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Abstract
Many classic networks grow by hooking small components via vertices. We introduce a class of networks
that grows by fusing the edges of a small graph to an edge chosen uniformly at random from the network.
For this random edge-hooking network, we study the local degree profile, that is, the evolution of the
average degree of a vertex over time. For a special subclass, we further determine the exact distribution
and an asymptotic gamma-type distribution.We also study the “core,” which consists of the well-anchored
edges that experience fusing. A central limit theorem emerges for the size of the core.
At the end, we look at an alternative model of randomness attained by preferential hooking, favoring
edges that experience more fusing. Under preferential hooking, the core still follows a Gaussian law but
with different parameters. Throughout, Pólya urns are systematically used as a method of proof.

Keywords: network; random graph; degree profile; Pólya urn; limit law; preferential attachment; phase transition; Stirling
number; asymptotic analysis; polyacenes

1. Network growth by edge hooking
Constructing graphs by adding vertices and edges is in numerous classical studies. In the vogue
these days is an area of research investigating networks grown by hooking more complex compo-
nents (Bhutani et al., 2021; Chen & Mahmoud, 2016; Desmarais & Holmgren, 2018; Desmarais &
Mahmoud, 2021; Drmota et al., 2008; Gopaladesikan et al., 2014; Mahmoud, 2019) via vertices.

In this article, we consider networks grown by adding complex components by fusing edges.We
have a seed graph from which we build a dynamic network (a sequence of graphs Gn, for n≥ 0).
The first graph in the network, G0, is the seed itself. A particular edge in the seed is designated as
the hooking edge (or simply the hook). We call that hooking edge e= {u, v}, where u and v are two
distinct vertices in the seed.

At step n− 1, we have grown the network Gn−1. The next graph in the sequence is obtained by
choosing uniformly at random an edge, e′ = {u′, v′}, where u′ and v′ are two distinct vertices in the
network Gn−1, to which a copy of the seed is attached by fusing the edges e and e′. This fusing can
be made in two different ways—we can identify u and u′ together and identify v and v′ together,
or we can do the opposite, that is, we identify u and v′ together and identify v and u′ together.
We call the edge chosen in the network for fusing the latching edge (or simply the latch), and the
two possible hookings correspond to two orientations. We take the two orientations to be equally
likely. The fused edges merge into one. Different orientations can give rise to nonisomorphic
graphs.
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Figure 1. A seed labeled canonically.

Figure 2. A dynamically labeled seed (top) and two dynamically labeled networks grown from it (second row), each
corresponding to one hooking orientation. The edge chosen for hooking is marked with a star.

Figure 1 illustrates a seed with a hooking edge. The seed nodes carry numbers according to a
canonical labeling that will be explained in Subsection 3.1.

Figure 2 shows networks grown from the seed by the two different orientations, while fusing the
hook and the latch. The graphs in the growing network carry labels derived from the canonical
numbering of the seed nodes and additional timestamps indicating the entry point in time of a
seed copy (more on this in Section 3.1).

The graph G1 is constructed by obtaining a new copy of the seed and hooking vertex 1 in the
new seed to vertex 4 in the graph G0 and vertex 2 in the new seed to vertex 3 in G0. The graph G′

1
corresponds to the alternative orientation, in which vertex 1 in the new seed is hooked to vertex 3
in the graphG0 and vertex 2 in the new seed is hooked to vertex 4 inG0. Each of the two graphsG1
and G′

1 occurs with probability 1
6 × 1

2 = 1
12 . The nodes in the graphs of Figure 2 carry labels that

will be explained later. Note that the two orientations give rise to the two nonisomorphic graphs
G1 and G′

1.
In the context of edge-fused networks, a seed is a connected graph S= (V , E) with a set of

vertices V and a set of edges E containing at least one edge. A particular edge in E is distinguished
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Figure 3. The topology of benzene ring fusion in polyacenes.

as the hook, the edge designated for fusing into larger graphs. The seed is used as a building block
in a bigger network in discrete time steps. We use n for discrete time. Consequently, we can think
of the graph Gn as the network at age n. Technically speaking, we generate a sequence of seeds
S0, S1, S2, . . . that are identical to one prototype seed S. Each copy then has its own hook. At time
0, the network starts as S0. At time n≥ 1, the copy Sn is adjoined to the network and its hook is
used for edge hooking.

