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Abstract

Sharing, an abstract domain developed by D. Jacobs and A. Langen for the analysis of logic

programs, derives useful aliasing information. It is well-known that a commonly used core

of techniques, such as the integration of Sharing with freeness and linearity information, can

significantly improve the precision of the analysis. However, a number of other proposals for

refined domain combinations have been circulating for years. One feature that is common

to these proposals is that they do not seem to have undergone a thorough experimental

evaluation even with respect to the expected precision gains. In this paper we experimentally

evaluate: helping Sharing with the definitely ground variables found using Pos, the domain

of positive Boolean formulas; the incorporation of explicit structural information; a full

implementation of the reduced product of Sharing and Pos; the issue of reordering the

bindings in the computation of the abstract mgu; an original proposal for the addition of

a new mode recording the set of variables that are deemed to be ground or free; a refined

way of using linearity to improve the analysis; the recovery of hidden information in the

combination of Sharing with freeness information. Finally, we discuss the issue of whether

tracking compoundness allows the computation of more sharing information.

KEYWORDS: abstract interpretation, logic programming, sharing analysis, experimental

evaluation

1 Introduction

In the execution of a logic program, two variables are aliased or share at some

program point if they are bound to terms that have a common variable. Conversely,

two variables are independent if they are bound to terms that have no variables in

common. Thus by providing information about possible variable aliasing, we also

� The work of the first and second authors has been partly supported by MURST projects “Certificazione
automatica di programmi mediante interpretazione astratta” and “Interpretazione astratta, sistemi di
tipo e analisi control-flow.”
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2 R. Bagnara et al.

provide information about definite variable independence. In logic programming,

a knowledge of the possible aliasing (and hence definite independence) between

variables has some important applications.

Information about variable aliasing is essential for the efficient exploitation of

AND-parallelism, Bueno et al. (1994, 1999); Chang et al. (1985) Hermenegildo

and Greene (1990); Hermenegildo and Rossi (1995); Jacobs and Langen (1992);

Muthukumar and Hermenegildo (1992). Informally, two atoms in a goal are executed

in parallel if, by a mixture of compile-time and run-time checks, it can be guaranteed

that they do not share any variable. This implies the absence of binding conflicts at

run-time: it will never happen that the processes associated to the two atoms try to

bind the same variable.

Another significant application is occurs-check reduction, Crnogorac et al. (1996);

Søndergaard (1986). It is well-known that many implemented logic programming

languages (e.g. almost all Prolog systems) omit the occurs-check from the unification

procedure. Occurs-check reduction amounts to identifying the unifications where

such an omission is safe, and, for this purpose, information on the possible aliasing

of program variables is crucial.

Aliasing information can also be used indirectly in the computation of other

interesting program properties. For instance, the precision with which freeness

information can be computed depends, in a critical way, on the precision with which

aliasing can be tracked, Bruynooghe et al. (1994a); Codish et al. (1993); Filé (1994);

King and Soper (1994); Langen (1990); Muthukumar and Hermenegildo (1991).

In addition to these well-known applications, a recent line of research has shown

that aliasing information can be exploited in Inductive Logic Programming (ILP).

Several optimizations have been proposed for speeding up the refinement of induct-

ively defined predicates in ILP systems, Blockeel et al. (2000); Santos Costa et al.

(2000). It has been observed that the applicability of some of these optimizations,

formulated in terms of syntactic conditions on the considered predicate, could be

recast as tests on variable aliasing (Blockeel et al. 2000, Appendix D).

Sharing, a domain introduced in Jacobs, Langen Jacobs and Langen (1989, 1992);

Langen (1990), is based on the concept of set-sharing. An element of the Sharing

domain, which is a set of sharing-groups (i.e. a set of sets of variables), represents

information on groundness,1 groundness dependencies, possible aliasing, and more

complex sharing-dependencies among the variables that are involved in the execution

of a logic program, Bagnara et al. (1997, 2002); Bueno et al. (1994, 1999).

Even though Sharing is quite precise, it is well-known that more precision

is attainable by combining it with other domains. Nowadays, nobody would

seriously consider performing sharing analysis without exploiting the combination of

aliasing information with groundness and linearity information. As a consequence,

expressions such as ‘sharing information’, ‘sharing domain’ and ‘sharing analysis’

usually capture groundness, aliasing, linearity and quite often also freeness. Notice

1 A variable is ground if it is bound to a term containing no variables, it is compound if it is bound to
a non-variable term, it is free if it is not compound, it is linear if it is bound to a term that does not
contain multiple occurrences of a variable.
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that this idiom is nothing more than a historical accident: as we will see in the sequel,

compoundness and other kinds of structural information could also be included in

the collective term ‘sharing information’.

As argued informally by Søndergaard (1986), linearity information can be suitably

exploited to improve the accuracy of a sharing analysis. This observation has been

formally applied in Codish et al. (1991) to the specification of the abstract mgu

operator for ASub, a sharing domain based on the concept of pair-sharing (i.e.

aliasing and linearity information is encoded by a set of pairs of variables). A

similar integration with linearity for the domain Sharing was proposed by Langen

in his PhD thesis Langen (1990). The synergy attainable from the integration

between aliasing and freeness information was pointed out by Muthukumar and

Hermenegildo (1992). Building on these works, Hans and Winkler (1992) proposed

a combined integration of freeness and linearity information with sharing, but small

variations (such as the one we will present as the starting point for our work)

have been developed by Bruynooghe and Codish (1993) and Bruynooghe et al.

(1994a).

There have been a number of other proposals for more refined combinations

which have the potential for improving the precision of the sharing analysis over

and above that obtainable using the classical combinations of Sharing with linearity

and freeness. These include the implementation of more powerful abstract semantic

operators (since it is well-known that the commonly used ones are sub-optimal)

and/or the integration with other domains. Not one of these proposals seem to

have undergone a thorough experimental evaluation, even with respect to the

expected precision gains. The goal of this paper is to systematically study these

enhancements and provide a uniform theoretical presentation together with an

extensive experimental evaluation that will give a strong indication of their impact

on the accuracy of the sharing information.

Our investigation is primarily from the point of view of precision. Reasonable

efficiency is also clearly of interest but this has to be secondary to the question

as to whether precision is significantly improved: only if this is established, should

better implementations be researched. One of the investigated enhancements is

the integration of explicit structural information in the sharing analysis and an

important contribution of this paper is that it shows both the feasibility and the

positive impact of this combination.

Note that, regardless of its practicality, any feasible sharing analysis technique that

offers good precision may be valuable. While inefficiency may prevent its adoption in

production analyzers, it can help in assessing the precision of the more competitive

techniques.

The present paper, which is an improved and extended version of Bagnara et al.

(2000), is structured as follows. In Section 2, we define some notation and recall the

definitions of the domain Sharing and its standard integration with freeness and

linearity information denoted as SFL. In Section 3, we briefly describe the China

analyzer, the benchmark suite and the methodology we follow in the experimental

evaluations. In each of the next seven sections, we describe and experimentally

evaluate different enhancements and precision optimizations for the domain SFL.
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Section 4 considers a simple combination of Pos with SFL; Section 5 investigates

the effect of including explicit structural information by means of the Pattern(·)
construction; Section 6 discusses possible heuristic for reordering the bindings so as

to maximize the precision of SFL; Section 7 studies the implementation of a more

precise combination between Pos and SFL; Section 8 describes a new mode ‘ground

or free’ to be included in SFL; Section 9 and Section 10 study the possibility of

improving the exploitation of the linearity and freeness information already encoded

in SFL. In Section 11 we discuss (without an experimental evaluation) whether

compoundness information can be useful for precision gains. Section 12 concludes

with some final remarks.

2 Preliminaries

For any set S , ℘(S) denotes the powerset of S . For ease of presentation, we assume

there is a finite set of variables of interest denoted by VI . If t is a syntactic object then

vars(t) and mvars(t) denote the set and the multiset of variables in t, respectively. If

a occurs more than once in a multiset M we write a � M. We let Terms denote the

set of first-order terms over VI . Bind denotes the set of equations of the form x = t

where x ∈ VI and t ∈ Terms is distinct from x. Note that we do not impose the

occurs-check condition x /∈ vars(t), since we target the analysis of Prolog and CLP

systems possibly omitting this check. The following simplification of the standard

definitions for the Sharing domain given in Cortesi and Filé (1999); Hill et al.

(1998); Jacobs and Langen (1992) assumes that the set of variables of interest is

always given by VI .2

Definition 1

(The set-sharing domain SH .) The set SH is defined by

SH
def
= ℘(SG),

where the set of sharing-groups SG is given by

SG
def
= ℘(VI ) \ {�}.

SH is ordered by subset inclusion. Thus the lub and glb of the domain are set union

and intersection, respectively.

Definition 2

(Abstract operations over SH .) The abstract existential quantification on SH causes

an element of SH to “forget everything” about a subset of the variables of

interest. It is encoded by the binary function aexists : SH × ℘(VI ) → SH such that,

2 Note that, during the analysis process, the set of variables of interest may expand (when solving the
body of a clause) and contract (when abstract descriptions are projected onto the variables occurring
in the head of a clause). However, at any given time the set of variables of interest is fixed. By
consistently denoting this set by VI , we simplify the presentation, since we can omit the set of
variables of interest to which an abstract description refers.
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for each sh ∈ SH and V ∈ ℘(VI ),

aexists(sh , V )
def
= {S \ V | S ∈ sh , S \ V �= �} ∪ {{x} | x ∈ V }.

For each sh ∈ SH and each V ∈ ℘(VI ), the extraction of the relevant component

of sh with respect to V is given by the function rel : ℘(VI ) × SH → SH defined as

rel(V , sh)
def
= {S ∈ sh | S ∩ V �= �}.

For each sh ∈ SH and each V ∈ ℘(VI ), the function rel : ℘(VI ) × SH → SH

gives the irrelevant component of sh with respect to V . It is defined as

rel(V , sh)
def
= sh \ rel(V , sh).

The function (·)� : SH → SH , also called star-union, is given, for each sh ∈ SH ,

by

sh� def
=

{
S ∈ SG

∣∣∣∣ ∃n � 1 . ∃T1, . . . , Tn ∈ sh . S =

n⋃
i=1

Ti

}
.

For each sh1, sh2 ∈ SH , the function bin: SH × SH → SH , called binary union,

is given by

bin(sh1, sh2)
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2}.

We also use the self-bin-union function sbin: SH → SH , which is given, for each

sh ∈ SH , by

sbin(sh)
def
= bin(sh , sh).

