Bull. Aust. Math. Soc. **102** (2020), 91–95 doi:10.1017/S0004972719001163

CHARACTER GRAPHS WITH NONBIPARTITE HAMILTONIAN COMPLEMENT

MAHDI EBRAHIMI

(Received 18 August 2019; accepted 11 September 2019; first published online 25 November 2019)

Abstract

For a finite group *G*, let $\Delta(G)$ denote the character graph built on the set of degrees of the irreducible complex characters of *G*. In this paper, we obtain a necessary and sufficient condition which guarantees that the complement of the character graph $\Delta(G)$ of a finite group *G* is a nonbipartite Hamiltonian graph.

2010 *Mathematics subject classification*: primary 20C15; secondary 05C45, 05C25. *Keywords and phrases*: character graph, character degree, Hamiltonian graph.

1. Introduction

Let *G* be a finite group and let cd(G) be the set of all character degrees of *G*, that is, $cd(G) = \{\chi(1) \mid \chi \in Irr(G)\}$, where Irr(G) is the set of all complex irreducible characters of *G*. The set of prime divisors of character degrees of *G* is denoted by $\rho(G)$. It is well known that the character degree set cd(G) may be used to provide information on the structure of the group *G*. For example, in the late 1990s, Huppert conjectured that the non-Abelian simple groups are essentially determined by the set of their character degrees. He verified the conjecture on a case-by-case basis for many non-Abelian simple groups, including the Suzuki groups, many of the sporadic simple groups and a few of the simple groups of Lie type [4].

A useful way to study the character degree set of a finite group *G* is to associate a graph to cd(G). One of these graphs is the character graph $\Delta(G)$ of *G* [9]. Its vertex set is $\rho(G)$ and two vertices *p* and *q* are joined by an edge if the product *pq* divides some character degree of *G*. The main questions in this research area concern the relationships between the group structure of *G* and certain graph-theoretical features of $\Delta(G)$. For instance, Lewis and White [7] proved that $\Delta(G)$ has three connected components if and only if $G = S \times A$, where $S \cong PSL_2(2^n)$ for some integer $n \ge 2$ and *A* is an Abelian group. Also, in [10], it was shown that if the character graph $\Delta(G)$ of

This research was supported in part by a grant from the School of Mathematics, Institute for Research in Fundamental Sciences (IPM).

^{© 2019} Australian Mathematical Publishing Association Inc.

M. Ebrahimi

a finite group G is k-regular of odd order for some positive integer k, then $\Delta(G)$ is a complete graph. For further results of this type, we refer to the survey by Lewis [6].

An important family of graphs is the class of Hamiltonian graphs. Let Γ be a simple graph with *n* vertices. Any cycle of Γ of length *n* is called a Hamilton cycle. We say that Γ is Hamiltonian if it contains a Hamilton cycle. In [2], it was shown that the character graph $\Delta(G)$ of a solvable group *G* is Hamiltonian if and only if $\Delta(G)$ is a block with at least three vertices. In this paper, we give a necessary and sufficient condition on the structure of a finite group *G* which guarantees that the complement of $\Delta(G)$ is a nonbipartite Hamiltonian graph. Note that when the complement of $\Delta(G)$ is a Hamiltonian graph of odd order, then it is automatically nonbipartite.

Our main result is the following theorem. For an integer $n \ge 1$, we denote the set of prime divisors of *n* by $\pi(n)$.

THEOREM 1.1. Let G be a finite group. The complement of the character graph $\Delta(G)$ is a nonbipartite Hamiltonian graph if and only if $G \cong SL_2(2^f) \times A$, where $f \ge 2$ is an integer, $||\pi(2^f + 1)| - |\pi(2^f - 1)|| \le 1$ and A is an Abelian group.

2. Preliminaries

In this paper, all groups are assumed to be finite and all graphs are simple and finite. For a finite group *G*, the set of prime divisors of |G| is denoted by $\pi(G)$. If *H* is a subgroup of *G* and $\theta \in Irr(H)$, we denote by $Irr(G \mid \theta)$ the set of irreducible characters of *G* lying over θ and define $cd(G \mid \theta) := \{\chi(1) \mid \chi \in Irr(G \mid \theta)\}$. We use Clifford's theorem [5, Theorem 6.11] and Gallagher's theorem [5, Corollary 6.17]. If $N \triangleleft G$ and $\theta \in Irr(N)$, the inertia subgroup of θ in *G* is denoted by $I_G(\theta)$.