In the sequel, when we speak of a property of a seed without specifying its timestamp, we refer
to the prototype seed S. We call the class of graphs so built edge-hooking networks.

The study is motivated by the recent interest in graphs with “community structure,” see van
der Hofstad et al. (2018), for example. Graphs with community structure have been suggested
as models for epidemiology (Bhamidi et al., 2021; Trapman, 2007). The proposed edge-hooking
network has a tree as a backbone, where a tree edge may develop into a “local community,” that
is, blown out to be an entire graph (copy of the seed).

As an application of the edge-hooking mechanism, we present an example from organic chem-
istry. Acenes or polyacenes are polycyclic aromatic hydrocarbons that consist of linearly fused
benzene rings. This threadlike network of benzene ring fusion is shown in Figure 3.1

Polyacenes follow the molecular formula C4k+2H2k+4, where k≥ 1. As a particular example of
edge-hooking networks,G0 will be benzene having a molecular formula with k= 1. One can think
of G1 as naphthalene having a molecular formula with k= 2. Then, G2 will be anthracene having
a molecular formula with k= 3 and so on. Our edge fusing network model exhibits the structure
and geometry that happens in these organic compounds.

Acenes are an important and unique class of organic compounds (Tönshoff & Bettinger, 2021).
The smaller acenes like benzene, naphthalene, and anthracene are among the well-studied organic
compounds that can be produced from coal or petroleum products. The larger acenes and their
derivatives form organic semiconductor materials. They possess unique and versatile electronic
properties, and scientists find them to be attractive candidates for use in organic electronic devices.
They are currently the subject of great interest in materials science and engineering (Akter et al.,
2021; Anthony, 2008; Zamoshchik et al., 2013).

2. Scope
A paramount property of graphs is the distribution of node degrees within. For example, the
degree of a node in a social network, namely the number of followers, may be taken as a measure
of the influence of a person in the network.
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We study the local degree profile of a network, which tracks the evolution of a specific vertex in
the network over time. We also study the size of the core, which is the number of edges that expe-
rience fusing. Via fusing, edges in the core are more anchored in the graph and can be “thicker”
than other edges. The notion of edge fusing is studied in a different context in Bhutani & Khan
(2003), where the authors looked at the multiplicity of an edge with respect to a given set of paths.
Multiplicity there is defined as the number of times an edge is used to construct the named set
of paths. The concept in (Bhutani & Khan, 2003) is introduced to define a distance between two
graphs.

At the end of the study, we look into an alternative model of preferential edge hooking. To see
the contrast to the uniform model, we develop a result for the size of the core under preferential
attachment.

3. Notation
We denote the cardinality of a set B by |B|. The prototype seed S= (V , E) has structural properties,
such as the degrees of its nodes. It is expected that network characteristics (such as a degree profile)
will depend on these properties. For instance, distributions associated with the network may be
parameterized by some counts in S. The size of the seed ε0 := |E | appears in the results. In the
case ε0 = 1, the seed is the K2,2 the complete graph on two vertices. Such a case is degenerate, as
fusing copies of the seed produces K2. The network does not progress beyond the initial K2, and
there is nothing to study. In what follows we assume ε0 ≥ 2.

Let εn be the size (the number of edges) of the network at age n. As we add a copy of the seed
at each step, and the hook is subsumed in the graph, i.e., does not add to the edges of the network,
we have

εn = (ε0 − 1)n+ ε0.

Some exact results will be represented in terms of Pochhammer’s symbol for the rising factorial.
Them-times rising factorial of a real number x is

〈x〉m = x(x+ 1) . . . (x+m− 1),

with the interpretation that 〈x〉0 = 1.
We also have occasion to use

{m
i
}
, the ith Stirling number of orderm of the second kind, which

is the number of ways to divide a nonempty set of size m into i nonempty subsets. For properties
of Stirling numbers, we refer the reader to David & Barton (1962) and Graham et al. (1994).

