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Abstract

In this paper, we explore the use of an extensive list of Archimedean copulas in general and life insur-
ance modelling. We consider not only the usual choices like the Clayton, Gumbel-Hougaard, and Frank
copulas but also several others which have not drawn much attention in previous applications. First, we
apply different copula functions to two general insurance data sets, co-modelling losses and allocated loss
adjustment expenses, and also losses to building and contents. Second, we adopt these copulas for mod-
elling the mortality trends of two neighbouring countries and calculate the market price of a mortality
bond. Our results clearly show that the diversity of Archimedean copula structures gives much flexibility
for modelling different kinds of data sets and that the copula and tail dependence assumption can have
a significant impact on pricing and valuation. Moreover, we conduct a large simulation exercise to inves-
tigate further the caveats in copula selection. Finally, we examine a number of other estimation methods
which have not been tested in previous insurance applications.

Keywords: Archimedean copulas; Tail dependence; Losses and allocated loss adjustment expenses; Multi-population

mortality modelling; Mortality bond; Estimation methods; Empirical copulas

1. Introduction

Archimedean copulas are well known for their flexibility in modelling dependence within multi-
variate random variables. They are very useful tools for assessing various insurance and financial
tail risks. In the actuarial literature, their earliest applications can be traced back to about two
decades ago. Frees & Valdez (1998), Klugman & Parsa (1999), Venter (2002), Denuit et al. (2006),
and Staudt (2010) explored the use of the Clayton, Gumbel-Hougaard, and Frank copulas in mod-
elling losses and loss adjustment expenses. Sun et al. (2008) used a few Archimedean copulas to
model the dependencies over time of nursing home utilisation. Zhao & Zhou (2010) adopted the
Clayton copula for the dependency structure between the event times and delays in loss reserving.
Shi & Frees (2010) tested three Archimedean copulas to accommodate the temporal dependence
of insurance company expenses. Savelli & Clemente (2011) applied hierarchical Archimedean
copulas to calculate capital requirements. Erhardt & Czado (2012) involved the Clayton and
Gumbel-Hougaard copulas in modelling dependent yearly claim totals in private health insur-
ance. Zhao & Zhou (2012a, 2012b) used the Clayton copula to cater for the time dependence in the
claim counts and the relationship between the sojourn and its medical costs, respectively. Zhang &
Dukic (2013) introduced a Bayesian copula model for coping with several lines of businesses. Shi
& Valdez (2014) incorporated the Gumbel-Hougaard copula when co-modelling different claim
types. Pesta & Okhrin (2014) associated consecutive development years in a run-off triangle via
Archimedean copulas. Peters et al. (2014) integrated the Clayton, Gumbel-Hougaard, and Frank
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copulas into Bayesian modelling of payment and incurred loss data. Shi et al. (2015) also used
these copulas to model the frequency and severity of motor claims jointly. Abdallah et al. (2015)
treated two lines of business as associated by the Clayton and Gumbel-Hougaard copulas. Eling &
Jung (2018) tested a few Archimedean copulas on modelling the cross-industry and cross-breach
type structures for monthly cyber losses.

Besides general and health insurance as above, there are also some applications in the area
of life insurance. Frees et al. (1996) and Carriere (2000) adopted the Frank copula for valuing
joint and last-survivor annuities and co-modelling the time of deaths of coupled lives, respec-
tively. Spreeuw (2006) used a number of Archimedean copulas to analyse the time dependence
between the lifetimes of a couple. Gaillardetz & Lin (2006) linked the financial and insurance mar-
ket information by the Clayton copula. Kaishev et al. (2007) used the Frank copula to model the
dependences among causes of death. Luciano et al. (2008) and Gourieroux & Lu (2015) associated
the survival times of a couple by Archimedean copulas. Wang et al. (2015) proposed a dynamic
copula approach with the Clayton and Gumbel-Hougaard copulas to co-model the mortality of
four countries. Li & Lu (2019) applied hierarchical Archimedean copulas to model cause-specific
mortality data.

Despite the rich variety of these applications, almost all the work mentioned above used the
Clayton, Gumbel-Hougaard, Frank, and Joe copulas only. A few exceptions were Spreeuw (2006),
Luciano et al. (2008), and Gourieroux & Lu (2015), who tested briefly a few other options. In
fact, there is a long list of Archimedean copulas, many of which have not drawn much attention
hitherto but may suit different purposes and data sets. In this paper, we explore the usefulness
of this extensive list of copulas by applying them to a general insurance problem as well as to
a life insurance problem. In particular, we compare the results from using 13 different strict
Archimedean copulas (Nelsen, 1999), as well as some of their rotated versions. First, we apply
the copula functions to two general insurance data sets. The first one consists of losses and allo-
cated loss adjustment expenses, and the second one contains losses to building and contents. It
is common for non-life claims processes to involve a pair of associated variables, and it is impor-
tant to find a suitable bivariate model for capturing the dependency structure. To our knowledge,
this work represents the first attempt to apply the rotated versions of Archimedean copulas in
insurance applications.

Second, we use the copulas for modelling the mortality trends of two neighbouring countries
jointly and calculate the market price of a mortality bond. Multi-population mortality modelling
has recently gained much interest from academics and practitioners (e.g. Villegas ef al., 2017; Li
et al., 2018). A few recent papers further allowed for mortality co-movements in extreme events
(e.g. Chen et al., 2015, 2017). As the prevailing mortality bonds have their payments dependent
on a weighted mortality index between multiple countries, we investigate the effect of using dif-
ferent copulas on pricing such a mortality bond structure. Furthermore, we conduct a large-scale
simulation exercise to investigate the significance of copula selection. In particular, by simulating
random samples from each copula in turn and then fitting different copulas to the simulated sam-
ples, we study the effect of the sample size and the level of dependence on the statistical tests and
the resulting choice. Finally, we compare the performances between a number of less commonly
used estimation methods (matching Blomqvist’s beta, maximum likelihood based on the diagonal
of a copula, and minimum distance estimators) and the usual methods like maximum likelihood
and matching Kendall’s tau. In addition, we test a non-parametric estimator for Archimedean
copulas, as well as two empirical copulas (empirical beta copula and empirical checkerboard cop-
ula) for comparison. Note that we will focus on the two-dimensional case in this paper, while
many of the implications here can readily be extended to the multi-dimensional cases.

The rest of the paper is organised as follows. Section 2 introduces the Archimedean copulas
selected and their basic properties. Section 3 gives the fitting results on the two general insurance
data sets. Section 4 provides an analysis on mortality dependence modelling and mortality bond
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pricing. Section 5 presents the simulation results and their implications. Section 6 compares the
results from different estimation methods. Section 7 concludes.

2. Archimedean Copulas

Archimedean copulas are a group of copulas that share certain fundamental characteristics. There
are a variety of options for modelling the dependency structure. For the bivariate case, considering
two associated random variables X; and X, with distribution functions F; and F, they have the
basic form (e.g. Nelsen, 1999)

Cluy, u2) = ¢~ Hp(u1) + ¢(u2))

in which u; = Fi(x1), us = F2(x3), and ¢ is a function called generator with inverse ¢~!. Each
type of Archimedean copula has a unique form of ¢. When ¢ is continuous, convex, and strictly
decreasing with ¢(0) = oo and ¢(1) =0, C is a strict Archimedean copula. Table 1 presents a list
of 13 strict one-parameter Archimedean copulas that are considered in this paper. In particular,
copulas 1, 3, 4, 5, 6, and 9 belong to the Clayton, Ali-Mikhail-Haq, Gumbel-Hougaard, Frank, Joe,
and Gumbel-Barnett families, respectively. Table 2 provides the formulae of Kendall’s tau!, upper
tail dependence (A7)?, and lower tail dependence (11)? that we have derived for the copulas. The
parameter 6 can be estimated from the sample tau or maximum likelihood, the latter of which
is used here (see Section 6 for more estimation methods). The copula density function can be
derived as
2
c(ur, uz) = EIET Clu1, uz)

based on which the log-likelihood function can be evaluated.