The function amgu: SH × Bind → SH captures the effect of a binding on an

element of SH . Assume (x = t) ∈ Bind , sh ∈ SH , Vx = {x}, Vt = vars(t), and

Vxt = Vx ∪ Vt. Then

amgu(sh , x = t)
def
= rel(Vxt, sh) ∪ bin(rel(Vx, sh)�, rel(Vt, sh)�). (1)

We now briefly recall the standard integration of set-sharing with freeness and

linearity information. These properties are each represented by a set of variables,

namely those variables that are bound to terms that definitely enjoy the given

property. These sets are partially ordered by reverse subset inclusion so that the lub

and glb operators are given by set intersection and union, respectively.

Definition 3

(The domain SFL.) Let F
def
= ℘(VI ) and L

def
= ℘(VI ) be partially ordered by reverse

subset inclusion. The domain SFL is defined by the Cartesian product

SFL
def
= SH × F × L

ordered by the component-wise extension of the orderings defined on the three

subdomains.

A complete definition would explicitly deal with the set of variables of interest VI .

We could even define an equivalence relation on SFL identifying the bottom element
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⊥ def
= 〈�,VI ,VI 〉 with all the elements corresponding to an impossible concrete

computation state: for example, elements 〈sh , f, l〉 ∈ SFL such that f � vars(sh)

(because a free variable does share with itself) or VI \vars(sh) � l (because variables

that cannot share are also linear). Note however that these and other similar spurious

elements rarely occur in practice and cannot compromise the correctness of the

results.

In a bottom-up abstract interpretation framework, such as the one we focus on,

abstract unification is the only critical operation. Besides unification, the analysis

depends on the ‘merge-over-all-paths’ operator, corresponding to the lub of the

domain, and the abstract projection operator, which can be defined in terms of an

abstract existential quantification operator.

Definition 4

(Abstract operations over SFL.) The abstract existential quantification on SFL is

encoded by the binary function aexists : SFL × ℘(VI ) → SFL such that, for each

d = 〈sh , f, l〉 ∈ SFL and V ∈ ℘(VI ),

aexists(d , V )
def
= 〈aexists(sh , V ), f ∪ V , l ∪ V 〉.

For each d = 〈sh , f, l〉 ∈ SFL, we define the following predicates. The predicate

indd : Terms × Terms → Bool expresses definite independence of terms. Two terms

s, t ∈ Terms are independent in d if and only if indd (s, t) holds, where

indd (s, t)
def
= (rel(vars(s), sh) ∩ rel(vars(t), sh) = �).

A term t ∈ Terms is free in d if and only if the predicate freed : Terms → Bool holds

for t, that is,

freed (t)
def
= (∃x ∈ VI . x = t ∧ x ∈ f).

A term t ∈ Terms is linear in d if and only if lind (t), where lind : Terms → Bool is

given by

lind (t)
def
= (vars(t) ⊆ l)

∧ (∀x, y ∈ vars(t) : x = y ∨ indd (x, y))

∧ (∀x ∈ vars(t) : x � mvars(t) ⇒ x /∈ vars(sh)).

The function amgu: SFL × Bind → SFL captures the effects of a binding on an

element of SFL. Let (x = t) ∈ Bind and d = 〈sh , f, l〉 ∈ SFL. Let also Vx = {x},
Vt = vars(t), Vxt = Vx ∪ Vt, Rx = rel(Vx, sh) and Rt = rel(Vt, sh). Then

amgu(d , x = t)
def
= 〈sh ′, f′, l′〉,
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where

sh ′ def
= rel(Vxt, sh) ∪ bin(Sx, St);

Sx
def
=

{
Rx, if freed (x) ∨ freed (t) ∨ (lind (t) ∧ indd (x, t));

R�
x, otherwise;

St
def
=

{
Rt, if freed (x) ∨ freed (t) ∨ (lind (x) ∧ indd (x, t));

R�
t , otherwise;

f′ def
=




f, if freed (x) ∧ freed (t);

f \ vars(Rx), if freed (x);

f \ vars(Rt), if freed (t);

f \ vars(Rx ∪ Rt), otherwise;

l′
def
= (VI \ vars(sh ′)) ∪ f′ ∪ l′′;

l′′
def
=




l \ (vars(Rx) ∩ vars(Rt)), if lind (x) ∧ lind (t);

l \ vars(Rx), if lind (x);

l \ vars(Rt), if lind (t);

l \ vars(Rx ∪ Rt), otherwise.

This specification of the abstract unification operator is equivalent (modulo the

lack of the explicit structural information provided by abstract equation systems) to

that given in Bruynooghe et al. (1994a), provided x /∈ vars(t). Indeed, as done in all

the previous papers on the subject, in Bruynooghe et al. (1994a) it is assumed that

the analyzed language does perform the occurs-check. As a consequence, whenever

considering a definitely cyclic binding, that is a binding x = t such that x ∈ vars(t),

the abstract operator can detect the definite failure of the concrete computation and

thus return the bottom element of the domain. Such an improvement would not be

safe in our case, since we also consider languages possibly omitting the occurs-check.

However, when dealing with definitely cyclic bindings, the specification given by the

previous definition can still be refined as follows.

Definition 5

(Improvement for definitely cyclic bindings.) Consider the specification of the abstract

operations over SFL given in Definition 4. Then, whenever x ∈ vars(t), the

computation of the new sharing component sh ′ can be replaced by the following.3

sh ′ def
= rel(Vxt, sh) ∪ bin(Sx,CS t),

where

CS t
def
=

{
CRt, if freed (x);

CR�
t , otherwise;

CRt
def
= rel(vars(t) \ {x}, sh).

3 Note that, in this special case, it also holds that freed (t) = false and indd (x, t) = (Rx = �).
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This enhancement, already implemented in the China analyzer, is the rewording

of a similar one proposed in Bagnara (1997) for the domain Pos in the context

of groundness analysis. Its net effect is to recover some groundness and sharing

dependencies that are unnecessarily lost when using the standard operators.

The domain SH captures set-sharing. However, the property we wish to detect is

pair-sharing and, for this, it has been shown in Bagnara et al. (2002) that SH includes

unwanted redundancy. The same paper introduces an upper-closure operator ρ on

SH and the domain PSD
def
= ρ(SH ), which is the weakest abstraction of SH that

is as precise as SH as far as tracking groundness and pair-sharing is concerned.4 A

notable advantage of PSD is that we can replace the star-union operation in the

definition of the amgu by self-bin-union without loss of precision. In particular, in

Bagnara et al. (2002) it is shown that

amgu(sh , x = t) =ρ rel(Vxt, sh) ∪ bin(sbin(rel(Vx, sh)), sbin(rel(Vt, sh))), (2)

where the notation sh1 =ρ sh2 means ρ(sh1) = ρ(sh2).

It is important to observe that the complexity of the amgu operator on SH (1)

is exponential in the number of sharing-groups of sh . In contrast, the operator

on PSD (2) is O(|sh|4). Moreover, checking whether a fixpoint has been reached

by testing sh1 =ρ sh2 has complexity O(|sh1|3 + |sh2|3). Practically speaking, very

often this makes the difference between thrashing and termination of the analysis in

reasonable time.

The above observations on SH and PSD can be generalized to apply to the domain

combinations SFL and SFL2
def
= PSD × F × L. In particular, SFL2 achieves the

same precision as SFL for groundness, pair-sharing, freeness and linearity and

the complexity of the corresponding abstract unification operator is polynomial. For

this reason, all the experimental work in this paper, with the exception of part

of the one described in Section 7, has been conducted using the SFL2 domain.

3 Experimental evaluation

Since the main purpose of this paper is to provide an experimental measure of the

precision gains that might be achieved by enhancing a standard sharing analysis with

several new techniques we found in the literature, it is clear that the implementation

of the various domain combinations was a major part of the work. However, so

as to adapt these assorted proposals into a uniform framework and provide a fair

comparison of their results, a large amount of underlying conceptual work was

also required. For instance, almost all of the proposed enhancements were designed

for systems that perform the occurs-check and some of them were developed for

rather different abstract domains: besides changing the representation of the domain

elements, such a situation usually requires a reconsideration of the specification of

the abstract operators.

4 The name PSD , which stands for Pair-Sharing Dependencies, was introduced in Zaffanella et al. (1999).
All previous papers, including Bagnara et al. (2002), denoted this domain by SH ρ.
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All the experiments have been conducted using the China analyzer Bagnara

(1997a) on a GNU/Linux PC system equipped with an AMD Athlon clocked at

700 MHz and 256 MB of RAM. China is a data-flow analyzer for CLP(HN)

languages (i.e. ISO Prolog, CLP(R), clp(FD) and so forth), HN being an extended

Herbrand system where the values of a numeric domain N can occur as leaves

of the terms. China, which is written in C++, performs bottom-up analysis deriving

information on both call-patterns and success-patterns by means of program trans-

formations and optimized fixpoint computation techniques. An abstract description

is computed for the call- and success-patterns for each predicate defined in the

program using a sophisticated chaotic iteration strategy proposed in Bourdoncle

(1993a; 1993b).5

A major point of the experimental evaluation is given by the test-suite, which

is probably the largest one ever reported in the literature on data-flow analysis of

(constraint) logic programs. The suite comprises all the programs we have access to

(i.e. everything we could find by systematically dredging the Internet): more than

330 programs, 24 MB of code, 800 K lines. Besides classical benchmarks, several real

programs of respectable size are included, the largest one containing 10063 clauses

in 45658 lines of code. The suite also comprises a few synthetic benchmarks, which

are artificial programs explicitly constructed to stress the capabilities of the analyzer

and of its abstract domains with respect to precision and/or efficiency.

Because of the exponential complexity of the base domain SFL, a data-flow

analysis that includes this domain will only be practical if it incorporates widening

operators such as those proposed in Zaffanella et al. (1999).6 However, since almost

none of the investigated combinations come with specialized widening operators,

for a fair assessment of the precision improvements we decided to disable all the

widenings available in our SFL implementation. As a consequence, there are a

few benchmarks for which the analysis does not terminate in reasonable time or

absorbs memory beyond acceptable limits, so that a precision comparison is not

possible. Note however that the motivations behind this choice go beyond the simple

observation that widening operators affect the precision of the analysis: the problem

is also that, if we use the widenings defined and tuned for our implementation

of the domain SFL, the results would be biased. In fact, the definition of a good

widening for an analysis domain normally depends on both the representation and

the implementation of the domain. In other words, different implementations even

of the same domain will require different tunings of the widening operators (or

even, possibly, brand new widenings). This means that adopting the same widening

operators for all the domain combinations would weaken, if not invalidate, any

conclusions regarding the relative benefits of the investigated enhancements. On the

other hand, the definition of a new specialized widening operator for each one of

the considered domain combinations, besides being a formidable task, would also be

5
China uses the recursive fixpoint iteration strategy on the weak topological ordering defined by
partitioning of the call graph into strongly-connected subcomponents, Bourdoncle (1993b).

