass conservation (2.8) carries over to the reduced model and
allows us to find the specific reformulation

d

dt

ˆ
B

u(t) dx = −
ˆ

�

q̃(u, v)

= −c1 |�|
|B|

ˆ
B

u(t) dx +
(

c1η

(
1

|B|
ˆ

B
u(t) dx

)
+ c2

)(ˆ
�

v(t) dH2

)

= −c1 |�|
|B|

ˆ
B

u(t) dx +
(

c1η

(
1

|B|
ˆ

B
u(t) dx

)
+ c2

)(
M −

ˆ
B

u(t) dx

)
, (2.24)

of the ordinary differential equation for u. Thus, the equation is actually independent of v. The
right-hand side is strictly positive if

´
B u(t) dx = 0 and strictly negative if

´
B u(t) dx = M . Thus,

we infer that

u(t) ∈ [0, |B|−1 M] for all t ≥ 0,

if the initial data were in this range to begin with. Hence, for suitable initial data, we actually
have

q̃(u, v) = q(u, v) for all t ≥ 0.

We thus continue to consider the specific form q(u, v) = c1u(1 − v) − c2v in the reduced model
as a prime example for the non-equilibrium case.

In [17], the authors present numerical simulations which allow to compare the qualitative
behaviour for the reduced model in the equilibrium and non-equilibrium case.

In the equilibrium case, the simulations display the saturated lipids clustered in one connected
domain, in contrast to the complex patterns observed in the formation of lipid rafts. On the other
hand, the non-equilibrium case (2.23) exhibits the emergence of patterns similar to the formation
of lipid rafts, see [17, Figures 3 and 11]. As such, the choice (2.23) will be treated as a prime
example of a non-equilibrium system throughout this paper.

Furthermore, it turns out that the reduced system in the non-equilibrium case displays a sur-
prising relationship to the so-called Ohta–Kawasaki system arising in the modeling of diblock
copolymers. Depending on the initial value of the lipid concentration ϕ, the almost stationary
solutions obtained from the simulation display two distinct classes of patterns, with stripe like
patterns emerging if the concentration of saturated and unsaturated lipids is balanced (see [17,
Figure 5]). For less-balanced initial values, the experiments show patterns with several circular
domains, similar to lipid rafts.

The stationary states of the Ohta–Kawasaki equations display a similar behaviour. Based on
further numerical experiments, Garcke et al. conjectured in [17, Section 3.4] that as δ → 0, solu-
tions to the reduced model in the non-equilibrium case q = c1u(1 − v) − c2v should approach
solutions to the Ohta–Kawasaki equations.
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By using Theorem 2.8, this is actually true for the mean value free parts of the solutions and a
slight modification of the Otha–Kawasaki equation. In the following, P� denotes the projection
onto the mean value free part, i.e. P�f := f − 1

|�|
´

�
f := f� .

We remark that the existence of weak solutions to the reduced problem is due to
Proposition 2.6.

Theorem 2.8 (Convergence to a Modified Ohta–Kawasaki Equation).
Let the exchange term q be given as in (2.23), i.e.

q(u, v) = c1u(1 − v) − c2v,

and let {δn}n∈N ⊂ (0, ∞) be a sequence with limn→∞ δn = 0. We denote by (uδn , ϕδn , μδn , θδn , vδn )
a weak solution to the reduced problem (2.18)–(2.22) from Proposition 2.6 with δ = δn. We
assume that the initial data is independent of δn and in addition that the initial data for u belongs
to [0, M |B|−1]. Then there exists a subsequence (again denoted by {δn}n∈N) such that {uδn}n∈N
and the mean value free functions (ϕδn

� , μδn
� , θδn

� ) fulfil

uδn ⇀ u in H1(0, T),

ϕ
δn
� ⇀ ϕ� in L2(0, T ; H1(�)) ∩ H1(0, T ; H−1(�)),

μ
δn
� ⇀ μ� in L2(0, T ; H1(�)),

θ
δn
� ⇀ θ� in L2(0, T ; H1(�)),

δn∂tθ
δn
�

∗
⇀ 0 in L2(0, T ; H−1(�)),

and such that the limit functions are a weak solution to the modified Ohta–Kawasaki equation

∂tϕ� = ��μ� ,

5

4
μ� = −ε��ϕ� + 1

ε
P�W ′(ϕ�) − 1

2
σ ,

��σ = c1u(t) + c2

2
ϕ� ,

ˆ
�

σ = 0,

where σ := θ� − 1
2μ� ., together with

d

dt

ˆ
B

u(t) = − c1

|B|
(ˆ

B
u(t)

)2

+
(

c1
M − |�|

|B| − c2

) ˆ
B

u(t) + c2M on (0, T].

Here the modified Ohta–Kawasaki equation is understood in the following weak sense: For all
η ∈ L2(0, T ; H1(�))

ˆ T

0
〈∂tϕ� , η〉 = −

ˆ
�

∇�μ� · ∇�η,

5

4

ˆ T

0

ˆ
�

μ�η =
ˆ T

0

ˆ
�

ε∇�ϕ� · ∇�η + 1

ε

ˆ T

0

ˆ
�

W ′(ϕ�)η − 1

2

ˆ T

0

ˆ
�

ση, and

−
ˆ T

0

ˆ
�

∇�σ · ∇�η =
ˆ T

0

ˆ
�

c1u(t) + c2

2
ϕ�η.

We note that the modification of the Ohta–Kawasaki equation consists in the time-dependent
coefficient c1u(t)+c2

2 and the coupling to equation for u(t). We prove Theorem 2.8 in Section 5.
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Proposition 2.8 establishes the connection between the reduced lipid raft model and the Ohta–
Kawasaki model on finite time intervals. We conclude the mathematical analysis with results on
existence of stationary states and on long-time existence of solutions to the reduced lipid raft
model.

Both results rely on the following growth condition on the exchange term q.

Condition 2.9 Assume that q : R×R→R has sublinear growth, i.e. assume that there exists
α > 1 such that

|q(u, v)| ≤ C
(
1 + |u|1/α + |v|1/α

)
. (2.25)

Remark 2.10 A similar argument as in Remark 2.7 shows that we can consider the non-
equilibrium case where q is given by (2.23) even though it does not directly fulfil Condition
2.9. However, one can always modify q with suitable cut-off functions.

We recall from Remark 2.2 thatˆ
�

ϕ dH2 = m,
ˆ

B
u dx +

ˆ
�

v dH2 = M

are conserved over time. In order to prove the existence of stationary points to the reduced lipid
raft model, we require the following additional condition.

Condition 2.11 We assume that there exists a continuous operator S : H1
(0)(�) →R

2 such that
for all ṽ ∈ H1

(0)(�) = {u ∈ H1(�) :
´

�
u = 0} and for any given M ∈R the pair (u, v) := S(ṽ) ∈R

2

solves ˆ
�

q(u, ṽ + v) = 0, (2.26)
ˆ

B
u +

ˆ
�

v = M . (2.27)

We also write SB(ṽ) = u and S�(ṽ) = v.

Remark 2.12 Condition 2.11 ensures that in the stationary case the mean values 1
|B|

´
B u and

1
|�|

´
�

v are determined by the two equations (2.26) and (2.27). It should be seen as a condition
on q, as the question whether the condition holds actually depends on the form of q. Remark 2.7
shows that this condition is satisfied for the prime example (2.23) in the non-equilibrium case

q(u, v) = c1u(1 − v) − c2v,

since in this case
´

�
q(u, v) does not depend on v as can be seen from (2.24).

Theorem 2.13 (Existence of Stationary Solutions).
Let m, M ∈R be given. Assume that q : R×R→R fulfils Conditions 2.9 and 2.11. Then there
exist u ∈R with 0 ≤ u|B| ≤ M and functions

(ϕ, v, μ, θ ) ∈ H1(�) × H1(�) × H1(�) × H1(�),

which are weak stationary solutions to the reduced model (2.18)–(2.22).
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The proof is given in Section 4.1.
For the following we assume that (u, ϕ, v, θ , μ) is defined for all t ≥ 0 such that

(u, ϕ, v, θ , μ)|[0,T] is a weak solution of the reduced model for all T ∈ (0, ∞) as in Proposition 2.6.
Existence of such weak solutions for all t ≥ 0 can be easily proven by replacing the time inter-
val (0, T) for (uDn , ϕDn , vDn , θDn , μDn ) by (0, n) and using the same arguments as in the proof of
Proposition 2.6 together with a suitable diagonal sequence argument. Boundedness of solutions
to the reduced model can be proved provided that the cellular cholesterol concentration u remains
uniformly bounded for all times.

Condition 2.14 We assume that u ∈ L∞(0, ∞).

Remark 2.15 For all choices for the exchange term q, u is given as the solution to the ordinary
differential equation

d

dt

ˆ
B

u(t) dx = −
ˆ

�

q(u, v).

Therefore, Condition 2.14 is fulfilled if the solution to this equation exists for all times and stays
bounded as t → ∞. As we have already discussed in Remark 2.7(1) and (2), this is in particular
the case for the prime example (2.23) in the non-equilibrium case with suitable initial values.

Proposition 2.16 Assume that Conditions 2.9 and 2.14 hold. Then there exists C > 0 which
depends on the initial data but is independent of t such that for almost all t ∈ [0, ∞)

F(v(t), ϕ(t)) ≤ C.

This will be proved in Section 4.2.

3 Solutions to the full and reduced model

3.1 Existence of solutions to the full model (2.2)–(2.7)

We now prove Theorem 2.3 using a typical Galerkin method. Let {ωi}i∈N be the family of eigen-
functions of the Laplace–Beltrami–Operator �� on the surface �. Analogously, we define {κi}i∈N
to be the family of eigenfunctions to the Laplace–Operator on B with (homogeneous) Neumann
boundary conditions.

We now restrict ourselves to functions of the form

uN (t, x) =
N∑

i=1

ci
u,N (t)κi(x), ϕN (t, x) =

N∑
i=1

di
ϕ,N (t)ωi(x),

μN (t, x) =
N∑

i=1

di
μ,N (t)ωi(x), vN (t, x) =

N∑
i=1

di
v,N (t)ωi(x),

which are elements of the finite dimensional function spaces V N
� := span

({ωi}N
i=1

)
and V N

B :=
span

({κi}N
i=1

)
, respectively. In accordance with (2.7), we set

θN (t, x) = 2

δ

(
2d1

v,N (t) −√|�| − d1
ϕ,N (t)

)
ω1 + 2

δ

N∑
i=2

(
2di

v,N (t) − di
ϕ,N (t)

)
ωi.
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Note that ω1 = 1√|�| . The weak formulation of (2.2)–(2.7) for test functions ω ∈ V N
� and κ ∈ V N

B

then reads
ˆ

B
∂tu

Nκ = −D

ˆ
B

∇uN · ∇κ −
ˆ

�

q(uN , vN )κ , (3.1)
ˆ

�

∂tϕ
Nω = −

ˆ
�

∇�μN · ∇�ω, (3.2)
ˆ

�

μNω =
ˆ

�

[
ε∇�ϕN · ∇�ω + ε−1W ′(ϕN )ω − δ−1(2vN − 1 − ϕN )ω

]
, (3.3)

ˆ
�

∂tv
Nω = −

ˆ
�

∇�θN · ∇�ω +
ˆ

�

q(uN , vN )ω. (3.4)

Choosing κ = κi and ω = ωi in (3.1)–(3.4) above yields a system of ordinary differential
equations for the coefficients ci

u,N , di
ϕ,N , di

μ,N and di
v,N , i = 1, . . . , n.

The system is complemented by initial conditions derived from the initial data u0, ϕ0, v0. To
this end, we set the initial conditions for the above system to be ci

u,N (0) = ´
B u0κi, di

ϕ,N (0) =´
�

ϕ0ωi and so forth. Solutions of this system exist due to the Picard–Lindelöf theorem on some
interval (0, Tn), Tn > 0. We simplify the notation and denote these solutions by ci

u,N , di
ϕ,N , di

μ,N

and di
v,N . Accordingly, we write

uN (t, x) =
N∑

i=1

ci
u,N (t)κi(x), ϕN (t, x) =

N∑
i=1

di
ϕ,N (t)ωi(x),

θN (t, x) = 2

δ
√|�|

(
2d1

v,N (t) −√|�| − d1
ϕ,N (t)

)
+ 2

δ

N∑
i=2

(
2di

v,N (t) − di
ϕ,N (t)

)
ωi(x),

for all t ∈ (0, Tn) and so on.
We shall now derive estimates that prove that the solutions ci

u,N , di
ϕ,N , di

μ,N and di
v,N can be

extended to an interval (0, T) for every N ∈N and subsequences of {uN }, {ϕN }, {μN }, and {vN }
converge to suitable limit functions u, μ, ϕ and v. It remains then to show that the limit functions
u, μ, ϕ and v solve the equations (2.2)–(2.6).