It is interesting to notice the different features that these copulas possess. Seven of them have
a positive (or zero for some) tau, two of them have a negative (or zero) tau, and the rest can
have a positive or negative (or zero) tau. Copulas 1, 19, and 20 have lower tail dependence only,
copulas 4 and 6 have upper tail dependence only, copulas 12 and 14 have both upper and lower tail
dependence, while the others have neither. This variety of combinations offers a lot of flexibility
for modelling dependence in insurance and financial risks.

To identify the most optimal copula for modelling the dependency structure of a particular
data set of size n, we use the test statistic (Guégan & Ladoucette, 2004) below:

n

. A 2
Z (Pr(X1 <x1, X2 <x2;) — Cluyj, uaj))
=1

which is the total squared differences* between the empirical bivariate distribution function
(denoted as ~) and the fitted bivariate distribution function C. The copula which gives the

I Kendall’s tau is defined as v = Pr ((X; — X»)(Y; — Y3) > 0) — Pr ((X; — X»)(Y; — Y3) < 0) for two related random
variables X and Y with random samples (X;, Y;) and (X3, Y2). This measure of association is invariant under strictly
increasing linear or non-linear transformations of X and Y. For an Archimedean copula, it can be derived from 7 =

1
1+4 [y o(t)/¢' (t)dt.

2 Upper tail dependence is defined as Ay = lim %
u—1

) It refers to the association in the upper-right-quadrant tail.

There is upper tail dependence when 0 < Ay < 1 and no upper tail dependence when Ay =0.
3 Lower tail dependence is defined as A, = lin% Cwt) 1t refers to the association in the lower-left-quadrant tail. There is
u—

u
lower tail dependence when 0 < Ay <1 and no lower tail dependence when A1, = 0.

4The overall test statistic used here may be seen as a discrete, bivariate version of the Cramér-von Mises test statistic.
We choose to use it because of the limited sizes of our data. While it is difficult to find its limiting distribution theoretically,
one may perform Monte Carlo simulations to generate a distribution of the statistic and estimate the critical values.
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Table 1. Bivariate Archimedean copulas.

No Cluy, uz) Range of 6 o(t)
1 “max ((uy +u =)~ e ,0) 6>0 ﬁ;%l
1-6(1-t)
S = ) l”tﬁu w o Ti=e<r o ()
4 (( tn )’ +(~tn )’y 6>1 (—1In t)
5 ~Lin (+%) —00 <9 <00 _ln(j‘ 11)
6 1—((1—w)? +(1—uz)9 (1-u) (l—Uz) )1/9 9>1 ln(l—(l—t))
9 uyuze ~6lnusnu, O<9<1 In(1-61Int)
10 # 0<f6<1 n @t~ —1)
o (1+(2u1 —1)@u;” 71)) v v v v v
12 L+ (=1 + (uy — 1)) 0>1 (-1
13 e1 (- '““1)9 (1-tnw2) *1)/ 0>0 Q-ntf -1
14 <1 + (M - 1y + (U S 1)9)1/9) 6>1 (t10 — 1)f
(@) D@\ O +0—1
2] 0/t 0
19 In (ef/u1 4-e/u2 —ef) 0= e’lt—e
20 (In (e’ e’ —e)~1/0 0>0 et _e

Note: Copulas 1, 3, 4, 5, 6, and 9 are the Clayton, Ali-Mikhail-Hagq, Gumbel-Hougaard, Frank, Joe, and Gumbel-Barnett copulas, respec-
tively. Copulas 1, 3, 5, 9, 10, and 20 are equivalent to the product copula when 6 = 0. Copulas 4, 6, and 13 produce the product copula
when 6 = 1. Copula 17 becomes the product copula when 6 = —1. The copula numbers are those used by Nelsen (1999).

smallest test statistic value would be chosen over the other candidates. Note that this overall test
covers the entire plane of the two random variables. To supplement the analysis and put more
focus on tail risks, we also compute the likelihood ratio test statistic (Kupiec, 1995):

2(ln@E"A-p"™) —In@"(1—p)""™)

in which p="Pr (X; > Ff 1-y)X > F;l(l — y)) has empirical estimate p = m/n, where m
is the observed number of data points falling in the 100y % upper-right-quadrant region, and
p is calculated from the fitted copula. A smaller test statistic Value is preferred, and the (one-
sided) critical value can be taken as the 95th percentile of the x; distribution (3.84). Surprisingly,
testing of the tail performance, which is a major strength of copula modelling, has typically been
omitted in previous actuarial applications. Strictly speaking, tail dependence is a limiting property
which cannot be tested for a finite data set. But the likelihood ratio test provides a practical and
convenient way to assess how close a copula models the association in the tail. Note also that when
the null hypothesis is not rejected, the fitted copula can be regarded as giving a good description
of the shape and extent of association, but it does not mean that the copula is necessarily a true
representation of the underlying relationship. For other overall goodness-of-fit tests for copulas,
see Genest et al. (2009).

3. Modelling Bivariate Claims in General Insurance

The first data set contains 1,500 general liability claims, which were previously studied by Frees
& Valdez (1998), Klugman & Parsa (1999), and Denuit et al. (2006). Each claim has an indemnity
payment and an allocated loss adjustment expense. The policy limits are recorded for the majority
of the claims, in which 34 claim payments are censored from above. For the 148 claims with no
recording of the policy limit, it is simply assumed that the policy limit does not exist. Figure 1 plots
the log payments against the log expenses, and also the corresponding copula data from their
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Table 2. Kendall’s tau, upper tail dependence, and lower tail dependence.

No T Range of t Au AL
L eiz O0<r=l 0 2718
3 = Zw —0182<t<1/3 0 0
D 1_1 S B

1——[0 pa 1dt) —1<7r<1 0 0

5 1-
6 1+4% fo Wdt 0<t<1 7=l 0
9 l——fot(l—Hlnt)ln(l—Glnt)dt —0361<7<0 0 0
10 1+ 2 f5t(t —2) n(2t? —1)dt —0.182<Tt 56 0 0
13 1——f0t(1—lnt)(l—(l—lnt) 9)dt —036l<7<1 0 0

‘..1.4””.. . , 1+2.29 b - . §§r§l . 2_ 21/9 - 05
17 -4 (1+t)(1 —(1+8)In (M)dt —0611<7<1 0 0
19 177f t2(1 e(’(l‘")d ler<a 0 1
20 1— 4 (1401 —el=t")dt 0<t<1 0 1

Note: The copula numbers are those used by Nelsen (1999).

10
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log expenses
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=
g
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Figure 1. Payments versus expenses in logarithmic scale (left) and copula data (right).

empirical distribution functions. There is a clear positive relationship (left graph) between the
two quantities (T = 0.31), especially in the upper-right-quadrant tail, which can be modelled by a
suitable copula structure. Note that for those censored claims, the contribution to the likelihood
function has to be adjusted as 1 — 8372(3(»11, uy) (e.g. Frees & Valdez, 1998), in which u; refers
to the censored payments. It also appears that (right graph) the two variables are exchangeable,
that is, the dependency structure is symmetric between the two arguments in the copula function.
A Cramér-von Mises type test (Genest et al., 2012) shows that the null hypothesis of symmetry
cannot be rejected at 5% significance level. Hence, Archimedean copulas, which are symmetric by
nature, are suitable candidates for modelling the losses.
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Table 3. Fitting results of bivariate Archimedean copulas on censored general liability claims.

