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Abstract

A 20-year-resolution speleothem δ18O record from southern China reveals a detailed Asian summer monsoon (ASM) history
between 73.6 and 62.3 ka. ASM changes during Interstadial 19 and late MIS 4 matched Greenland temperature variations but
were antiphased with Antarctic temperatures. However, long-term strengthening of the ASM in early MIS 4 agrees well with
the gradual Antarctic warming, when Greenland remained in a stable cold state. More specifically, the ASMwas less variable
during peak interstadials in contrast to striking instabilities during stadials. These observations suggest that the factors dom-
inating ASM variability change through time. During early MIS 4, negligible freshwater perturbations occurred in the North
Atlantic, and sea-surface temperatures in the low- to midlatitude Pacific Ocean reached the modern level. Thus, an expansion
of the Intertropical Convergence Zone (ITCZ) was likely important for the long-term ASM rise. In late MIS 4, the antiphase
correlation between ASM and Antarctic temperature could be attributed to freshwater inputs into the North Atlantic and a
southerly positioned ITCZ. Consequently, meridional ITCZ shifts, although within a limited latitudinal band, would result
in an antiphase relationship between interhemispheric climate changes. Otherwise, an in-phase correlation could be expected
if the centroid of ITCZ is stable along the equator.

Keywords: Speleothem record; ASM variability; MIS 4; Interhemispheric climate correlation; Expansion/contraction of
ITCZ

INTRODUCTION

Shifts of the Intertropical Convergence Zone (ITCZ), an
important forcing agent for Asian summer monsoon (ASM)
variability (Webster et al., 1998; Wang et al., 2014, 2017;
An et al., 2015), are believed to have been highly sensitive
to freshwater perturbations in the North Atlantic (Broccoli
et al., 2006; Stouffer et al., 2006). In these modeling studies,
the ITCZ is southerly positioned when the Northern Hemi-
sphere cools. In response to the interhemispheric thermal gra-
dient, the ITCZ in the Pacific Ocean was reported to shift
southward across a large latitudinal band, i.e., 4° south of
its modern position in Heinrich Stadial (HS) 11 (Jacobel
et al., 2016), 5° during the Little Ice Age (Sachs et al.,
2009), and about 2.5° to 7° in the last glaciation (Reimi and
Marcantonio, 2016). However, the ITCZ movement in
these studies is traced by the rainfall maximum, not by the
precipitation centroid (McGee et al., 2018), hampering a

full understanding of past ITCZ changes and the dynamics
involved.
Constraining the ITCZ location as the median latitude of

zonally averaged precipitation between 20°N and 20°S
(Donohoe et al., 2013; McGee et al., 2014) suggests that
the ITCZ moves within a narrow latitude range, about 1° to
2° (Donohoe et al., 2013; McGee et al., 2014, 2018). In addi-
tion, a symmetrical expansion/contraction of ITCZ along the
equator, rather than a latitudinal migration, has increasingly
been proposed (Collins et al., 2011; Yan et al., 2015; Dennis-
ton et al., 2016). If the expansion/contraction mode domi-
nates, climate changes within the Northern and Southern
Hemispheres would be synchronous. When a latitudinal
shift happens, contrasting climate conditions (warming/cool-
ing or greater precipitation/drought) would be expected
between two hemispheres. Thus, the role of ITCZ in abrupt
climate changes (Steffensen et al., 2008; Thomas et al.,
2009) should be further evaluated. We present here a high-
resolution speleothem-based ASM record during Marine Iso-
tope Stage (MIS) 4 fromWulu Cave, southern China, that we
have used to explore in detail ASM variability and its relation-
ship with interhemispheric climate changes.
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CAVE SITE, SAMPLE, AND METHODS

Wulu Cave is located at the Yun-Gui Plateau in southern
China (26°3′N, 105°5′E, 1440 m asl) (Fig. 1). Modern

vegetation at this site is mostly composed of deciduous
herbs. The cave is about 800 m long, overlain by 40 m of Tri-
assic limestone bedrock. The regional climate conditions are

Figure 1. Study locations and the general circulation pattern of the Asian summer monsoon (ASM; June–August) between 1979 and 2016
(NCAR/NCFP, Kalnay et al., 1996). The red star represents Wulu (WL) Cave, and the white stars show Tian’e (TE; Zhang et al., 2018)
and Yongxing Caves (YX; Chen et al., 2016). The arrowed lines show the average circulation field of the ASM at 700 hPa between 1979
and 2016. In the right bottom panel, the cave site and surrounding environments are indicated, with a schematic map of WL and the sampling
location (blue star) shown on the left. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