6 Note that we use the term ‘widening operator’ in its broadest sense: any mechanism whereby, in the
course of the analysis, an abstract description is substituted by one that is less precise.
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wasted effort as the number of benchmark programs for which termination cannot

be obtained within reasonable time is really small.

For space reasons, the experimental results are only summarized here. The

interested reader can find more information (including a description of the constantly

growing benchmark suite and detailed results for each benchmark) at the URI

http://www.cs.unipr.it/China/. Indeed, given the high number of benchmark

programs and the many domain combinations considered,7 even finding a concise,

meaningful and practical way to summarize the results has been a non-trivial task.

For each benchmark, precision is measured by counting the number of independ-

ent pairs (the corresponding columns are labeled ‘I’ in the tables) as well as the

numbers of definitely ground (labeled ‘G’), free (‘F’) and linear (‘L’) variables detected

by each abstract domain. The results obtained for different analyses are compared

by computing the relative precision improvements or degradations on each of these

quantities and expressing them using percentages. The “overall” (‘O’) precision

improvement for the benchmark is also computed as the maximum improvement on

all the measured quantities.8 The benchmark suite is then partitioned into several

precision equivalence classes: the cardinalities of these classes are expressed again

using percentages. For example, when looking at the precision results reported

in Table 1 for goal-dependent analysis, the value 2.3 that can be found at the

intersection of the row labeled ‘0 < p � 2’ with the column labeled ‘G’ is to be

read as follows: “for 2.3 percent of the benchmarks the increase in the number of

ground variables is less than or equal to 2 percent.” The precision class labeled

‘unknown’ identifies those benchmarks for which a precision comparison was not

possible, because one or both of the analyses was timed-out (for all comparisons,

the time-out threshold is 600 seconds). In summary, a precision table gives an

approximation of the distribution of the programs in the benchmark suite with

respect to the obtained precision gains.

For a rough estimate of the efficiency of the different analyses, for each comparison

we provide two tables that summarize the times taken by the fixpoint computations.

It should be stressed that these by no means provide a faithful account of the

intrinsic computational cost of the tested domain combinations. Besides the lack of

widenings, which have a big impact on performance as can be observed by the results

reported in Zaffanella et al. (1999), the reader should not forget that, for ease of

implementation, having targeted at precision we traded efficiency whenever possible.

Therefore, these tables provide, so to speak, upper-bounds: refined implementations

can be expected to perform at least as well as those reported in the tables.

As done for the precision results, the timings are summarized by partitioning

the suite into equivalence classes and reporting the cardinality of each class using

7 We compute the results of 40 different variations of the static analysis, which are then used to perform
36 comparisons. The results are computed over 332 programs for goal-independent analyses and over
221 programs for goal-dependent analyses. This difference in the number of benchmarks considered
comes from the fact that many programs either are not provided with a set of entry goals or use
constructs such as call(G) where G is a term whose principal functor is not known. In these cases the
analyzer recognizes that goal-dependent analysis is pointless, since no call-patterns can be excluded.

8 When computing this “overall” result for a benchmark, the presence of even a single precision loss
for one of the measures overrides any precision improvement computed on the other components.
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percentages. In the first table we consider the distribution of the absolute time

differences, that is we measure the slow-down and speed-up due to the incorporation

of the considered enhancement. Note that the class called ‘same time’ actually

comprises the benchmarks having a time difference below a given threshold, which

is fixed at 0.1 seconds. In the second table we show the distribution of the total

fixpoint computation times, both for the base analysis (in the columns labeled ‘%1’)

and for the enhanced one (in the columns labeled ‘%2’); the columns labeled ‘∆’

show how much each total time class grows or shrinks due to the inclusion of the

considered combination.

4 A simple combination with Pos

It is well-known that the domain Sharing (and thus also SFL) keeps track of

ground dependencies. More precisely, Sharing contains Def , the domain of definite

Boolean functions defined in Armstrong et al. (1998), as a proper subdomain defined

in Cortesi et al. (1992); Zaffanella et al. (1999). However, we consider here the

combination of SFL with Pos, the domain of positive Boolean functions defined in

Armstrong et al. (1998). There are several good reasons to couple SFL with Pos:

1. Pos is strictly more expressive than Def in that it can represent (positive)

disjunctive groundness dependencies that arise in the analysis of Prolog pro-

grams, Armstrong et al. (1998). The ability to deal with disjunctive dependencies

is also needed for the precise approximation of the constraints of some CLP

languages: for example, when using the finite domain solver of SICStus Prolog,

the user can write disjunctive constraints such as ‘X #= 4 #\/ Y #= 6’.

2. The increased precision on groundness propagates to the SFL component. It

can be exploited to remove redundant sharing groups and to identify more

linear variables, therefore having a positive impact on the computation of the

amgu operator of the SFL domain. Moreover, when dealing with sequences

of bindings, the added groundness information allows them to be usefully

reordered. In fact, while it has been proved in Hill et al. (1998) that Sharing

alone is commutative, meaning that the result of the analysis does not depend

on the ordering in which the bindings are executed the domain SFL does not

enjoy this property. In particular, even for the simpler combination of Sharing

with linearity it has been known since Langen (1990, pp. 66–67) that better

results are obtained if the grounding bindings are considered before the others.9

As an example, consider the sequences of unifications (f(X,X, Y ) = A, X = a)

and (X = a, f(X,X, Y ) = A) (Langen 1990, p. 66). The combination with Pos

is clearly advantageous in this respect.

3. Besides being useful for improving precision on other properties, disjunctive

dependencies also have a few direct applications, such as occurs-check reduc-

tion. As observed in Crnogorac et al. (1996), if the groundness formula x∨ y

9 A binding x = t is grounding with respect to an abstract description if, in all the concrete computation
states approximated by the abstract description, either the variable x is ground or all the variables in
t are ground. For example, when considering an abstract description sh ∈ SH , the binding x = t is
grounding if rel({x}, sh) = � or rel(vars(t), sh) = �.
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holds, the unification x = y is occurs-check free, even when neither x nor y are

definitely linear.

4. Detecting the set of definitely ground variables through Pos and exploiting it

to simplify the operations on SFL can improve the efficiency of the analysis.

In particular this is true if the set of ground variables is readily available, as

is the case, for instance, with the GER implementation of Pos in Bagnara and

Schachte (1999).

5. The combination with Pos is essential for the application of a powerful widening

technique on SFL as described in Zaffanella et al. (1999). This is very important,

since analysis based on SFL is not practical without widenings.

6. In the context of the analysis of CLP programs, the notions of “ground

variable” and the notion of “variable that cannot share a common variable

with other variables” are distinct. A numeric variable in, say, CLP(R), cannot

share with other numerical variables (not in the sense of interest in this paper)

but is not ground unless it has been constrained to a unique value. Thus

the analysis of CLP programs with SFL alone either will lose precision on

pair-sharing (if arithmetic constraints are abstracted into “sharings” among

numeric variables in order to approximate the groundness of the latter) or will

be imprecise on the groundness of numeric variables (because only Herbrand

constraints take part in the construction of sharing-sets). In the first alternative,

as we have already noted, the precision with which groundness of numeric

variables can be tracked will also be limited. Since groundness of numeric

variables is important for a number of applications (e.g. compiling equality

constraints down to assignments or tests in some circumstances), we advocate

the use of Pos and SFL at the same time.

Thus, as a first technique to enhance the precision of sharing analysis, we consider

the simple propagation of the set of definitely ground variables from the Pos

component to the SFL component.10 We denote this domain by Pos × SFL.

As noted above, the GER implementation of Bagnara and Schachte (1999), besides

being the fastest implementation of Pos known to date, is the natural candidate for

this combination, since it provides constant-time access to the set G of the definitely

ground variables. Note that the widenings on the Pos component have been retained.

The reason for this choice is that they fire for only a few benchmarks and, when

coming into play, they rarely affect the precision of the groundness analysis: by

switching them off we would only obtain a few more time-outs.

In the SFL component, the set G of definitely ground variables is used

• to reorder the sequence of bindings in the abstract unification so as to handle

the grounding ones first;

• to eliminate the sharing groups containing at least one ground variable; and

• to recover from previous linearity losses.

The experimental results for Pos × SFL are compared with those obtained for the

domain SFL considered in isolation and reported in Table 1. It can be observed that

10 A more precise combination will be considered in Section 7.
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Table 1. SFL2 versus Pos × SFL2

Goal independent Goal dependent

Prec. class O I G F L O I G F L

5 < p � 10 – – – – – 0.5 – 0.5 – –

2 < p � 5 0.3 – 0.3 – – – – – – –

0 < p � 2 0.6 0.6 0.6 – 0.6 3.2 3.6 2.3 – 2.7

Same precision 95.8 96.1 95.8 96.7 96.1 92.8 92.8 93.7 96.4 93.7

Unknown 3.3 3.3 3.3 3.3 3.3 3.6 3.6 3.6 3.6 3.6

% benchmarks

Time difference class Goal Ind. Goal Dep.

degradation > 1 2.7 6.8

0.5 < degradation � 1 1.5 0.5

0.2 < degradation � 0.5 3.0 0.9

0.1 < degradation � 0.2 5.7 5.0

both timed out 3.3 3.6

same time 81.6 81.9

0.1 < improvement � 0.2 – 0.5

0.2 < improvement � 0.5 0.9 0.5

0.5 < improvement � 1 0.3 –

improvement > 1 0.9 0.5

Goal Ind. Goal Dep.

Total time class %1 %2 ∆ %1 %2 ∆

timed out 3.3 3.3 – 3.6 3.6 –

t > 10 8.4 9.0 0.6 7.2 7.2 –

5 < t � 10 0.6 0.3 −0.3 1.4 1.4 –

1 < t � 5 6.6 7.5 0.9 3.2 3.6 0.5

0.5 < t � 1 3.3 2.7 −0.6 5.4 5.4 –

0.2 < t � 0.5 7.2 8.4 1.2 10.4 13.1 2.7

t � 0.2 70.5 68.7 −1.8 68.8 65.6 −3.2

a precision improvement is observed in all of the measured quantities but freeness,

affecting up to 3.6% of the programs.

Note that there is a small discrepancy between these results and those of Bagnara

et al. (2000) where more improvements were reported. The reason is that the current

SFL implementation uses an enhanced abstract unification operator, fully exploiting

the anticipation of the grounding bindings even on the base domain SFL itself. In

contrast, in the earlier SFL implementation used for the results in Bagnara et al.

