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Abstract

For a finite group G, let ∆(G) denote the character graph built on the set of degrees of the irreducible
complex characters of G. In this paper, we obtain a necessary and sufficient condition which guarantees
that the complement of the character graph ∆(G) of a finite group G is a nonbipartite Hamiltonian graph.
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1. Introduction

Let G be a finite group and let cd(G) be the set of all character degrees of G, that is,
cd(G) = {χ(1) | χ ∈ Irr(G)}, where Irr(G) is the set of all complex irreducible characters
of G. The set of prime divisors of character degrees of G is denoted by ρ(G). It is well
known that the character degree set cd(G) may be used to provide information on the
structure of the group G. For example, in the late 1990s, Huppert conjectured that
the non-Abelian simple groups are essentially determined by the set of their character
degrees. He verified the conjecture on a case-by-case basis for many non-Abelian
simple groups, including the Suzuki groups, many of the sporadic simple groups and
a few of the simple groups of Lie type [4].

A useful way to study the character degree set of a finite group G is to associate a
graph to cd(G). One of these graphs is the character graph ∆(G) of G [9]. Its vertex
set is ρ(G) and two vertices p and q are joined by an edge if the product pq divides
some character degree of G. The main questions in this research area concern the
relationships between the group structure of G and certain graph-theoretical features
of ∆(G). For instance, Lewis and White [7] proved that ∆(G) has three connected
components if and only if G = S × A, where S � PSL2(2n) for some integer n > 2 and
A is an Abelian group. Also, in [10], it was shown that if the character graph ∆(G) of
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a finite group G is k-regular of odd order for some positive integer k, then ∆(G) is a
complete graph. For further results of this type, we refer to the survey by Lewis [6].

An important family of graphs is the class of Hamiltonian graphs. Let Γ be a simple
graph with n vertices. Any cycle of Γ of length n is called a Hamilton cycle. We
say that Γ is Hamiltonian if it contains a Hamilton cycle. In [2], it was shown that
the character graph ∆(G) of a solvable group G is Hamiltonian if and only if ∆(G) is
a block with at least three vertices. In this paper, we give a necessary and sufficient
condition on the structure of a finite group G which guarantees that the complement of
∆(G) is a nonbipartite Hamiltonian graph. Note that when the complement of ∆(G) is
a Hamiltonian graph of odd order, then it is automatically nonbipartite.

Our main result is the following theorem. For an integer n > 1, we denote the set of
prime divisors of n by π(n).

Theorem 1.1. Let G be a finite group. The complement of the character graph ∆(G) is
a nonbipartite Hamiltonian graph if and only if G � SL2(2 f ) × A, where f > 2 is an
integer, ‖π(2 f + 1)| − |π(2 f − 1)‖ 6 1 and A is an Abelian group.

2. Preliminaries

In this paper, all groups are assumed to be finite and all graphs are simple and
finite. For a finite group G, the set of prime divisors of |G| is denoted by π(G). If H is a
subgroup of G and θ ∈ Irr(H), we denote by Irr(G | θ) the set of irreducible characters
of G lying over θ and define cd(G | θ) := { χ(1) | χ ∈ Irr(G | θ)}. We use Clifford’s
theorem [5, Theorem 6.11] and Gallagher’s theorem [5, Corollary 6.17]. If N CG and
θ ∈ Irr(N), the inertia subgroup of θ in G is denoted by IG(θ).

Lemma 2.1 [11]. Let N be a normal subgroup of a group G so that G/N � S , where
S is a non-Abelian simple group. Let θ ∈ Irr(N). Then either χ(1)/θ(1) is divisible by
two distinct primes in π(G/N) for some χ ∈ Irr(G | θ) or θ is extendible to θ0 ∈ Irr(G)
and G/N � A5 or PSL2(8).

Let Γ = (V(Γ), E(Γ)) be a finite simple graph with the vertex set V(Γ) and edge set
E(Γ). If E(Γ) = ∅, we call Γ an empty graph. When C is a cycle of Γ of odd (even)
order, then C is called an odd (even) cycle of Γ. The complement of Γ and the induced
subgraph of Γ on X ⊆ V(Γ) are denoted by Γc and Γ[X], respectively. We now state
some results on character graphs needed in the next section.

Lemma 2.2 [1]. Let G be a finite group and let π be a subset of the vertex set of ∆(G)
such that |π| is an odd number larger than 1. Then π is the set of vertices of a cycle in
∆(G)c if and only if Oπ′(G) = S × A, where A is Abelian, S � SL2(uα) or S � PSL2(uα)
for a prime u ∈ π and a positive integer α, and the primes in π − {u} are alternately
odd divisors of uα ± 1.