3.1 Canonical labeling
Assume the nodes of the seed are numbered 1, . . . , |V|, a numbering in which the two nodes
of the hook are numbered 1 and 2, the rest are arbitrarily labeled distinctly with the numbers
3, 4, . . . , |V|. We take this numbering as canonical to be preserved in every copy of S. Since the
canonical labels in the seed repeat in the network, a tiebreaking mechanism is needed for unique
identification of network nodes. The tiebreaker is the timestamp—the point in time at which a
node joins the graph. In such a “dynamic labeling,” a node’s tag carries two components: the
canonical labeling and the timestamp.

Figure 2 shows one such canonical numbering. A node appearing in the network is thus ade-
quately specified by a pair (j, r), if it appears for the first time at stage j and is the rth in the
canonical numbering of Sj.

Let dr be the degree of node r in the seed, for 1≤ r ≤ |V|. According to the canonical labeling,
in the seed, the two ends of the hook {1, 2} have degrees d1 and d2. We use �

(r)
j,n to denote the

degree of node (j, r) in a network of age n≥ j. For instance, in the running example of Figure 2, we
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have �
(3)
0,0 = 3, and if the stochastic path follows G1 we would have �

(3)
0,1 = 4, but if the stochastic

path follows G′
1, we would have �

(3)
0,1 = 5.

Note that, for r = 3, 4, . . . , |V|, the node (j, r) appears at time j≥ 0, whereas the nodes (j, 1)
and (j, 2) appear only when j= 0; this is because the fusing of edges subsumes the seed edge {1, 2}
of the seed in older edges, and the end nodes of these receiving edges have already been labeled at
earlier stages.

In the sequel, we use the symbol a.s.−→ to denote almost sure convergence and the symbol D−→ to
denote convergence in distribution. The notationN (0, σ 2) stands for a centered normal random
variable with variance σ 2.

4. Pólya urns
An instrument we use in this investigation is Pólya urn (Mahmoud, 2008). A c-color Pólya urn
scheme is comprised of an initial nonempty urn containing balls of up to c-colors and rules to
operate on the urn at discrete time steps. The colors are numbered 1, 2, . . . , c. At each time step, a
ball is drawn at random from the urn and its color is observed. If the color of the ball withdrawn
is i, we put it back in the urn and add ai,j (possibly negative or even random) balls of color j, for
j= 1, . . . , c, and the drawing is continued. These dynamics are captured in a c× c replacement
matrix: ⎛

⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 . . . a1,c
a2,1 a2,2 . . . a2,c
...

...
. . .

...

ac,1 ac,2 . . . ac,c

⎞
⎟⎟⎟⎟⎟⎟⎠
.

When some entries of the replacement matrix are negative, a tenability issue (of indefinite
drawing) may arise. These cases do not appear in our study—all the replacement matrices in this
article contain only nonnegative elements.

5. Modeling the local profile by a Pólya urn
The strategy to track the degree �

(r)
j,n is to map the edges of the network onto balls in a Pólya urn.

The edges incident with the vertex we are tracking correspond to the white balls in the urn and
all the other edges in the network correspond to the blue balls in the urn. Thus, the count of the
white balls at any stage is the degree of the vertex under tracking at that stage.

We wait till the node y= (j, r) appears in the network to start a Pólya urn with dr white balls
and εj − dr = (ε0 − 1)j+ ε0 − dr blue balls. We use the terms “edges” and “balls” interchangeably,
so we can think directly of an urn of white and blue edges.

When we pick a white edge at step n (one of the �
(r)
j,n−1 edges incident with y), node y and one

of its neighbors are involved in the edge hooking. Upon hooking a copy of the seed, we fuse the
seed edge joining the vertices with labels 1 and 2 in the canonical numbering. We increase the
degree of y either by d1 − 1 or d2 − 1, (with equal probability) depending on the orientation of
the hooking; the −1 accounts for the loss of the seed fused edge upon hooking. The orientation
chosen is determined as in the outcome of flipping a fair coin. Let IH be the indicator of the event
that the coin toss yields Heads. The number of white edges increases by a variable distributed
like

d1IH + d2(1− IH)− 1.
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Except for the edges incident with y in Gn−1, hooking at any other edge does not alter the degree
of y, we add ε0 − 1 blue edges.

Letting Fn be the sigma field generated by the first n steps, the conditional distribution of the
degree of node (j, r) is

�
(r)
j,n | Fn−1 =

⎧⎪⎨
⎪⎩

�
(r)
j,n−1 + d1IH + d2(1− IH)− 1, with probability

�
(r)
j,n−1

εn−1
;

�
(r)
j,n−1, with probability 1− �

(r)
j,n−1

εn−1
.