(2000), only the syntactically grounding bindings were anticipated.11

11 A binding x = t is syntactically grounding if vars(t) = �. This “syntactic” definition differs from
the “semantic” one provided before in that it does not depend upon the information provided by an
abstract description.
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As for the timings, even if the figures in the tables seem to contradict what we

claimed in point 4 above, a closer inspection of the detailed results reveals that this

is only due to a very unfortunate interaction between the increased precision given

by Pos and the absence of widening operators on SFL. This state of affairs forces

the analyzer to compute a few, but very expensive, further iterations in the fixpoint

computation.

Because of the reasons detailed above, we believe Pos should be part of the global

domain employed by any “production analyzer” for CLP languages. That is why, for

the remaining comparisons, unless otherwise stated, this simple combination with

the Pos domain is always included.

5 Tracking explicit structural information

A way of increasing the precision of almost any analysis domain is by enhancing it

with structural information. For mode analysis, this idea dates back to Janssens and

Bruynooghe (1992). A more general technique was proposed in Cortesi et al. (1994),

where the generic structural domain Pat(�) was introduced. A similar proposal,

tailored to sharing analysis, is due to Bruynooghe et al. (1994a), where abstract

equation systems are considered. In the experimental evaluation the Pattern(·)
construction (Bagnara 1997a; 1997b; Bagnara et al. 2000) is used. This is similar to

Pat(�) and correctly supports the analysis of languages omitting the occurs-check

in the unification procedure as well as those that do not.

The construction Pattern(·) upgrades a domain D (which must support a certain

set of basic operations) with structural information. The resulting domain, where

structural information is retained to some extent, is usually much more precise

than D alone. There are many occasions where these precision gains give rise to

consistent speed-ups. The reason for this is twofold. First, structural information has

the potential of pruning some computation paths on the grounds that they cannot

be followed by the program being analyzed. Second, maintaining a tuple of terms

with many variables, each with its own description, can be cheaper than computing

a description for the whole tuple Bagnara et al. (2000). Of course, there is also a

price to be paid: in the analysis based on Pattern(D), the elements of D that are to

be manipulated are often bigger (i.e. there are more variables of interest) than those

that arise in analyses that are simply based on D.

When comparing the precision results, the difference in the number of variables

tracked by the two analyses poses a non-trivial problem. How can we provide a

fair measure of the precision gain? There is no easy answer to such a question.

The approach chosen is simple though unsatisfactory: at the end of the analysis,

first throw away all the structural information in the results and then calculate

the cardinality of the usual sets. In other words, we only measure how the explicit

structural information in Pattern(D) improves the precision on D itself, which is

only a tiny part of the real gain in accuracy. As shown by the following example,

this solution greatly underestimates the precision improvement coming from the

integration of structural information.
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Consider a simple but not trivial Prolog program: mastermind.12 Consider also

the only direct query for which it has been written, ‘?- play.’, and focus the

attention on the procedure extend code/1. A standard goal-dependent analysis of

the program with the Pos × SFL domain cannot say anything on the successes of

extend code/1. If the analysis is performed with Pattern(Pos × SFL) the situation

changes radically. Here is what such a domain allows China to derive:13

extend_code([([A|B],C,D)|E]) :-

list(B), list(E),

(functor(C,_,1);integer(C)),

(functor(D,_,1);integer(D)),

ground([C,D]), may_share([[A,B,E]]).

This means: “during any execution of the program, whenever extend code/1

succeeds it will have its argument bound to a term of the form [([A|B],C,D)|E],

where B and E are bound to list cells (i.e. to terms whose principal functor is either

’.’/2 or []/0); C and D are ground and bound to a functor of arity 1 or to

an integer; and pair-sharing may only occur among A, B, and E”. Once structural

information has been discarded, the analysis with Pattern(Pos × SFL) only specifies

that extend code/1 may succeed. Thus, according to our approach to the precision

comparison, explicit structural information gives no improvements in the analysis of

extend code/1 (which is far from being a fair conclusion).

Of course, structural information is very valuable in itself. For example, when

exploited for optimized compilation it allows for enhanced clause indexing and sim-

plified unification. Several other semantics-based program manipulation techniques

(such as debugging, program specialization, and verification) benefit from this kind

of information. However, the value of this extra precision could only be measured

from the point of view of the target application of the analysis.

Thus the precision of the domain Pos×SFL has been compared with that obtained

using the domain Pattern(Pos × SFL) and the results reported in Table 2. It can be

seen that, for goal-independent analysis, on one third of the benchmarks compared

there is a precision improvement in at least one of the measured quantities; the

same happens for one sixth of the benchmarks in the case of goal-dependent

analysis. Moreover, the increase in precision can be considerable, as testified by the

percentages of benchmarks falling in the higher precision classes.

The reader may be surprised, as the authors were, to see that in some cases the

precision actually decreased.14 Indeed, to the best of our knowledge, this possibility

has escaped all previous research work investigating this kind of abstract domain

enhancement, including Cortesi et al. (1994), Bruynooghe et al. (1994a) and Bagnara

12 This program which implements the game “Mastermind” was rewritten by H. Koenig and T. Hoppe
after code by M. H. van Emden and available at http://www.cs.unipr.it/China/Benchmarks/
Prolog/mastermind.pl.

13 Some extra groundness information obtained by the analysis has been omitted for simplicity: this says
that, if A and B turn out to be ground, then E will also be ground.

14 This happens for the program attractions2 in the case of goal-independent analysis and for the
program semi in the case of goal-dependent analysis.
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Table 2. Pos × SFL2 versus Pattern(Pos × SFL2)

Goal Independent Goal Dependent

Prec. class O I G F L O I G F L

p > 20 7.5 2.7 3.9 2.1 3.3 6.3 1.4 3.6 1.8 3.6

10 < p � 20 3.9 2.1 2.7 – 2.4 2.7 2.3 1.4 – 2.7

5 < p � 10 4.5 1.8 2.7 2.4 2.4 1.8 0.9 2.3 0.9 1.4

2 < p � 5 7.5 6.0 3.9 2.7 5.1 2.7 3.2 1.4 1.8 2.3

0 < p � 2 7.8 9.0 6.6 6.9 12.0 2.3 4.5 1.8 1.8 5.0

Same precision 61.7 71.7 73.5 79.2 67.8 74.2 78.3 80.1 84.2 75.1

Unknown 6.6 6.6 6.6 6.6 6.6 9.5 9.5 9.5 9.5 9.5

p < 0 0.3 – – – 0.3 0.5 – – – 0.5

% benchmarks

Time diff. class Goal Ind. Goal Dep.

degradation > 1 11.7 17.6

0.5 < degradation � 1 1.2 0.9

0.2 < degradation � 0.5 3.6 4.1

0.1 < degradation � 0.2 1.5 4.1

both timed out 3.3 3.6

same time 70.8 66.5

0.1 < improvement � 0.2 0.9 0.5

0.2 < improvement � 0.5 1.5 –

0.5 < improvement � 1 0.6 0.5

improvement > 1 4.8 2.3

Goal Ind. Goal Dep.

Total time class %1 %2 ∆ %1 %2 ∆

timed out 3.3 6.6 3.3 3.6 9.5 5.9

t > 10 9.0 8.4 −0.6 7.2 8.6 1.4

5 < t � 10 0.3 1.5 1.2 1.4 1.8 0.5

1 < t � 5 7.5 6.6 −0.9 3.6 5.0 1.4

0.5 < t � 1 2.7 3.3 0.6 5.4 3.2 −2.3

0.2 < t � 0.5 8.4 10.2 1.8 13.1 13.6 0.5

t � 0.2 68.7 63.3 −5.4 65.6 58.4 −7.2

(1997a). The reason for these precision losses lies in a subtle interaction between the

explicit structural information and the underlying abstract unification operator.

When using the base domain Pos × SFL, the abstract evaluation of a single

syntactic binding, such as x = f(y, z), directly corresponds to a single application of

the amgu operator. In contrast, when computing on Pattern(Pos × SFL), it may well

happen that the computed abstract description already contains the information that

variable x is bound to a term, such as f(g(w), w). As a consequence, after peeling the
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principal functor f/2, the abstract computation should proceed by evaluating, on

the base domain Pos×SFL, the set of bindings {y = g(w), z = w}. Here the problem

is that, as already noted, the amgu operator on the base domain Pos × SFL is not

commutative. While this improvement in the data used by the abstract computation

very often allows for a corresponding increase in the precision of the result, in rare

situations it may happen that a sub-optimal ordering of the bindings is chosen,

incurring a precision loss.

It should be noted that such a negative interaction with the explicit struc-

tural information is only possible when the underlying domain implements non-

commutative abstract operators. In particular, this phenomenon could not be

observed when computing on Pattern(SH ) or Pattern(Pos).

One issue that should be resolved is whether the improvements provided by

explicit structural information subsume those previously obtained for the simple

combination with Pos. Intuitively, it would seem that this cannot happen, since these

two enhancements are based on different kinds of information: while the Pattern(·)
construction encodes some definite structural information, the precision gain due to

using Pos rather than just Def only stems from disjunctive groundness dependencies.

However, the impact of these techniques on the overall analysis is really intricate and

some overlapping cannot be excluded a priori : for instance, both techniques affect

the ordering of bindings in the computation of abstract unification on SFL. In order

to provide some experimental evidence for this qualitative reasoning, the precision

results are computed for the simpler domain Pattern(SFL) and then compared with

those obtained for the domain Pattern(Pos×SFL). Since the main differences between

Tables 1 and 3 can be explained by discrepancies in the numbers of programs that

timed-out, these results confirm our expectations that these two enhancements are

effectively orthogonal.

Similar experimental evaluations, but based on the abstract equation systems of

Bruynooghe et al. (1994a), were reported by Mulkers et al. (1994, 1995). Here a

depth-k abstraction (replacing all subterms occurring at a depth greater than or

equal to k with fresh abstract variables) is conducted on a small benchmark suite

(19 programs) for values of k between 0 and 3. The domain they employed was not

suitable for the analysis of real programs and, in fact, even the analysis of a modest-

sized program like ann could only be carried out with depth-0 abstraction (i.e.

without any structural information). Such a problem in finding practical analyzers

that incorporated structural information with sharing analysis was not unique to

this work: there was at least one other previous attempt to evaluate the impact

of structural information on sharing analysis that failed because of combinatorial

explosion (A. Cortesi, personal communication, 1996).