Original 180° Rotated
Overall test Likelihood ratio Likelihood ratio Overall test Likelihood ratio Likelihood ratio
No statistic* test* y =0.1 testt y =0.1 statistic* test* y =0.1 testt y =0.1
1 1.43 (10) 38.77 (10) 65.54 (10) 0.18 (5) 2.84 (4) 0.04 (1)
3 0.93(7) 27.76 (9) 50.20 (9) 0.10 (4) 5.42 (5) 0.75 (3)
9 3.94 (12) 63.22 (12) 98.40 (12) 3.94 (12) 63.26 (12) 98.45 (12)
| i3 ' ‘0.72 (S) ' 18"34'(7)- - 36‘.57‘(7v)‘ - 0.20‘(6)‘ o v0.2|;2 (1) R 1.42 (‘4)v
14 0.90 (6) 1.53 (2) 8.13 (3) 0.10 (3) 8.30 (9) 2.08(7)
| 20 v i.88 (il) - '45.'64 v(ll‘) - 74;91 (ll) - 0.46‘(9)‘ o v1.3v4 (2) R 0.12 (2)

Claim Payments Associated Expenses

900 | 1400
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300 1400
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o AN - -, —

Figure 2. Histograms of claim payments and associated expenses.

Under Sklar’s (1959) theorem, if the marginal distribution functions are continuous, there
exists a unique copula that links the marginal distribution functions to form the correspond-
ing joint distribution function. It implicitly allows a separate consideration between selecting
the marginal distributions and choosing the dependency structure. Accordingly, we first examine
the marginal distributions. Figure 2 shows two histograms of the claim payments and associated
expenses. Both distributions appear to be heavily skewed to the right. We then test the suitability
of the gamma, Weibull, lognormal, Pareto, and Burr distributions on each of the two components.
The lognormal and Burr distributions are selected, respectively, for the payments and expenses,
based on the results from the chi-square test.

Using the two tests in Section 2 together can give a better insight into how well a copula can
describe the overall association as well as the level of dependence in the right tails between the two
related quantities. As the data are censored, however, the tests cannot be conducted precisely. For
the 34 censored claims, 22 of their claim payments (i.e. policy limits) are close to or more than the
estimated 90th percentile, while the others have their associated expenses below the corresponding
90th percentile. As an approximation, we assume that the underlying losses of all these 22 cases
are above the 90th percentile and apply the likelihood ratio test at y = 0.1 (noted as 4 in Table 3).
For comparison, we also exclude the 34 censored claims and conduct the two tests (noted as *).
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Table 4. Estimated expected shortfall of total claim amounts under selected copulas.

Percentile (in millions)

Copula 75th 90th 95th 99th 99.5th 99.9th
4 0.19 0.36 0.56 1.40 2.00 4.30
1(rotated) [ 019 [ 037 [ 057 [ 146 [ 212 T 493
3 (rotated) 0.19 0.37 0.57 1.38 1.94 4.02
ZO(rOtated) 019 037 057 145 209 461
..Ga..u;s.ié.n. LR 019 [ 036 [ 055 R 134 [ 192 e 409 .

Furthermore, we invert all the copulas by 180° (i.e. ¢(1 — w1, 1 — uy), the so-called survivor copula)
and examine their performance as well. Any lower (upper) tail dependence property will then
become upper (lower) tail dependence after rotation.

The fitting results of the general liability claims are shown in Table 3. Under each test, the rank-
ings are stated in parentheses, and the best three options are made bold. It is clear that copulas 4
and 6, which both have upper tail dependence, outperform all the others in terms of both the
whole data range (2nd column) and the upper-right-quadrant tail (3rd and 4th columns). In fact,
the null hypothesis is rejected at 5% significance level for all the other copulas under the likeli-
hood ratio test. The results of the 180° rotated versions (5th to 7th columns) are relatively more
dispersed. It appears that copulas 1, 3, and 20 produce a reasonable fit both overall and in the right
tails, and their performance is largely comparable to those of the two non-rotated copulas selected
above. It is interesting to note that while copulas 1 and 20 have upper tail dependence after rota-
tion, copula 3 does not have tail dependence, which is reflected in its lower performance in the
right tails when compared to the other chosen models. Note also that although copulas 12, 14, and
19 fit the uncensored claims reasonably well overall, they are not the best choices for modelling the
association in the largest claims, as shown by the likelihood ratio test statistics. Furthermore, con-
sidering the possible ranges of tau, we also test the 90° and 270° rotated versions (i.e. c(1 — uy, uz)
and c(u1, 1 — up), respectively) of copulas 9 and 10, but we find that their fitting performance (not
shown here) turns out to be worse than many of those in Table 3.

In general insurance pricing, valuation, and capital assessment, it is very important to measure
the magnitude of tail events adequately. We use each of the fitted copulas selected above (and
also the Gaussian copula for comparison) to simulate one million scenarios, and compute the
expected shortfall (conditional value-at-risk) as the sample mean of those simulated total claim
amounts which exceed a certain percentile. Table 4 shows that our estimates of expected shortfall
are very close between the selected copulas at the 95th and lower percentiles. The differences
become more obvious starting from the 99th percentile. The rotated copulas 1 and 20 give the
largest estimates, followed by copulas 4 and 6, in which all these four copulas possess upper tail
dependence. By contrast, the rotated copula 3 and the Gaussian copula, without tail dependence,
produce smaller estimates, the significance of which increases sharply with the percentile level.
It is clear that the tail dependence property plays a significant role in assessing extreme events
and should be a major consideration in copula fitting. Using copulas without any tail dependence
runs the risk of a serious underestimation of the capital requirement for an insurer. Regarding
the final choice between the four copulas (4, 6, rotated 1, and rotated 20), the decision may not
be straightforward under the data constraints (e.g. censoring issues, no recording of the policy
limit for some claims). Additional data fields may need to be collected in order to make a better
differentiation; or else an actuarial judgement has to be made on how conservative the estimation
should be, depending on the purpose of the analysis.

We now turn to our second data set which comprises 2,167 Danish fire insurance claims (col-
lected from R package “fitdistrplus”), which was used earlier by Haug et al. (2011). Each claim
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Figure 3. Losses to building versus losses to contents in logarithmic scale (left) and copula data (right).

Building Contents

180 180

160 160

140 140

120 120

100 100

80 80

60 60

40 40

¥ ¥

_g | _ _g I* _

Figure 4. Histograms of losses to building and contents.

has a loss amount to building and a loss amount to contents. The claims are recorded only for
those cases with the sum of losses to building and contents and profits being at least 1 million
Danish Kroner (DK). To avoid the potential negative dependence between the items induced by
this restriction, we model only the 301 claims which have both the losses to building and con-
tents each greater than or equal to 1 million DK. Figure 3 displays these losses to building and
contents on a logarithmic scale. Some positive dependence (left graph) between the two amounts
can be identified (T =0.21). It also shows that (right graph) the two variables are exchangeable,
in which the null hypothesis of symmetry is not rejected at 5% significance level. Figure 4 illus-
trates two histograms of the losses to building and contents, which show heavy right skewness.
Since the selected data are truncated from below, we deduce the conditional marginal densities as
fi(x1)/(1 — F1(1)) and f2(x2)/(1 — F»(1)), and the conditional joint distribution function as

F(xlz- x2) - F(Xl, 1) - F(l’ x2) +F(1) 1)
1—F (1) — F(1) + F(1,1)

in which f; and f, are the (unconditional) marginal densities and F is the (unconditional) bivari-
ate distribution function for the losses in millions of DK. The copula density functions and the
test statistics are adjusted accordingly. Based on the chi-square test, the lognormal and Pareto
distributions are chosen for the losses to building and contents, respectively.

Table 5 provides the fitting results of the fire insurance claims. To examine the goodness of fit
in the right tails, three cases of y =0.01, y = 0.1, and y = 0.25 are considered. It can be seen that

PrX; <x1,X <)X, X, > 1) =
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Table 5. Fitting results of bivariate Archimedean copulas on truncated fire insurance claims.