We begin by noting that κ = uN is an admissible test function in (3.1). Choosing κ = uN in
(3.1) yields

1

2

d

dt

[ˆ
B

∣∣uN
∣∣2]=

ˆ
B

uN∂tu
N = −D

ˆ
B

∣∣∇uN
∣∣2 −

ˆ
�

q(uN , vN )uN ,

where we have used that the time-dependent coefficients ci
u,N (t) are solutions to the ODE system

above and therefore differentiable in t.
Analogously, one has that μN , θN and −∂tϕ

N are elements of V N
� and therefore are admissible

test functions in (3.2)–(3.4). Choosing ω = −∂tϕ
N in (3.3), we obtain

ˆ
�

−∂tϕ
NμN =

ˆ
�

[−ε∇�ϕN · ∇�

(
∂tϕ

N
)− ε−1W ′(ϕN )∂tϕ

N
]+ 1

2

ˆ
�

θN∂tϕ
N

= − d

dt

[ˆ
�

ε

2

∣∣∇�ϕN
∣∣2 + 1

ε
W (ϕN )

]
+ 1

2

ˆ
�

θN∂tϕ
N .
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Choosing ω = μN in (3.3) leads to

ˆ
�

∂tϕ
NμN = −

ˆ
�

∣∣∇�μN
∣∣2 .

Finally, we use that ∂tv
N = δ

4∂tθ + 1
2∂tϕ

N to conclude

δ

2

d

dt

[ˆ
�

∣∣θN
∣∣2]+ 1

2

ˆ
�

∂tϕ
NθN = δ

4

ˆ
�

θN∂tθ
N + 1

2

ˆ
�

∂tϕ
NθN

= −
ˆ

�

∣∣∇�θN
∣∣2 +

ˆ
�

q(uN , vN )θN ,

from (3.4) with ω = θN .
We add these four equations to obtain

d

dt

[
1

2

ˆ
B

∣∣uN
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕN
∣∣2 + 1

ε

ˆ
�

W (ϕN ) + δ

8

ˆ
�

∣∣θN
∣∣2]

+ D

ˆ
B

∣∣∇uN
∣∣2 +

ˆ
�

∣∣∇�μN
∣∣2 +

ˆ
�

∣∣∇�θN
∣∣2 =

ˆ
�

q(uN , vN )(θN − uN ). (3.5)

In order to estimate the right-hand side, we use Hölder’s and Young’s inequality to estimate

∣∣∣∣
ˆ

�

q(uN , vN )(θN − uN )

∣∣∣∣≤1

2

ˆ
�

∣∣θN − uN
∣∣2 + 1

2

ˆ
�

∣∣q(uN , vN )
∣∣2

≤
ˆ

�

∣∣θN
∣∣2 +

ˆ
�

∣∣uN
∣∣2 + C

ˆ
�

(
1 + ∣∣uN

∣∣2 + ∣∣vN
∣∣2)

≤
ˆ

�

∣∣θN
∣∣2 + C

ˆ
�

∣∣uN
∣∣2 + C

(
1 +

ˆ
�

∣∣vN
∣∣2) . (3.6)

Taking into account that 2vN = δ
2θN + 1 + ϕN , we derive

∣∣vN
∣∣2 ≤ C

(
δ2
∣∣θN
∣∣2 + ∣∣1 + ϕN

∣∣2)

from Young’s inequality. Since
∣∣1 + ϕN

∣∣2 ≤ C(ε)
(
1 + 1

ε
W (ϕN )

)
, we thus obtain

ˆ
�

∣∣vN
∣∣2 ≤ C(δ, ε)

(
1 + δ

8

ˆ
�

∣∣θN
∣∣2 + 1

2ε

ˆ
�

W (ϕN )

)
.

Therefore

ˆ
�

q(uN , vN )(θN − uN )

≤ C(δ, ε)

[
1 + 1

2

ˆ
�

∣∣uN
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕN
∣∣2 + 1

ε

ˆ
�

W (ϕN ) + δ

8

ˆ
�

∣∣θN
∣∣2] . (3.7)
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Combining (3.5) and (3.7) we arrive at

d

dt

[
1

2

ˆ
B

∣∣uN
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕN
∣∣2 + 1

ε

ˆ
�

W (ϕN ) + δ

8

ˆ
�

∣∣θN
∣∣2]

+ D

ˆ
B

∣∣∇uN
∣∣2 +

ˆ
�

∣∣∇�μN
∣∣2 +

ˆ
�

∣∣∇�θN
∣∣2

≤ C(δ, ε)

[
1 + 1

2

ˆ
�

∣∣uN
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕN
∣∣2 + 1

ε

ˆ
�

W (ϕN ) + δ

8

ˆ
�

∣∣θN
∣∣2] ,

which allows us to employ Gronwall’s inequality to deduce bounds on uN , φN , μN and vN

provided we can control
´

�

∣∣uN
∣∣2.

By [21, Chapter 2, (2.27)] the interpolation inequality

‖u‖L2(�) ≤ C ‖u‖1/2
H1(B)

‖u‖1/2
L2(B)

,

holds. Using this estimate, we immediately find
ˆ

�

∣∣uN
∣∣2 ≤ C(a)

∥∥uN
∥∥2

L2(B)
+ a

∥∥∇uN
∥∥2

L2(B)
,

for a > 0 arbitrary small. Choosing a small enough, we thus conclude

d

dt

[
1

2

ˆ
B

∣∣uN
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕN
∣∣2 + 1

ε

ˆ
�

W (ϕN ) + δ

8

ˆ
�

∣∣θN
∣∣2]

+ D

2

ˆ
B

∣∣∇uN
∣∣2 +

ˆ
�

∣∣∇�μN
∣∣2 +

ˆ
�

∣∣∇�θN
∣∣2

≤ C(δ)

[
1 + 1

2

ˆ
B

∣∣uN
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕN
∣∣2 + 1

ε

ˆ
�

W (ϕN ) + δ

8

ˆ
�

∣∣θN
∣∣2] .

We are now in the position to apply Gronwall’s inequality and after integrating the above
equation in time from 0 to T > 0 we deduce

sup
0≤t≤T

{
1

2

ˆ
B

∣∣uN
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕN
∣∣2 + 1

ε

ˆ
�

W (ϕN ) + δ

8

ˆ
�

∣∣θN
∣∣2}

+ D

2

ˆ T

0

ˆ
B

∣∣∇uN
∣∣2 +

ˆ T

0

ˆ
�

∣∣∇�μN
∣∣2 +

ˆ T

0

ˆ
�

∣∣∇�θN
∣∣2 ≤ C(T). (3.8)

Moreover, choosing ω = ω1 ≡ const in (3.3) yields
ˆ

�

μN = 1

ε

ˆ
�

W ′(ϕN ) − 1

2

ˆ
�

θN .

Since ϕN is bounded in L∞(0, T ; H1(�)) by (3.8), the Sobolev embedding theorem in dimension
dim � = 2 implies ϕN ∈ L∞(0, T ; Lp(�)) for all 1 ≤ p < ∞. As W ′(ϕ) = 4ϕ3 − ϕ and

∣∣´
�

θN
∣∣≤

C(�)
∥∥θN

∥∥
L2(�)

we thus infer that

sup
0≤t≤T

∣∣∣∣
ˆ

�

μN (t)

∣∣∣∣≤ C
(∥∥ϕN

∥∥
L∞(0,T ;H1(�))

+ ∥∥θN
∥∥

L1∞(0,T ;L2(�))

)
≤ C(T), (3.9)

by (3.8). As a result, we obtain
∥∥μN

∥∥
L2(0,T ;H1(�))

≤ C(T) from Poincaré’s inequality, (3.8), and
(3.9).

https://doi.org/10.1017/S0956792519000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000056


On a model for phase separation on biological membranes 311

For any τ ∈ H1(B), there exists τ1 ∈ span {κi}N
i∈N such that τ2 := τ − τ1 is orthogonal to

span {κi}N
i∈N in L2(B) as well as in H1(B). Therefore, 〈∂tuN , τ 〉 = ´

B ∂tuNτ1 and since τ1 is an
admissible test function in (3.1), we find

∣∣〈∂tu
N , τ 〉∣∣= ∣∣∣∣

ˆ
B

∂tu
Nτ1

∣∣∣∣≤ D

∣∣∣∣
ˆ

B
∇uN · ∇τ1

∣∣∣∣+
∣∣∣∣
ˆ

�

q(uN , vN )τ1

∣∣∣∣
≤ D

∥∥uN
∥∥

H1(B)
‖τ1‖H1(B) + ∥∥q(uN , vN )

∥∥
L2(�)

‖τ1‖L2(�) .

Observe that the continuity of the trace operator ensures ‖τ1‖L2(�) ≤ C ‖τ1‖H1(B) and that
‖τ1‖H1(B) ≤ ‖τ‖H1(B) since {κi}i∈N ⊂ H1(B) is an orthogonal basis. Thus, the above inequality
implies (after integrating in time)∥∥∂tu

N
∥∥

L2(0,T ;(H1(B))
′) ≤

(
D
∥∥uN

∥∥
L2(0,T ;H1(B))

+ ∥∥q(uN , vN )
∥∥

L2(0,T ;L2(�))

)
.

The norm
∥∥uN

∥∥
L2(0,T ;H1(B))

can be controlled directly by energy estimate (3.8) while similar argu-

ments as in (3.6) allow us to deduce that
∥∥q(uN , vN )

∥∥
L2(0,T ;L2(�))

is bounded by the constant C(T)

from (3.8). The embedding H1(B) ↪→ Hs(B) is compact for all 1/2 < s < 1. The Aubin–Lions
theorem [35, Corollary 2] applied to H1(B) ↪→ Hs(B) ↪→ H−1(B) allows us to deduce the rela-
tive compactness of {uk} in L2([0, T] × Hs(B)), i.e., after possibly extracting a subsequence, the
strong convergence uk → u in L2(0, T ; Hs(B)). By the continuity of the trace operator, we deduce
tr(uk) → tr(u) in L2([0, T] × �).

Analogously to the bound on
∥∥∂tuN

∥∥
L2(0,T ;(H1(B))

′) , we obtain
∥∥∂tϕ

N
∥∥

L2(0,T ;H−1(�))
≤ C(T) and∥∥∂tv

N
∥∥

L2(0,T ;H−1(�))
≤ C(T).

The Aubin–Lions theorem [35, Corollary 2] applied for the Gelfand triple H1(�) ↪→ L2(�) ↪→
H−1(�) allows us to deduce the relative compactness of {vN } and {ϕN } in Lq(0, T ; Hs(�))
for every 1 ≤ q < ∞, s ∈ [0, 1) and consequently (up to the extraction of a subsequence) the
convergence of vN and ϕN pointwise almost everywhere in � × [0, T].

Summing up our results, we thus deduce that there exist subsequences (which we also denote
by (uN , ϕN , μN , θN , vN ) such that

uN ⇀ u in L2(0, T ; H1(B)), (3.10)

uN → u in L2(0, T ; Hs(B)), 0 < s < 1, (3.11)

tr(uN ) → tr(u) in L2(0, T ; L2(�)) and tr(uN ) → tr(u) a.e. in �T , (3.12)

ϕN ⇀∗ ϕ in L∞(0, T ; H1(�)), (3.13)

ϕN → ϕ in Lq(0, T ; Hs(�)), 1 ≤ q < ∞, 0 ≤ s < 1, (3.14)

μn ⇀ μ in L2(0, T ; H1(�)), (3.15)

θn ⇀ θ in L2(0, T ; H1(�)), (3.16)

vN ⇀ v in L2(0, T ; H1(�)) and vN → v in L2(0, T ; L2(�)), (3.17)

vN → v a.e. in �T , (3.18)

as N → ∞ while the time derivatives fulfil

∂tu
N ⇀ ∂tu in L2(0, T ;

(
H1(B)

)′
), (3.19)

∂tϕ
N ⇀ ∂tϕ in L2(0, T ; H−1(�)), (3.20)

∂tv
N ⇀ ∂tv in L2(0, T ; H−1(�)). (3.21)
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Using (2.10), |W ′(s)| ≤ C(|s|3 + 1), and the theory of Nemytskii operators (cf. e.g. [32, Theorem
10.58]) we obtain the convergence

q(uN , vN ) →N→∞ q(u, v) in L2(0, T ; L2(�)), (3.22)

W ′(ϕN ) →N→∞ W ′(ϕ) in L2(0, T ; L2(�)). (3.23)

Let N0 ∈N be arbitrary and consider the weak formulation of equations (2.2)–(2.7) for test
functions ω ∈ C1

c ([0, T]; V N0
� ) and κ ∈ C1

c ([0, T]; V N0
B ). From the convergence results in (3.11)–

(3.18) and (3.19)–(3.23), we derive that the limit functions u, v, ϕ, μ and θ fulfil

ˆ T

0
〈∂tu, κ〉(H1(B))

′,H1(B) = −D

ˆ T

0

ˆ
B

∇u · ∇κ −
ˆ T

0

ˆ
�

q(u, v)κ ,

ˆ T

0
〈∂tϕ, ω〉H−1(�),H1(�) = −

ˆ T

0

ˆ
�

∇�μ · ∇�ω,

ˆ T

0

ˆ
�

μω =
ˆ T

0

ˆ
�

[
ε∇�ϕ · ∇�ω + ε−1W ′(ϕ)ω − δ−1(2v − 1 − ϕ)ω

]
,

ˆ T

0
〈∂tv, ω〉H−1(�),H1(�) = −

ˆ T

0

ˆ
�

∇�θ · ∇�ω +
ˆ T

0

ˆ
�

q(u, v)ω,

first for all ω ∈ C1
c ([0, T]; V N0

� ) and κ ∈ C1
c ([0, T]; V N0

B ), but since N0 ∈N was arbitrary also for
all ω ∈ C1

c ([0, T];
⋃

N∈N V N
� ) and κ ∈ C1

c ([0, T];
⋃

N∈N V N
B ). Using that

⋃
N∈N V N

� and
⋃

N∈N V N
B

are dense in H1(�) and H1(B), respectively, we deduce that these equations actually hold for all
test functions ω ∈ H1(0, T ; H1(�)) and κ ∈ H1(0, T ; H1(B)).