What makes the more realistic experimentation now possible is the adoption

of the non-redundant domain PSD , where the exponential star-union operation is

replaced by the quadratic self-bin-union. Note that, even if biased by the absence

of widenings, the timings reported in Table 2 show that the Pattern(·) construction

is computationally feasible. Indeed, as demonstrated by the results reported in

Bagnara et al. (2000), an analyzer that incorporates a carefully designed structural

information component, besides being more precise, can also be very efficient.
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Table 3. Pattern(SFL2) versus Pattern(Pos × SFL2)

Goal Independent Goal Dependent

Prec. class O I G F L O I G F L

5 < p � 10 – – – – – 0.5 – 0.5 – –

2 < p � 5 0.3 – 0.3 – – – 0.5 – – –

0 < p � 2 – – – – – 3.2 3.2 2.7 – 2.7

Same precision 93.1 93.4 93.1 93.4 93.4 86.4 86.4 86.9 90.0 87.3

Unknown 6.6 6.6 6.6 6.6 6.6 10.0 10.0 10.0 10.0 10.0

% benchmarks

Time diff. class Goal Ind. Goal Dep.

degradation > 1 5.7 7.7

0.5 < degradation � 1 2.4 0.5

0.2 < degradation � 0.5 3.6 5.4

0.1 < degradation � 0.2 5.4 2.7

both timed out 6.6 9.5

same time 75.6 73.8

0.1 < improvement � 0.2 – –

0.2 < improvement � 0.5 0.6 –

0.5 < improvement � 1 – –

improvement > 1 – 0.5

Goal Ind. Goal Dep.

Total time class %1 %2 ∆ %1 %2 ∆

timed out 6.6 6.6 – 10.0 9.5 −0.5

t > 10 8.1 8.4 0.3 7.7 8.6 0.9

5 < t � 10 1.5 1.5 – 2.3 1.8 −0.5

1 < t � 5 5.1 6.6 1.5 4.5 5.0 0.5

0.5 < t � 1 3.9 3.3 −0.6 3.2 3.2 –

0.2 < t � 0.5 7.2 10.2 3.0 10.9 13.6 2.7

t � 0.2 67.5 63.3 −4.2 61.5 58.4 −3.2

The results obtained in this section demonstrate that there is a relevant amount of

sharing information that is not detected when using the classical set-sharing domains.

Therefore, in order to provide an experimental evaluation that is as systematic as

possible, in all of the remaining experiments the comparison is performed both with

and without explicit structural information.

6 Reordering the non-grounding bindings

As already explained in Section 4, the results of abstract unification on SFL may

depend on the order in which the bindings are considered and will be improved if
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the grounding bindings are considered first. This heuristic, which has been used for

all the experiments in this paper, is well-known: in the literature all the examples

that illustrate the non-commutativity of the abstract mgu on SFL use a grounding

binding. However, as observed in Section 5, the problem is more general than that.

To illustrate this, suppose that VI = {u, v, w, x, y, z} is the set of relevant variables,

and consider the SFL element15

d
def
= 〈{vy, wy, xy, yz},�, {u, x, z}〉,

where no variable is free and u, x, and z are linear with the bindings v = w and

x = y. Then, applying amgu to these bindings in the given ordering, we have:

d1 = amgu(d , v = w)

= 〈{vwy, xy, yz},�, {u, x, z}〉,
d1,2 = amgu(d1, x = y)

= 〈{vwxy, vwxyz, xy, xyz},�, {u, z}〉.

Using the reverse ordering, we have:

d2 = amgu(d , x = y)

= 〈{vwxy, vwxyz, vxy, vxyz, wxy, wxyz, xy, xyz},�, {u, z}〉,
d2,1 = amgu(d2, v = w)

= 〈{vwxy, vwxyz, xy, xyz},�, {u}〉.

Thus d2,1 loses the linearity of z (which, in turn, could cause bigger precision losses

later in the analysis).

In principle, optimality can be obtained by adopting the brute-force approach:

trying all the possible orderings of the non-grounding bindings. However, this is

clearly not feasible. While lacking a better alternative, it is reasonable to look for

heuristic that can be applied in the context of a local search paradigm: at each step,

the next binding for the amgu procedure is chosen by evaluating the effect of its

abstract execution, considered in isolation, on the precision of the analysis.

Suppose the number of independent pairs is taken as a measure of precision.

Then, at each step, for each of the bindings under consideration, the new component

sh ′, as given by Definition 4, must be computed. However, because the computation

of sh ′ is the most costly operation to be performed in the computation of the

amgu operator, a direct application of this heuristic does not appear to be feasible.

As an alternative, consider a heuristic based on the number of star-unions that

have to be computed. Star-unions are likely to cause large losses in the number of

independent pairs that are found. As only non-grounding bindings are considered,

any binding requiring the computation of a star-union will need the star-union

even if it is delayed, although a binding that does not require the star-union may

require it if its computation is postponed: its variables may lose their freeness,

15 Elements of SH are written in a simplified notation, omitting the inner braces. For instance, the set
{{x}, {x, y}, {x, z}, {x, y, z}} is written as {x, xy, xz, xyz}.
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linearity or independence as a result of evaluating the other bindings. It follows

that one potential heuristic is: “delay the bindings requiring star-unions as much as

possible”. In the next example, by adopting this heuristic, the linearity of variable y

is preserved.

Consider the application of the bindings x = z and v = w to the following abstract

description:

d
def
= 〈{vw, wx, wy, z},�, {u, v, x, y}〉.

Since x is linear and independent from z, computing amgu(d , x = z) requires

one star-union, while two star-unions are needed when computing amgu(d , v = w)

because v and w may share. Thus, with the proposed heuristic, x = z is applied

before v = w, giving:

d1 = amgu(d , x = z)

= 〈{vw, wxz, wy},�, {u, v, y}〉,
d1,2 = amgu(d1, v = w)

= 〈{vw, vwxyz, vwxz, vwy},�, {u, y}〉.

In contrast, if v = w is applied first, we have:

d2 = amgu(d , v = w)

= 〈{vw, vwx, vwxy, vwy, z},�, {u, x, y}〉,
d2,1 = amgu(d2, x = z)

= 〈{vw, vwxyz, vwxz, vwy},�, {u}〉.

Note that the same number of independent pairs is computed in both cases. It

should be noted that this heuristic, considered in isolation, is not a general solution

and can actually lead to precision losses. The problem is that, if a binding that needs

a star-union is delayed, then, when the star-union is computed, it may be done on

a larger sharing-set, forcing more (independent) pairs of variables into the same

sharing group.

Consider the application of the bindings u = x and v = w to the abstract

description

d
def
= 〈{u, uw, v, w, xy, xz}, {u, x}, {u, x}〉.

Since x and u are both free variables, no star-union is needed in the computation of

amgu(d , u = x), while two star-unions are needed when computing amgu(d , v = w).

d1 = amgu(d , u = x)

= 〈{uwxy, uwxz, uxy, uxz, v, w}, {u, x}, {u, x}〉,
d1,2 = amgu(d1, v = w)

= 〈{uvwxy, uvwxyz, uvwxz, uxy, uxz, vw},�,�〉.
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Using the other ordering, we have:

d2 = amgu(d , v = w)

= 〈{u, uvw, vw, xy, xz}, {x}, {x}〉,
d2,1 = amgu(d2, u = x)

= 〈{uvwxy, uvwxz, uxy, uxz, vw},�,�〉.

Note that in d2,1 variables y and z are independent, whereas they may share in d1,2.

Thus, in this example, by delaying the only binding that requires the star-unions,

v = w, the number of known independent pairs is decreased.

Another possibility is to consider a heuristic that uses the numbers of free and

linear variables as a measure of precision for local optimization. That is, it chooses

first those bindings for which these numbers are maximal. However, the last example

shown above is evidence that even such a proposal may also cause precision losses

(the binding u = x would be chosen first as it preserves the freeness of variable u).

To evaluate the effects of these two heuristic on real programs, we have implemen-

ted and compared them with respect to the “straight” abstract computation, which

considers the non-grounding bindings using the left-to-right order.16 The results

reported in Tables 4 and 5 can be summarized as follows:

1. the precision on the groundness and freeness components is not affected;

2. the precision on the independent pairs and linearity components is rarely

affected, in particular when considering goal-dependent analyses;

3. even for real programs, as was the case for the artificial examples given above,

the precision can be increased as well as decreased.

Looking at Tables 4 and 5, it can be seen that the heuristic based on freeness and

linearity information is slightly better than the use of the straight order, which, in

its turn, is slightly better than the heuristic based on the number of star-unions.

Clearly, since these results could not be generalized to other orderings, our

investigation cannot be considered really conclusive. Besides designing “smarter”

heuristic, it would be interesting to provide a kind of responsiveness test for the

underlying domain with respect to the choice of ordering for the non-grounding

bindings: a simple test consists in measuring how much the precision can be affected,

in either way, by the application of an almost arbitrary order. This is the motivation

for the comparison reported in Table 6, where the order is from right-to-left, the

reverse of the usual one. As for the results given in Tables 4 and 5, the number

of changes to the precision observed in Table 6 is small and all the observations

made above still hold. Surprisingly, this reversed ordering provides marginally better

precision results than those obtained using the considered heuristic.17

16 The base domain is Pos × SFL, both with and without structural information.
17 It is worth noting that the only precision improvement reported in Table 6 for the goal-dependent

analysis with structural information (caused by the program semi) corresponds to the precision
decrease reported in Table 2. This confirms that, as informally discussed in Section 5, such a precision
decrease was due to the non-commutativity of the amgu operator on Pos × SFL.
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Table 4. The heuristic based on the number of star-unions

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

0 < p � 2 0.9 – – – 0.9 – – – – –

Same precision 94.6 95.5 96.4 96.4 95.5 91.3 91.3 93.1 93.1 93.1

Unknown 3.6 3.6 3.6 3.6 3.6 6.9 6.9 6.9 6.9 6.9

−2 � p < 0 0.9 0.9 – – – 1.8 1.8 – – –

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

Same precision 96.4 96.4 96.4 96.4 96.4 90.5 90.5 90.5 90.5 90.5

Unknown 3.6 3.6 3.6 3.6 3.6 9.5 9.5 9.5 9.5 9.5

Goal Ind. Goal Dep.