These dynamics are captured by the Pólya replacement matrix⎛
⎝d1IH + d2(1− IH)− 1 ε0 − d1IH − d2(1− IH)

0 ε0 − 1

⎞
⎠ .

Traditionally, a two-color urn scheme with a replacement matrix with one off-diagonal element
being 0 and the other off-diagonal element being positive is called triangular.

We analyze the average behavior of balanced urns of this type; the balance means the row sum
is constant. Take an integer δ ≥ 1 and construct a triangular Pólya urn scheme on white and blue
balls with the replacement matrix ⎛

⎝X δ − X

0 δ

⎞
⎠ , (1)

with X having a distribution on the integers 0, 1, . . . , δ − 1, with mean μ.
LetWm be the number of white balls afterm draws from the urn, and letQm be the total number

of balls in the urn at timem. Thus, Q0 is the initial number of balls in the urn and we have

Qm = δm+Q0.

More precisely, at themth drawing, Xm is themth realization of X. So, X1, X2, . . . is a sequence
of independent identically distributed random variables, and in the mth drawing we use the
replacement matrix ⎛

⎝Xm δ − Xm

0 δ

⎞
⎠ .

Afterm draws, the number of white balls satisfies the stochastic recurrence

Wm =Wm−1 + Xm I
(W)
m ,

where I(W)
m is the indicator of the event of picking a white ball in the mth drawing. Conditioning

on Fm−1 (the sigma field generated by the firstm− 1 draws), we have the expectation

E[Wm | Fm−1]=Wm−1 +E[Xm]E
[
I
(W)
m | Fm−1

]
,

following from the independence of Xm of the history. We then have

E[Wm | Fm−1]=Wm−1 + μ
Wm−1
Qm−1

. (2)
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An iterated expectation gives us the unconditional expectation

E[Wm]=
(
1+ μ

Qm−1

)
E[Wm−1].

Unwinding this recurrence, we obtain

E[Wm]=
(
1+ μ

Qm−1

)
. . .

(
1+ μ

Q0

)
W0,

=
(

(m− 1)δ +Q0 + μ

(m− 1)δ +Q0

)
. . .

(
Q0 + μ

Q0

)
W0

=
(
m− 1+ Q0+μ

δ

m− 1+ Q0
δ

)
. . .

( Q0+μ
δ
Q0
δ

)
W0

=
�
(
m+ Q0+μ

δ

)
�
(
Q0
δ

)
�
(
m+ Q0

δ

)
�
(
Q0+μ

δ

) W0. (3)

This derivation furnishes a proof for the average degree of a node in the network. The proof
concerns a node (j, r), and we keep in mind that j may be a function of n. For example, we may
specify some large n and decide to look at the degree of a node that appeared at time j= j(n)=

√n �.

In the context of exact probability calculation, we just use j and n, as they are both fixed num-
bers. In the context of asymptotics, it is preferable to use the notion jn to capture any dependence
therein between the index j and the age n.

Theorem 5.1. Let y= (j, r)= (jn, r) be the rth node in the canonical representation of the jnth seed
copy in the network. Suppose the two ends of the hook {1, 2} have degrees d1 and d2. At time n, the
average degree of y is

E

[
�

(r)
j,n

]
=

�
(
j+ ε0

ε0−1

)
�
(
n+ d1+d2+2ε0−2

2(ε0−1)

)
�
(
j+ d1+d2+2ε0−2

2(ε0−1)

)
�
(
n+ ε0

ε0−1

) dr .

Asymptotically, as n→ ∞, we have

E

[
�

(r)
j,n

]
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dr
�
(
j+ ε0

ε0−1

)
�
(
j+ d1+d2+2ε0−2

2(ε0−1)

) nd1+d2−2
2(ε0−1) , if jn =O(1);

dr
(
n
j

) d1+d2−2
2(ε0−1) , if jn → ∞.

Proof. The replacement matrix of the urn scheme associated with the local degree profile of the
node (j, r) is triangular of the type (1), with

X = d1IH + d2(1− IH)− 1, μ = d1 + d2
2

− 1, δ = ε0 − 1;

The scheme has the initial conditions

W0 = dr , Q0 = εj = (ε0 − 1)j+ ε0.