High-resolution speleothem-based Asian summer monsoon variability 739

https://doi.org/10.1017/qua.2019.36 Published online by Cambridge University Press

https://doi.org/10.1017/qua.2019.36


influenced by the subtropical East Asian and tropical Indian
summer monsoons. Annual mean temperature at this site is
about 14°C (1981–2015), with a maximum monthly mean
value of 20.8°C in July and a minimum of 4.3°C in January.

The annual mean precipitation is about 1400 mm, peaking
(900 mm) during the summer (June through September),
and significantly decreasing (80 mm) in thewinter (December
to February).

Figure 2. Slabbed section (A), age model (B), isotopic and growth rate records (C) for stalagmite Wu87. On the polished section, black dots,
pink dashed lines, and green dotted lines label dating points, lithologic interfaces of dissolutional erosion, and zones of reduced growth, respec-
tively. These surfaces were correspondingly defined as types E and L in Railsback et al. (2013). Gray bar in B and C represents the growth
hiatus, and the purple dot in B indicates the rejected age. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

740 D. Liu et al.

https://doi.org/10.1017/qua.2019.36 Published online by Cambridge University Press

https://doi.org/10.1017/qua.2019.36


Figure 3. Evaluation on isotopic signals across the dissolutional erosion section (between 400 and 450 mm). Two additional transects were chosen
for isotopic subsample collection on the polished section (A), in which “L” shows the left transect, “R” represents the right, and “M” means the
middle. Numbers on the polished section showdepths of subsample collection, and arrows indicate observed lithological interfaces. δ18O results are
indicated in B (green, left; gray, middle; orange, right), and δ13C results in C. In these panels, dashed lines depict positions of arrows on the middle
transect and the equivalent depths on the right and left. This shows that at least 5- to 7-mm-thick calcite had been dissolved. For comparison, the
isotopic data pointswere not truncated according to the growth cessation (between 428 and 436 mm). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Stalagmite Wu87 was collected about 600 m from the cave
entrance (Fig. 1). It is 545 mm high, with a candle shape, indi-
cating a relatively stable growth history (Fig. 2A). This stalag-
mite is composed of translucent calcite. Along the central
growth axis, dissolutional erosion of calcite occurs at about
119 and 430 mm (Fig. 2A, green dotted lines, and Fig. 3A,
enlarged view). Immediately above 430 mm, large voids
can be observed on the polished section, suggesting unsatu-
rated conditions of infiltration waters across these depths.
Beneath 50, 80, 172, and 267 mm, the apex of stalagmite
diminishes toward the flank, indicating decreased dripwater
during these periods (Fig. 2A, pink dashed lines). These lith-
ological interfaces are similar to the type E and L layer-
bounding surfaces defined by Railsback et al. (2013). As sug-
gested by those authors, the type E surface is caused by abun-
dant undersaturated dripwater and represents dissolutional
erosion, while the type L surface is attributed to diminished
dripwater and indicates reduced growth.
Twelve powder subsamples were collected along the

growth axis with 0.9-mm-diameter carbide dental burrs for
230Th dating. The measurements were performed on a Nep-
tune multicollector inductively coupled plasma mass spec-
trometer at the School of Geography, Nanjing Normal
University. The chemical procedures used to separate ura-
nium and thorium and the age determinations are similar to
those described in Shao et al. (2017). Half-life values for
234U and 230Th used in this study are 245,620 ± 260 and
75,584 ± 110 years, respectively (Cheng et al., 2013). Dating
results are listed in Table 1, with typical analytical errors (2σ)
ranging from 100 to 300 years. For stable isotopic measure-
ments, 545 subsamples were drilled with 0.3-mm-diameter
carbide dental burrs. Analyses were performed on an
online automated carbonate preparation system (Kiel)
linked to a Finnigan MAT-253 mass spectrometer at the
School of Geography, Nanjing Normal University. Spatial
resolution is 1 mm, equivalent to an average temporal res-
olution of 20 years, according to our age model. Standards
were run every 10 to 15 samples, and duplicates were run
every 15 to 20 samples to check for nonlinearity. The
results are reported relative to Vienna Pee Dee Belemnite,
with standardization determined relative to NBS 19 (+1.95‰
for δ18O and −2.2‰ for δ13C). Precision of δ18O values is
0.06‰ at the 1σ level.