LEMMA 2.1 [11]. Let N be a normal subgroup of a group G so that $G/N \cong S$, where S is a non-Abelian simple group. Let $\theta \in Irr(N)$. Then either $\chi(1)/\theta(1)$ is divisible by two distinct primes in $\pi(G/N)$ for some $\chi \in Irr(G \mid \theta)$ or θ is extendible to $\theta_0 \in Irr(G)$ and $G/N \cong A_5$ or $PSL_2(8)$.

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a finite simple graph with the vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. If $E(\Gamma) = \emptyset$, we call Γ an empty graph. When *C* is a cycle of Γ of odd (even) order, then *C* is called an odd (even) cycle of Γ . The complement of Γ and the induced subgraph of Γ on $X \subseteq V(\Gamma)$ are denoted by Γ^c and $\Gamma[X]$, respectively. We now state some results on character graphs needed in the next section.

LEMMA 2.2 [1]. Let G be a finite group and let π be a subset of the vertex set of $\Delta(G)$ such that $|\pi|$ is an odd number larger than 1. Then π is the set of vertices of a cycle in $\Delta(G)^c$ if and only if $O^{\pi'}(G) = S \times A$, where A is Abelian, $S \cong SL_2(u^{\alpha})$ or $S \cong PSL_2(u^{\alpha})$ for a prime $u \in \pi$ and a positive integer α , and the primes in $\pi - \{u\}$ are alternately odd divisors of $u^{\alpha} \pm 1$.

We will make use of Dickson's list of the subgroups of $PSL_2(q)$, which can be found as Hauptsatz II.8.27 of [3]. We also use the fact that the Schur multiplier of $PSL_2(q)$ is trivial unless q = 4 or q is odd.

LEMMA 2.3 [12]. Let $G \cong PSL_2(q)$, where $q \ge 4$ is a power of a prime p.

- (a) If q is even, then $\Delta(G)$ has three connected components, {2}, $\pi(q-1)$ and $\pi(q+1)$, and each component is a complete graph.
- (b) If q is odd and q > 5 is odd, then $\Delta(G)$ has two connected components, $\{p\}$ and $\pi((q-1)(q+1))$.
 - (i) The connected component $\pi((q-1)(q+1))$ is a complete graph if and only if q-1 or q+1 is a power of 2.
 - (ii) If neither of q 1 or q + 1 is a power of 2, then $\pi((q 1)(q + 1))$ can be partitioned as $\{2\} \cup M \cup P$, where both the sets $M = \pi(q 1) \{2\}$ and $P = \pi(q + 1) \{2\}$ are nonempty. The subgraph of $\Delta(G)$ corresponding to each of the subsets M, P is complete, all primes are adjacent to 2 and no prime in M is adjacent to any prime in P.

LEMMA 2.4 [8]. Let p be a prime and $f \ge 2$ be an integer such that $q = p^f \ge 5$ and $S \cong PSL_2(q)$. If $q \ne 9$ and $S \le G \le Aut(S)$, then G has irreducible characters of degrees $(q + 1)[G : G \cap PGL_2(q)]$ and $(q - 1)[G : G \cap PGL_2(q)]$.

3. Proof of Theorem 1.1

In this section, we wish to prove our main result.

LEMMA 3.1. Let G be a finite group. Then every prime $p \in \rho(G)$ is a vertex of an odd cycle in $\Delta(G)^c$ if and only if $G \cong SL_2(2^f) \times A$, where $f \ge 2$ is an integer and A is an Abelian group.

PROOF. If $G \cong SL_2(q) \times A$, where $q = 2^f$ for some integer $f \ge 2$ and A is Abelian, then, by Lemma 2.3, we have nothing to prove. Conversely, suppose that every prime $p \in \rho(G)$ is a vertex of an odd cycle in $\Delta(G)^c$. We complete the proof with the following steps.

Step 1. If $\pi \subseteq \rho(G)$ is the set of vertices of an odd cycle of $\Delta(G)^c$, then $2 \in \pi$. On the contrary, suppose that $\pi_1 \subseteq \rho(G)$ is the set of vertices of an odd cycle of $\Delta(G)^c$ and $2 \notin \pi_1$. Since $\Delta(G)^c$ is not bipartite, Lemma 2.2 implies that *G* is nonsolvable and $2 \notin \rho(G)$. Thus, by assumption, there exists $\pi_2 \subseteq \rho(G)$ such that π_2 is the set of vertices of an odd cycle in $\Delta(G)^c$ and $2 \in \pi_2$. By Lemma 2.2, for i = 1 and 2, $N_i := O^{\pi'_i}(G) = S_i \times A_i$, where A_i is Abelian, $S_i \cong SL_2(u_i^{\alpha_i})$ or $S_i \cong PSL_2(u_i^{\alpha_i})$ for a prime $u_i \in \pi_i$ and a positive integer α_i , and the primes in $\pi_i - \{u_i\}$ are alternately odd divisors of $u_i^{\alpha_i} + 1$ and $u_i^{\alpha_i} - 1$. Let $H := S_1S_2$. Note that $u_2 = 2$. It is easy to see that $H/Z(H) \cong PSL_2(u_1^{\alpha_1}) \times PSL_2(u_2^{\alpha_2})$. Thus, using Lemma 2.3, 2 is adjacent to all vertices in π_2 , which is impossible. Hence, $2 \in \pi_1$ and we are done.