Original 180° Rotated

Overall Likelihood Likelihood Likelihood Overall Likelihood Likelihood Likelihood

test ratio test ratio test ratio test test ratio test ratio test ratio test

No statistic y =0.01 y=0.1 y =0.25 statistic y =0.01 y=0.1 y =0.25
1 0.75 (10) 157 (8) 1.09 (8) 117(6) 0.74 (6) 0.44 (3) 0.93 (7) 1.88(3)
5 . 070(9) v.2 04 (11) 384(11)”.'. . o 05 (1) ”o 0 (13). 048 (4) 066 (é)v R 5479 .

4 0.58 (4) 0.52(3) 0.36 (4) 0.75 (5) 0.72 (5) 0.10 (2) 0.09 (2) 2.79 (5)
5 ..094(13)... ”123‘(5)””“”029(3)“” ‘239(11)m”094(11)””“>‘1>,‘28>(‘7‘)mm 029(3) 239(4)..
; . 050(3)....076()......050().....044(3) ....071(4) 168(3)153(8)067(1)
. v.vo o (1)” v.3 603 .17 0 (13)”.,. v14 o4 (13) ,.0 » (2). 281(9) 11 16 (9) R 5750 .
10 0.26 (2) 2.81(12) 11.16 (12) 5.75(12) 0.26 (1) 2.85(10) 11.29 (10) 5.82 (10)
13 . b,.gz.l(l.l)” — 132(5j R 039( ) R 212(9) — 036(7) — 'o,.o'o'(i')' — 053(4) R 332(7) .
14 067(5) .020(2),”.,.'.017(2).,., Lo2 (1) v.v,.092(9).,.v.,.vé;gv(.li),.v.v.,1351(11)”,” 1825(11)
17 0.90 (12) 1.38 (7) 0.47 (6) 217(10)  0.98(12) 1.09 (6) 0.06 (1) 2.88 (6)
19 . 058(7)‘ .178(10)...... .205(10)..... 037(2) .092(10).......334(13).......1351(13).. 1825(12)..
20  068(8)  176(9)  196(9)  044(4)  0.67(3)  067(5  065(5  111(2)

the results are less clear-cut than those in Table 3, probably due to the much smaller sized data set
after truncation. Under the overall test (2nd column), copulas 9 and 10 lead to the best fit, but their
performances in the tails (3rd to 5th columns) are poor and many of the cases are rejected. In fact,
their parameter estimates are close to zero, which refer to the product copula with independent
marginals. This implication is clearly not supported by the plots in Figure 3. By contrast, copulas
4, 6, 12, and 14, which possess upper tail dependence, seem to provide a good description of both
the overall data range and the tails. In particular, copulas 4 and 6 perform better at y = 0.25, while
copulas 12 and 14 perform better in the extreme tails. For the 180° rotated versions (6th to 9th
columns), copulas 1 and 20, which have upper tail dependence after rotation, seem to produce a
good fit. Interestingly, the rotated copulas 4 and 13 also give some comparable results, but they do
not have upper tail dependence.

Table 6 presents our estimates of expected shortfall for the total losses. Again, the differences
between the selected copulas are more obvious at the 99th and higher percentiles. Copula 4 clearly
generates the largest estimates. The next largest ones are produced by copulas 6, 14, and the rotated
copulas 1 and 20, the results of which are very similar. All these copulas have upper tail depen-
dence, though, interestingly, copula 12 yields smaller estimates. On the other hand, the rotated
copulas 4 and 13, and the Gaussian copula, having no upper tail dependence, produce much
smaller estimates. These results highlight once more the importance of tail dependence in the
allowance for tail risks. Note that the small size of the truncated data here limits the scope of our
investigation. Nevertheless, it is quite reassuring to realise that as long as the focus is on tail events
and the chosen copulas have upper tail dependence, the resulting tail estimates tend to be fairly
consistent with one another.

4. Modelling Mortality Dependence and Pricing Mortality Bonds

We have obtained the mortality data of England and Wales, Netherlands, Norway, and Sweden
from the Human Mortality Database (HMD, 2018) for the period of 1900 to 2014. Figure 5 plots

the log mortality indices (In qgi)) of these four regions. There are obviously some extreme mor-
tality co-movements caused by epidemics and wars before 1950. Since a mortality or catastrophe
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Table 6. Estimated expected shortfall of total losses under selected copulas.

Percentile (in millions)

Copula 75th 90th 95th 99th 99.5th 99.9th
4 17.81 32.26 50.15 141.84 224.32 661.39
6 17.42 31.43 48.70 135.90 212.99 608.67
12 17.66 31.43 47.96 129.09 199.84 554.23
14 17.96 32.17 49.41 136.06 212.77 610.58
1 (rotated) 17.62 31.85 49.27 136.32 213.20 611.98
4 (rotated) 18.08 32.35 49.45 133.92 208.61 596.68
13 (rotated) 17.40 30.95 46.94 122.59 186.05 494.18
20 (rotated) 17.56 31.71 49.11 136.85 214.43 613.69
Gaussian 17.92 32.16 49.11 130.10 198.83 536.02
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Figure 5. Log mortality indices.

bond typically has its payments dependent on a weighted mortality index between pre-specified
populations (e.g. Swiss Re’s catastrophe bonds), an allowance for such mortality co-movements
in extreme events should be made adequately. Otherwise, the potential impact would be under-

stated, and the bond’s premium would then be underestimated. Suppose qgl) is the mortality rate
or index in year t of population i for the entire age range. Figure 6 illustrates the sample auto-
correlations of A In qu) and (A In qu))z_ The significant patterns shown in the graphs call for time
series modelling with a suitably chosen ARIMA-GARCH process.

As in the previous section, we consider the marginal distributions and the dependency struc-
ture separately. We first use the ARIMA-GARCH process to remove the autocorrelations and
conditional heteroskedasticity from each region’s mortality trend over time, and then model

their innovations by various Archimedean copulas. The ARIMA(p, 1,q)-GARCH(m, s) process
for In q” is taken as (e.g. Tsay, 2002)

p q
Aln qﬁ’) =¢o + Z ¢;jAln qﬁ’lj + Z @jar—j + ar

j=1 j=1
m S
2 2 2
a; = 06y of =ag+ Z oja;_; + Z ﬁjot_j
j=1 j=1
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Figure 6. Sample autocorrelations of A In qi’l) and (A ln q(ti))z.
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Table 7. Selected time series processes and probability distributions.

Population Time series process Probability distribution

England and Wales ARIMA(0,1,1)-GARCH(1,1) Normal
CNetheronge AR|MA(112)GARCH(1,1) e R
CNorway  ARIMAQLO)}GARCH(LO)  Skewedstudent

Sweden ARIMA(0,1,1)-GARCH(1,1) Skewed student

where ¢;’s are the autoregressive parameters, ¢;’s are the moving-average parameters, a; is the
innovation, oy is the time-varying volatility with its parameters «j and B;, and ¢;’s are independent
and identically distributed across time with mean zero and variance equal to one.

Table 7 lists the selected orders for each population based on the Akaike information crite-
rion (AIC), Bayesian information criterion (BIC), and parameter significance’. Figure 7 shows
the sample autocorrelations of the standardised residuals from the fitted processes. The previous
significant residual patterns are largely removed. Table 7 also gives the selected distributions based
on the chi-square test. We consider three probability distributions including the normal, Student
t, and skewed Student distributions (e.g. Fernandez & Steel, 1998). The normal distribution is the
preferred option for England and Wales and Netherlands, and the skewed Student distribution is
the preferred one for Norway and Sweden.