RESULTS

Chronology

Twelve 230Th dates reveal that sample Wu87 grew during the
MIS 4, spanning 73.6 ± 0.3 to 62.3 ± 0.2 ka (Table 1). The
ages for isotopic data were established with linear interpola-
tion between adjacent dates. Two dates at 428 and 437 mm
(71.6 ± 0.1 ka; 72.6 ± 0.1 ka) bracketing the dissolutional
interface (between 429 and 436 mm) suggest a growth cessa-
tion of about 1000 years at this depth (Fig. 2A, green dotted
line). In addition, the dating result at 270 mm (69.7 ± 0.3 ka)
(Fig. 2B, purple dot) is very similar to that at 220 mm (69.7 ±

0.1 ka) (Table 1), which was rejected in establishing the age–
depth relationship. The final chronology estimates a
decreased growth rate in the upper 200 mm of sample
Wu87 (Fig. 2B and C). Across this depth, the stalagmite is
mostly composed of compact calcite, and three surfaces of
reduced growth can be observed (Fig. 2A), suggesting the
reliability of our age model.

Isotopic records

Over the growth period, Wu87 δ18O values vary from −7‰
to −8.5‰ (Fig. 2C). Two 18O-depleted events centering at
about 70.3 and 68.9 ka (Fig. 2C) are temporally in line with
Chinese Interstadials (CIS) 19b and 19a (Cheng et al.,
2006). Subsequently, δ18O values gradually decrease from
−7.2‰ to −8‰ during Chinese Stadial (CS) 19 (blue bar
in Fig. 4), followed by a sharp jump to −8.5‰ at about 64
ka (Fig. 2C). This 18O-depleted event surrounding 63 ka
probably corresponds to CIS 18. Comparatively, shifts of
δ13C fall within a narrow range (from −3.5‰ to −4.5‰).
Moreover, the δ13C record is characterized by centennial-scale
variability throughoutMIS 4, showing a more obscure imprint
of millennial-scale changes than the δ18O signal. Between 71
and 68.5 ka, CIS 19b and CIS 19a in the δ18O record also
appear to be expressed in the δ13C record. However, the long-
term δ18O depletion between 68 and 64 ka and CIS 18 are not
expressed in the δ13C record.
Growth rate of Wu87 was relatively stable in MIS 4, except

during CIS 19b and before 72.6 ka (Fig. 2C, gray line). At
about 70.5 ka, a sharp increase in the growth rate postdated
the onset of CIS 19b, and an abrupt decrease at 69.7 ka led
the end of CIS 19a. This relationship suggests that the growth
rate has negligible impact on Wu87 δ18O variability. In Fig-
ure 2C, maximum δ18O values occur between 73 and 71 ka.
At about 72.7 ka, δ18O and δ13C values rapidly increase to
−6.3‰ and −2.7‰, respectively (Fig. 2C, gray bar). This
change corresponds to the dissolutional depth spanning 429
to 436 mm (Fig. 2A). Isotopic analyses along three transects
show that the results in the center deviate from those at the
flank by 5 to 7 mm on average (Fig. 3). Some minor discrep-
ancies between them are likely attributed to less precise sub-
sample collection along a single growth layer. Hence, it is
probably that at least 5- to 7-mm-thick calcite was dissolved
on the central growth axis.