The exact average of �
(r)
j,n follows upon plugging these values in (3), and evaluating at time

m= n− j.
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The asymptotic equivalent follows from Stirling approximation of the ratio of gamma function
(see article 6.1.47 in Abramowitz & Stegun (1972)):

�(x+ a)
�(x+ b)

∼ xa−b, as x→ ∞.
�

Remark 5.1. Reference (Janson, 2006) deals only with urn schemes with fixed entries. Edge fusing
calls for urn schemes with random entries.

Remark 5.2. From the affine transformation ofWm in (2), we can quickly show that

Sm =
(m−1∏

i=0

Qi
Qi + μ

)
Wm

is a martingale. The top line in the chain of derivations (3) can be obtained from E[Sm]=E[S0].
The gamma asymptotics used in the proof of Theorem 5.1 also tell us (via the martingale con-
vergence theorem) that Wm/mμ/δ converges (as m→ ∞) almost surely and in L1 to “some”
limit.

Remark 5.3. Reference (Aguech, 2009) gives strong laws for a broader class of triangular urns, but
in less explicit terms. The entries of the replacement matrix in Aguech (2009) are bounded in L2,
and the author gets convergence almost surely. The strong convergences in Aguech (2009) are to
unknown limits that come out of the martingale convergence theorem, which is only an existential
statement that does not specify the limits. To guarantee tenability, the entries of the triangular urn
we are considering are uniformly bounded by δ. So, they are bounded in L2 and in the almost-sure
sense, as well. Results in Aguech (2009) apply.

5.1 Interpreting the phases in the local degree profile
Note that in Theorem 5.1 the power of n is less than 1—this can be seen from the fact that

d1 + d2 − 2<

|V|∑
r=1

dr − 2= 2ε0 − 2,

with K1 and K2 forbidden as seeds, the inequality is strict.
Theorem 5.1 portrays a spectrum covering all the nodes by time n. We can think of j as

jn = an+ h(n), with h(n)= o(n). In the very early sublinear phase in which j= jn =O(1), such
as the cases j= 5 or j= 13+ (−1)n, the average degree of the node (j, r) is of the form E

[
�

(r)
j,n

]
∼

cjn
d1+d2−2
2(ε0−1) , for a O(1) coefficient cj that depends on j and the seed parameters. Note that in the

instance jn = 13+ (−1)n, the coefficient cj oscillates.
In the later sublinear phase, we still have a= 0, and jn → ∞, such that jn = 0+ h(n)= o(n).

For instance jn may be �6 ln n+ π�, or ⌈4 n
ln n + 7

6 + 1
n
⌉
. In this phase, we have E

[
�

(r)
jn,n

]
∼

dr(n/h(n))
d1+d2−2
2(ε0−1) .

Next comes the linear phase, with a ∈ (0, 1). In this phase, we have

E

[
�

(r)
jn,n

]
∼ dr

(1
a

) d1+d2−2
2(ε0−1) . (4)

Finally, we reach the very late linear phase, with a= 1, such as the case jn = 
n− ln n� or jn =
n− 7. In this phase, we have E

[
�

(r)
jn,n

]
∼ dr . This is to be anticipated, since the edges incident with

these very late nodes compete with an overwhelming number of edges in the graph to be the latch,
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and by time n they have not had enough time to succeed. So, they retain the degree with which
they joined the network.

The index jn may have a complex dependence on n. For instance, one could conceive of the
choice jn = ann+ h(n), where the coefficient an is a function of n. This may lead to multiple
asymptotic subsequences of asymptotic equivalents, as for example the case an = 1

3 for even n, and
an = 2

3 for odd n. In such an instance, formula (4) is applicable with a alternating appropriately
with the parity of n.

5.2 The subclass with both ends of the hook having the same degree
With d1 �= d2, the underlying urn is unbalanced. As mentioned, an appeal to the known theory
of urns can only produce nonconstructive almost-sure convergence (to an unspecified limit vari-
able). In the case of d1 = d2, we can go further and develop a distributional result eliciting the
limit.