Time diff. class w/o SI with SI w/o SI with SI

degradation > 1 4.5 3.0 7.2 4.1

0.5 < degradation � 1 0.6 0.3 – –

0.2 < degradation � 0.5 2.4 0.9 0.5 0.5

0.1 < degradation � 0.2 1.5 0.6 0.5 0.5

both timed out 3.0 6.3 3.6 9.5

same time 80.7 80.7 85.5 76.9

0.1 < improvement � 0.2 1.5 1.2 0.5 0.5

0.2 < improvement � 0.5 1.8 1.2 1.4 2.3

0.5 < improvement � 1 0.9 0.6 – 0.9

improvement > 1 3.0 5.1 0.9 5.0

Goal Independent Goal Dependent

without SI with SI without SI with SI

Total time class %1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 3.3 – 6.6 6.6 – 3.6 3.6 – 9.5 9.5 –

t > 10 9.0 8.1 −0.9 8.4 9.0 0.6 7.2 7.7 0.5 8.6 8.1 −0.5

5 < t � 10 0.3 0.9 0.6 1.5 1.2 −0.3 1.4 0.9 −0.5 1.8 2.7 0.9

1 < t � 5 7.5 7.5 – 6.6 6.3 −0.3 3.6 3.2 −0.5 5.0 4.1 −0.9

0.5 < t � 1 2.7 2.4 −0.3 3.3 3.0 −0.3 5.4 5.9 0.5 3.2 3.6 0.5

0.2 < t � 0.5 8.4 9.3 0.9 10.2 10.5 0.3 13.1 12.7 −0.5 13.6 13.1 −0.5

t � 0.2 68.7 68.4 −0.3 63.3 63.3 – 65.6 66.1 0.5 58.4 58.8 0.5

7 The reduced product between Pos and Sharing

The overlap between the information provided by Pos and the information provided

by Sharing mentioned in Section 4 means that the Cartesian product Pos × SFL
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Table 5. The heuristic based on freeness and linearity

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

5 < p � 10 0.3 – – – 0.3 0.3 – – – 0.3

0 < p � 2 0.9 – – – 0.9 2.7 2.4 – – 0.3

Same precision 94.3 95.5 96.4 96.4 95.2 89.5 90.1 93.4 93.4 92.8

Unknown 3.6 3.6 3.6 3.6 3.6 6.6 6.6 6.6 6.6 6.6

−2 � p < 0 0.6 0.6 – – – 0.9 0.9 – – –

p < −20 0.3 0.3 – – – – – – – –

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

0 < p � 2 0.5 – – – 0.5 – – – – –

Same precision 94.6 95.0 95.5 95.5 95.0 89.6 89.6 89.6 89.6 89.6

Unknown 4.5 4.5 4.5 4.5 4.5 10.4 10.4 10.4 10.4 10.4

−20 � p < −10 0.5 0.5 – – – – – – – –

Goal Ind. Goal Dep.

Time diff. class w/o SI with SI w/o SI with SI

degradation > 1 6.9 4.8 8.1 7.7

0.5 < degradation � 1 2.1 1.5 1.8 0.5

0.2 < degradation � 0.5 2.4 1.8 1.8 2.7

0.1 < degradation � 0.2 1.2 3.3 2.3 3.2

both timed out 2.4 5.7 3.6 9.0

same time 77.4 73.5 78.7 71.9

0.1 < improvement � 0.2 1.2 0.3 – –

0.2 < improvement � 0.5 0.6 1.8 0.9 0.9

0.5 < improvement � 1 0.9 – 0.5 –

improvement > 1 4.8 7.2 2.3 4.1

Goal Independent Goal Dependent

without SI with SI without SI with SI

Total time class %1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 2.7 −0.6 6.6 5.7 −0.9 3.6 4.5 0.9 9.5 10.0 0.5

t > 10 9.0 9.6 0.6 8.4 8.7 0.3 7.2 6.8 −0.5 8.6 7.7 −0.9

5 < t � 10 0.3 2.1 1.8 1.5 1.8 0.3 1.4 1.4 – 1.8 2.7 0.9

1 < t � 5 7.5 6.0 −1.5 6.6 6.9 0.3 3.6 4.5 0.9 5.0 5.0 –

0.5 < t � 1 2.7 3.0 0.3 3.3 3.9 0.6 5.4 4.1 −1.4 3.2 3.6 0.5

0.2 < t � 0.5 8.4 9.9 1.5 10.2 13.3 3.0 13.1 13.1 – 13.6 15.4 1.8

t � 0.2 68.7 66.6 −2.1 63.3 59.6 −3.6 65.6 65.6 – 58.4 55.7 −2.7
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Table 6. Reversing the ordering of the non-grounding bindings

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

5 < p � 10 0.3 – – – 0.3 0.3 – – – 0.3

0 < p � 2 0.9 0.3 – – 0.6 4.2 3.0 – – 1.2

Same precision 94.3 95.2 96.4 96.4 95.5 87.7 89.2 93.4 93.4 91.9

Unknown 3.6 3.6 3.6 3.6 3.6 6.6 6.6 6.6 6.6 6.6

−2 � p < 0 0.6 0.6 – – – 1.2 1.2 – – –

p < −20 0.3 0.3 – – – – – – – –

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

0 < p � 2 0.5 – – – 0.5 0.5 – – – 0.5

Same precision 95.5 95.9 96.4 96.4 95.9 90.0 90.5 90.5 90.5 90.0

Unknown 3.6 3.6 3.6 3.6 3.6 9.5 9.5 9.5 9.5 9.5

−20 � p < −10 0.5 0.5 – – – – – – – –

Goal Ind. Goal Dep.

Time diff. class w/o SI with SI w/o SI with SI

degradation > 1 4.2 6.0 4.5 6.8

0.5 < degradation � 1 0.6 0.6 – –

0.2 < degradation � 0.5 2.4 1.5 1.4 0.9

0.1 < degradation � 0.2 1.8 0.9 0.5 –

both timed out 2.4 5.7 3.6 9.0

same time 78.3 76.2 82.8 74.2

0.1 < improvement � 0.2 1.5 1.2 1.8 0.9

0.2 < improvement � 0.5 1.8 0.3 1.4 1.8

0.5 < improvement � 1 0.9 0.9 0.5 0.5

improvement > 1 6.0 6.6 3.6 5.9

Goal Independent Goal Dependent

without SI with SI without SI with SI

Total time class %1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 2.7 −0.6 6.6 5.7 −0.9 3.6 3.6 – 9.5 9.0 −0.5

t > 10 9.0 8.7 −0.3 8.4 9.9 1.5 7.2 7.7 0.5 8.6 8.1 −0.5

5 < t � 10 0.3 1.8 1.5 1.5 1.5 – 1.4 0.5 −0.9 1.8 2.7 0.9

1 < t � 5 7.5 6.9 −0.6 6.6 6.0 −0.6 3.6 3.2 −0.5 5.0 4.5 −0.5

0.5 < t � 1 2.7 2.4 −0.3 3.3 2.7 −0.6 5.4 5.4 – 3.2 3.6 0.5

0.2 < t � 0.5 8.4 8.7 0.3 10.2 11.1 0.9 13.1 13.1 – 13.6 12.2 −1.4

t � 0.2 68.7 68.7 – 63.3 63.0 −0.3 65.6 66.5 0.9 58.4 59.7 1.4
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contains redundancy, that is, there is more than one element that can characterize

the same set of concrete computational states.

In Bagnara et al. (2000), two techniques that are able to remove some of this

redundancy were experimentally evaluated. One of these aims at identifying those

pairs of variables (x, y) for which the Boolean formula of the Pos component

implies the binary disjunction x ∨ y. In such a case, it is always safe to assume that

the variables x and y are independent.18 Since the number of independent pairs is

one of the quantities explicitly measured, this enhancement has the potential for

“immediate” precision gains. The other technique exploits the knowledge of the sets

of ground-equivalent variables: the variables in e ⊆ VI are ground-equivalent in

φ ∈ Pos if and only if, for each x, y ∈ e, φ |= (x ↔ y). For a description of how

these sets can be used to improve sharing analysis, the reader is referred to Bagnara

et al. (2000). The main motivation for experimenting with this specific reduction

was the ease of its implementation, since all the needed information can easily be

recovered from the already computed E component of the GER implementation of

Pos in Bagnara and Schachte (1999). The experimental evaluation results given in

Bagnara et al. (2000) for these two techniques show precision improvements with

only three of the programs and, also, only with respect to the number of independent

pairs that were found. Those results just apply to these limited forms of reduction,

so could not be considered a complete account of all the possible precision gains.

The full reduced product defined in Cousot and Cousot (1979) between Pos and

Sharing has been elegantly characterized in Codish et al. (1999), where set-sharing

à la Jacobs and Langen is expressed in terms of elements of the Pos domain itself.

Let [φ]VI denote the set of all the models of the Boolean function φ defined over the

set of variables VI . Then, the isomorphism maps each set-sharing element sh ∈ SH

into the Boolean formula φ ∈ Pos such that

[φ]VI = {VI \ S | S ∈ sh} ∪ {VI }.

The sharing information encoded by an element (φg, φsh ) ∈ Pos × Pos can be

improved by replacing the second component (that is, the Boolean formula describing

set-sharing information) with the conjunction φg ∧ φsh . The reader is referred to

Codish et al. (1999) for a complete account of this composition and a justification

of its correctness.

This specification of the reduced product can be reformulated, using the standard

set-sharing representation for the second component, to define a reduction procedure

reduce: Pos × SH → SH such that, for all φg ∈ Pos, sh ∈ SH ,

reduce(φg, sh) = {S ∈ sh | (VI \ S) ∈ [φg]VI }.

The enhanced integration of Pos and SFL, based on the above reduction operator,

is denoted here by Pos ⊗ SFL. From a formal point of view, this is not the reduced

product between Pos and SFL: while there is a complete reduction between Pos

and SH , the same does not necessarily hold for the combination with freeness and

linearity information. Also note that the domain Pos ⊗ SFL is strictly more precise

18 Note that this observation dates back, at least, to Crnogorac et al. (1996).
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Table 7. Pos × SFL2 versus Pos ⊗ SFL

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

5 < p � 10 – – – – – 0.3 0.3 – – –

2 < p � 5 0.3 0.3 – – – – – – – –

0 < p � 2 2.7 2.7 – – 0.6 3.9 3.9 – – 0.6

Same precision 86.1 86.1 89.2 89.2 88.6 80.7 80.7 84.9 84.9 84.3

Unknown 10.8 10.8 10.8 10.8 10.8 15.1 15.1 15.1 15.1 15.1

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

p > 20 0.5 0.5 – – – – – – – –

10 < p � 20 – – – – – 0.5 0.5 – – –

5 < p � 10 – – – – – 0.5 0.5 – – –

0 < p � 2 2.7 2.7 – – – 2.7 2.7 – – –

Same precision 89.1 89.1 92.3 92.3 92.3 77.8 77.8 81.4 81.4 81.4

Unknown 7.7 7.7 7.7 7.7 7.7 18.6 18.6 18.6 18.6 18.6

than the domain ShPSh, defined in Scozzari (2000) for pair-sharing analysis. This is

because the domain ShPSh is the reduced product of a strict abstraction of Pos and

a strict abstraction of SH .