DISCUSSION

Environmental interpretation of isotopic records

Changes in speleothem δ18O are mainly dictated by the isoto-
pic composition of meteoric precipitation. Along the moisture
trajectory, the precipitation δ18O signal is further modulated
by various processes, including the source effect, altitude
and latitude effects, rainfall amount, surface and in-cave tem-
perature changes, and water–rock interactions (McDermott,
2004; Fairchild et al., 2006; Lachniet, 2009). At the millen-
nial scale, it has been suggested that speleothem δ18O records
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from the ASM area, especially from southeastern China,
reflect local rainfall amounts (Cai et al., 2015), precipitation
seasonality (Wang et al., 2001; Zhang et al., 2018), or
ASM intensity (Cheng et al., 2006; Wang et al., 2008). The
rainfall amount assumption, however, is believed to be incon-
sistent with other precipitation proxies from loess/paleosol
magnetic properties (Maher, 2008). It is most likely that
changes in the upstream circulation regime are more impor-
tant (Pausata et al., 2011; Cheng et al., 2012; Maher and
Thompson, 2012;Tan, 2014). Consequently, a strong south-
easterly flow developing over the upstream region likely
induces a strong ASM (with 18O-depleted moisture). At our
study site, where the summer rainfall (June through Septem-
ber) contributes 64% (on average) to the annual mean, it is
likely that summer moisture and its isotopic composition
are most important. Following this reasoning, we interpret
our speleothem δ18O signal as an indicator of average ASM
intensity, with minimum values corresponding to a strong
ASM. This explanation does not imply a reflection of rainfall
amount or rainfall seasonality, but rather of changes in the
average intensity of circulation regime, which transfers
18O-bearing moisture from tropical oceans to the Asian con-
tinent and results in the widely observed replication in spa-
tially separated cave records (Cheng et al., 2012; Maher and
Thompson, 2012; Tan, 2014).

Carbon isotopes (δ13C) in speleothems are primarily
(60%–90%) derived from soil CO2 by plant respiration and
microbial decomposition (Genty et al., 2003; Meyer et al.,
2014). At the Wulu site, the modern vegetation type above
the cave is mainly composed of deciduous herbs. Our previ-
ous work on speleothem records from the same cave revealed
a consistent coupling of centennial-scale changes in δ18O and
δ13C (Liu et al., 2016). This suggests that the soil moisture is
important for δ13C variability at the centennial scale and is
further supported by a recent study on δ13C values of dis-
solved inorganic carbon in cave dripwater in southern
China (Li and Li, 2018). At 72.7 ka (before the hiatus),
sharp enrichments in both isotopic values (Fig. 2C) are likely
a response to water deficiency at this time.

Muted ASM variability during interstadials in
contrast to stadial instabilities

In Figure 4A and C, changes of Wu87 δ18O and δ13C during
CIS 19 are characterized by weaker fluctuations (less than
0.3‰ and 0.5‰, respectively) than those in stadials. To further
explore the structure of these minor oscillations, millennial-scale
variability was removed using the software package Change-
Point (Killick et al., 2012). Two detrended sequences (δ18Od,
δ13Cd) reveal similar variations on a centennial time scale
(r = 0.51, P < 0.01), especially during isotopic enrichment
events (Fig. 4B, green bar). At the decadal scale, however,
significant divergence can be observed. During stadials sur-
rounding CIS 19, variations in δ18Od and δ13Cd are about
0.4‰ and 0.8‰, respectively, almost double the changes in
CIS 19. Cross-wavelet analysis between δ18Od and δ13CdT
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Figure 4. Comparison of original and detrended isotopic records from sample Wu87 (upper panel) and cross-wavelet analysis between
detrended δ18O and δ13C records (lower panel). The detrended isotopic data were obtained using the software package ChangePoint (Killick
et al., 2012). In the upper panel, the green bar indicates the period of muted Asian summer monsoon (ASM) variability during CIS 19, and the
blue bar indicates the CS 19 interval. During CIS 19, centennial-scale ASM changes were absent in the wavelet analysis (lower panel).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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records reveals that millennial to centennial variability is
almost absent between 71.2 and 68.8 ka (Fig. 4, lower
panel), supporting our visual observations.
During (peak) interstadials, weak ASM variability appears

as a pervasive phenomenon in Asian speleothem records
(Fig. 5) (Liu et al., 2010, 2016; Cui et al., 2012; Zhang
et al., 2019). In these cave records, δ18Od records are charac-
terized by minor (less than 0.3‰ in amplitude) and high-
frequency (centennial to decadal) variability during CIS 5.1
(Fig. 5B) (Liu et al., 2016), CIS 16 (Fig. 5C) (Liu et al.,
2010), and CIS 19 (Fig. 5D) (Zhang et al., 2019). Similarly,
such muted variability is also reflected in coeval δ13Cd