Now observe that for all κ ∈ C1([0, T]; V N0
B ) such that κ(T) = 0

ˆ
B

u(x, 0)κ(x, 0) dx

= −
ˆ T

0
〈∂tu(·, t), κ(·, t)〉H−1(B),H1(B) dt −

ˆ T

0
〈u(·, t), ∂tκ(·, t)〉H−1(B),H1(B) dt

= D

ˆ T

0

ˆ
B

∇u · ∇κ +
ˆ T

0

ˆ
�

q(u, v)κ −
ˆ T

0
〈u(·, t), ∂tκ(·, t)〉H−1(B),H1(B) dt

= lim
N→∞

(
D

ˆ T

0

ˆ
B

∇uN · ∇κ +
ˆ T

0

ˆ
�

q(uN , vN )κ −
ˆ T

0

〈
uN (·, t), ∂tκ(·, t)

〉
H−1(B),H1(B)

dt

)
.

By (3.1) we deduce that

ˆ T

0

〈
uN (·, t), ∂tκ(·, t)

〉
H−1(B),H1(B)

dt

= −
ˆ T

0

〈
∂tu

N (·, t), κ(·, t)
〉
H−1(B),H1(B)

dt − 〈uN (·, 0), κ(·, 0)
〉
H−1(�),H1(�)

= D

ˆ T

0

ˆ
B

∇uN · ∇κ dt +
ˆ T

0

ˆ
�

q(uN , vN )κ dt − 〈uN (·, 0), κ(·, 0)
〉
H−1(�),H1(�)

.
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Hence, we have
ˆ

B
u(x, 0)κ(x, 0) dx

= lim
N→∞

(
D

ˆ T

0

ˆ
B

∇uN · ∇κ +
ˆ T

0

ˆ
�

q(uN , vN )κ −
ˆ T

0

〈
uN (·, t), ∂tκ(·, t)

〉
H−1(B),H1(B)

dt

)

= lim
N→∞

〈
uN (·, 0), κ(·, 0)

〉
H−1(�),H1(�)

=
ˆ

B
u0(x)κ(x, 0) dx,

for κ ∈ C1([0, T]; V N0
B ) with κ(T) = 0 and N0 ∈N arbitrary. Thus, u(·, 0) = u0(·) in L2(B). In the

same way, we deduce ϕ(·, 0) = ϕ0(·) and v(·, 0) = v0(·) in L2(�).
Finally, (3.8) is uniform in N and therefore implies (2.16).

3.2 Existence of solutions to the reduced model and the limit process D → ∞
After we proved the necessary estimate (2.16) rigorously in Theorem 2.3, we are now in the
position to prove Proposition 2.6, thus establishing the connection between the full model (2.2)–
(2.7) and the reduced model (2.18)–(2.22) rigorously. Note that Proposition 2.6 not only assures
the convergence of solutions to the full model as D → ∞ but also gives an existence result for
solutions to the reduced model.

Proof of Proposition 2.6 According to (2.16), the solutions (uDn , ϕDn , μDn , θDn , vDn ) fulfil

sup
0≤t≤T

{
1

2

ˆ
B

∣∣uDn
∣∣2 + ε

2

ˆ
�

∣∣∇�ϕDn
∣∣2 + 1

ε

ˆ
�

W (ϕDn ) + δ

8

ˆ
�

∣∣θDn
∣∣2}

+ Dn

2

ˆ T

0

ˆ
B

∣∣∇uDn
∣∣2 +

ˆ T

0

ˆ
�

∣∣∇�μDn
∣∣2 +

ˆ T

0

ˆ
�

∣∣∇�θDn
∣∣2 ≤ C(T).

(3.24)

We exploit (3.24) to deduce

ˆ T

0

ˆ
B

∣∣∇uDn
∣∣2 ≤ C(T)

Dn
→ 0 as n → ∞. (3.25)

Moreover, choosing a spatially constant τ = τ (t) in (2.11) yields∣∣∣∣ d

dt

ˆ
B

uDn

∣∣∣∣≤
∣∣∣∣
ˆ

�

q(uDn , vDn )

∣∣∣∣≤ ∥∥q(uDn , vDn )
∥∥

L2(�)
.

Together with sup0≤t≤T

∣∣´
B uDn

∣∣≤ C(T) from (3.24), we deduce that
´

B uDn dx is bounded in
H1(0, T). Thus, Poincaré’s inequality implies the convergence

uDn → u in L2(0, T ; H1(B)),

and by (3.25) we have ∇u ≡ 0. Thus, the limit function u is constant in the space variables.
Furthermore, (2.4) and (2.6) imply∥∥∂tϕ

Dn
∥∥

L2(0,T ;H−1(�))
≤ C(T) and

∥∥∂tv
Dn
∥∥

L2(0,t;H−1(�))
≤ C(T),
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by similar arguments as in the proof of Theorem 2.3. Thus, the time derivatives fulfil

∂tϕ
Dn ⇀ ∂tϕ in L2(0, T ; H−1(�)),

∂tv
Dn ⇀ ∂tv in L2(0, T ; H−1(�)).

The estimate (3.24) yields additionally the existence of subsequences (again denoted by Dn) such
that

uDn ⇀ u in L2(0, T ; H1(B)),

tr(uDn ) → tr(u) in L2(0, T ; L2(�)) and tr(uDn ) → tr(u) a.e. in �T ,

ϕDn ⇀∗ ϕ in L∞(0, T ; H1(�))

ϕDn → ϕ in Lq(0, T ; Hs(�)), ∀1 ≤ q < ∞, 0 ≤ s < 1,

μDn ⇀ μ in L2(0, T ; H1(�)),

θDn ⇀ θ in L2(0, T ; H1(�)),

vDn ⇀ v in L2(0, T ; H1(�)) and vDn → v in L2(0, T ; L2(�)),

vDn → v a.e. in �T .

The strong convergences vDn → v and ϕDn → ϕ in L2(0, T ; L2(�)) here are a consequence
of the Aubin–Lions theorem. We remark that these arguments are completely analogous to the
proof of Theorem 2.3 and we thus omit some details.

It remains to discuss the limit process within the equations. Again, we refer to the proof of
Theorem 2.3 for the details since the arguments in both cases are completely analogous. As
before, we use the theory of Nemytskii operators (see [32, Theorem 10.58]) to derive

q(uDn , vDn ) →N→∞ q(u, v) and W ′(ϕDn ) →N→∞ W ′(ϕ) in L2(0, T ; L2(�)).

Hence, we can take the limit in (2.12)–(2.15). We choose a spatially constant test function in
(2.11) and use this information to take the limit n → ∞ to derive (2.18).

3.3 Higher regularity

We conclude this section with the proof of Theorem 2.5. Before we prove the theorem, we state
the following consequence from the growth assumptions (2.17) on Duq and Dvq.

Lemma 3.1 Let u : B →R and v : � →R be bounded in L2(0, T ; H1(B)) ∩ L∞(0, T ; L2(B)) and
in L2(0, T ; H1(�)) ∩ L∞(0, T ; L2(�)), respectively, and assume that q fulfils condition (2.17).
Then

Duq(u, v), Dvq(u, v) ∈ L6(0, T ; L3(�)) ∩ L4(0, T ; L4(�)). (3.26)

Proof We only prove the assertion of the lemma for Duq(u, v) since both Duq(u, v) and
Dvq(u, v) fulfil the same growth property.

We start with the observation that for s ∈ (0, 1) the space Hs(B) is an interpolation space
between L2(B) and H1(B) of exponent s and accordingly fulfils

‖ f ‖Hs(B) ≤ C ‖ f ‖1−s
L2(B)

‖ f ‖s
H1(B)

.
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for all f ∈ H1(B), see [37, Section 7.4.5]. Together with Hölder’s inequality we thus infer for
u ∈ L2(0, T ; H1(B)) ∩ L∞(0, T ; L2(B)) and p ≥ 2 that u ∈ Lp(0, T ; H2/p(B)).

For 2 ≤ p < 4 the Trace Theorem [1, Theorem 7.39] hence allows us to deduce u ∈
Lp(0, T ; H2/p−1/2(�)).

Similarly, v ∈ L2(0, T ; H1(B)) ∩ L∞(0, T ; L2(B)) implies that v ∈ Lp(0, T ; H2/p(�)) for all
p ≥ 2 and in particular v ∈ L4(0, T ; L4(�)) for p = 4 since H1/2(�) ↪→ L4(�).

We use this considerations to estimate
ˆ T

0

(ˆ
�

|Duq(u, v)|4
)

≤C

ˆ T

0

(ˆ
�

∣∣1 + |u|2/3 + |v|∣∣4)≤ C

ˆ T

0

(ˆ
�

1 + |u|8/3 + |v|4
)

≤ C(�, T) + C

(ˆ T

0

ˆ
�

|u|8/3

)
+ C

(ˆ T

0

ˆ
�

|v|4
)

,

where the last term is finite by the considerations on v above. As before, we find u ∈
Lp(0, T ; H2/p−1/2(�)) for 2 ≤ p < 4. By the Sobolev embedding theorem, we thus have u ∈
Lp(0, T ; L

4p
3p−4 (�)) which for p = 8

3 gives u ∈ L8/3(0, T ; L8/3(�)). Hence the second term is finite
as well, implying Duq(u, v) ∈ L4(0, T ; L4(�)).

Analogously, we find

ˆ T

0

(ˆ
�

|Duq(u, v)|3
)6/3

≤ C

ˆ T

0

(ˆ
�

∣∣1 + |u|2/3 + |v|∣∣3)2

≤ C

ˆ T

0

(ˆ
�

1 + |u|2 + |v|3
)2

≤ C(�, T) + C

(ˆ T

0

(ˆ
�

|u|2
)2
)

+ C

(ˆ T

0

(ˆ
�

|v|3
)2
)

.

Using again the interpolation estimate ‖u‖L2(�) ≤ C ‖u‖1/2
H1(B)

‖u‖1/2
L2(B)

(see [21, Chapter 2, (2.27)])

and integrating ‖u(t)‖4
L2(�)

in time thus yields

‖u‖L4(0,T ;L2(�)) ≤ C ‖u‖L∞(0,T ;L2(B)) ‖u‖L2(0,T ;H1(B)) ,

which is bounded for u ∈ L2(0, T ; H1(B) ∩ L∞(0, T ; L2(B)). Therefore the second term on the
right-hand side in the foregoing estimate is finite. As above, v ∈ Lp(0, T ; H2/p(�)) for all p ≥ 2
and in particular for p = 6. By the Sobolev embedding theorem we have H1/3(�) ↪→ L3(�) and
thus the third term above is finite. Altogether, we obtain Duq(u, v) ∈ L6(0, T ; L3(�)).

Proof of Theorem 2.5 The proof of Theorem 2.5 can be divided into three steps. In the first
step, we consider the approximate solutions (uN , vN , ϕN , μN , θN ) from the proof of the existence
theorem (Theorem 2.3) and prove regularity estimates for these functions and their time deriva-
tives. Secondly, we show that the limit functions of these time derivatives as N → ∞ converge
to solutions of the linearised model. This step is summarised in Lemma 3.3. Finally, we derive
higher regularity for the full system from the additional information gathered from the linearised
system.

First Step: Higher regularity for the approximate solutions. We recall the proof of Theorem
2.3 and let (uN , vN , ϕN , μN , θN ) denote the subsequence of solutions to the approximate prob-
lem (3.1)–(3.4) which converges to (u, ϕ, v, μ, θ ). Let P�

N denote the orthogonal projection in
H1(�) onto V N

� , where V N
� is defined as in the proof of Theorem 2.3. We remark that P�

N is also
orthogonal with respect to the inner product on L2(�).
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Thus, ϕN , μN and θN ∈ V N
� fulfil

ˆ
�

μNω = ε

ˆ
�

∇�ϕN · ∇�ω + 1

ε

ˆ
�

P�
N W ′(ϕN )ω −

ˆ
�

θN

2
ω,

for all ω ∈ V N
� . By the orthogonal decomposition H1(�) = V N

� ⊕ (V N
�

)⊥
this equation also holds

for all test functions ω ∈ H1(�), which implies that ϕN is a weak solution to the elliptic equation

−ε��ϕN = μN + θN

2
− 1

ε
P�

N W ′(ϕN ). (3.27)

Furthermore, the energy estimate (3.8) together with (3.9) yields

μN , θN ∈ L2(0, T ; H1(�)) and ϕN ∈ L∞(0, T ; H1(�)).

In particular,

ϕN ∈ L∞(0, T ; Lp(�)) is bounded for all 1 ≤ p < ∞, (3.28)

by the Sobolev embedding theorem in dimension dim � = 2.
Observe that therefore every polynomial in ϕN is an element of L∞(0, T ; Lp(�)) for all 1 ≤

p < ∞. We will exploit this property in particular with respect to W ′(ϕN ), W ′′(ϕN ), and W ′′′(ϕN )
since these terms grow at most polynomial in ϕN . For example, W ′ fulfils

∣∣W ′(s)
∣∣≤ C(|s|3 + 1)

for some C > 0 and s ∈R.
As a first application, we directly deduce the boundedness of W ′(ϕN ) in L2(0, T ; L2(�)).