Table 8 presents the results of fitting the 13 Archimedean copulas to two pairs of the popu-
lations under study (Zpgw,NLD = 0.44 and TNor swE = 0.44). The relative performances between
the copulas are more consistent than those in Table 5. For the likelihood ratio test, the rank-
ings are mostly in line between y = 0.05 and y = 0.1. However, there are some small differences
between these rankings and those under the total squared differences test, which suggest that
the best overall-fitting copula is not necessarily the best tail-fitting copula. Between England and
Wales and Netherlands, the best overall-fitting one is copula 5, but its rankings are 5th and 2nd
in the likelihood ratio tests. Similarly, between Norway and Sweden, the best overall-fitting one is
copula 14, with its rankings being only 9th and 8th in the likelihood ratio tests. The final choice
depends on the purpose of the modelling - since we will use the fitted models to price a mortality
bond and incorporate extreme risks, we would need to strike a balance between different aspects
of the fitting performance. In general, for England and Wales and Netherlands, the optimal choice
appears to be copula 14, since its performance is excellent in the tails (2nd and 1st), while provid-
ing a reasonable overall fit (4th). For Norway and Sweden, the optimal choice appears to be copula
17 (followed probably by copulas 5 and 13), which shows good performance (2nd) in all the tests.
Note that copula 14 has upper tail dependence while copula 17 does not. These choices reflect the
severity of historical simultaneous mortality jumps of the two pairs of populations. By contrast,
copulas 9, 10, and 20 are clearly not suitable for modelling the mortality data here. Particularly,
copulas 9 and 10 are rejected in six of the eight likelihood ratio tests. Overall, it is obvious that dif-
ferent copulas with varying characteristics would be suitable for dealing with different countries’
data. Though being commonly used in the actuarial literature, the Clayton, Gumbel-Hougaard,
and Frank copulas are indeed not the only feasible choices for mortality dependence modelling.
(Note that the null hypothesis of symmetry is not rejected at 5% significance level for both pairs
of countries).

We now adopt the selected models from above and consider a mortality bond structure in line
with those issued by the Vita programme of Swiss Re. Suppose the combined mortality index

(CMI) of the bond is specified as g; = (qu) + qgk)) /2 for two regions i and k with an equal weight

5 The AIC and BIC are defined as —21 + 2np and 20+ np In (ng), respectively, where Tis the computed maximum log-
likelihood, 7, is the number of estimated parameters, and n4 is the number of data points. The significance of each parameter
can be examined by using the ¢-test with the null hypothesis that the true parameter value is zero.
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Figure 7. Sample autocorrelations of standardised residuals.
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Table 8. Fitting results of bivariate Archimedean copulas for neighbouring countries.

England and Wales - Netherlands Norway - Sweden
Overalltest Likelihood ratio  Likelihood ratio  Overalltest Likelihood ratio  Likelihood ratio
No statistic test y =0.05 testy =0.1 statistic test y =0.05 testy =0.1
1 0.30 (10) 2.60 (10) 1.79 (10) 0.08 (7) 0.29 (5) 0.34 (5)
3 0.29 (9) 2.49 (9) 1.66 (9) 0.10 (9) 0.34(7) 0.43 (7)
| .5” I 010 (1) S 060(5) e ”o.,(v).z”(i)” — 004 (3) R 001(1) e 013(4) -
e - v(.);25v(7),. vo'.1v4'(3)” B (5;33 (,5.) B 011(10) 2,‘.11(1.2)” - v.2;39(1,2.)
9 0.83 (12) 4.45 (12) 4.50 (12) 0.58 (12) 1.11(10) 2.18 (11)
| 12 . 020 (6) s 053(4) e 025(4) R 004(5) R 016(4) e 013(3) -
13 017(5)  132(7)  046(7)  004(4)  0.03(3)  0.00(1)
14 0.17 (4) 0.12 (2) 0.02 (1) 0.04 (1) 0.57 (9) 0.54 (8)
| 19 . 026(3) R 237(8) R 151(8) R 009(8) R 033(6) e 041(6) -
20 040(11)  317(1)  256(11)  013(11)  049(8)  073(9)

Table 9. Estimated spreads for a mortality bond based on two neighbouring countries.

1.10 base level-1.15 base level 1.15 base level-1.20 base level
England and England and
Copula Choice  Wales - Netherlands ~ Norway - Sweden ~ Wales - Netherlands ~ Norway - Sweden
14/17 271bp 99 bp 124 bp 33bp

of 0.5. Let a be the attachment point and b be the detachment point of the bond, with a term of T
years. The principal loss (in proportion) during year ¢ can be expressed as

Ly =min <1,max (O, = a))
b—a

in which any losses will accumulate over the term and the whole principal will be depleted when
the total principal losses exceed one. The coupon rate is set as the risk-free rate plus a spread (i.e.
a premium for taking mortality risks). We simulate 100,000 scenarios of future mortality indices
with an equal real-world probability of 0.00001 and adopt the Wang transform (Wang, 2000) to
calculate the risk-neutral probabilities and the spread. Based on Wang (2004), the market price of
risk is assumed to be —0.45. It is also assumed that the risk-free rate is 1% p.a., consistent with the
current low interest rate environment.

We include two sets of attachment and detachment points in our example, in which the base
level is taken as the CMI in year 2014. The term of the bond is supposed to be 5 years. Table 9
provides the estimated spreads for each pair of populations. For comparison, we also obtain the
results from two other copulas with similar tail dependence properties. As expected, the spread
required is lower for the higher attachment and detachment points, since the chance for the mor-
tality levels to hit the higher range is lower. Moreover, the spreads estimated for England and
Wales and Netherlands are higher than the spreads computed for Norway and Sweden, the results
of which are in line with the upper tail dependence properties of the selected copulas. Lastly, the
spreads calculated from the selected copulas 14 and 17 are very close to those from copulas 12 and
5. These similarities can be explained by their common tail dependence properties, despite the
overall copula differences.
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5. Simulation Exercise

In this section, we perform a large-scale simulation study to investigate further the potential
problems in copula selection. We simulate random samples of varying data sizes (n =100, 500,
1,000) from each copula using different tau values (v =0.25, 0.5, 0.75) and fit all the copulas
in the list (excluding copulas 3, 9, and 10, due to their ranges of tau) to these simulated sam-
ples. Embrechts et al. (2001) provided an algorithm for generating bivariate random samples
from an Archimedean copula. First, two random numbers, S and Q, are generated from the
Uniform(0, 1) distribution. Then two associated Uniform(0, 1) samples, U; and U,, are com-
puted from ¢~1(Sp(T)) and o1 ((1 = S)p(T)), respectively, in which T = KEI(Q) and K¢(t) =
t—@(t)/¢'(t). Lastly, samples of two associated variables of interest are produced by using U,
and U, in the inverse transform method. Based on 1,000 simulated scenarios, we examine how
the data size and the level of dependence impact the results of statistical tests and the accuracy of
final copula choice.

As in the previous sections, the fitting performances are ranked under each test in every sim-
ulated scenario. Tables 10, 11 and 12 give the number of times (out of 1,000 scenarios) that the
“correct” copula is selected as the best choice or one of the best three choices, for each copula in
Table 1 taken in turn as the simulation model. Some interesting observations are noted below:

1. As expected, the frequency of picking the underlying copula assumption correctly increases
with the data size generally. The increase tends to be more noticeable for the likelihood ratio
test at the extreme tails (when there is tail dependence), because the accuracy in capturing the
tails is very low when the sample size is small.

2. The overall test results are more stable and accurate than those of the likelihood ratio test
when the data size is smaller. But when the size is large, the accuracy of the likelihood ratio
test at the 5th and 95th percentiles becomes more comparable to (and sometimes better than)
that of the overall test.

3. Even when the sample size is 1,000, the accuracy level of the likelihood ratio test at the
Ist and 99th percentiles is still quite low in many cases. Regardless of tail dependence, the
performance at the 5th and 95th percentiles is often better than at the 1st and 99th percentiles.

4. While the accuracy levels differ between the various copula assumptions, the accuracy seems
to have a tendency to be higher when the tau value is 0.5. Comparatively, for a lower tau
of 0.25, the samples are more randomly scattered, and the specific copula properties may
become less important, making the selection more ambiguous. For a higher tau of 0.75, the
simulated samples are more concentrated around the diagonal line. Those other copulas with
similar overall and tail dependence properties to the simulation assumption would then be
more competitive against the simulating copula and achieve high rankings (not shown here).
For instance, copulas 4 and 6 (sometimes joined by copulas 12 and 14) would compete with
one another, and the same happens between copulas 1, 19, and 20, and between copulas 5
and 17.