When using the domain PSD in place of SH , the ‘reduce’ operator specified

above can interact in subtle ways with an implementation removing the ρ-redundant

sharing groups from the elements of PSD . The following is an example where such

an interaction provides results that are not correct.

Let VI = {x, y, z} and sh = {xy, xz, yz, xyz} ∈ PSD be the current set-sharing

description. Suppose that the implementation internally represents sh by using the

ρ-reduced element shred = {xy, xz, yz}, so that sh = ρ(shred). Suppose also that the

groundness description computed on the domain Pos is φg = (x ↔ y ↔ z). Note

that we have [φg]VI = {�, {x, y, z}}. Then we have

sh ′ = reduce(sh , φg) = {xyz};
sh ′

red = reduce(shred, φg) = �.

The two Pos-reduced elements sh ′ and sh ′
red are not equivalent, even modulo ρ.

Note that the above example does not mean that the reduced product between

Pos and PSD yields results that are not correct; neither does it mean that it is less

precise than the reduced product between Pos and SH for the computation of the

observables. More simply, the optimizations used in our current implementation of

PSD are not compatible with the above reduction process. Therefore, in Table 7 we

show the precision results obtained when comparing the base domain Pos × SFL2

with the domain Pos ⊗ SFL: the implementation of Pos ⊗ SFL, by avoiding ρ-

reductions, is not affected by the correctness problem mentioned above.
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The precision comparison provides empirical evidence that Pos ⊗ SFL is more

effective than the combination considered in Bagnara et al. (2000). However, as

indicated by the number of time-outs reported in Table 7, using Pos ⊗ SFL is not

feasible due to its intrinsic exponential complexity. We deliberately decided not to

include the time comparison, since it would have provided no information at all: the

efficiency degradations, which are largely caused by the lack of ρ-reductions, should

not be attributed to the enhanced combination with Pos. In this respect, the reader

looking for more details is referred to Bagnara et al. (2000).

For the only purpose of investigating how many precision improvements may

have been missed in the previous comparison due to the high number of time-outs,

we have performed another experimental evaluation where we have compared the

base domain Pos × SFL2 and the domain Pos ⊗ SFL2. We stress the fact that,

given the observation made previously, such a precision comparison provides an

over-estimation for the actual improvements that can be obtained by a correct

integration of the ρ-reduction and the ‘reduce’ operators. A detailed investigation

of the experimental data, which cannot be reported here for space reasons, has

shown that the number of precision improvements shown in Table 7 could at most

double. In particular, improvements are more likely to occur for goal-independent

analyses.

8 Ground-or-free variables

Most of the ideas investigated in the present work are based on earlier work by

other authors. In this section, we describe one originally proposed in Bagnara et al.

(2000). Consider the analysis of the binding x = t and suppose that, on a set of

computation paths, this binding is reached with x ground while, on the remaining

computation paths, the binding is reached with x free. In both cases x will be linear

and this is all that will be recorded when using the usual combination Pos × SFL.

This information is valuable since, in the case that x and t are independent, it

allows the star-union operation for the relevant component for t to be dispensed

with. However, the information that is lost, that is, x being either ground or free,

is equally valuable, since this would allow the avoidance of the star-union of both

the relevant components for x and t, even when x and t may share. This loss has

the disadvantages that CPU time is wasted by performing unnecessary but costly

operations and that the precision is potentially degraded: not only are the extra

star-unions useless for correctness but may introduce redundant sharing groups

to the detriment of accuracy. It is therefore useful to track the additional mode

‘ground-or-free’.

The analysis domain SFL is extended with the component GF
def
= ℘(VI ) consisting

of the set of variables that are known to be either ground or free. As for freeness

and linearity, the approximation ordering on GF is given by reverse subset inclusion.

When computing the abstract mgu on the new domain

SGFL
def
= SH × F × GF × L,
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the property of being ground-or-free is used and propagated in almost the same

way as freeness information.

Definition 6

(Improved abstract operations over SGFL.) Let d = 〈sh , f, gf , l〉 ∈ SGFL. We define

the predicate gfreed : Terms → Bool such that, for each first order term t, where

Vt
def
= vars(t) ⊆ VI ,

gfreed (t)
def
= (rel(Vt, sh) = �) ∨ (∃x ∈ VI . x = t ∧ x ∈ gf ).

Consider the specification of the abstract operations over SFL given in Definition 4.

The improved operator amgu: SGFL × Bind → SGFL is given by

amgu(d, x = t)
def
= 〈sh ′, f′, gf ′, l′〉,

where f′ and l′′ are defined as in Definition 4 and

sh ′ = rel(Vxt, sh) ∪ bin(Sx, St);

Sx =

{
Rx, if gfreed (x) ∨ gfreed (t) ∨ (lind (t) ∧ indd (x, t));

R�
x, otherwise;

St =

{
Rt, if gfreed (x) ∨ gfreed (t) ∨ (lind (x) ∧ indd (x, t));

R�
t , otherwise;

gf ′ = (VI \ vars(sh ′)) ∪ gf ′′;

gf ′′ =




gf , if gfreed (x) ∧ gfreed (t);

gf \ vars(Rx), if gfreed (x);

gf \ vars(Rt), if gfreed (t);

gf \ vars(Rx ∪ Rt), otherwise;

l′ = gf ′ ∪ l′′.

The computation of the set gf ′′ is very similar to the computation of the set

f′ as given in Definition 4. The new ground-or-free component gf ′ is obtained by

adding to gf ′′ the set of all the ground variables: in other words, if a variable

“loses freeness” then it also loses its ground-or-free status unless it is known to

be definitely ground. It can be noted that, in the computation of this improved

amgu, the ground-or-free property takes the role previously played by freeness. In

particular, when computing sh ′, all the tests for freeness have been replaced by

tests on the newly defined Boolean function gfreed; similarly, in the computation

of the new linearity component l′, the set f′ has been replaced by gf ′ (since any

ground-or-free variable is also linear). It is also easy to generalize the improvement

for definitely cyclic bindings introduced in Definition 5 to the domain SGFL: as

before, the test freed (x) needs to be replaced with the new test gfreed (x).

To summarize, the incorporation of the set of ground-or-free variables is cheap,

both in terms of computational complexity and in terms of code to be written.

As far as computational complexity is concerned this extension looks particularly
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promising, since the possibility of avoiding star-unions has the potential of absorbing

its overhead if not of giving rise to a speed-up.

Thus the domain Pos × SGFL was experimentally evaluated on our benchmark

suite, with and without the structural information provided by Pattern(·), both in a

goal-dependent and in a goal-independent way, and the results compared with those

previously obtained for the domain Pos×SFL. Note that the implementation uses the

non-redundant version SGFL2
def
= PSD × F × GF × L. In the precision comparisons

of Table 8, the new column labeled GF reports precision improvements measured

on the ground-or-free property itself.19

As far as the timings are concerned, the experimentation fully confirms our

qualitative reasoning: efficiency improvements are more frequent than degradations

and, even with widening operators switched off, the distributions of the total

analysis times show minor changes only. As for precision, disregarding the many

improvements in the GF columns, few changes can be observed, and almost all of

these concern just the linearity information.20

The results in Table 8, show that tracking ground-or-free variables, while being

potentially useful for improving the precision of a sharing analysis, rarely reaches

such a goal. In contrast, the precision gains on the ground-or-free property itself are

remarkable, affecting from 39% to 74% of the programs in the benchmark suite. It is

possible to foresee several direct applications for this information that, together with

the just mentioned negligible computational cost, fully justify the inclusion of this

enhancement in a static analyzer. In particular, there are at least two ways in which

a knowledge of ground-or-free variables could improve the concrete unification

procedure.

The first case applies in the context of occurs-check reduction, Søndergaard (1986);

Crnogorac et al. (1996), that is when a program designed for a logic programming

system performing the occurs-check is to be run on top of a system omitting this

test. In order to ensure correct execution, all the explicit and implicit unifications in

the program are treated as if the ISO Prolog built-in unify with occurs check/2

was used to perform them. In order to minimize the performance overhead, it

is important to detect, as precisely as possible and at compile-time, those NSTO

(short for Not Subject To the Occurs-check, Deransart et al. (1991); ISO/IEC (1995))

unifications where the occurs-check will not be needed. For these unifications, =/2

can safely be used; for the remaining ones, the program will have to be transformed

so that unify with occurs check/2 is explicitly called to perform them. Ground-

or-freeness can be of help for this application, since a unification between two

ground-or-free variables is NSTO. Note that this is an improvement with respect to

the technique used in Crnogorac et al. (1996), since it is not required that the two

considered variables are independent.

19 For this comparison, in the analysis using Pos × SFL, the number of ground-or-free variables is
computed by summing the number of ground variables with the number of free variables.

20 In fact the sole improvement to the number of independent pairs is due to a synthetic benchmark,
named gof, that was explicitly written to show that variable independence could be affected.
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Table 8. Pos × SFL2 versus Pos × SGFL2

without Struct Info with Struct Info

Prec. class O I G F GF L O I G F GF L

Goal Ind.

p > 20 52.7 0.3 – – 52.7 – 48.5 0.3 – – 48.5 –

10 < p � 20 11.7 – – – 11.7 – 16.0 – – – 16.0 –

5 < p � 10 5.4 – – – 5.4 – 7.5 – – – 7.5 –

2 < p � 5 2.4 – – – 2.4 – 1.8 – – – 1.8 –

0 < p � 2 0.3 – – – 0.3 1.5 0.6 – – – 0.6 1.5

Same precision 24.1 96.4 96.7 96.7 24.1 95.2 19.0 93.1 93.4 93.4 19.0 91.9

Unknown 3.3 3.3 3.3 3.3 3.3 3.3 6.6 6.6 6.6 6.6 6.6 6.6

Goal Dep.

p > 20 5.9 – – – 5.9 – 5.9 – – – 5.9 –

10 < p � 20 4.5 – – – 4.5 – 5.4 – – – 5.4 –

5 < p � 10 7.7 0.5 – – 7.7 – 5.4 0.5 – – 5.4 –

2 < p � 5 13.1 – – – 13.1 – 12.2 – – – 12.2 –

0 < p � 2 8.1 – – – 8.1 0.5 10.0 – – – 10.0 –

Same precision 57.0 95.9 96.4 96.4 57.0 95.9 51.6 90.0 90.5 90.5 51.6 90.5

Unknown 3.6 3.6 3.6 3.6 3.6 3.6 9.5 9.5 9.5 9.5 9.5 9.5

Goal Ind. Goal Dep.