Hence the right-hand side in (3.27) is in L2(0, T ; L2(�)). Elliptic theory, see e.g. [18, Theorem
8.8, Theorem 8.12], thus implies that the solution ϕN to (3.27) fulfils ϕN is bounded in
L2(0, T ; H2(�)). We remark that all these estimates are derived from the energy estimate
(3.8), which is uniform in N . Hence, we conclude that {ϕN }N∈N ⊂ L2(0, T ; H2(�)) is uniformly
bounded in N .

Additionally, the Sobolev embedding and ϕN ∈ L2(0, T ; H2(�)) directly yield∥∥ϕN
∥∥

L2(0,T ;W1,p(�))
≤ C for all 1 ≤ p < ∞. (3.29)

We calculateˆ T

0

ˆ
�

∣∣∇�

(
W ′(ϕN )

)∣∣2 ≤
ˆ T

0

ˆ
�

∣∣W ′′(ϕN )
∣∣2 ∣∣∇�ϕN

∣∣2
≤
ˆ T

0

(ˆ
�

(∣∣W ′′(ϕN )
∣∣)4)1/2 (ˆ

�

∣∣∇�ϕN
∣∣4)1/2

≤ C
(∥∥W ′′(ϕN )

∥∥
L∞(0,T ;L4(�))

+ 1
) ∥∥∇�ϕN

∥∥2

L2(0,T ;L4(�))
,

which yields a uniform bound in N for
∥∥W ′(ϕN )

∥∥
L2(0,T ;H1(�))

by (3.8) and the foregoing

discussion. Moreover,
∥∥P�

N

∥∥
L(H1(�))

≤ 1 implies∥∥P�
N W ′(ϕN )

∥∥
L2(0,T ;H1(�))

≤ ∥∥W ′(ϕN )
∥∥

L2(0,T ;H1(�))
,

showing that the right-hand side in (3.27) belongs to L2(0, T ; H1(�)) and that the corresponding
bound is uniform in N . As a direct consequence, we infer∥∥ϕN

∥∥
L2(0,T ;H3(�))∩L∞(0,T ;H1(�)))

≤ C,
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uniformly in N by using standard elliptic theory, see e.g. [18, Theorem 8.8, Theorem 8.12].
We remark for later use that the same argument applied to equation (2.5) also implies

ϕ ∈ L2(0, T ; H3(�)) ∩ L∞(0, T ; H1(�)) ↪→ L2(0, T ; W 2,p(�)) for all 1 ≤ p < ∞. (3.30)

Next we differentiate the equations (3.1)–(3.4) in time. Note that the approximate solutions
uN , ϕN , vN , μN , and θN were all constructed from solutions to a system of ordinary differential
solutions, i.e. they are all differentiable in t. We introduce the notation

ũN = ∂tu
N , ϕ̃N = ∂tϕ

N , ṽN = ∂tv
N , μ̃N = ∂tμ

N and θ̃N = ∂tθ
N .

The tuple (ũN , ϕ̃N , ṽN , μ̃N , θ̃N ) solves for all κ ∈ V N
B and all ω ∈ V N

�ˆ
B

∂tũ
Nκ = −D

ˆ
B

∇ũN · ∇κ −
ˆ

�

d

dt

(
q(uN , vN )

)
κ , (3.31)

ˆ
�

∂tϕ̃
Nω = −

ˆ
�

∇�μ̃N · ∇�ω (3.32)

ˆ
�

μ̃Nω =
ˆ

�

[
ε∇�ϕ̃N · ∇�ω + ε−1W ′′(ϕN )ϕ̃Nω − θ̃N

2
ω

]
(3.33)

ˆ
�

θ̃Nω = 2

δ

ˆ
�

(2ṽN − ϕ̃N )ω (3.34)
ˆ

�

δ

4
∂tθ̃

Nω +
ˆ

�

1

2
∂tϕ̃

Nω = −
ˆ

�

∇�θ̃N · ∇�ω +
ˆ

�

d

dt

(
q(uN , vN )

)
ω. (3.35)

Lemma 3.2 Let (ũN , ϕ̃N , ṽN , μ̃N , θ̃N ) be defined as above. Under the assumptions of Theorem
2.5 the estimate

sup
t∈(0,T)

{
ε

2

∥∥∇�ϕ̃N
∥∥2

L2(�)
+ δ

8

∥∥∥θ̃N
∥∥∥2

L2(�)
+ 1

2

∥∥ũN
∥∥2

L2(B)

}

+
ˆ

�

∣∣∇�μ̃N
∣∣2 +

ˆ
�

∣∣∣∇�θ̃N
∣∣∣2 + D

ˆ
B

∣∣∇ũN
∣∣2 ≤ C(T) (3.36)

holds. The estimate is uniform in N .

Proof of Lemma 3.2 We choose ω = ũN as a test function in (3.31), ω = μ̃N in (3.32), ω = ∂tϕ̃
N

in (3.33) and ω = θ̃N in (3.35). We add these equations to deduce

ε

2

d

dt

ˆ
�

∣∣∇�ϕ̃N
∣∣2 + δ

8

d

dt

ˆ
�

∣∣∣θ̃N
∣∣∣2 +

ˆ
�

∣∣∇�μ̃N
∣∣2 +

ˆ
�

∣∣∣∇�θ̃N
∣∣∣2 + 1

2

d

dt

ˆ
B

∣∣ũN
∣∣2 + D

ˆ
B

∣∣∇ũN
∣∣2

= −1

ε

ˆ
�

W ′′(ϕN )ϕ̃N∂tϕ̃
N +

ˆ
�

d

dt

(
q(uN , vN )

) (
θ̃N − ũN

)
. (3.37)

To estimate the right-hand side in (3.37) we first compute for any γ > 0∣∣∣∣1ε
ˆ

�

W ′′(ϕN )ϕ̃N∂tϕ̃
N

∣∣∣∣=
∣∣∣∣1ε

ˆ
�

∇�

(
W ′′(ϕN )ϕ̃N

) · ∇�μ̃N

∣∣∣∣
≤ Cγ

ε

ˆ
�

∣∣∇�

(
W ′′(ϕN )ϕ̃N

)∣∣2 + γ

ε

ˆ
�

∣∣∇�μ̃N
∣∣2 , (3.38)
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where we have used that ∂tϕ̃
N = ��μ̃N almost everywhere since by definition we have ϕ̃N ∈ V N

�

and μ̃N ∈ V N
� for all t ∈ (0, T), i.e. (3.32) implies for all t ∈ (0, T) the identity ∂tϕ̃

N = ��μ̃N in
V N

� and thus ∂tϕ̃
N = ��μ̃N almost everywhere in �T .

The first term on the right-hand side can be controlled by
´

�

∣∣∇�ϕ̃N
∣∣2 in the following way.

By the growth properties of W , we have
ˆ

�

∣∣∇�

(
W ′′(ϕN )ϕ̃N

)∣∣2 ≤ 2
ˆ

�

∣∣W ′′(ϕN )
∣∣2 ∣∣∇�ϕ̃N

∣∣2 + 2
ˆ

�

∣∣∇�

(
W ′′(ϕN )

)∣∣2 ∣∣ϕ̃N
∣∣2

≤ C
(∥∥ϕN (t)

∥∥4

L∞(�)
+ 1
) (ˆ

�

∣∣∇�ϕ̃N
∣∣2)+ 2

ˆ
�

∣∣∇�

(
W ′′(ϕN )

)∣∣2 ∣∣ϕ̃N
∣∣2 . (3.39)

Moreover, we apply Hölder’s inequality to deduce
ˆ

�

∣∣∇�

(
W ′′(ϕN )

)∣∣2 ∣∣ϕ̃N
∣∣2 ≤ C

ˆ
�

∣∣ϕN + 1
∣∣2 ∣∣∇�ϕN

∣∣2 ∣∣ϕ̃N
∣∣2

≤ C

(ˆ
�

∣∣ϕN + 1
∣∣6)2/6 (ˆ

�

∣∣∇�ϕN
∣∣6)2/6 (ˆ

�

∣∣ϕ̃N
∣∣6)1/3

.

Using that
´

�
ϕ̃N = ´

�
��μN = 0 we have furthermore

(ˆ
�

∣∣ϕ̃N
∣∣6)1/3

≤ C

(ˆ
�

∣∣∇�ϕ̃N
∣∣2) ,

by the Sobolev embedding theorem. Hence, we have

ˆ
�

∣∣∇�

(
W ′′(ϕN )

)∣∣2 ∣∣ϕ̃N
∣∣2 ≤ C

(ˆ
�

∣∣ϕN + 1
∣∣6)2/6 (ˆ

�

∣∣∇�ϕN
∣∣6)2/6 (ˆ

�

∣∣∇�ϕ̃N
∣∣2) .

Thus, (3.39) reads
ˆ

�

∣∣∇�

(
W ′′(ϕN )ϕ̃N

)∣∣2 ≤ 2
ˆ

�

∣∣W ′′(ϕN )
∣∣2 ∣∣∇�ϕ̃N

∣∣2 + 2
ˆ

�

∣∣∇�

(
W ′′(ϕN )

)∣∣2 ∣∣ϕ̃N
∣∣2

≤ C
(∥∥ϕN (t)

∥∥4

L∞(�)
+ 1
) (ˆ

�

∣∣∇�ϕ̃N
∣∣2)

+ C

(ˆ
�

∣∣ϕN + 1
∣∣6)2/6 (ˆ

�

∣∣∇�ϕN
∣∣6)2/6 (ˆ

�

∣∣∇�ϕ̃N
∣∣2) . (3.40)

We observe that
(∥∥ϕN (t)

∥∥4

L∞(�)
+ 1
)

is bounded in L1(0, T) by the following argument.

Since ϕN ∈ L∞(0, T ; H1(�)) and ϕN ∈ L2(0, T ; H2(�)), Hölder’s inequality implies ϕN ∈
L4
(
0, T ; H3/2(�)

)
, where H3/2(�) is the interpolation space of exponent s = 1/2 between H1(�)

and H2(�). Hence, the embedding

(
H1(�); H2(�)

)
1/2,2

= H3/2(�) ↪→ C0,α(�) for 0 < α < 1/2,

yields ϕN ∈ L4(0, T ; L∞(�)). Likewise, (3.28) and (3.29) imply

(ˆ
�

∣∣ϕN (t) + 1
∣∣6)2/6

∈ L∞(0, T) and

(ˆ
�

∣∣∇�ϕN (t)
∣∣6)2/6

∈ L1(0, T),
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uniformly in N , from which we deduce that

(ˆ
�

∣∣ϕN (t) + 1
∣∣6)2/6 (ˆ

�

∣∣∇�ϕN (t)
∣∣6)2/6

∈ L1(0, T).

Hence, we have

FN (t) := max

{(ˆ
�

∣∣ϕN (t) + 1
∣∣6)2/6 (ˆ

�

∣∣∇�ϕN (t)
∣∣6)2/6

,
(∥∥ϕN (t)

∥∥4

L∞(�)
+ 1
)}

∈ L1(0, T),

and there exists a constant C > 0 such that

∥∥FN
∥∥

L1(0,T)
≤ C,

uniformly in N .
Combining (3.38) and (3.40) we arrive at

∣∣∣∣1ε
ˆ

�

W ′′(ϕN )ϕ̃N∂tϕ̃
N

∣∣∣∣≤ 2Cγ

ε
FN (t)

(ˆ
�

∣∣∇�ϕ̃N
∣∣2)+ 2

γ

ε

ˆ
�

∣∣∇�μ̃N
∣∣2 . (3.41)

We have thus estimated the first term on the right-hand side in (3.37) and it remains to control
the second term on the right-hand side in this inequality. To this end, we compute

∣∣∣∣
ˆ

�

d

dt

(
q(uN , vN )

) (
θ̃N − ũN

)∣∣∣∣
≤
ˆ

�

∣∣Duq(uN , vN )
∣∣ ∣∣ũN

∣∣2 +
ˆ

�

∣∣Duq(uN , vN )
∣∣ ∣∣ũN

∣∣ ∣∣∣θ̃N
∣∣∣

+
ˆ

�

∣∣Dvq(uN , vN )
∣∣ ∣∣ṽN

∣∣ ∣∣ũN
∣∣+ ˆ

�

∣∣Dvq(uN , vN )
∣∣ ∣∣ṽN

∣∣ ∣∣∣θ̃N
∣∣∣ . (3.42)

In order to shorten the estimate for the last three terms, let f , g, h be measurable functions on �.
We deduce for all γ > 0

ˆ
�

| f | |g| |h| ≤ ‖ f ‖L4(�) ‖g‖L2(�) ‖h‖L4(�)

≤ Cγ ‖ f ‖2
L4(�)

‖g‖2
L2(�) + γ ‖h‖2

L4(�) , (3.43)

from Young’s inequality, where we used the generalised Hölder inequality in the first step.
We remark that using the Sobolev Embedding Theorem and the Trace Theorem we can always

estimate

∥∥ũN
∥∥

L4(�)
≤ C

∥∥ũN
∥∥

H1/2(�)
≤ C̃

∥∥ũN
∥∥

H1(B)
.