If both ends of the hook {1, 2} are of the same degree d1, the Pólya urn scheme is simplified to
a balanced scheme with a triangular deterministic replacement matrix, which is namely⎛

⎝α δ − α

0 δ

⎞
⎠ .

This is a well-studied urn and we can say much more beyond the average degree of a node.
This scheme has been analyzed in Flajolet et al. (2006), Janson (2006), and Zhang et al. (2015).
The exact moments have been characterized in Zhang et al. (2015). In this case, the moments of
the number of white balls afterm draws are given by

E

[
Wk

m

]
= αk〈

Q0
δ

〉
m

k∑
i=1

(−1)k−i
{
k
i

} 〈
W0
α

〉
i

〈
Q0 + iα

δ

〉
m
.

For an edge-hooking network, where the two ends of the hooking edge have the same degree
d1, we have a correspondence with an urn with

α = d1 − 1, δ = ε0 − 1.
The scheme has the initial conditions

W0 = dr , Q0 = εj = (ε0 − 1)j+ ε0,
and the degree of node (j, r) by time n is the number of white balls in the urn at time m= n− j.
The moments equation in Zhang et al. (2015) readily yields

E

[(
�

(r)
j,n

)k]= (d1 − 1)k〈
(ε0−1)j+ε0

ε0−1

〉
n−j

k∑
i=1

(−1)k−i
{
k
i

} 〈
dr

d1 − 1

〉
i

×
〈
(ε0 − 1)j+ ε0 + i(d1 − 1)

ε0 − 1

〉
n−j

.

The asymptotic moments are given in Flajolet et al. (2006) and Janson (2006), see also Zhang
et al. (2015). Translated to the urn associated with node degrees, as jn → ∞, such that jn = o(n),
we have

E

⎡
⎢⎣
⎛
⎝ �

(r)
jn,n

(n/jn)
d1−1
ε0−1

⎞
⎠

k
⎤
⎥⎦→ (

d1 − 1
)k�

(
k+ dr

d1−1

)
�
(

dr
d1−1

) .
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In this convergence relation, the right-hand side is the kth moment of the so-called
gamma-type distribution (Janson, 2010), which is uniquely determined by its moments. Hence,

�
(r)
jn,n/(n/jn)

d1−1
ε0−1 converges to the so-characterized gamma-type distribution.

The special case in which both ends of the hooking edge have the same degree covers, for
example, hooking regular graphs. As an instantiation, consider the graph obtained from triangles
by fusing edges. Here, we have ε0 = 3 and d1 − 1= 1, and we have the convergence

E

⎡
⎢⎣
⎛
⎝ �

(r)
jn,n

(n/jn)
1
2

⎞
⎠

k
⎤
⎥⎦→ �(k+ 2),

as jn → ∞, with jn = o(n). Note that the right-hand side of the above convergence relation is the
kth moment of a gamma (2, 1) random variable.

6. The core
Edges of the network fall in two categories. There are edges that are used as hooks and there are
other edges that are yet to be used in hooking. We call the edges fused in hooking operations
the core as they are “soldered” with other edges and their position is thicker and sturdier in the
network.

Let Cn be the size of the core (i.e., the number of edges in it) at age n. For example, the starred
edge in Figure 2 in G0 is not in the core of the network at time 0, but becomes in the core of G1.
We always have C0 = 0, C1 = 1, and randomness appears at age 2 and beyond. Note that when an
edge is selected as a latch and the seed is hooked, both orientations of the hooking give the same
number of edges in the core. If the edge (0, 1) and (0, 3) in G1 is the latch to produce G2, both
hooking orientations give C2 = 2.

We compute the exactmean and ultimately an asymptotic Gaussian distribution via Pólya urns.

6.1 Exact mean
Let Cn−1 be the event of picking a latch from the core of the graph Gn−1 for hooking, and let ICn−1
be its indicator. The size of the core increases (by 1) only if the latch chosen is not in the core. We
have a stochastic recurrence:

Cn = Cn−1 + 1− ICn−1 . (5)
From this relation, we can get the exact mean.

Theorem 6.1. Let Cn be the size of the core in an edge-hooking network of age n.We have

E[Cn]= 1+
n−1∑
i=1

〈i+ 1〉n−i〈
i+ ε0

ε0−1

〉
n−i

.