records. During the stadials , changes in the δ18Od and
δ13Cd records increase in amplitude and decrease in fre-
quency. Cross-wavelet analysis between these δ18Od and
δ13Cd sequences supports weak variability during interstadi-
als (Supplementary Fig. 1). This suggests that limited pertur-
bations were introduced into the ASM system and regional
environments during peak interstadials. At the Medieval
Warm Period (MWP)/Little Ice Age (LIA) boundary, how-
ever, a prominent change is reflected in the frequency domain
of the two isotopic data sets, but not in the amplitude
(Fig. 5A) (Cui et al., 2012). Especially during the MWP,
large oscillations are evident in the δ13C record as compared
with the LIA. An increase of summer precipitation during the
LIA caused by the Mei-Yu front was proposed by Cui et al.
(2012). This effect of excess humidity in the LIA probably
did not favor the dissolution of 13C-depleted soil CO2 in
the infiltration water and led to elevated speleothem δ13C val-
ues (Bar-Matthews et al., 2000; Plagnes et al., 2002).
Stable interstadial climate conditions have been identified in

North Atlantic sediment records (Vautravers et al., 2004; Goñi
et al., 2009) andpaleolake records fromwesternEurope (Ampel
et al., 2010).Typically, summer-related indicators in these stud-
ies exhibit a pattern similar to the ASM variability observed in
our study These observations possibly shed some light on cli-
mate variability in the context of current global warming. In
the last millennium, severe drought events seldom occurred
during warming episodes (Zhang, 2005; Hou et al., 2008),
which is partly consistent with our results for interstadial con-
ditions. Under the current warming, if the increased melting
of the Greenland and Antarctic Ice Sheets (Bjørk et al., 2012;
Shen et al., 2018) induces a reduction of theAtlanticmeridional
overturning circulation (AMOC) (Mikolajewicz et al., 2007), a
stadial-like climate and significant climate extremes are likely.

Detailed correlation of high- and low-latitude
climates in MIS 4

In the last glaciation, abrupt reduction in the ASM intensity at
the millennial scale was thought to be in line with Greenland
temperature variability (Wang et al., 2001), possibly via the
westerly winds (Porter and An, 1995). Increasing evidence,
however, shows that significant discrepancies can be observed
between high- and low-latitude climate records. First, relatively
gradual speleothem-based ASM variability was found during

the late MIS 4 (Zhang et al., 2017), at the onset of CIS 12
(Cai et al., 2006), during the Bølling interstadial (Wang et al.,
2001), and during the Younger Dryas (Liu et al., 2008). During
these periods, the rise/fall of ASM intensity was frequently
accomplished in a longer time compared with Greenland tem-
perature variability. Second, a decoupling of the ASM and
Greenland temperature variability is clear during HSs (Zhang
et al., 2016; Liu et al., 2018), when the ASM is highly unstable.
This suggests that the speleothem δ18O signal from the Asian
continent exhibits an appreciably regional feature, which is
not exclusive to cave records, as ASM-type changes are widely
reflected in various marine and terrestrial records (Vautravers
et al., 2004; Schmidt et al., 2006; Goñi et al., 2008).

During MIS 4, double peaks in CIS 19 (19a and 19b) and a
rapid depletion of 0.8‰ in δ18O values at 63 ka (likely corre-
sponding to CIS 18) in the Wu87 record (Fig. 6A) agree well,
within dating uncertainties, with other cave records from
China (Fig. 6B and C) (Chen et al., 2016; Zhang et al.,
2019). These millennial-scale ASM oscillations, including
subcycles, are also mirrored in North Greenland Ice Core Pro-
ject (NGRIP) ice-core Ca2+ and δ18O (Fig. 6D and E) (Ras-
mussen et al., 2014) and δ15N-inferred temperature records
(Fig. 6F) (Kindler et al., 2014). Among these events, the
short-lived cold/aridity episode between CIS 19a and CIS
19b (Fig. 6A–F, dotted lines) corresponds to a weak Antarctic
warming (Fig. 6I) (Veres et al., 2013). Additionally, CIS 18 in
speleothem records and its equivalents in Greenland ice-core
records (Fig. 6, dotted line) register as a notable cooling in
West Antarctica (Fig. 6H) (WAIS Divide Project Members,
2015), although they are weakly expressed at the EDML ice
core (Fig. 6I) (Veres et al., 2013). This relationship supports
a conception of interhemispheric climate changes as a bipolar
seesaw (Broecker, 1998; Blunier and Brook, 2001).