Moreover, ṽN = δ
2 θ̃N + 1

2 ϕ̃N and thus by Poincaré’s inequality

∥∥ṽN
∥∥

L2(�)
≤ δ

2

∥∥∥θ̃N
∥∥∥

L2(�)
+ 1

2

∥∥ϕ̃N
∥∥

L2(�)
≤ δ

2

∥∥∥θ̃N
∥∥∥

L2(�)
+ C

2

∥∥∇�ϕ̃N
∥∥

L2(�)
. (3.44)
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Choosing f = Dvq(uN , vN ), g = ṽN , h = ũN and f = Duq(uN , vN ), g = θ̃N , h = ũN , respectively, in
(3.43), we deduce

ˆ
�

∣∣Duq(uN , vN )
∣∣ ∣∣ũN

∣∣ ∣∣∣θ̃N
∣∣∣+ ˆ

�

∣∣Dvq(uN , vN )
∣∣ ∣∣ṽN

∣∣ ∣∣ũN
∣∣

≤ Cγ

(∥∥Duq(uN , vN )
∥∥2

L4(�)
+ δ

2

∥∥Dvq(uN , vN )
∥∥2

L4(�)

) ∥∥∥θ̃N
∥∥∥2

L2(�)

+ Cγ

2

∥∥Dvq(uN , vN )
∥∥2

L4(�)

∥∥∇�ϕ̃N
∥∥2

L2(�)
+ γ C

(∥∥ũN
∥∥2

L2(B)
+ ∥∥∇ũN

∥∥2

L2(B)

)
. (3.45)

Note that we used (3.44) to estimate
∥∥ṽN

∥∥
L2(�)

.

Now we choose f = Dvq(uN , vN ), g = ṽN , h = θN in (3.43) to obtain

ˆ
�

∣∣Dvq(uN , vN )
∣∣ ∣∣ṽN

∣∣ ∣∣∣θ̃N
∣∣∣≤ Cγ

∥∥Dvq(uN , vN )
∥∥2

L4(�)

(
δ

2

∥∥∥θ̃N
∥∥∥2

L2(�)
+ 1

2

∥∥∇�ϕ̃N
∥∥2

L2(�)

)

+ γ C

(∥∥∥θ̃N
∥∥∥2

L2(�)
+
∥∥∥∇�θ̃N

∥∥∥2

L2(�)

)
.

(3.46)

Finally, we use again the trace and Sobolev embedding theorems together with the interpolation
inequality ‖ f ‖Hs(�) ≤ C ‖ f ‖1−s

L2(�)
‖ f ‖s

H1(�)
to estimate

ˆ
�

∣∣Duq(uN , vN )
∣∣ ∣∣ũN

∣∣2 ≤ ∥∥Duq(uN , vN )
∥∥

L3(�)

∥∥ũN
∥∥2

L3(�)

≤ C
∥∥Duq(uN , vN )

∥∥
L3(�)

∥∥ũN
∥∥2

H1/3(�)

≤ C
∥∥Duq(uN , vN )

∥∥
L3(�)

∥∥ũN
∥∥2

H5/6(B)

≤ C
∥∥Duq(uN , vN )

∥∥
L3(�)

∥∥ũN
∥∥1/3

L2(B)

∥∥ũN
∥∥5/3

H1(B)

≤ Cγ

∥∥Duq(uN , vN )
∥∥6

L3(�)

∥∥ũN
∥∥2

L2(B)
+ γ

∥∥ũN
∥∥2

H1(B)
. (3.47)

To simplify the notation, we introduce

MN (t) = max
{∥∥Duq(uN , vN )

∥∥6

L3(�)
,
∥∥Duq(uN , vN )

∥∥2

L4(�)
,
∥∥Dvq(uN , vN )

∥∥2

L4(�)

}
.

The functions uN and vN fulfil the assumptions of Lemma 3.1 by (3.8). Hence (3.26) implies
MN (t) ∈ L1(0, T). Moreover, the bound on MN in L1(0, T) is uniform in N since it is derived
from the uniform estimate (3.8).

We combine (3.42), (3.45), (3.46), and (3.47) and obtain∣∣∣∣
ˆ

�

d

dt

(
q(uN , vN )

) (
θ̃N − ũN

)∣∣∣∣
≤ Cγ

(
MN (t) + 1

) ∥∥ũN
∥∥2

L2(B)
+ Cγ

(
(1 + δ)MN (t) + 1

) ∥∥∥θ̃N
∥∥∥2

L2(�)

+ Cγ MN (t)
∥∥∇�ϕ̃N

∥∥2

L2(�)
+ γ C

∥∥∥∇�θ̃N
∥∥∥2

L2(�)
+ γ C

∥∥∇ũN
∥∥2

L2(B)
, (3.48)
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which controls the second term on the right-hand side in (3.37). We thus return to (3.37) and use
(3.41) and (3.48) to deduce

ε

2

d

dt

ˆ
�

∣∣∇�ϕ̃N
∣∣2 + δ

8

d

dt

ˆ
�

∣∣∣θ̃N
∣∣∣2 +

ˆ
�

∣∣∇�μ̃N
∣∣2 +

ˆ
�

∣∣∣∇�θ̃N
∣∣∣2 + 1

2

d

dt

ˆ
B

∣∣ũN
∣∣2 + D

ˆ
B

∣∣∇ũN
∣∣2

≤ Cγ

(
MN (t) + 1

) ∥∥ũN
∥∥2

L2(B)
+ Cγ

(
(1 + δ)MN (t) + 1

) ∥∥∥θ̃N
∥∥∥2

L2(�)

+ Cγ

(
MN (t) + 2FN (t)

ε

) ∥∥∇�ϕ̃N
∥∥2

L2(�)
+ γ C

∥∥∥∇�θ̃N
∥∥∥2

L2(�)

+ γ C
∥∥∇ũN

∥∥2

L2(B)
+ 2

γ

ε

ˆ
�

∣∣∇�μ̃N
∣∣2 .

By taking γ to be sufficiently small, we can absorb the gradient terms on the right-hand side and
conclude

ε

2

d

dt

ˆ
�

∣∣∇�ϕ̃N
∣∣2 + δ

8

d

dt

ˆ
�

∣∣∣θ̃N
∣∣∣2 +

ˆ
�

∣∣∇�μ̃N
∣∣2 +

ˆ
�

∣∣∣∇�θ̃N
∣∣∣2 + 1

2

d

dt

ˆ
B

∣∣ũN
∣∣2 + D

ˆ
B

∣∣∇ũN
∣∣2

≤ Cγ

(
MN (t) + 1

) ∥∥ũN
∥∥2

L2(B)
+ Cγ

(
(1 + δ)MN (t) + 1

) ∥∥∥θ̃N
∥∥∥2

L2(�)

+ Cγ

(
MN (t) + 2FN (t)

ε

) ∥∥∇�ϕ̃N
∥∥2

L2(�)
.

Because of MN (t) ∈ L1(0, T) and FN (t) ∈ L1(0, T) uniformly in N , Gronwall’s inequality yields
(3.36).

Second step: Taking the limit N → ∞. Estimate (3.36) is uniform in N and allows to extract
weakly converging subsequences, which for convenience we denote again by ũN , ϕ̃N , μ̃N and
θ̃N . Hence, there exist functions

ũ ∈ L∞(0, T ; L2(B)) ∩ L2(0, T ; H1(B)),

ϕ̃ ∈ L∞(0, T ; H1(�)),

θ̃ ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)) and

μ̃ ∈ L2(0, T ; H1(�))

such that

ũN ⇀ ũ in L2(0, T ; H1(B)), (3.49)

ϕ̃N ⇀ ϕ̃ in L2(0, T ; H1(�)), (3.50)

θ̃N ⇀ θ̃ in L2(0, T ; H1(�)) and (3.51)

μ̃N ⇀ μ̃ in L2(0, T ; H1(�)). (3.52)

We remark that these convergences allow us to conclude

∂tu = ũ, ∂tϕ = ϕ̃, ∂tθ = θ̃ , and ∂tμ = μ̃,

in the sense of distributions.
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Lemma 3.3 The tuple (ũ, ϕ̃, ṽ, μ̃, θ̃ ) is a weak solution to

∂tũ = D�ũ in B × (0, T], (3.53)

−D∇ũ · ν = Duq(u, v)ũ + Dvq(u, v)ṽ on � × (0, T], (3.54)

∂tϕ̃ = ��μ̃ on � × (0, T], (3.55)

μ̃ = −ε��ϕ̃ + ε−1W ′′(ϕ)ϕ̃ − 1

2
θ̃ on � × (0, T], (3.56)

δ

4
∂tθ̃ = ��θ̃ − 1

2
��μ̃ + Duq(u, v)ũ + Dvq(u, v)ṽ on � × (0, T] (3.57)

θ̃ = 2

δ
(2ṽ − ϕ̃) on � × (0, T]. (3.58)

Proof of Lemma 3.3 We first observe that (3.31) implies a bound on
∥∥∂tũN

∥∥
L2(0,T ;(H1(B))′) in

the following way. Let κ ∈ L2(0, T ; H1(B)) and denote by PB
N the orthogonal projection in H1(B)

onto V N
B . Then∣∣∣∣
ˆ T

0
〈∂tũ

N , κ〉(H1(B))
′,H1(B)

∣∣∣∣≤ D

ˆ T

0

ˆ
B

∣∣∇ũN · ∇PB
Nκ
∣∣+ ˆ T

0

ˆ
�

∣∣∣∣ d

dt
q(uN , vN )PB

Nκ

∣∣∣∣
≤D

∥∥∇ũN
∥∥

L2(0,T ;L2(B))
‖κ‖L2(0,T ;H1(B)) +

ˆ T

0

ˆ
�

∣∣Duq(uN , vN )ũN PB
Nκ
∣∣

+
ˆ T

0

ˆ
�

∣∣Dvq(uN , vN )ṽN PB
Nκ
∣∣ . (3.59)

The first term is bounded by (3.36) from Lemma 3.2. The second term can be estimated by
ˆ T

0

ˆ
�

∣∣Duq(uN , vN )ũN PB
Nκ
∣∣≤ ˆ T

0

(ˆ
�

∣∣Duq(uN , vN )ũN
∣∣4/3
)3/4 (ˆ

�

∣∣PB
Nκ
∣∣4)1/4

≤
(ˆ T

0

(ˆ
�

∣∣Duq(uN , vN )ũN
∣∣4/3
)3/2

)1/2 (ˆ T

0

(ˆ
�

∣∣PB
Nκ
∣∣4)1/2

)1/2

≤ ∥∥Duq(uN , vN )ũN
∥∥

L2(0,T ;L4/3(�))

∥∥PB
Nκ
∥∥

L2(0,T ;L4(�))

≤C
∥∥Duq(uN , vN )ũN

∥∥
L2(0,T ;L4/3(�))

‖κ‖L2(0,T ;H1(B)) .

Moreover,

∥∥Duq(uN , vN )ũN
∥∥2

L2(0,T ;L4/3(�))
=
ˆ T

0

(ˆ
�

∣∣Duq(uN , vN )ũN
∣∣4/3
)3/2

≤
ˆ T

0

(ˆ
�

∣∣Duq(uN , vN )
∣∣3)2/3 (ˆ

�

∣∣ũN
∣∣12/5

)5/6

≤
(ˆ T

0

(ˆ
�

∣∣Duq(uN , vN )
∣∣3)6/3

)2/6 (ˆ T

0

(ˆ
�

∣∣ũN
∣∣12/5

)15/12
)2/3

= ∥∥Duq(uN , vN )
∥∥2

L6(0,T ;L3(�))

∥∥ũN
∥∥2

L3(0,T ;L12/5(�))
,

where the first term is bounded by Lemma 3.1 and the second term is bounded because analo-

gously to u ∈ Lp(0, T ; L
4p

3p−4 (�)) in the proof of Lemma 3.1 we obtain ũN ∈ Lp(0, T ; L
4p

3p−4 (�)) for
2 ≤ p < 4 and choosing p = 3 yields that ũN is bounded in L3(0, T ; L12/5(�)).
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The last term in (3.59) is bounded by the same arguments, with Du(q(uN , vN )) replaced by
Dv(q(uN , vN )) and ũN replaced by ṽN .

Similarly, we find bounds on ∂tθ̃
N and ∂tϕ̃

N in L2(0, T ; H−1(�)) from (3.35) and (3.32),
respectively. These also imply a bound on ∂tṽ

N ∈ L2(0, T ; H−1(�)).
These bounds on the time derivatives allow us to deduce

∂tũ
N ⇀ ∂tũ in L2(0, T ;

(
H1(B)

)′
), ∂tϕ̃

N ⇀ ∂tϕ̃ in L2(0, T ; H−1(�)),

and ∂tṽ
N ⇀ ∂tṽ in L2(0, T ; H−1(�)).

If we recall the proof of Theorem 2.3, we also see that in addition we can infer

tr ũN → tr ũ in L2(0, T ; L2(�)), ϕ̃N → ϕ̃ in L2(0, T ; L2(�)), and

ṽN → ṽ in L2(0, T ; L2(�)).

In all these cases, the convergence also holds pointwise almost everywhere.
The convergence of Du(q(uN , vN )), Dv(q(uN , vN )), and W ′′(ϕN ) is again a consequence of the

theory of Nemytskii operators. We thus obtain

Du(q(uN , vN )) →N→∞ Duq(u, v) in L2(0, T ; L2(�)),

Dv(q(uN , vN )) →N→∞ Duq(u, v) in L2(0, T ; L2(�)), and

W ′′(ϕN ) →N→∞ W ′′(ϕ) in L2(0, T ; L2(�)).

Together with the foregoing results on the convergence of {ũN }N∈N and {ṽN }N∈N this is sufficient
to take the limit in the equations (3.31), (3.33) and (3.35).