Proof. Let Fn be the sigma field generated by the first n hookings. The conditional expectation (on
Fn−1) arising from the stochastic recurrence (5) is

E[Cn | Fn−1]= Cn−1 + 1−E[ICn−1 | Fn−1]= Cn−1 + 1− Cn−1
εn−1

. (6)

Collecting similar terms and taking an iterated expectation, we get the unconditional
expectation

E[Cn]=
(
1− 1

εn−1

)
E[Cn−1]+ 1.
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This recurrence equation is of the standard linear form

yn = gnyn−1 + hn,

with solution

yn =
n∑

i=1
hi

n∏
j=i+1

gj + y0
n∏
j=1

gj.

In view of the initial condition C0 = 0, the solution for the average core size (for n≥ 1) is

E[Cn]=
n∑
i=1

n∏
j=i+1

εj−1 − 1
εj−1

,

with the interpretation of an empty product as 1. So, we have

E[Cn]= 1+
n−1∑
i=1

n∏
j=i+1

(ε0 − 1)(j− 1)+ ε0 − 1
(ε0 − 1)(j− 1)+ ε0

= 1+
n−1∑
i=1

n∏
j=i+1

j
j− 1+ ε0

ε0−1

= 1+
n−1∑
i=1

〈i+ 1〉n−i〈
i+ ε0

ε0−1

〉
n−i

.

�

6.2 Core asymptotics
We derive a strong law and an asymptotic Gaussian law for Cn via a connection to Bagchi–Pal urn
(Bagchi & Pal, 1985).

Theorem 6.2. Let Cn be the size of the core in an edge-hooking network of age n.We have

Cn
n

a.s.−→ ε0 − 1
ε0

,

and

Cn − ε0−1
ε0

n√
n

D−→ N
(
0,

(ε0 − 1)2

ε02(ε0 + 1)

)
.

Proof. Think of the edges in the graph as colored balls in an urn—edges in the core are white and
edges not in the core are blue. For the next graph, we choose an edge at random (pick an edge
(ball) at random from the urn). The chosen edge is the latch. If the latch is white, this edge has
already participated in hooking and is in the core. If we hook a copy of the seed at this latch, the
status of the latch does not change, and it remains in the core; however, we add ε0 − 1 fresh edges
that have not yet participated in any recruiting. Consequently, we leave the number of white balls
unchanged and add ε0 − 1 blue balls to the urn.

Alternatively, the latch is a blue edge that has not participated in hooking before. After hooking
the seed to the latch, the fused edge has now moved into the core, a new white edge at the expense
of an exiting blue edge, and ε0 − 1 blue edges come with the new seed, a net gain of ε0 − 2 blue
edges. The corresponding replacement matrix is
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⎛
⎝0 ε0 − 1

1 ε0 − 2

⎞
⎠ .

This is an instance of Bagchi–Pal urn, and the stated result follows from a well-developed theory.
The strong law has long been known (Athreya &Karlin, 1968), and a central limit theorem appears
in Bagchi & Pal (1985), see also Section of Mahmoud (2008). �
Remark 6.1. The standard urn theory specifies an asymptotic average but does not give an exact
value. We thought it is worth it to develop the exact average (cf. Theorem 6.1) as it can give us
sharper asymptotic approximation. For instance, if ε0 = 3, the exact average formula in Theorem
6.1 reduces to

E[Cn]= 2
3
n+ 1−

√
π �(n+ 1)
2 �

(
n+ 3

2
) ,

and n→ ∞, we have the approximation

E[Cn]= 2
3
n+ 1− 1

2

√
π

n
+ 3

16

√
π

n3
− 25

256

√
π

n5
+O

(√
1
n7

)
,

following from well-known approximations of the ratio of gamma function (see article 6.1.47 in
Abramowitz & Stegun (1972)).

7. Preferential hooking as an alternative model of randomness
So far, we have considered only a uniform model of randomness, in which all the edges of the
network Gn−1 are equally likely candidates to be the latch to progress into Gn. This model stems
from the notion of fairness and equal opportunity.

Under a uniform model, each of the two graphs G1 and G′
1 occurs with probability 1

6 × 1
2 = 1

12
(see Figure 2), continuing the stochastic path started fromG1, the edge {3, 4} has probability 1/11,
like any other edge in G1.