Step 2. There exists a unique normal subgroup L of G such that $L \cong SL_2(2^f)$ for some integer $f \ge 2$, $\rho(G) = \rho(L)$ and G/R(G) is an almost simple group with socle $S := LR(G)/R(G) \cong L$. Let $p \in \rho(G)$. By assumption, there exists $\pi \subseteq \rho(G)$ so that π is the set of vertices of an odd cycle in $\Delta(G)^c$ and $p \in \pi$. Then $2 \in \pi$ by Step 1.

[3]

M. Ebrahimi

By Lemma 2.2, $N := O^{\pi'}(G) = L \times A$, where *A* is Abelian, $L \cong SL_2(2^f)$ for a positive integer $f \ge 2$, and the primes in $\pi - \{2\}$ are alternately odd divisors of $2^f + 1$ and $2^f - 1$. Since $2 \in \pi$, by the Feit–Thompson theorem, G/N is solvable. Therefore, so is G/L. This proves Step 2.

Step 3. 2 is an isolated vertex of $\Delta(G)$. Using Step 2, there exists a unique normal subgroup *L* of *G* so that $L \cong SL_2(2^f)$ for some integer $f \ge 2$ and $\rho(G) = \pi(L)$. For a contradiction, suppose that 2 is adjacent to some vertex $p \in \rho(G) - \{2\}$ in $\Delta(G)$. As $p \in \pi(2^{2f} - 1)$ and $\Delta(L) \subseteq \Delta(G)$, using Lemma 2.3, we see that *p* is not a vertex of an odd cycle in $\Delta(G)^c$, which is a contradiction.

Step 4. $G \cong S \times R(G)$, where $S \cong SL_2(2^f)$ for some integer $f \ge 2$ and R(G) is Abelian. By Step 2, G/R(G) is an almost simple group with socle $S \cong SL_2(2^f)$, where $f \ge 2$ is an integer and $\rho(G) = \pi(S)$. We claim that G/R(G) = S. On the contrary, suppose that $G/R(G) \neq S$. If f = 2, then $6 \in cd(G/R(G)) \subseteq cd(G)$, which is a contradiction with Step 3. Thus, $f \ge 3$. By Lemma 2.4, since $\rho(G) = \pi(S)$, there exists $p \in \pi(S)$ such that p is adjacent to all vertices in $\pi(2^{2f} - 1) - \{p\}$. But this is a contradiction as p is a vertex of an odd cycle in $\Delta(G)^c$. Thus, G/R(G) = S. Since $\rho(G) = \pi(S)$ and every prime $p \in \rho(G)$ is a vertex of an odd cycle in $\Delta(G)^c$, there exist $p_1 \in \pi(2^f - 1)$ and $p_2 \in$ $\pi(2^f + 1)$ such that p_1 and p_2 are nonadjacent vertices in $\Delta(G)$. Note that by Step 3, 2 is an isolated vertex of $\Delta(G)$. Hence, the induced subgraph of $\Delta(G)^c$ on $\pi := \{2, p_1, p_2\}$ is a triangle. Let H be the last term of the derived series of G. Since G is nonsolvable, H is nontrivial. Let $N := H \cap R(G)$. As $H/N \cong HR(G)/R(G) \triangleleft G/R(G) \cong S$, we deduce that $H/N \cong S$. We claim that N = 1. On the contrary, suppose that $N \neq 1$. Then there exists a nonprincipal linear character $\lambda \in Irr(N)$. If f = 2 or 3, then $S \cong A_5$ or PSL₂(8) and $\Delta(S)$ is an empty graph. Using Lemma 2.1, for some $\chi \in Irr(H \mid \lambda)$, we find that $\chi(1)$ is divisible by two distinct primes in $\pi(S)$. This is a contradiction as $\Delta(G)^c[\pi]$ is a triangle. Hence, $f \ge 4$. Suppose that $I := I_H(\lambda)$ and M := I/N. Since H is perfect and the Schur multiplier of S is trivial, $M \neq S$. Thus, M is contained in a maximal subgroup L of S. From Dickson's list, the index [S:M] is divisible by one of the numbers