The remaining terms in the equations (3.31)–(3.35) are linear in (ũN , ϕ̃N , ṽN , μ̃N , θ̃N ) which
implies that the limit functions (ũ, ϕ̃, ṽ, μ̃, θ̃) are weak solutions to (3.53)–(3.58), first for all
test functions ω and κ in V N0

� and V N0
B for some N0 ∈N, respectively, and by an analogous

argument as at the end of the proof of Theorem 2.3 subsequently also for all test functions ω ∈
H1(0, T ; H1(�)) and κ ∈ H1(0, T ; H1(B)). As such, (ũ, ϕ̃, ṽ, μ̃, θ̃ ) are a weak solution to (3.53)–
(3.58).

Third step: Higher regularity for the full system. We would like to apply elliptic regularity the-
ory to equation (3.56). So far we have seen that ϕ, ϕ̃ ∈ L∞(0, T ; H1(�)). As before, the Sobolev
Embedding Theorem thus yields ϕ, ϕ̃ ∈ L∞(0, T ; Lp(�)) for all 1 ≤ p < ∞. The term W ′′(ϕ)ϕ̃ on
the right-hand side in (3.56) is an element of L2(0, T ; L2(�)) because of

∣∣W ′′(ϕ)
∣∣≤ C(1 + |ϕ|2)

and Hölder’s inequality thus implies

∥∥W ′′(ϕ)ϕ̃
∥∥

L2(0,T ;L2(�))
≤ C(‖ϕ‖2

L∞(0,T ;H1(�)) + 1) ‖ϕ̃‖L∞(0,T ;H1(�)) .

Hence the right-hand side in (3.56) is in L2(0, T ; L2(�)) and as a first step we deduce

ϕ̃ ∈ L2(0, T ; H2(�)) ↪→ L2(0, T ; W 1,p(�)) for all 1 ≤ p < ∞

https://doi.org/10.1017/S0956792519000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000056


324 H. Abels and J. Kampmann

from elliptic theory. We can improve this result since actually W ′′(ϕ)ϕ̃ ∈ L2(0, T ; H1(�)) by the
following argument. The gradient of W ′′(ϕ)ϕ̃ can be estimated by
ˆ T

0

ˆ
�

∣∣∇�

(
W ′′(ϕ)ϕ̃

)∣∣2 ≤
ˆ T

0

ˆ
�

∣∣W ′′(ϕ)∇�ϕ̃
∣∣2 +

ˆ T

0

ˆ
�

∣∣W ′′′(ϕ)∇�ϕϕ̃
∣∣2

≤
ˆ T

0

(ˆ
�

∣∣W ′′(ϕ)
∣∣4)1/2(ˆ

�

|∇�ϕ̃|4
)1/2

+
ˆ T

0

(ˆ
�

∣∣W ′′′(ϕ)
∣∣8)1/4(ˆ

�

|ϕ̃|8
)1/4(ˆ

�

|∇�ϕ|4
)1/2

,

which implies∥∥∇�

(
W ′′(ϕ)ϕ̃

)∥∥
L2(0,T ;L2(�))

≤ ∥∥W ′′(ϕ)
∥∥

L∞(0,T ;L4(�))
‖∇�ϕ̃‖L2(0,T ;L4(�))

+ ∥∥W ′′′(ϕ)
∥∥

L∞(0,T ;L8(�))
‖ϕ̃‖L∞(0,T ;L8(�)) ‖∇�ϕ‖L2(0,T ;L4(�)) .

The regularity of ϕ in (3.30) and of ϕ̃ above thus imply W ′′(ϕ)ϕ̃ ∈ L2(0, T ; H1(�)) and in turn
we deduce from elliptic theory applied to (3.56)

ϕ̃ ∈ L2(0, T ; H3(�)).

Since

∂tu = ũ, ∂tϕ = φ̃, ∂tθ = θ̃ , and ∂tμ = μ̃,

in the sense of distributions, this implies

∂tu ∈ L∞(0, T ; L2(B)) ∩ L2(0, T ; H1(B)), (3.60)

∂tϕ ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H3(�)) and (3.61)

∂tθ ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)). (3.62)

Hence, we can derive

μ ∈ L∞(0, T ; H3(�)) ∩ L2(0, T ; H5(�)),

because ϕ and μ are weak solutions to (2.4).
Recall that u ∈ L∞(0, T ; L2(B)) ∩ L2(0, T ; H1(B)) is a weak solution to

∂tu = D�u in B × (0, T],

−D∇u · ν = q(u, v) on � × (0, T],

where by the growth condition on q(u, v) one can directly prove that q(u, v) ∈ L2(0, T ; L2(�)) and
from (3.60) we also have ∂tu ∈ L2(0, T ; L2(B)). Considering the elliptic problem

D�u = f in B,

−D∇u · ν = g on �,

we infer from Amann [3, Remark 9.5 (a)] that this problem admits a solution u ∈ H1(B) for any

( f , g) ∈ H−1(B) × H−1/2(�),

if and only if
´

B f + ´
�

g = 0. We denote the corresponding continuous solution operator by

T : H−1(B) × H−1/2(�) → H1(B).

https://doi.org/10.1017/S0956792519000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000056


On a model for phase separation on biological membranes 325

On the other hand, it follows from the same reference or alternatively from [23, Theorem 4.18]
that T is also continuous as an operator

T : L2(B) × H1/2(�) → H2(B). (3.63)

This allows us to consider the interpolation spaces

H−1/2(B) = (H−1(B), L2(B)
)

1/2,2
,

L2(�) = (H−1/2(�), H1/2(�)
)

1/2,2
, and

H3/2(B) = (H1(B), H2(B)
)

1/2,2
,

to deduce from the properties of interpolation spaces that T must also be continuous as an
operator

T : H−1/2(B) × L2(�) → H3/2(B).

Given that q(u, v) ∈ L2(0, T ; L2(�)) and ∂tu ∈ L2(0, T ; L2(B)), we deduce that

u ∈ L2(0, T ; H3/2(B)).

Together with (3.60) we infer u|� ∈ H1(0, T ; H1/2(�)) and in particular

u|� ∈ L∞(0, T ; H1/2(�)) ↪→ L∞(0, T ; L4(�))

because of the Sobolev embedding theorem. Using v = δ
4θ + 1

2ϕ, (3.61), and (3.62) we derive
the same property for v. Since Duq(u, v) and Dvq(u, v) grow at most linearly by (2.17), we thus
have

Duq(u, v), Dvq(u, v) ∈ L∞(0, T ; L4(�)).

We use this information to derive that

‖Duq(u, v)∇�u‖2
L2(0,T ;L4/3(�)) =

ˆ T

0

(ˆ
�

|Duq(u, v)|4/3 |∇�u|4/3

)3/2

≤
ˆ T

0

((ˆ
�

|Duq(u, v)|4
)1/2 (ˆ

�

|∇�u|2
))

≤ C ‖Duq(u, v)‖2
L∞(0,T ;L4(�))

(ˆ T

0

ˆ
�

|∇�u|2
)

and

‖Dvq(u, v)∇�v‖2
L2(0,T ;L4/3(�)) ≤ C ‖Dvq(u, v)‖2

L∞(0,T ;L4(�))

(ˆ T

0

ˆ
�

|∇�v|2
)

,

from which we obtain that

∇� (q(u, v)) = Duq(u, v)∇�u + Dvq(u, v)∇�v ∈ L2(0, T ; L4/3(�)).

We recall that q(u, v) ∈ L2(0, T ; L2(�)) and deduce

q(u, v) ∈ L2(0, T ; W 1,4/3(�)) ↪→ L2(0, T ; H1/2(�)),
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from the Sobolev embedding theorem. Thus, the mapping properties in (3.63) actually yield

u ∈ L2(0, T ; H2(B)). (3.64)

We have already seen that W ′(ϕ) ∈ L∞(0, T ; L2(�)) as well as θ , μ ∈ L∞(0, T ; L2(�)). As ϕ is a
solution to (2.5), we thus deduce

ϕ ∈ L∞(0, T ; H2(�)). (3.65)

Moreover, ∂tv ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)) by (3.61), (3.62), and (2.7). Since θ solves
(2.6) and in addition q(u, v) ∈ L2(0, T : L2(�)), we deduce

θ ∈ L2(0, T ; H2(�))

from elliptic regularity theory. Thus

v = δ

4
θ + 1

2
ϕ ∈ L2(0, T ; H2(�)).

By (3.64) we have u ∈ L2(0, T ; H3/2(�)) and in particular ∇�u ∈ L2(0, T ; L4(�)). We repeat the
calculations from before to deduce

‖Duq(u, v)∇�u‖2
L2(0,T ;L2(�)) ≤C ‖Duq(u, v)‖L∞(0,T ;L4(�))

(ˆ T

0

ˆ
�

|∇�u|4
)1/2

,

i.e. Duq(u, v)∇�u ∈ L2(0, T ; L2(�)). Furthermore, v ∈ L2(0, T ; H2(�)) yields Dvq(u, v)∇�v ∈
L2(0, T ; L2(�)) in a completely analogous manner.

As a direct consequence, we infer that in fact q(u, v) ∈ L2(0, T ; H1(�)). Together with ∂tv ∈
L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)) we turn again to elliptic regularity theory to deduce

θ ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)).

We return to the regularity of ϕ in (3.65). H2(�) is a Banach algebra and hence every polynomial
in ϕ belongs to L∞(0, T ; H2(�)). In particular, this holds true for W ′′(ϕ). Therefore, we can
estimateˆ T

0

∥∥∇�

(
W ′(ϕ)

)∥∥2

H2(�)
=
ˆ T

0

∥∥W ′′(ϕ)∇�ϕ
∥∥2

H2(�)
≤ ∥∥W ′′(ϕ)

∥∥2

L∞(0,T ;H2)

ˆ T

0
‖∇�ϕ‖2

H2(�) ,

where we can use (3.30) to control the last term. Hence

W ′(ϕ) ∈ L2(0, T ; H3(�)),

and as a consequence

ϕ ∈ L2(0, T ; H5(�)) ∩ L∞(0, T ; H2(�)),

which completes the proof of Theorem 2.5.

4 Long-time existence and stationary states for the reduced model

In this section, we prove Theorem 2.13 and Proposition 2.16. Both results are based on a suitable
reformulation of the reduced model. This reformulation is also the starting point for the following
proof of Theorem 2.8.
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The key observation is that the mass conservation properties (2.8) hold also for the reduced
model. Thus we can decouple the system into a set of evolution equations for the mean values
and a set of evolution equations for the mean value free parts.

Projecting each equation onto its mean value free part, we arrive at

∂tϕ� = ��μ� on � × (0, T], (4.1)

μ� = −ε��ϕ� + ε−1P�W ′(ϕ) − θ�

2
on � × (0, T], (4.2)

∂tv� = ��θ� + P�q(u, v) on � × (0, T], (4.3)

θ� = 2

δ
(2v� − ϕ�) on � × (0, T], (4.4)

together with the equations

d

dt

ˆ
B

u(t) = −
ˆ

�

q(u, v) on (0, T], (4.5)

d

dt

ˆ
�

ϕ = 0 on (0, T], (4.6)
ˆ

�

v = M −
ˆ

B
u on (0, T], (4.7)

ˆ
�

μ =
ˆ

�

(
ε−1W ′(ϕ) − θ

2

)
on (0, T], (4.8)

ˆ
�

θ = 2

δ

ˆ
�

[2v − 1 − ϕ] on (0, T], (4.9)

for the mean values, where again f� := P�f and P� denotes the projection on the mean value free
parts, i.e. P�f := f − 1

|�|
´

�
f .

4.1 Stationary states for the reduced model

The goal of this section is to prove the existence of stationary solutions to the reduced model, i.e.
Theorem 2.13. We work with the reformulation (4.1)–(4.9) from above. Since we are concerned
with the existence of stationary solutions, any time derivatives in (4.1)–(4.9) are set to zero.

We recall that by Condition 2.11, Equations (4.5) and (4.7) already determine the mean values
of the cholesterol concentrations u and v.

Proof of Theorem 2.13 W.l.o.g we can assume that the mean value of ϕ vanishes, i.e. 1
|�|

´
�

ϕ =
m = 0. This is due to the fact that we can always consider ϕ = ϕ − m and work with the translated
double-well potential W (s) = W (s + m).

We first consider the equations (4.1)–(4.4) for the mean value free functions ϕ� , v� , θ� , μ� .
Note that these equations do not depend on the mean value

´
�

μ.
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In particular, equation (4.1) implies that μ� is constant. Since
´

�
μ� = 0, we thus directly

deduce μ� = 0. As such, equations (4.1)–(4.4) reduce to

0 = −ε��ϕ� + ε−1P�W ′(ϕ) − θ�

2
on �,

0 = ��θ� + P�q(u, v) on �,

θ� = 2

δ
(2v� − ϕ�) on �.

To begin with, recall that W ′(ϕ) = 4ϕ3 − 4ϕ and that the projection P� is linear.
Let Z denote the space

Z := H1
(0)(�) × H1

(0)(�) × H1
(0)(�)

and define for τ ≥ 0 by Tτ the solution operator which maps a given right-hand side (ϕ̃, ṽ, θ̃ ) ∈ Z
onto the solution to the problem

0 = −ε��ϕ� + 4ε−1P�

((
ϕ3

� − τ ϕ̃
))− θ�

2
on �, (4.10)

0 = ��θ� + τP�q(SB(ṽ), ṽ + S�(ṽ)) on �, (4.11)

θ� = 2

δ
(2v� − ϕ�) on �, (4.12)

where SB and S� are the operators provided by Condition 2.11. Note that for τ = 0, the operator
T0 : Z → Z maps every element of Z onto the solution to

0 = −ε��ϕ� + 4ε−1P�(ϕ3
�) − θ�

2
on �,

0 = ��θ� on �,

θ� = 2

δ
(2v� − ϕ�) on �,

which is zero, i.e. T0 is constant.