In the preferential attachment (hooking) model of randomness, priority is given to edges that
are used as latches. Themore an edge latches, the higher the probability is that it latches again. This
model reflects experience. In an economics setting, preferential hooking represents the Matthew
principle, according to which “the rich get richer,” also characterized as “success breeds success.”

To precisely describe this model, we introduce the notion of “thickness” of an edge. If the
network edges are physical objects such as electrical wires or pipes, fusing edges increases the
thickness of the resultant edge. We define the thickness of an edge as 1 plus the number of edges
fused with it (the number of times the edge is used for latching). Any edge starts out in G0 with
thickness 1, and its thickness may grow over time. Each fusing into the edge adds 1 to the thick-
ness. Let Tn−1(e) be the thickness of an edge e in the graphGn−1. In the preferential hooking model,
the probability that e is the latch for the next graph Gn is proportional to its thickness. So, if En is
the set of edges of Gn−1, the probability that e is the latch to build Gn is

Tn−1(e)∑
e′∈En−1

Tn−1(e′)
.

Note that the total thickness in the entire graph Gn is
∑

e′∈En Tn(e′)= ε0(n+ 1).
Under preferential hooking, all the edges of G0 have thickness 1; the graphs G1 and G′

1 still
occur with probability 1

12 (see Figure 2). The edge connecting (0, 3) and (0, 4) in G1 has twice as
much probability as any other edge in G1 to be the latch to build G2. Continuing the stochastic
path from G1, the edge joining (0, 3) to (0, 4) has probability 2/12, whereas any other edge in G1
has probability 1/12 to be the latch to build G2.
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7.1 The core under preferential hooking
Represent an edge with thickness t ≥ 2 inside the core with t white balls in an urn, and represent
an edge outside the core (of thickness 1) with one blue ball in the urn.

After n draws, let Wn be the number of white balls in the urn to be the latch to build Gn (i.e.,
the sum of thickness of all edges in the core) and Bn be the number of blue balls in the urn. In the
starting graph, all edges are not in the core—the starting urn has ε0 blue balls (edges) and none
white. If a white edge in Gn−1 is used as a latch, we increase its thickness by 1 (we add a white
ball, upgrading the edge thickness) and add ε0 − 1 noncore new edges coming from the added
seed copy (we add ε0 − 1 blue edges). Alternatively, if a blue edge in Gn−1 is used as a latch, we
increase its thickness by 1 (we add two white balls; the edge joins the core with thickness 2) and
add ε0 − 2 noncore new edges (we add ε0 − 1 blue edges coming from the seed, but we lose the
latch as noncore edge, accounting for an extra −1). The ball addition matrix is⎛

⎝1 ε0 − 1

2 ε0 − 2

⎞
⎠ .

This again is a Bagchi–Pal urn scheme (Bagchi & Pal, 1985). Note that the total number of balls in
the urn after n draws represents the sum of the thickness of all the edges in the graph Gn.

In the limit, we have

Wn − 2ε0
ε0+1 n√
n

D−→ N
(
0,

2ε0(ε0 − 1)
(ε0 + 1)2(ε0 + 2)

)
.

Let C̃n be the size of the core at age n. The number of blue balls is the number of edges outside
the core. So, the size of the core is

C̃n = εn − Bn = (ε0 − 1)n+ ε0 −
⎛
⎝∑

e∈En
Tn(e)−Wn

⎞
⎠ .

Hence, we have C̃n =Wn − n, satisfying the following central limit theorem.

Theorem 7.1. In an edge-hooking network grown under preferential hooking, let C̃n be the size of
the core at age n.We have

C̃n
n

a.s.−→ ε0(ε0 − 1)
ε0 + 1

,

and

C̃n − ε0(ε0−1)
ε0+1 n√
n

D−→ N
(
0,

ε0 − 1
ε02(ε0 + 1)

)
.
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Notes
1 Reproduced from Akter, S., Yamamoto, Y., Zope, R. and Baruah, T. (2021). Static dipole polarizabilities of poly-
acenes using self-interaction-corrected density functional approximations. Journal of Chemical Physics 154, 114305,
https://doi.org/10.1063/5.0041265, with the permission of AIP Publishing.

2 The graph Kn is the complete graph on n vertices in which any two vertices are joined by an edge. This graph has
( n
2

)
edges.
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