Regardless of this tight interhemispheric climate link,Green-
land temperatures remained in a stable cold state during Stadial
19 (Fig. 6E and F, gray bar), a climate condition similar to that
during late MIS 4. At Antarctica, a rise of surface temperature
initiated at about 68.9 ka (Fig. 6I, orange line), immediately
after the end of Interstadial 19a. This Antarctic warming per-
sisted throughoutMIS 4 and accelerated appreciably after Inter-
stadial 18 (Fig. 6H and I). Similarly, a gradual ASM
intensification is exceptionally clear in early MIS 4 (Fig. 6B
andC, gray bar), especially in our newly retrievedWu87 record
(Fig. 6A). In these speleothem records, the ASM intensity dur-
ing CS 19 appears stronger on average, or is at least not weaker
than during CIS 19. This pattern of ASM variability generally
follows Antarctic temperature changes, but is decoupled from
Greenland temperatures. Consequently, these observations
show that the climate of the Southern Hemisphere and the
ASM were intimately related during early MIS 4.

A southern and northern imprint on the ASM
variability

The idea of an AMOC impact on the interhemispheric climate
link appears valid during the interstadials, as shown in
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Figure 5. Correlation of intrainterstadial and intrastadial Asian summer monsoon (ASM) changes. Speleothem records from Heilong Cave,
central China (A) (Cui et al., 2012), Wulu Cave, southern China (B, C) (Liu et al., 2010; 2016), and Tian’e Cave, central China (D) (Zhang
et al., 2019). Gray bars in these panels indicate interstadial or peak interstadial conditions, with interstadials/stadials labeled at the top.
Detrended δ18O (green line) and δ13C (orange line) records are shown in the middle of each panel. CIS, Chinese Interstadial; CS, Chinese
Stadial; HS, Heinrich Stadial; MWP, Medieval Warm Period; LIA, Little Ice Age. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Figure 6. Climate events surrounding MIS 4. δ18O records from Wulu (A) (this study), Yongxing (B; Chen et al., 2016), and Tian’e Caves
(C; Zhang et al., 2019); Greenland ice-core Ca2+, δ18O (D, E; Rasmussen et al., 2014) and δ15N records (F; Kindler et al., 2014); (G) Ice-rafted
debris (IRD) is plotted as the number of detrital sediment grains (lithics) from core ODP980 (55°29′N, 14°42′W, depth of 2179 m) (gray line;
McManus et al., 1999) and ice-rafted detrital CaCO3 grains g

−1 from core EW9302-2JPC (48°47.70′N, 45°05.09′W, depth of 1251 m), North
Atlantic (pink line; Marcott et al., 2011); tetraunsaturated alkenone record from core ODP977A, western Mediterranean (36°1.907′N,
1°57.319′W, depth of 1984 m) is a tracer for low-salinity water masses (green line; Martrat et al., 2004); and Antarctic δ18O records from
the WDC (H; WAIS Divide Project Members, 2015) and EDML ice cores (I; Veres et al., 2013). The dotted lines show the correlation of
interhemispheric climate changes during Interstadial 18 and the stadial between Interstadials 19a and 19b, respectively. The orange bar denotes
the initiation of Antarctic warming during MIS 4, and the gray bar indicates Stadial 19 (early MIS 4). Substages of Asian summer monsoon
(ASM) variability are also shown at the bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Figure 6, where an antiphase relationship is evident. In this
regard, the northern displacement of the ITCZ during south-
ern stadials (Broccoli et al., 2006; Stouffer et al., 2006) that
accompanies a strong AMOC can induce a strong ASM and
more precipitation in southern China (Wang et al., 2006).
Thus, a more stable ASM during CIS, as derived from our
speleothem records (Fig. 5), likely points to an average north-
erly positioned ITCZ. In contrast, in northern stadials, the fre-
quent intrusion of a northern high-pressure system, including
a southerly positioned ITCZ, could have reduced ASM inten-
sity and triggered ASM instabilities (Webster et al., 1998;
Wang et al., 2014, 2017; An et al., 2015) when the AMOC
was weak and frigid cold returned to the northern high
latitudes.
During MIS 4, peaks of ice-rafted debris (IRD) from