Lemma 4.1 The operator Tτ : Z → Z is well defined and compact.

Proof of Lemma 4.1 Since q has sublinear growth by assumption (2.25), ṽ ∈ H1
(0)(�) is given,

and SB and S� are continuous, we see that τP�q(SB(ṽ), ṽ + S�(ṽ)) ∈ L2(�). Equation (4.11) has
therefore a unique solution θ� ∈ H2

(0)(�).
Let V (s) := s4 be the convex part of W . We now define G : L2

(0)(�) →R∪ {+∞} by

G(ϕ�) :=
{´

�
ε
2 |∇�ϕ�|2 + 1

ε
V (ϕ�) if ϕ� ∈ H1

(0)(�),

+∞ else.

Then G is a proper, convex, and lower semi-continuous functional by Fatou’s lemma. By [4,
Example 2.3.4], its L2−gradient A : L2

(0)(�) ⊃ D(A) → L2
(0)(�) is therefore a maximal monotone

operator, given by

Aϕ� =
(

−ε��ϕ� + 1

ε
P�V ′(ϕ�)

)
for all ϕ� ∈D(A) = H2

(0)(�).
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Its domain is D(A) = H2
(0)(�). Moreover, for all ϕ� ∈ D(A)

lim‖ϕ�‖
L2(�)→∞

G(ϕ�)

‖ϕ�‖L2(�)
≥ lim‖ϕ�‖

L2(�)→∞
C

‖ϕ�‖2
L2(�)

‖ϕ�‖L2(�)
= +∞,

and by Proposition 2.14 in [4] we find that for every f ∈ L2
(0)(�) there exists a ϕ� ∈ D(A) which

solves

Aϕ� = f .

The solution ϕ� is unique since A is strictly monotone. Indeed, already the L2−gradient of´
�

ε
2 |∇�ϕ�|2 is strictly monotone and

´
�

V (ϕ�) is convex itself. Choosing f =
(
τ ϕ̃ + θ�

2

)
we have f ∈ L2

(0)(�) since θ� ∈ H2
(0)(�) and ϕ̃� ∈ H1

(0)(�). Consequently, there exists a unique
ϕ� ∈ D(A) = H2

(0)(�) which solves

Aϕ� =
(

−ε��ϕ� + 1

ε
P�V ′(ϕ�)

)
=
(

τ ϕ̃ + θ�

2

)
,

i.e. equation (4.10).
To conclude the proof, we note that

H2
(0)(�) × H2

(0)(�) × H2
(0)(�)

embeds compactly into Z. Hence T : Z → Z is indeed compact.

The proof of Theorem 2.13 is now based on a fixed point argument for T1. By the Leray-
Schauder theorem, we have a solution for the fixed point equation

T1

⎛
⎝ϕ�

v�

θ�

⎞
⎠=

⎛
⎝ϕ�

v�

θ�

⎞
⎠

if we can prove uniform a priori estimates for solutions to

Tτ

⎛
⎝ϕ�

v�

θ�

⎞
⎠=

⎛
⎝ϕ�

v�

θ�

⎞
⎠, (4.13)

where τ ∈ (0, 1).

Lemma 4.2 Let τ ∈ (0, 1) and let (ϕ� , v� , θ�) be a solution to (4.13). Then
ˆ

�

|∇�ϕ�|2 +
ˆ

�

ϕ4
� +

ˆ
�

|∇�θ�|2 ≤ C(ε, �, u) (4.14)

and ˆ
�

|∇�v�|2 ≤ C(ε, �, u, δ). (4.15)

Both estimates are uniform in τ .
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Proof of Lemma 4.2 We multiply equation (4.10) by ϕ� and equation (4.11) by θ� . Taking the
sum of both equations and integrating over � yields

ˆ
�

|∇�θ�|2 + ε

ˆ
�

|∇�ϕ�|2 + 4

ε

ˆ
�

ϕ4
�

= −1

2

ˆ
�

θ�ϕ� + τ

ˆ
�

ϕ2
� + τ

ˆ
�

q(u, v�)θ� .

We use that τ ∈ (0, 1) and Young’s inequality for η, γ > 0 to deduce
ˆ

�

|∇�θ�|2 + ε

ˆ
�

|∇�ϕ�|2 + 4

ε

ˆ
�

ϕ4
�

≤ (C(η) + 1)

ˆ
�

ϕ2
� + η

ˆ
�

θ2
� +

∣∣∣∣
ˆ

�

q(u, v�)θ�

∣∣∣∣
≤ (C(η) + 1) γ

ˆ
�

ϕ4
� + ηC

ˆ
�

|∇�θ�|2 + C(η, γ , �) +
∣∣∣∣
ˆ

�

q(u, v�)θ�

∣∣∣∣ .

For η sufficiently small, this inequality implies
ˆ

�

|∇�θ�|2 + ε

ˆ
�

|∇�ϕ�|2 + 4

ε

ˆ
�

ϕ4
�

≤ (C(η) + 1) γ

ˆ
�

ϕ4
� + C(η, γ , �) +

∣∣∣∣
ˆ

�

q(u, v�)θ�

∣∣∣∣ .

Subsequently, we choose γ sufficiently small to infer

1

2

ˆ
�

|∇�θ�|2 + ε

ˆ
�

|∇�ϕ�|2 + 2

ε

ˆ
�

ϕ4
� ≤ C(η, γ , �) +

∣∣∣∣
ˆ

�

q(u, v�)θ�

∣∣∣∣ .

By the assumptions (2.25) on q we can estimate the right-hand side in the above equation by∣∣∣∣
ˆ

�

q(u, v�)θ�

∣∣∣∣≤ C

ˆ
�

|θ�| (1 + |u|1/α + |v�|1/α
)

.

From Young’s inequality we deduce
ˆ

�

|θ�| |v�|1/α ≤ C

ˆ
�

|θ�| α+1
α +

ˆ
�

|v�| α+1
α ≤ C(ρ) + ρ

(ˆ
�

|θ�|2 +
ˆ

�

|v�|2
)

,

since 2α
α+1 > 1 ⇔ α > 1 and using equation (4.12) we obtain

ˆ
�

|v�|2 ≤ 1

2

(ˆ
�

∣∣∣∣ δ2θ�

∣∣∣∣
2

+
ˆ

�

|ϕ�|2
)

.

Since u ∈R is a given constant, the estimates for the remaining terms are straightforward and
Poincaré’s inequality yields

ˆ
�

|∇�θ�|2 + ε

ˆ
�

|∇�ϕ�|2 + 4

ε

ˆ
�

ϕ4
�

≤ C(η, γ , �, ρ) + ρC

(ˆ
�

∣∣∣∣ δ2∇�θ�

∣∣∣∣
2

+
ˆ

�

|∇�ϕ�|2
)

.
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Choosing ρ sufficiently small, we deduce the estimate (4.14). Estimate (4.15) now follows
directly from equation (4.12).

Based on these two lemmas, we now proceed with the proof of Theorem 2.13.
Let Tτ : Z → Z be as before. By Lemma 4.1, Tτ is compact. By Lemma 4.2 and the Poincaré

inequality we have uniform a priori estimates in Z on all solutions to (4.13). The Leray-Schauder
principle [38, Theorem 6.A] (or for the Leray-Schauder mapping degree theory, [38, Chapter
13]) hence guarantees the existence of a fixed point of T1. This proves the theorem.

4.2 Boundedness in time

We now prove Proposition 2.16, which is a corollary of the following lemma.

Lemma 4.3 Assume that Condition 2.14 holds. Then there exist constants C, c > 0 which do not
depend on t such that

d

dt
F(v, ϕ) ≤ C − cF(v, ϕ) for all t ∈ (0, ∞).

Proof We calculate

d

dt
F(v, ϕ) = −

ˆ
�

|∇�μ�|2 −
ˆ

�

|∇�θ�|2 +
ˆ

�

θq(u, v) for all t ∈ (0, ∞). (4.16)

The last term can be estimated by∣∣∣∣
ˆ

�

θq(u, v)

∣∣∣∣≤ C

(ˆ
�

|θ | ∣∣1 + |u|1/α + |v|1/α
∣∣)

≤ C

(ˆ
�

|θ | +
ˆ

�

|θ | |u|1/α +
ˆ

�

|θ | |v|1/α

)
. (4.17)

As before we find by Young’s inequality

ˆ
�

|θ | |v|1/α ≤ C

(ˆ
�

|θ | α+1
α +

ˆ
�

|v| α+1
α

)
.

We note that α+1
α

> 1 and hence conclude by Jensen’s inequality

ˆ
�

|θ | |v|1/α ≤ C

ˆ
�

|θ | α+1
α + C

ˆ
�

∣∣∣∣ δ4θ + ϕ + 1

2

∣∣∣∣
α+1
α

≤
ˆ

�

|θ | α+1
α + C(α)

ˆ
�

∣∣∣∣ δ4θ

∣∣∣∣
α+1
α

+ C(α)
ˆ

�

∣∣∣∣ϕ + 1

2

∣∣∣∣
α+1
α

,

where we have also used that v = δ
4θ + ϕ+1

2 . Since |�| < ∞, Hölder’s inequality yields

ˆ
�

|θ | |v|1/α ≤ C(δ)

(ˆ
�

|θ |2
) α+1

2α + C

(ˆ
�

|ϕ + 1|2
) α+1

2α

.
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If we take into account that u(t) ∈R is uniformly bounded in t by Condition 2.14 and use Hölder’s
inequality to estimate the remaining terms in (4.17), we arrive at

∣∣∣∣
ˆ

�

θq(u, v)

∣∣∣∣≤ C1

(ˆ
�

|θ |2
)1/2

+ C(δ)

(ˆ
�

|θ |2
) α+1

2α + C2

(ˆ
�

|ϕ + 1|2
) α+1

2α + C3

≤ C(δ)

((ˆ
�

|θ |2
)1/2

+
(ˆ

�

|θ |2
) α+1

2α +
(ˆ

�

|ϕ + 1|2
) α+1

2α + 1

)
.

We define β := max { 1
2 , α+1

2α
} < 1. Using |�| < ∞ again and Hölder’s inequality we arrive at

∣∣∣∣
ˆ

�

θq(u, v)

∣∣∣∣≤ C(δ)

((ˆ
�

|θ |2
)β

+
(ˆ

�

|ϕ + 1|2
)β

+ 1

)
,

which implies ∣∣∣∣
ˆ

�

θq(u, v)

∣∣∣∣≤ C(δ)F(v, ϕ)β + C, (4.18)

since β < 1. If we multiply equation (4.2) by ϕ� = ϕ − ffl
�

ϕ and integrate over � we obtain
ˆ

�

μϕ� + 1

2

ˆ
�

θϕ� = ε

ˆ
�

|∇�ϕ�|2 + 1

ε

ˆ
�

W ′(ϕ)ϕ� .

The left-hand side can be estimated by
ˆ

�

μϕ� + 1

2

ˆ
�

θϕ� ≤ ε

2

ˆ
�

|∇�ϕ�|2 + C

ˆ
�

|∇�μ|2 + C

ˆ
�

|∇�θ |2 .

The double-well potential W fulfils W ′(s)(s − m) ≥ c0W (s) − c1 for c0, c1 > 0. Thus the right-
hand side above can be estimated from below by

ε

ˆ
�

|∇�ϕ�|2 + 1

ε

ˆ
�

W ′(ϕ)ϕ� ≥
(ˆ

�

ε |∇�ϕ�|2 + c0

ε

ˆ
�

W (ϕ)

)
− c̃.

Both estimates imply

−
ˆ

�

|∇�μ|2 −
ˆ

�

|∇�θ |2 ≤ −C

(ˆ
�

ε |∇�ϕ�|2 + 1

ε

ˆ
�

W (ϕ)

)
+ c̃. (4.19)

Next we observe that∣∣∣∣
ˆ

�

θ

∣∣∣∣≤ |�|1/2

(ˆ
�

|θ |2
)1/2

≤ |�| +
ˆ

�

|θ |2 ≤ 2

δ
F(v, ϕ) + C(�).

Thus by Poincaré’s inequality

−
ˆ

�

|θ |2 ≥ −C

(ˆ
�

|∇�θ�|2 +F(v, ϕ)

)
− C(�),

and consequently

−
ˆ

�

|∇�μ|2 −
ˆ

�

|∇�θ |2 ≤ −C

(ˆ
�

ε |∇�ϕ�|2 + 1

ε

ˆ
�

W (ϕ) +
ˆ

�

δ

2
|θ |2
)

+ c̃. (4.20)
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Using (4.18) and (4.20), we deduce

d

dt
F(v, ϕ) ≤ C(δ)F(v, ϕ)β − CF(v, ϕ) + c̃,

from (4.16). Finally Young’s inequality allows us to deduce

d

dt
F(v, ϕ) ≤ C − cF(v, ϕ),

which finishes the proof.

Proof of Proposition 2.16 The proposition is a direct corollary of the foregoing lemma.