$$2^{f-1}(2^f+1), \quad 2^{f-1}(2^f-1), \quad 2^f+1, \quad 2^{f-a}\frac{(2^{2f}-1)}{2^{2a}-1},$$

where $f/a \ge 2$ is prime in the last case. If 2 | [S : M], then, using Clifford's theorem, 2 is adjacent to some prime $p \in \pi(2^{2f} - 1)$, which is impossible as 2 is an isolated vertex of $\Delta(G)$. Also, if M is an elementary Abelian 2-group, then, by Clifford's theorem, some $m \in \operatorname{cd}(H | \lambda)$ is divisible by $2^{2f} - 1$ and this is a contradiction as $\Delta(G)^c[\pi]$ is a triangle. Therefore, by Dickson's list, M is a Frobenius group of order $2^f n$, where $n | (2^f - 1)$. Thus, by Clifford's and Gallagher's theorems, there exists $m \in \operatorname{cd}(H | \lambda)$ such that m is divisible by either $2(2^f + 1)$ or $2^{2f} - 1$, which is again a contradiction. Hence, N = 1 and $G \cong S \times R(G)$. If $p \in \rho(R(G))$, then, as $\rho(G) = \pi(S)$, it follows that p is an isolated vertex in $\Delta(G)^c$, which is again a contradiction. Thus, R(G) is Abelian and the proof is completed.

PROOF OF THEOREM 1.1. Suppose that $G \cong SL_2(2^f) \times A$, where $f \ge 2$ is an integer. Then $||\pi(2^f + 1)| - |\pi(2^f - 1)|| \le 1$ and A is an Abelian group. Using Lemma 2.3, we are done. Conversely, suppose that $\Delta(G)^c$ is a nonbipartite Hamiltonian graph. Using Lemma 3.1, it is enough to show that every prime $p \in \rho(G)$ is a vertex of an odd cycle in $\Delta(G)^c$. If $|\rho(G)|$ is odd, we have nothing to prove. Hence, we can assume that $|\rho(G)|$ is even. Since $\Delta(G)^c$ is not bipartite, we deduce that there exists $\pi \subseteq \rho(G)$ such that $\Delta(G)^c[\pi]$ is an odd cycle. Since $\Delta(G)^c$ is Hamiltonian, it is easy to see that every prime $p \in \rho(G)$ is a vertex of an odd cycle in $\Delta(G)^c$ and the proof is completed.

References

- Z. Akhlaghi, C. Casolo, S. Dolfi, E. Pacifici and L. Sanus, 'On the character degree graph of finite groups', *Ann. Mat. Pura Appl.*, to appear, 20 pages.
- [2] M. Ebrahimi, A. Iranmanesh and M. A. Hosseinzadeh, 'Hamiltonian character graphs', J. Algebra 428 (2015), 54–66.
- [3] B. Huppert, *Endliche Gruppen I*, Die Grundlehren der mathematischen Wissenschaften, 134 (Springer, Berlin–New York, 1967).
- [4] B. Huppert, 'Some simple groups which are determined by the set of their character degrees I', *Illinois J. Math.* 44 (2000), 828–842.
- [5] I. M. Isaacs, Character Theory of Finite Groups (Academic Press, San Diego, CA, 1976).
- [6] M. L. Lewis, 'An overview of graphs associated with character degrees and conjugacy class sizes in finite groups', *Rocky Mountain J. Math.* 38(1) (2008), 175–211.
- [7] M. L. Lewis and D. L. White, 'Connectedness of degree graphs of non-solvable groups', J. Algebra 266(1) (2003), 51–76.
- [8] M. L. Lewis and D. L. White, 'Non-solvable groups with no prime dividing three character degrees', J. Algebra 336 (2011), 158–183.
- [9] O. Manz, R. Staszewski and W. Willems, 'On the number of components of a graph related to character degrees', *Proc. Amer. Math. Soc.* 103(1) (1988), 31–37.
- [10] Z. Sayanjali, Z. Akhlaghi and B. Khosravi, 'On the regularity of character degree graphs', Bull. Aust. Math. Soc. 100(3) (2019), 428–433.
- [11] H. P. Tong-Viet, 'Groups whose prime graphs have no triangles', J. Algebra 378 (2013), 196–206.
- [12] D. L. White, 'Degree graphs of simple linear and unitary groups', Comm. Algebra 34(8) (2006), 2907–2921.

MAHDI EBRAHIMI, School of Mathematics, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746, Tehran, Iran e-mail: m.ebrahimi.math@ipm.ir