limited-resolution oceanic sediment records suggest cata-
strophic iceberg and freshwater discharges into the North
Atlantic occurred at about 66 ka (Fig. 6G, gray and orange
lines) (McManus et al., 1999; Marcott et al., 2011). Addition-
ally, a high-resolution alkenone record from core ODP977A
indicates that a large volume of low-salinity water masses
intruded into the western Mediterranean at about 64 ka
(Fig. 6G, green line) (Martrat et al., 2004). Taking the dating
uncertainties of these oceanic sediment records into consider-
ation,, these lines of evidence show that a significant AMOC
reduction most likely occurred in late MIS 4 (HS 6), as sum-
marized in Hemming (2004). Accordingly, Greenland tem-
perature (Fig. 6E and F) (Kindler et al., 2014; Rasmussen
et al., 2014) and ASM intensity declined significantly after
Interstadial 18 (Fig. 6C, arrowed line) (Chen et al., 2016;
Zhang et al., 2019). In response to the interhemispheric ther-
mal gradient caused by freshwater perturbations, a southerly
positioned ITCZ and an accelerated Antarctic warming would
be expected (Fig. 6H and I) (Veres et al., 2013; WAIS Divide
Project Members, 2015).
Nevertheless, this idea of latitudinal shifts in the ITCZ (in a

scenario of freshwater impact) lacks validity regarding syn-
chronous increase in the ASM intensity and Antarctic temper-
ature in early MIS 4 (CS 19) (Fig. 6), because IRD peaks for
that time period were insignificant (Fig. 6G). One possibility
for the coupling of ASM and Antarctic temperature is an
expansion of the ITCZ (Collins et al., 2011; Yan et al.,
2015; Denniston et al., 2016). In early MIS 4, the Mg/
Ca-based summertime sea-surface temperatures (SSTs),
reconstructed from Globigerinoides ruber records from the
western tropical Pacific (6.3°N, 125.83°E), were relatively
stable (generally above 28°C) (Stott et al., 2002). This implies
that thermal conditions in the Indo-Pacific Warm Pool
(IPWP) were favorable for ITCZ expansion at this time, as
a rise in SST to 27.5°C is required for initiation of deep con-
vection (Graham and Barnett, 1987). ITCZ position is sensi-
tive to slight shifts in the atmospheric energy balance.
Currently, the hemispherically asymmetric contrast of mid-
tropospheric temperatures is less than 3 Kelvin in the zonal
mean between 20°N and 20°S (Schneider et al., 2014). It is
believed that a gradient of 1 Kelvin between high- and low-
latitude SSTs could trigger the displacement of the ITCZ

(Hastenrath and Heller, 1977). Moreover, other sediment
records have shown that the tropical Pacific SST in early
MIS 4 reached its average modern value (22°C to 29°C),
with centennial-scale changes falling within the seasonal
range of 2°C (Fig. 7C) (Rosenthal et al., 2003; Lea et al.,
2000, 2006). A significant warming of about 2°C was also
registered at the midlatitudes of the southern Pacific
(Fig. 7B) (Pahnke and Sachs, 2006; Tachikawa et al., 2009)
and the South China Sea (Fig. 7D) (Oppo and Sun, 2005).
This SST variability is in line with the gradual increase in
ASM intensity in our speleothem record (Fig. 7A). Conse-
quently, the concurrent increase in ASM intensity and Ant-
arctic temperature (Fig. 6, orange line) should reflect an
expansion of ITCZ when freshwater discharges ceased.
Hence, the thermal contrast between the two hemispheres

is very important. We speculate that when the AMOC is
exceptionally strong (or weak), a large interhemispheric ther-
mal gradient would result in a latitudinal migration of the
ITCZ, as demonstrated by modeling studies (Broccoli et al.,
2006; Stouffer et al., 2006). This could explain the antiphase
relationship between the ASM and Antarctic temperature dur-
ing Interstadials 19 and 18 and lateMIS 4 (Fig. 6). In contrast,
a small thermal gradient between the two hemispheres is
favorable for an expansion/contraction of the ITCZ, which
is partly reminiscent of the concurrent rise in the ASM
strength and Antarctic temperature during early MIS 4. This
simplified concept of ocean–atmosphere response is probably
similar to the mechanism associated with triple AMOC states,
that is, a glacial mode, a Heinrich mode, and a modern mode
(Clark et al., 2002), which is further modulated by ice-shelf
and sea-ice interactions (Boers et al., 2018). It is currently
out of our scope to evaluate the northernmost boundary of
the ITCZ. Our comparison suggests that the impact of the
ITCZ is probably limited to mid- to low latitudes, as an
increase in NGRIP ice-core Ca2+ concentration (indicating
a strong Asian winter monsoon) can be observed before the
onset of Interstadial 18 (Fig. 6D) (Rasmussen et al., 2014).
In our speleothem records, the ASM intensification persisted
throughout early MIS 4 (Fig. 6A–C, gray bar). A decoupling
of ASM intensity and Greenland temperature was also
observed during mid-HS (Liu et al., 2018). In this study, spe-
leothem records from central to southern China revealed a
gradual ASM intensification in mid-HS, in stark contrast to
a stable cold climate state in Greenland. It is probably a reflec-
tion of the impact of low-latitude hydrothermal processes.
These observations are of vital importance for understand-