5 Convergence to the Ohta–Kawasaki equations as δ → 0

We are now interested in the limit process δ → 0 for the reduced model in the special case
q(u, v) = c1u(1 − v) − c2v. In the following we will show that, if we set σ = θ� − 1

2μ� and send
δ to zero in (4.1)–(4.4), we arrive at the limit problem

∂tϕ� = ��μ� , (5.1)

5

4
μ� = −ε��ϕ� + 1

ε
P�W ′(ϕ�) − 1

2
σ , (5.2)

��σ = c1u(t) + c2

2
ϕ� , (5.3)ˆ

�

σ = 0, (5.4)

which is a variant of the well-known Ohta–Kawasaki system which arises in the modelling of
diblock copolymers, see [28] and [11].

We emphasise that the system we recover in the limit δ ↘ 0 for the reduced model differs
slightly from this system and in particular includes the time-dependent factor c1u(t)+c2

2 in the
equation for σ . The function u is given as the solution to the ordinary differential equation (2.24)
and due to Remark 2.7, u is bounded for all times if

u(0) ∈ [0, |B|−1 M].

In particular, u(t) → u∞ for t → ∞, where u∞ is the positive zero of the right-hand side in (2.24).
The main purpose of this section is the proof of Theorem 2.8. Before we begin, we investi-

gate the reformulation of the reduced problem (4.1)–(4.9) in the non-equilibrium case q(u, v) =
c1u(1 − v) − c2v.

5.1 A reformulation for the reduced model in the case q = c1u(1 − v) − c2v

The explicit form of the exchange term q allows us to eliminate v in the equations (4.1)–(4.9). In
particular, (2.18) reduces to an explicit ODE for u which does not depend on

´
�

v.
Let (u, v, ϕ, μ, θ ) be a solution to the reduced model.
We use equation (4.9) to calculate

ˆ
�

q(u(t), v(x, t)) = c1u(t) − (c1u(t) + c2)
ˆ

�

(
δ

4
θ + 1 + ϕ

2

)
,
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where we have used that v = δ
4θ + 1+ϕ

2 almost everywhere. This infers

P�q(u, v) = −(c1u(t) + c2)

[
δ

4

(
θ −

 
�

θ

)
+ 1

2

(
ϕ −

 
�

ϕ

)]
.

Thus we can rewrite equation (4.3) to read

δ

4
∂tθ� = ��θ� − 1

2
��μ� − δ (c1u(t) + c2)

4
θ� − (c1u(t) + c2)

2
ϕ� ,

effectively eliminating v� from the equation.
Moreover, equation (4.9) enables us to eliminate

´
�

v in the equations for the mean values.
Summing up our findings, we obtain the system

∂tϕ� = ��μ� on � × (0, T], (5.5)

μ� = −ε��ϕ� + ε−1P�W ′(ϕ) − θ�

2
on � × (0, T], (5.6)

δ

4
∂tθ� = ��θ� − 1

2
��μ� − δ (c1u(t) + c2)

4
θ� − (c1u(t) + c2)

2
ϕ� on � × (0, T], (5.7)

together with

d

dt

ˆ
B

u(t) = − c1

|B|
(ˆ

B
u(t)

)2

+
(

c1
M − |�|

|B| − c2

) ˆ
B

u(t) + c2M on (0, T], (5.8)

d

dt

ˆ
�

ϕ = 0 on (0, T], (5.9)

δ

4

ˆ
�

θ = M −
ˆ

B
u −

ˆ
�

1 + ϕ

2
on (0, T], (5.10)

ˆ
�

μ =
ˆ

�

(
ε−1W ′(ϕ) − θ

2

)
on (0, T], (5.11)

which is an equivalent formulation for the reduced problem (2.18)–(2.22). We remark that (5.8)
follows directly from (2.24) if we replace the modified exchange term q̃ by q.

The proof of Theorem 2.8 relies on the following lemma.

Lemma 5.1 Let (u, ϕ, v, μ, θ ) be a weak solution to the reduced model (2.18)–(2.22). Then the
mean value free parts (u� , ϕ� , μ� , θ� , v�) fulfil for all T < ∞

sup
t∈(0,T)

[ˆ
�

ε

2
|∇�ϕ�(t)|2 +

ˆ
�

1

ε
W (ϕ(t)) +

ˆ
�

δ

8
θ2
�(t)

]

+ ‖μ�‖2
L2(0,T ;H1(�)) + ‖θ�‖2

L2(0,T ;H1(�)) ≤ C(T , ε, c2),

where C(T , ε, c2) depends on the initial data but is independent of δ.

Proof We multiply equation (5.7) by θ� and integrate over � to obtain

δ

8

d

dt
‖θ�‖2

L2(�) = −
ˆ

�

|∇�θ�|2 − 1

2

ˆ
�

∂tϕ�θ�

− δ

4
(c1u(t) + c2)

ˆ
�

θ2
� − (c1u(t) + c2)

2

ˆ
�

ϕ�θ� . (5.12)

https://doi.org/10.1017/S0956792519000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000056


On a model for phase separation on biological membranes 335

Furthermore, multiplying the equation

μ� = −ε��ϕ + 1

ε
P�W ′(ϕ) − 1

2
θ�

by ∂tϕ� and integrating over � yields

1

2

ˆ
�

∂tϕ�θ� =
ˆ

�

|∇�μ�|2 + d

dt

ˆ
�

[
ε

2
|∇�ϕ|2 + 1

ε
W (ϕ)

]
.

Substituting this into (5.12) implies

d

dt

ˆ
�

[
ε

2
|∇�ϕ|2 + 1

ε
W (ϕ) + δ

8
θ2
�

]
= −

ˆ
�

|∇�θ�|2 −
ˆ

�

|∇�μ�|2

− δ

4
(c1u(t) + c2)

ˆ
�

θ2
� − c1u(t) + c2

2

ˆ
�

ϕ�θ� . (5.13)

Since |u(t)| < C for all t ∈ (0, ∞) and some C > 0 we deduce from Young’s inequality for β > 0∣∣∣∣c1u(t) + c2

2

ˆ
�

ϕ�θ�

∣∣∣∣≤ C

(
1

2β

ˆ
�

ϕ2
� + β

2

ˆ
�

θ2
�

)
.

Hence, Poincaré’s inequality implies∣∣∣∣c1u(t) + c2

2

ˆ
�

ϕ�θ�

∣∣∣∣≤ C

(
1

2β

ˆ
�

ϕ2
� + β

2

ˆ
�

|∇�θ�|2
)

.

We choose β sufficiently small to assure C(β) := 1 − β C
2 > 0 Thus, (5.13) leads to the inequality

d

dt

ˆ
�

[
ε

2
|∇�ϕ�|2 + 1

ε
W (ϕ) + δ

8
θ2
�

]

≤ −C(β)
ˆ

�

|∇�θ�|2 −
ˆ

�

|∇�μ�|2 − δ

4
(c1u(t) + c2)

ˆ
�

θ2
� + C

β

ˆ
�

ϕ2
�

≤ −C(β)
ˆ

�

|∇�θ�|2 −
ˆ

�

|∇�μ�|2 − δ

4
(c1u(t) + c2)

ˆ
�

θ2
� + ρ

C

βε

ˆ
�

W (ϕ) + C(ρ, ε, β)

where we have used Young’s inequality with ρ > 0 in the second inequality.
By (4.19) we have

−C

(ˆ
�

|∇�θ�|2 +
ˆ

�

|∇�μ�|2
)

≤ −
ˆ

�

[
ε

2
|∇�ϕ�| + 1

ε
W (ϕ)

]
+ C,

and for ρ sufficiently small we thus find

d

dt

ˆ
�

[
ε

2
|∇�ϕ�|2 + 1

ε
W (ϕ) + δ

8
θ2
�

]
+ C(β)

2

ˆ
�

|∇�θ�|2 + 1

2

ˆ
�

|∇�μ�|2

≤ −C(β, ρ, ε, c2)

[ˆ
�

ε

2
|∇�ϕ|2 + 1

ε
W (ϕ) + δ

8
θ2
�

]
+ C(ρ, ε, β). (5.14)

We use the differential form of Gronwall’s inequality (see e.g. [13, Appendix B.2(j)]) to
deduce

sup
t∈(0,∞)

ˆ
�

[
ε

2
|∇�ϕ|2 + 1

ε
W (ϕ) + δ

8
θ2
�

]
≤ C,
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and therefore, after integrating (5.14) in time

ˆ
�

[ε
2

|∇�ϕ�(T)|2 + 1

ε
W (ϕ(T)) + δ

8
θ2
�(T)

]

+ C(β)

2

ˆ T

0

ˆ
�

|∇�θ�|2 + 1

2

ˆ T

0

ˆ
�

|∇�μ�|2 ≤ C(T). (5.15)

for all T < ∞. This proves the assertion of the lemma.

Based on this uniform estimate we can prove the main result of this section.

Proof of Proposition 2.8 We first observe that the solution uδn to equation (5.8) is bounded for
all times, see also Remark 2.7. Moreover, the equation is independent of δ and the bound is thus
also uniform in δ.

By (5.15) we deduce δn

∥∥∥θδn
�

∥∥∥
L2(0,T ,L2(�))

≤ Cδn

∥∥∥∇�θ
δn
�

∥∥∥
L2(0,T ,L2(�))

≤ Cδn, which yields for all

� ∈ C∞
c (�T ) ∣∣∣∣δn

ˆ
�T

θ
δn
� ∂t�

∣∣∣∣≤ δn

∥∥∥θδn
�

∥∥∥
L2(0,T ,L2(�))

‖∂t�‖L2(0,T ,L2(�)) ,

i.e. δn∂tθ
δn
� → 0 in the sense of distributions as δn → 0. At the same time, we can estimate∥∥∥δn∂tθ

δn
�

∥∥∥
L2(0,T ;H−1(�))

uniformly in δn since by (5.7) for all η ∈ L2(0, T ; H1(�)) we find

∣∣∣∣
ˆ T

0

ˆ
�

δn∂tθ
δn
� η

∣∣∣∣≤
∣∣∣∣
ˆ T

0

ˆ
�

∇�θ
δn
� · ∇�η

∣∣∣∣+
∣∣∣∣
ˆ T

0

ˆ
�

1

2
∇�μ

δn
� · ∇�η

∣∣∣∣
+
∣∣∣∣
ˆ T

0

ˆ
�

δn(c1uδn (t) + c2)

4
θ

δn
� η

∣∣∣∣+
∣∣∣∣
ˆ T

0

ˆ
�

c1uδn (t) + c2

2
ϕ

δn
� η

∣∣∣∣ ,

which implies ∣∣∣∣
ˆ T

0

ˆ
�

δn∂tθ
δn
� η

∣∣∣∣≤ C ‖η‖L2(0,T ;H1(�)) ,

by Lemma 5.1 and the boundedness of uδn (t).
In particular, δn∂tθ

δn
� is bounded in L2(0, T ; H−1(�)). Since L2(0, T ; H−1(�)) is a Hilbert space,

it is reflexive. Hence, there exists a weakly converging subsequence in L2(0, T ; H−1(�)) and
some function χ ∈ L2(0, T ; H−1(�)) such that δn∂tθ

δn
� ⇀ χ in L2(0, T ; H−1(�)) as δn → 0. Since

χ must coincide with the vanishing distributional limit we deduce χ ≡ 0.
Exploiting equation (5.5), we deduce similarly that ∂tϕ

δn
� is bounded uniformly in δn in

L2(0, T ; H−1(�)). As such, there exists a weakly converging subsequence ∂tϕ
δn
� ⇀ ϕ̃� .

The bounds in Lemma 5.1 also infer the weak convergence of the mean value free functions
ϕ

δn
� , θδn

� and μ
δn
� in the reflexive space L2(0, T ; H1(�)). Again, this convergence is meant up to a

subsequence.
Calculating the distributional time derivative ∂tϕ

δn
� in D′(0, T ; H1(�)) shows ∂tϕ� = ϕ̃� , i.e.

(after the extraction of a subsequence) we have

ϕ
δn
� ⇀ ϕ� in L2(0, T ; H1(�)) ∩ H1(0, T ; H−1(�)).
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The Aubins–Lions Theorem and Sobolev embeddings yield ϕ
δn
� → ϕ� in Lp(0, T ; Lp(�)) for

every 1 ≤ p < ∞. Since
∣∣W ′(s)

∣∣≤ C
(|s|3 + 1

)
for all s ∈R, we obtain by the continuity of

Nemytskii operators

W ′(ϕδn
� ) ⇀ W ′(ϕ�) in L2((0, T) × �).

As a result we can pass the limits in the weak formulations of equations (5.5), (5.6), and (5.7).
We obtain for all η ∈ L2(0, T ; H1

(0)(�))

ˆ T

0
〈∂tϕ� , η〉 = −

ˆ T

0

ˆ
�

∇�μ� · ∇�η

ˆ T

�

ˆ
�

(
μ� + θ�

2

)
η = ε

ˆ T

0

ˆ
�

∇�ϕ� · ∇�η + 1

ε

ˆ T

0

ˆ
�

W ′(ϕ�)η

−
ˆ T

0

ˆ
�

∇�θ� · ∇�η + 1

2

ˆ T

0

ˆ
�

∇�μ� · ∇�η =
ˆ T

0

ˆ
�

c1u(t) + c2

2
ϕ�η.

We denote by σ the auxiliary function σ := θ� − 1
2μ� and find that the limit functions ϕ� , θ� ,

and μ� are weak solutions to problem (5.1)–(5.4).
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