5. The performance of copula 17 is hampered by the dominance of copula 5 with a similar shape.
Although copula 13 has no tail dependence, it does have a lower tail shape, which draws some
competition from those copulas with lower tail dependence. Moreover, copulas 12 and 14
have both upper and lower tail dependence, which cause them subject to competition from
more copulas.

There are some major implications from this simulation study. First, the overall test and the
tests on the tails can supplement each other well, especially when the data size is large. The simul-
taneous use of different tests would give a much better picture of the model fitting. Second, it
appears that a sample size of at least a few thousand is needed if one wants to really identify
the copula very accurately. When the sample size is 1,000, using the overall test, the average
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Table 10. Simulated frequencies based on 1,000 scenarios of selecting the correct copulas as the best choice (left figure) or
one of the best three choices (right figure), for n =100 (top), n =500 (middle), and n = 1000 (bottom), when t =0.25.

Simulation  Overalltest Likelihood ratiotest  Likelihood ratio test  Likelihood ratio test  Likelihood ratio test

model statistic at 1st percentile at 5th percentile at 95th percentile at 99th percentile
1 376/539 0/43 234/364 369/688 502/983
478/652 275/548 - 440/624 s 398/671 - 503/925
536/744 429/642 566/748 378/638 400/850
4 200/576 0/1 8/770 260/671 0/268
412/828 0/18 66/940 587/899 492/803
553/921 B 13/298,. e 89/966 e ,.7,4.4/9.70., e 548/856 —
R 123/513..,.,.,.,.,. .,0/970 S 1/653 S 208/385,.,. R 0/12 |
. ,314/725,. R .0/872 S 177/820,. [ 446/562.. S ,.0}1.32. O
435/é44 .......... 0/759 .............. s /889 Sy 03/556 ............. 1.9.3/.257. ......
e .427/597. s 976/976 [ 693/693,. SR 575/713.. e ..379/379 S—
.,612/879,., e 927/927 e 699/714,. e 661/958,. e ,.529/892 S
.v619/941.,. 857/85? ,,,,,,,,,, i .725/793, '”710/996” I v.599/944.,.,., ,.
12 17/268 0/138 26/501 36/182 0/39
34/491 1/524 68/662 41/256 7/225
63/646 0/660 61/814 70/307 51/331
T 50/465 ........... o/o ................ 248/304 ......... 0/241,., [ 0/55 S
. ,272/852,. s 557/594 e 616/765,. [ 37/454 e ,.0./1.92. s
e .v..54/234....,..v.. 0/1 B 0/392 e 63/420. e .0/399
..,109/430” S 182/557 e 173/650,. [ 107/387” S ..123/390 B
”168/568” e 303/694 o 241/737,. v.v.107/346,. S .248/487.
e — 68/409 [ .0/9.74,. - e ”124/306 e . 0/309 . [ 0/230 .
184/726 0/841 233/627 30/453 0/69
247/870 0/955 330/720 63/513 0/196
19 ‘ ’17’0/397‘ - 3‘21/‘567‘ o ‘1?5/533 - ‘17‘1/417’ . 231/‘610‘
“240/5‘0‘5 .......... 335/663 ,,,,,,,,,,,,,, 253/611 ................ 88/444 — .,.,.,.,.,.81/685 S
. ,305/569,. e 366/732 S 384/682,. [ 104/552,. e 23/665 B—
L .189/408. s 229/418,. [ 288/423.. [ 283/650. S .468/950 s
. 197/548.. [ 310/462 e 293/520,. [ 233/683. [ .456/935 I
. ,219/659,. B 226/527 S 263/505,. [ 240/628,. e ,.402/851 S—

Note: When copulas 12, 14, and 19 are used, it is assumed that T = 0.35 instead.

frequency of choosing the correct copula as the best choice is only about 45%, though the aver-
age frequency of including the correct copula in the best three is around 85%. The data sizes in
the previous sections are not large enough in this sense, and unavoidably, there is some degree of
model uncertainty, which requires certain judgement to make the final choice. Despite the diffi-
culty to differentiate between the copula choices at times, it is comforting to see from the previous
sections that the estimates of tail measures are fairly consistent between using copulas with similar
tail dependence properties.
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Table 11. Simulated frequencies based on 1,000 scenarios of selecting the correct copulas as the best choice (left figure) or
one of the best three choices (right figure), for n =100 (top), n =500 (middle), and n = 1000 (bottom), when t =0.5.

Simulation  Overalltest Likelihood ratiotest  Likelihood ratio test  Likelihood ratio test  Likelihood ratio test

model statistic at 1st percentile at 5th percentile at 95th percentile at 99th percentile
1 103/708 0/507 142/590 7/573 0/970
305/842 180/673 — 373/779 B .,123/738 .,.v.v.v.v.,.,.0/854.,
459/917 284/?14 ' 478/833 o 181/812 ' 0/737
4 187/640 0/0 140/438 209/734 0/447
485/888 331/334 277/705 363/941 230/810
o 232/520 0/935 ,.,317/688,. .,120/407,.,.,. R o/o
. .429/775. I 0/761 e 323/895. e ..,321/630,. e 0/214 s
. 562/869 ............ 0/903 ............. 454/970 e 36/748 .............. 319/400 ......
e ,.571/724. e 967/967,. e 592/733,. e ..v525/673,. e 548/548 o
. ,755/942. e 873/873,. S 736/837,,. e m624/865” B 494/692 O
.,794/977 ,.776/776 S 823/926 ,,,,,, — .v691/957, 637/802 e
12 89/346 0/0 177/325 162/320 0/0
262/681 229/455 223/736 387/721 378/567
354/843 152/589 304/864 524/851 483/687
Ly 57/378.,. 0/0 [ .,185/349, ,.,115/342.,. e o/o
. ,242/700. e 290/554 B 369/655 [ ,.,133/514,. I o/o e
e 120/356 ........... 0/0 .............. 4/390 ............. 153/683 .............. 0734.5 .......
. ,310/657. e 2/457 e 155/740 e v.v357/872,. e 189/873 O
. ,430/831. 176/739 e 204/892,.,. e, v.v457/958,. e 240/919 O
S e 121/3%,. B vo'/93'4” B v3/673 e 120/337” . e 0/0 -
245/682 0/955 114/850 118/601 0/2
410/859 318/966 191/937 139/707 0/259
19 - 423/742 - >544/648 R >306/6§9 R 495/545 D >888>/96‘4 ‘
. 523/900 .,..,.,.,.557/714.,.,.,.,. — 428/846,.,. i 524/704 - 892/908
. ,549/970. e 538/769,. B 480/925.. e ,.,519/755,. B 771/780,. I
L ,.260/687 [ 181/618. e 299/646,. [ ,22/560.. T 52/973 I
. .310/900. e 45/729 e 333/861. [ 63/718,. B 1/399 I
. ,309/955. e 123/748,. S 354/913,. e v.v84/813,. e 0/773 s

6. Other Estimation Methods

In this section, we first consider five other estimation methods that have not been tested in pre-
vious actuarial applications. These methods include matching theoretical and sample values of
Blomgqvist’s beta, maximum likelihood using the diagonal of a copula, and three minimum dis-
tance estimators based on the total squared differences, total absolute differences, and maximum
absolute difference, respectively, between the empirical joint distribution function and the fit-
ted joint distribution function. Moreover, we experiment with a non-parametric estimator for
Archimedean copulas, as well as two recently proposed empirical copulas called the empirical beta
copula and empirical checkerboard copula, and compare their resulting estimates of tail measures.
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Table 12. Simulated frequencies based on 1,000 scenarios of selecting the correct copulas as the best choice
(left figure) or one of the best three choices (right figure), for n=100 (top), n =500 (middle), and n=1000
(bottom), when 7 =0.75.