We will make use of Dickson’s list of the subgroups of PSL2(q), which can be found
as Hauptsatz II.8.27 of [3]. We also use the fact that the Schur multiplier of PSL2(q)
is trivial unless q = 4 or q is odd.
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Lemma 2.3 [12]. Let G � PSL2(q), where q > 4 is a power of a prime p.

(a) If q is even, then ∆(G) has three connected components, {2}, π(q − 1) and
π(q + 1), and each component is a complete graph.

(b) If q is odd and q > 5 is odd, then ∆(G) has two connected components, {p} and
π((q − 1)(q + 1)).

(i) The connected component π((q − 1)(q + 1)) is a complete graph if and only
if q − 1 or q + 1 is a power of 2.

(ii) If neither of q − 1 or q + 1 is a power of 2, then π((q − 1)(q + 1)) can be
partitioned as {2} ∪ M ∪ P, where both the sets M = π(q − 1) − {2} and
P = π(q + 1) − {2} are nonempty. The subgraph of ∆(G) corresponding to
each of the subsets M,P is complete, all primes are adjacent to 2 and no
prime in M is adjacent to any prime in P.

Lemma 2.4 [8]. Let p be a prime and f > 2 be an integer such that q = p f > 5 and
S � PSL2(q). If q , 9 and S 6 G 6 Aut(S), then G has irreducible characters of
degrees (q + 1)[G : G ∩ PGL2(q)] and (q − 1)[G : G ∩ PGL2(q)].

3. Proof of Theorem 1.1

In this section, we wish to prove our main result.

Lemma 3.1. Let G be a finite group. Then every prime p ∈ ρ(G) is a vertex of an odd
cycle in ∆(G)c if and only if G � SL2(2 f ) × A, where f > 2 is an integer and A is an
Abelian group.

Proof. If G � SL2(q) × A, where q = 2 f for some integer f > 2 and A is Abelian,
then, by Lemma 2.3, we have nothing to prove. Conversely, suppose that every prime
p ∈ ρ(G) is a vertex of an odd cycle in ∆(G)c. We complete the proof with the following
steps.

Step 1. If π ⊆ ρ(G) is the set of vertices of an odd cycle of ∆(G)c, then 2 ∈ π. On
the contrary, suppose that π1 ⊆ ρ(G) is the set of vertices of an odd cycle of ∆(G)c

and 2 < π1. Since ∆(G)c is not bipartite, Lemma 2.2 implies that G is nonsolvable
and 2 ∈ ρ(G). Thus, by assumption, there exists π2 ⊆ ρ(G) such that π2 is the set
of vertices of an odd cycle in ∆(G)c and 2 ∈ π2. By Lemma 2.2, for i = 1 and 2,
Ni := Oπ′i (G) = S i × Ai, where Ai is Abelian, S i � SL2(uαi

i ) or S i � PSL2(uαi
i ) for a

prime ui ∈ πi and a positive integer αi, and the primes in πi − {ui} are alternately odd
divisors of uαi

i + 1 and uαi
i − 1. Let H := S 1S 2. Note that u2 = 2. It is easy to see that

H/Z(H) � PSL2(uα1
1 ) × PSL2(uα2

2 ). Thus, using Lemma 2.3, 2 is adjacent to all vertices
in π2, which is impossible. Hence, 2 ∈ π1 and we are done.

Step 2. There exists a unique normal subgroup L of G such that L � SL2(2 f ) for
some integer f > 2, ρ(G) = ρ(L) and G/R(G) is an almost simple group with socle
S := LR(G)/R(G) � L. Let p ∈ ρ(G). By assumption, there exists π ⊆ ρ(G) so that
π is the set of vertices of an odd cycle in ∆(G)c and p ∈ π. Then 2 ∈ π by Step 1.
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By Lemma 2.2, N := Oπ′(G) = L × A, where A is Abelian, L � SL2(2 f ) for a positive
integer f > 2, and the primes in π − {2} are alternately odd divisors of 2 f + 1 and
2 f − 1. Since 2 ∈ π, by the Feit–Thompson theorem, G/N is solvable. Therefore, so is
G/L. This proves Step 2.