ing the dynamics of millennial-scale climate changes,
because the frequency and amplitude of interstadials/stadials
are controlled by North Atlantic processes, and their magni-
tude increases with increasing latitude (Masson-Delmotte
et al., 2011; Shakun et al., 2012; Cuffey et al., 2016). How-
ever, the evolution and duration of millennial-scale climate
events, especially within northern low latitudes, is probably
determined by southern oceanic processes (Buizert and
Schmittner, 2015). In Asian speleothem records, gradual
δ18O variability can be expected at CIS/CS transitions in con-
trast to abrupt changes in Greenland temperature (Wang et al.,
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2001; Cai et al., 2006; Liu et al., 2008, 2018; Zhang et al.,
2017). Sensitive to the interhemispheric temperature gradi-
ent, the ITCZ can act a bridge to link bipolar climates via
expansion/contraction and “pull–push” mechanisms (Roh-
ling et al., 2009). Therefore, one needs to precisely pinpoint

the “zero-anomaly line” of the interhemispheric thermal gra-
dient in the past (Stouffer et al., 2006; Zarriess et al., 2011).
Within the IPWP, a sharp precipitation boundary between the
maritime continents and Australia was located at about 8–10°
S during the last termination (Lo et al., 2014); however, a

Figure 7. (Color online) Dynamic link of Asian summer monsoon (ASM) changes and sea-surface temperature (SST) records in MIS 4. (A)
Wu87 δ18O record (this study); (B) SST changes at subtropical southern Pacific (MD97-2120 [45°32.06′S, 174°55.85′E] and MD97-2121
[40°22.8′S, 177° 59.4′E]; Pahnke and Sachs, 2006; MD2125 [22°34′S, 161°44′E]; Tachikawa et al., 2009); (C) IPWP SST (ODP806B
[0°19.04′N, 159°21.25′E]; Lea et al., 2000; TR163 [0°30.9′N, 92°23.9′W]; Lea et al., 2006; MD97-2141 [8.8°N, 121.3°E]; Rosenthal
et al., 2003); (D) SST changes at the South China Sea (ODP1145 [19°35′N, 117°38′E]; Oppo and Sun, 2005). Gray bar indicates early
MIS 4, when SST in each site reached its modern level.
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geographic mismatch between meridional thermal and rain-
fall patterns (Linsley et al., 2010) suggests that the
zero-anomaly line variability deserves further investigation,
especially at contrasting climate boundaries.

CONCLUSIONS

A high-resolution speleothem δ18O record from southern
China presents a detailed ASM history spanning CIS 19 to
the onset of CIS 18. During these interstadials and late MIS
4, ASM variations were in line with millennial-scale changes
in northern high-latitude temperatures derived from Green-
land ice-core δ18O (Rasmussen et al., 2014) and δ15N records
(Kindler et al., 2014), but antiphased with Antarctic climates.
In early MIS 4, however, an increase in ASM intensity can be
observed just after CIS 19, in agreement with a rise in Antarc-
tic temperature. At the centennial scale, the ASM was stable
during peak interstadials, while significant instabilities were
evident in stadials. In the antiphase scenario (i.e., CIS 19,
CIS 18, and late MIS 4), latitudinal shifts of the ITCZ
might dominate, as large freshwater discharges can be
found in late MIS 4. In an in-phase case, a symmetrical
expansion/contraction of the ITCZ would be expected. Con-
sequently, we speculate that an expansion/contraction mode
is important for ITCZ movement when freshwater perturba-
tions are negligible (Collins et al., 2011; Yan et al., 2015;
Denniston et al., 2016).
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