Simulation Overall test Likelihood ratio test Likelihood ratio test Likelihood ratio test Likelihood ratio test

model statistic at 1st percentile at 5th percentile  at 95th percentile  at 99th percentile
1 121/683 0/586 10/623 19/624 0/942
>‘352/851‘ R 0/668 e 246/739 e 275/766 e ,.0/730,. R
,.496/937. R .113/577 e 328/824. e .360/829 e .0/529. —
| 4 e 113/553 R 0/0 e ,131/341,. R 70/695 e .0/547.. —
,.284/828. R ,.283/541. e ,203/662,. R 134/916 e 105/926,. o
. ”390/855 ........ 465/656 .............. 296/788 ............ 162/%3 ............. 89/953 ........
,5 B .174/374. o 0/886 [ 283/643 e 176/371 e 0,/0 .
379/632 0/873 380/843 450/620 345/345
516/774 361/945 509/903 559/789 336/688
6 .,.481/602. 79/925 521/744“‘ 475/540 605/605
,.719/833. R 2/760 e ,.,796/900, ,.,.540/675 e 456/568
,.825/932. R 9/854 e ,844/960,. e 598/742 e 544/624 .
12 R .218/393 e 0/501 e .154/206.. e ..202/346. e 0/0 S
,.429/699. — ,.192/709. e 113/497. T .416/582 T ”407/435 e
,.530/841. — ,.139/767. e ,213/628, e 545/738 R v.472/534,.
13 45/320 ......... 0/0 ............ 26'/243.,.,,.,.”.' 28/294”'..,. S o/o
197/706 0/616 144/486 161/668 ' 0/291'
343/862 159/661 187/680 227/809 101/593
14 87/528 0/0 82/235 104/743 0/547
. ,.195/.7,7.3 ........ 222/441 ............ 241/543 ,,,,,,,,,,,, 114/932 ............. 76/894 .......
| 17 R .153/359 R 0/30 e ,12/721.. e 104/283 e 0/0 [
,.240/608. — ..375/376 e 201/818. e .i0.8/6.94 e 0/299 —
,.362/762. — ,.261/726. e ,290/890,. R 171/831 e 293/613 e
19 280/729 ”MM561/635 v34/542,.,.,. . 160/733 e 26/955
. 386/905 550/556.,. B ,108/736, B 165/797 e 0/793 -
466/971 542/660 138/821 232/850 0/620
20 402/719 198/198 482/482 577/731 906/944
‘ 517/919 - ”4/4 - 542/686 o ‘583/809‘ o ‘ >8112>/81>2 ‘
.,.539/956. R o/o e 523/797 ,,,,,,,,, .,.584/876 e 633/633

Blomgqyvist’s beta (e.g. Nelsen, 1999) is defined as Pr ((X; — Ffl(O.S))(Xz — F;1(0.5)) >0)—
Pr ((X; — Ffl(O.S))(Xz — F;l(O.S)) < 0). It can be expressed as 4C(0.5,0.5) — 1, which makes
it convenient to equate the theoretical and samples values to find the copula parameter. This
method-of-moments approach is similar to that for Kendall’s tau.

The diagonal section of a copula is defined as §(u) = C(u, u) (e.g. Nelsen, 1999). If C is the
copula between U; ~ Uniform (0, 1) and U, ~ Uniform (0, 1), 6(u) is the distribution function
of max (Uj, Uy). Accordingly, maximum likelihood estimation (MLE) can be performed using
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Table 13. Copula parameter estimates calculated from different estimators.

Estimator Copula 1 Copula 4 Copula 12 Copula 14
Matching tau 0.89 1.45 0.96 0.95
T i 043 e 143 e 096 e 095 ]
vMétchir‘\gbé‘ta e .0.,79. B v1,v40 e ,.0.92,. B 087 .
Diagonal MLE 0.28 1.40 1.02 1.24
. Totalsquaredd|fferences e 066 e 138 e 097 e 102 ]
. "‘rc')tﬂalﬂa'béd‘lqté d.fferences e 053 e 137 e 098 e 106 ]
‘Maximum absolute difference 092 144 097 096

the density function a%é(u) and the observed values max (uyj, u2j). This method provides an
alternative to the usual maximum likelihood approach involving the copula density function.

The three minimum distance estimators being explored here are based on the Cramér-von
Mises and Kolmogorov-Smirnov test statistics (e.g. Genest et al., 2009). The following distances
can be minimised to obtain the copula parameter:

n

- - 2
Z (Pr(Xy < x1,5, X2 < x2,5) — Cluyj, uz5))
=

n
Z |Pr(Xy <x1 Xo < x25) — Cluyj, ua)|
=1

max |Pr(Xy < x1j, X2 < x25) — Cluyj, u))]
j

We apply the above-mentioned estimation methods to fit copulas 1, 4, 12, and 14 to the gen-
eral liability claims data in Section 3. Table 13 lists the corresponding copula parameter estimates
for each copula. It is interesting to see that the parameter estimates from different methods are
very close to one another for the best-performing copula (4), while they vary a lot for the worst-
performing copula (1). Besides providing initial values for more tedious estimation methods,
applying different methods to the same set of data can provide a rough indication on whether
the model being fitted is reasonable and robust.

We then conduct a simulation study to compare the performances of different estimation
methods. We simulate 1,000 samples from each of copulas 1, 4, 12, and 14 using a tau value of 0.5
and then fit the same copulas to the simulated samples. Table 14 presents the estimated bias and
standard error of the copula parameter under each estimation method based on 1,000 simulated
scenarios. The usual MLE outperforms the other estimation methods in terms of both the bias and
standard error. It is followed by the two method-of-moments approaches of matching Kendall’s
tau and Blomqvist’s beta, in which their performances are close to that of the MLE. These two esti-
mators have the advantage of being straightforward to compute, especially when Blomqvist’s beta
is expressed directly in terms of the copula. Comparatively, applying the MLE to Archimedean
copulas can be challenging when dealing with the required derivatives, particularly for multiple
dimensions. The diagonal MLE comes next, the performance of which is not too far from those
of the three methods above. For more tedious cases, the method-of-moments approaches and the
diagonal MLE can be used to generate the initial values for the MLE. Lastly, the three minimum
distance estimators clearly have larger bias and standard error than the other methods. In partic-
ular, the one based on the Kolmogorov-Smirnov test statistic performs the worst amongst the last
three choices.

Hitherto, we have used fully parametric copulas and margins. In fact, there are some other
semi-parametric and non-parametric approaches for modelling the dependency structure. One
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Table 14. Estimated bias (left) and standard error (right) of different estimators.

Estimator Copula 1l Copula 4 Copula 12 Copula 14
Matching tau 0.00/0.14 0.00/0.07 0.00/0.04 0.00/0.07
MLE 0.00/0.09 0.00/0.05 0.00/0.03 0.00/0.05
Matching beta 0.00/0.20 0.00/0.11 0.00/0.08 0.00/0.11
Diagonal MLE 0.04/0.39 0.00/0.19 0.01/0.14 0.02/0.20
Total squared differenc 0.05/0.51 0.01/0.25 0.01/0.17 0.02/0.25
Total absolute differences 0.04/0.50 0.00/0.25 0.01/0.17 0.02/0.25
Maximum absolute Difference 0.24/0.85 0.07/0.47 0.05/0.30 0.09/0.41
1 — 1
—
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0.6 0.6
0.4 7 0.4
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Z
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Figure 8. Non-parametric estimate of Kendall distribution function versus the closest functions under copulas 1, 4, 5, and 12
(calculated from minimising the squared differences between the two curves).

semi-parametric approach is to use a parametric copula, while estimating the margins non-
parametrically. The use of the Kendall distribution function in Genest & Rivest (1993) can be
considered as semi-parametric as well. The Kendall distribution function is specified as K(t) =
Pr (C(Uy, Up) < t), which can be deduced as K(t) =t — (p(t)/%<p(t) for an Archimedean copula.
Genest & Rivest (1993) proposed a non-parametric estimator of K(¢), which then provides an
estimator of C within the class of Archimedean coplulas. The estimator of K(t) can be seen as a

decomposition of Kendall’s tau and is computed as - Z}‘Zl A(t — V;), where 4 is the distribution

function of a point mass at the origin and V; = ﬁ#{(Ul,h) Uap) : Uy < Upj, Uy < Uyjj}. Using
the general liability claims, Figure 8 compares the non-parametric estimate of K(¢) with the corre-
sponding estimates of K(t) of four Archimedean copulas. It can be seen that the non-parametric
estimate highly resembles the function under copula 4 but deviates significantly from those of
copulas 1 and 12. These observations are in line with the rankings in Table 3, which again suggest
that upper tail dependence is an important feature of the data that cannot be overlooked.