Step 3. 2 is an isolated vertex of ∆(G). Using Step 2, there exists a unique normal
subgroup L of G so that L � SL2(2 f ) for some integer f > 2 and ρ(G) = π(L). For a
contradiction, suppose that 2 is adjacent to some vertex p ∈ ρ(G) − {2} in ∆(G). As
p ∈ π(22 f − 1) and ∆(L) ⊆ ∆(G), using Lemma 2.3, we see that p is not a vertex of an
odd cycle in ∆(G)c, which is a contradiction.

Step 4. G � S × R(G), where S � SL2(2 f ) for some integer f > 2 and R(G) is Abelian.
By Step 2, G/R(G) is an almost simple group with socle S � SL2(2 f ), where f > 2 is
an integer and ρ(G) = π(S ). We claim that G/R(G) = S . On the contrary, suppose that
G/R(G) , S . If f = 2, then 6 ∈ cd(G/R(G)) ⊆ cd(G), which is a contradiction with
Step 3. Thus, f > 3. By Lemma 2.4, since ρ(G) = π(S ), there exists p ∈ π(S ) such
that p is adjacent to all vertices in π(22 f − 1) − {p}. But this is a contradiction as p is
a vertex of an odd cycle in ∆(G)c. Thus, G/R(G) = S . Since ρ(G) = π(S ) and every
prime p ∈ ρ(G) is a vertex of an odd cycle in ∆(G)c, there exist p1 ∈ π(2 f − 1) and p2 ∈

π(2 f + 1) such that p1 and p2 are nonadjacent vertices in ∆(G). Note that by Step 3, 2 is
an isolated vertex of ∆(G). Hence, the induced subgraph of ∆(G)c on π := {2, p1, p2} is
a triangle. Let H be the last term of the derived series of G. Since G is nonsolvable, H
is nontrivial. Let N := H ∩ R(G). As H/N � HR(G)/R(G) CG/R(G) � S , we deduce
that H/N � S . We claim that N = 1. On the contrary, suppose that N , 1. Then there
exists a nonprincipal linear character λ ∈ Irr(N). If f = 2 or 3, then S � A5 or PSL2(8)
and ∆(S ) is an empty graph. Using Lemma 2.1, for some χ ∈ Irr(H | λ), we find that
χ(1) is divisible by two distinct primes in π(S ). This is a contradiction as ∆(G)c[π] is
a triangle. Hence, f > 4. Suppose that I := IH(λ) and M := I/N. Since H is perfect
and the Schur multiplier of S is trivial, M , S . Thus, M is contained in a maximal
subgroup L of S . From Dickson’s list, the index [S : M] is divisible by one of the
numbers

2 f−1(2 f + 1), 2 f−1(2 f − 1), 2 f + 1, 2 f−a (22 f − 1)
22a − 1

,

where f /a > 2 is prime in the last case. If 2 | [S : M], then, using Clifford’s theorem,
2 is adjacent to some prime p ∈ π(22 f − 1), which is impossible as 2 is an isolated
vertex of ∆(G). Also, if M is an elementary Abelian 2-group, then, by Clifford’s
theorem, some m ∈ cd(H | λ) is divisible by 22 f − 1 and this is a contradiction as
∆(G)c[π] is a triangle. Therefore, by Dickson’s list, M is a Frobenius group of order
2 f n, where n | (2 f − 1). Thus, by Clifford’s and Gallagher’s theorems, there exists
m ∈ cd(H | λ) such that m is divisible by either 2(2 f + 1) or 22 f − 1, which is again a
contradiction. Hence, N = 1 and G � S × R(G). If p ∈ ρ(R(G)), then, as ρ(G) = π(S ),
it follows that p is an isolated vertex in ∆(G)c, which is again a contradiction. Thus,
R(G) is Abelian and the proof is completed. �
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Proof of Theorem 1.1. Suppose that G � SL2(2 f ) × A, where f > 2 is an integer.
Then ‖π(2 f + 1)| − |π(2 f − 1)‖ 6 1 and A is an Abelian group. Using Lemma 2.3, we
are done. Conversely, suppose that ∆(G)c is a nonbipartite Hamiltonian graph. Using
Lemma 3.1, it is enough to show that every prime p ∈ ρ(G) is a vertex of an odd cycle
in ∆(G)c. If |ρ(G)| is odd, we have nothing to prove. Hence, we can assume that |ρ(G)|
is even. Since ∆(G)c is not bipartite, we deduce that there exists π ⊆ ρ(G) such that
∆(G)c[π] is an odd cycle. Since ∆(G)c is Hamiltonian, it is easy to see that every prime
p ∈ ρ(G) is a vertex of an odd cycle in ∆(G)c and the proof is completed. �
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