A non-parametric approach takes both the copula and margins as parameter-free in order
to provide the highest generality. One natural option for constructing an empirical copula
would be the empirical bivariate distribution function. Recently, Segers et al. (2017) intro-
duced the empirical beta copula and empirical checkerboard copula which are two different
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Table 15. Estimated expected shortfall of total claim amounts under parametric, semi-parametric,
and non-parametric approaches.

Percentile (in thousands)

Approach 75th 90th 95th 99th 99.5th 99.9th
Fulll 164 304 465 1,131 1,603 3,437
Fullll 163 303 465 1,123 1,583 3,324
. st. S 163 s 302 s 462 s 1’121 S 1,535 s 3’355 .
. Non Co 163 S Hz.gi e, 433 S 973 I ,.1.,2,.05. S 2,061 .
vNovn'u” B 260 370 . 716 . 919 e .,1’.735”
Non Il 136 247 363 716 936 1,725

Note: Full I: copula 4 + parametric margins; Full Il: copula 6 + parametric margins; Semi: estimator of K(t) + parametric
margins; Non I: empirical copula + empirical margins; Non Il: empirical beta copula + empirical margins; Non Ill: empirical
checkerboard copula + empirical margins.

“smoothed” versions and compared them with the traditional (unsmoothed) empirical copula.
The empirical beta copula is given as % Z;l:1 Fpy Rank(x, J)(ul ) FnRank(x, J)(uz j)» in which F,, (u)

=y, ’Z) #*(1 — u)"™°. On the other hand, the empirical checkerboard copula is specified

as % Z?:l ]_[f:1 min ( max (nu;; — Rank(x;;) + 1,0), 1). Under certain necessary and sufficient
conditions, both are genuine copulas. These authors found that both copulas outperformed the
traditional empirical copula in their simulation study.

In the following, we use the general liability claims data again and compare the estimates of
expected shortfall under the three approaches: fully parametric (copula 4 or 6 with paramet-
ric margins), semi-parametric (estimator of K(¢) with parametric margins) and non-parametric
(empirical or empirical beta or empirical checkerboard copula with empirical margins). Table 15
gives the expected shortfall estimates from taking each approach in turn. It can be seen that the
fully parametric estimation produces the largest tail estimates. The semi-parametric approach
based on Genest & Rivest (1993) leads to similar results, which suggest that the estimate of K(¢)
indicates an Archimedean copula with tail properties like those of copulas 4 and 6. Comparatively,
the non-parametric estimation yields smaller estimates, the significance of which increases with
the percentile level. The major implication of these results is that although a non-parametric
approach can provide the highest generality for the data and is not restricted by the mechanics
of a model, the resulting structure may lead to an underrepresentation of the potential impact
of tail events and so a serious underestimation of tail measures. Recent regulatory developments
have put an increasing focus on the assessment of extreme events. From an actuarial perspective,
it is very important to have an adequate allowance for the tails, which have a significant impact on
risk management and capital measurement.

7. Concluding Remarks

In this paper, we apply an extensive list of Archimedean copulas to some general and life insurance
bivariate modelling problems and deal with both censoring and truncation issues. We cover not
only the few copula choices that are commonly used in the literature, but also several others, as
well as their rotated versions, which have not been fully tested in earlier applications. Our analysis
clearly suggests that exploiting the rich diversity of Archimedean copula structures can provide a
lot of flexibility for coping with different shapes of overall and tail dependence in different data
sets. In particular, an adequate allowance for extreme tail events is of utmost importance for an
insurer’s capital requirement. Archimedean copulas can serve as a very useful tool for calculating
such capital allowance. We have shown that the copula assumption has a significant impact on the
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Figure 9. A partially nested Archimedean copula and a D-vine copula optimally fitted to the mortality of England and Wales,
Netherlands, Norway, and Sweden.

estimation of the expected shortfall. Moreover, we also highlight the usefulness of testing both the
overall fitting and the tail fitting, in order to make a more careful copula selection. Furthermore,
through a thorough simulation exercise, we notice some potential issues in copula selection and
examine the practical implications. Tail dependence should be a major consideration when adopt-
ing any copula function in insurance modelling. Although it is a limiting property which is hard
to identify precisely for real data, conducting a suitable statistical test on the tail association would
help us choose a copula with more appropriate tail dependence properties, which affect the calcu-
lation of tail measures in pricing and capital management. Finally, we experiment with a number
of other estimation methods including matching Blomqvist’s beta, maximum likelihood based on
the diagonal section of a copula, minimum distance estimators, a non-parametric estimator for
Archimedean copulas, and empirical copulas. It appears that some of them can serve as useful
alternatives to the usual approaches adopted in previous applications.

Despite the potential usefulness of Archimedean copulas, there have been some issues when
extending the copulas to more than two dimensions. First, a multi-dimensional Archimedean cop-
ula is permutation-symmetric and the single parameter does not allow for different dependence
levels for different pairs. Its exchangeability limits the use in multivariate modelling. Second, the
traditional conditional simulation algorithm for multivariate Archimedean copulas is cumber-
some and is not efficient enough for practical use. Some recent developments which attempt to
address these problems can be tested for insurance applications in future research. For instance,
hierarchical Archimedean copulas (e.g. Joe, 2014; Okhrin & Ristig, 2014) and vine copulas (e.g.
Brechmann & Schepsmeier, 2013; Czado, 2019) can readily be built from the less commonly used
copulas in Table 1 for handling multivariate random variables. One feasible approach to construct
hierarchical Archimedean copulas is to fit a bivariate copula to every possible pair, choose the pair
with the highest dependence and convert it into a pseudo variable, and repeat the process itera-
tively with the remaining variables. Similarly, the sequential method can be used to construct vine
copulas, in which the optimal structure in each tree is determined by finding the so-called max-
imum spanning tree that maximises cumulative pairwise dependencies. As an example, Figure 9
presents the optimal structures of a partially nested Archimedean copula and a D-vine copula
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for the mortality of the four regions studied in Section 4. The former adheres closely to the geo-
graphical locations of the four regions and is highly interpretable, while the latter provides some
flexibility in using different bivariate copulas within the structure. In both cases, besides the tra-
ditional use of the overall tests on dependence (e.g. tau, AIC, BIC), a more specific testing on the
tails, as demonstrated earlier, can also be incorporated into the construction process.

Moreover, considering the impact of the data size, a Bayesian approach, rather than the usual
maximum likelihood, can be taken to fit the copulas. One way is to incorporate extra information
via the prior distributions, such that additional references can be deduced from certain relevant
data. Another possible modification is to specify a prior distribution for the selection amongst dif-
ferent copula candidates. The resulting posterior distribution would then be a hybrid between the
copulas under consideration and blend their desirable properties into one structure. Lastly, other
interesting developments such as quasi-copulas and semi-copulas (e.g. Durante & Sempi, 2015)
and partition-of-unity copulas (e.g. Pfeifer et al., 2019) may also be explored for their potential
use in insurance modelling.

Acknowledgement. The authors would like to thank the editor and the referees for their valuable comments and suggestions
which greatly enhance the presentation of this paper.
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