Time diff. class w/o SI with SI w/o SI with SI

degradation > 1 – 0.6 – 0.9

0.5 < degradation � 1 0.3 – 0.5 –

0.2 < degradation � 0.5 – 0.6 0.5 1.4

0.1 < degradation � 0.2 0.3 – – 0.5

both timed out 3.3 6.6 3.6 9.5

same time 88.6 85.2 87.3 82.8

0.1 < improvement � 0.2 1.2 1.2 1.8 1.4

0.2 < improvement � 0.5 2.4 2.4 1.8 0.9

0.5 < improvement � 1 2.1 0.9 2.3 0.9

improvement > 1 1.8 2.4 2.3 1.8

Goal Independent Goal Dependent

without SI with SI without SI with SI

Total time class %1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 3.3 – 6.6 6.6 – 3.6 3.6 – 9.5 9.5 –

t > 10 9.0 9.0 – 8.4 8.4 – 7.2 7.2 – 8.6 8.6 –

5 < t � 10 0.3 0.3 – 1.5 1.5 – 1.4 1.4 – 1.8 1.8 –

1 < t � 5 7.5 7.5 – 6.6 6.6 – 3.6 3.6 – 5.0 5.0 –

0.5 < t � 1 2.7 2.7 – 3.3 3.6 0.3 5.4 5.9 0.5 3.2 3.2 –

0.2 < t � 0.5 8.4 8.7 0.3 10.2 10.5 0.3 13.1 12.7 −0.5 13.6 14.0 0.5

t � 0.2 68.7 68.4 −0.3 63.3 62.7 −0.6 65.6 65.6 – 58.4 57.9 −0.5
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As a second application, ground-or-freeness can be useful to replace the full

concrete unification procedure by a simplified version. Since a ground-or-free term

is either ground or free, a single run-time test for freeness will discriminate between

the two cases: if this test succeeds, unification can be implemented by a single

assignment; if the test fails, any specialized code for unification with a ground term

can be safely invoked. In particular, when unifying two ground-or-free variables that

are not free at run-time, the full unification procedure can be replaced by a simpler

recursive test for equivalence.

9 More precise exploitation of linearity

King (1994) proposes a domain for sharing analysis that performs a quite precise

tracking of linearity. Roughly speaking, each sharing group in a sharing-set carries

its own linearity information. In contrast, in the approach of Langen (1990), which

is the one usually followed, a set of definitely linear variables is recorded along

with each sharing-set. The proposal in King (1994) gives rise to a domain that is

quite different from the ones presented here. Since King (1994) does not provide an

experimental evaluation and we are unaware of any subsequent work on the subject,

the question whether this more precise tracking of linearity is actually worthwhile

(both in terms of precision and efficiency) seems open.

What interests us here is that part of the theoretical work presented in King

(1994) may be usefully applied even in the more classical treatments of linearity

such as the one being used in this paper. As far as we can tell, this fact was first

noted in Bagnara et al. (2000).

In King (1994), point 3 of Lemma 5 (which is reported to be proven in King

(1993)) states that, if s is a linear term independent from a term t, then in the

unifier for s = t any sharing between the variables in s is necessarily caused by those

variables that can occur more than once in t.

This result can be exploited even when using the domain SFL. Given the abstract

element d = 〈sh , f, l〉, let x ∈ (l \ f) be a non-free but linear variable and let t be a

non-linear term such that indd (x, t). Let also Vx, Vt, Vxt, Rx and Rt be as given in

Definition 4. In such a situation, when abstractly evaluating the binding x = t, the

standard amgu operator gives the set-sharing component

sh ′ = rel(Vxt, sh) ∪ bin(R�
x, Rt).

Suppose the set Vt is partitioned into the two components V l
t and V nl

t , where V nl
t is

the set of the “problematic” variables, that is, those variables that potentially make

t a non-linear term. Formally,

V l
t

def
=


y ∈ vars(t)

∣∣∣∣∣∣∣∣
y ∈ l

y � mvars(t) =⇒ y /∈ vars(sh)

∀z ∈ vars(t) : (y = z ∨ indd (y, z))


;

V nl
t

def
= Vt \ V l

t .
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Let Rl
t = rel(V l

t , sh) and Rnl
t = rel(V nl

t , sh). Note that Rnl
t �= �, because t is a non-

linear term. If also Rl
t �= � then the standard amgu can be replaced by an improved

version (denoted by amguk) computing the following set-sharing component:

sh ′
k = rel(Vxt, sh) ∪ bin

(
Rx, R

l
t

)
∪ bin

(
R�
x, R

nl
t

)
.

As a consequence of King’s result (King 1994, Lemma 5), only Rnl
t (the relevant

component of sh with respect to the problematic variables V nl
t ) has to be combined

with R�
x while Rl

t can be combined with just Rx (without the star-union).

For a working example, suppose VI = {v, w, x, y, z} is the set of variables of

interest and consider the SFL element

d
def
= 〈{vx, wx, y, z}, {v, w, y}, {v, w, x, y}〉

with the binding x = f(y, z). Note that all the applicability conditions specified

above are met: in particular t = f(y, z) is not linear because z /∈ l. As Rx = {vx, wx}
and Rt = {y, z}, a standard analysis would compute

d ′ = amgu(d , x = f(y, z))

= 〈{vwxy, vwxz, vxy, vxz, wxy, wxz},�, {y}〉.

On the other hand, since V l
t = {y} and V nl

t = {z}, the enhanced analysis would

compute

d ′
k = amguk(d , x = f(y, z))

= 〈{vwxz, vxy, vxz, wxy, wxz},�, {y}〉.

Note that d ′
k does not include the sharing group vwxy. This means that, if in the

sequel of the computation variable z is bound to a ground term, then variables

v and w will be known to be definitely independent. This independence is not

captured when using the standard amgu since d ′ includes the sharing group vwxy,

and therefore the variables v and w will potentially share even after grounding z.

The experimental evaluation for this enhancement is reported in Table 9. The

comparison of times shows that the efficiency of the analysis, when affected, is

more likely to be improved than degraded. As for the precision, improvements are

observed for only two programs; moreover, these are synthetic benchmarks such as

the above example. Nevertheless, despite its limited practical relevance, this result

demonstrates that the standard combination of Sharing with linearity information

is not optimal, even when all the possible orderings of the non-grounding bindings

are tried.

10 Sharing and freeness

As noted in Bruynooghe et al. (1994a), Bueno et al. (1994) and Cabeza and

Hermenegildo (1994), the standard combination of Sharing and Free is not op-

timal. Filé (1994) formally identified the reduced product of these domains and

proposed an improved abstract unification operator. This new operator exploits two
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Table 9. The effect of enhanced linearity on Pattern(Pos × SFL2)

Goal Independent Goal Dependent

Prec. class O I G F L O I G F L

p > 20 0.3 0.3 – – – – – – – –

2 < p � 5 – – – – – 0.5 0.5 – – –

Same precision 93.1 93.1 93.4 93.4 93.4 90.0 90.0 90.5 90.5 90.5

Unknown 6.6 6.6 6.6 6.6 6.6 9.5 9.5 9.5 9.5 9.5

% benchmarks

Time difference class Goal Ind. Goal Dep.

degradation > 1 0.3 –

0.5 < degradation � 1 – –

0.2 < degradation � 0.5 – –

0.1 < degradation � 0.2 0.3 0.5

both timed out 6.6 9.5

same time 85.2 83.7

0.1 < improvement � 0.2 0.9 1.8

0.2 < improvement � 0.5 2.4 0.5

0.5 < improvement � 1 0.6 2.7

improvement > 1 3.6 1.4

Goal Ind. Goal Dep.

Total time class %1 %2 ∆ %1 %2 ∆

timed out 6.6 6.6 – 9.5 9.5 –

t > 10 8.4 8.4 – 8.6 8.6 –

5 < t � 10 1.5 1.5 – 1.8 1.8 –

1 < t � 5 6.6 6.6 – 5.0 5.0 –

0.5 < t � 1 3.3 3.3 – 3.2 3.2 –

0.2 < t � 0.5 10.2 11.1 0.9 13.6 14.0 0.5

t � 0.2 63.3 62.3 −0.9 58.4 57.9 −0.5

properties that hold for the most precise abstract description of a single concrete

substitution:

1. each free variable occurs in exactly one sharing group;

2. two free variables occur in the same sharing group if and only if they are

aliases (i.e. they have become the same variable).

When considering the general case, where sets of concrete substitutions come

into play, property 1 can be used to (partially) recover disjunctive information.

In particular, it is possible to decompose an abstract description into a set of

(maximal) descriptions that necessarily come from different computation paths,

each one satisfying property 1. The abstract unification procedure can thus be
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computed separately on each component, and the results of each subcomputation

are then joined to give the final description. As such components are more precise

than the original description (they possibly contain more ground variables and less

sharing pairs), precision gains can be obtained.

Furthermore, by exploiting property 2 on each component, it is possible to

correctly infer that for some of them the computation will fail due to a functor clash

(or to the occurs-check, if considering a system working on finite trees). Note that a

similar improvement is possible even without decomposing the abstract description.

As an example, consider an abstract element such as the following:

d = 〈{xy, u, v}, {x, y}, {x, y}〉.

Since the sharing group xy is the only one where the free variables x and y occur,

property 2 states that x and y are indeed the same variable in all the concrete

computation states described by d ∈ SFL. Therefore, when abstractly evaluating

the substitution {x = f(u), y = g(v)}, it can be safely concluded that its concrete

counterparts will result in failure due to the functor clash. In the same circumstances,

it can also be concluded that a concrete substitution corresponding to, say, {x = f(y)}
will cause a failure of the occurs-check, if this is performed.

As was the case for the reduced product between Pos and SH (see Section 7), the

interaction between the enhanced abstract unification operator and the elimination

of ρ-redundant elements can lead to results that are not correct.

To see this, let VI = {w, x, y, z} and consider the set of concrete substitutions

Σ = ℘(σ), where σ = {x �→ v, y �→ v, z �→ v} (note that v /∈ VI ). The abstract

element describing Σ is d = 〈sh , f, l〉 ∈ SFL, where sh = {w, x, xy, xyz, xz, y, yz, z}
and f = l = VI . Suppose that the implementation represents d by using the reduced

element dred = 〈shred, f, l〉, where shred = sh \ {xyz}, so that sh = ρ(shred).

According to the specification of the enhanced operator, dred can be decomposed

into the following four components:

c1 = 〈{w, x, y, z}, f, l〉, c3 = 〈{w, xz, y}, f, l〉,
c2 = 〈{w, x, yz}, f, l〉, c4 = 〈{w, xy, z}, f, l〉.

Consider the binding x = f(y, w) and, for each i ∈ {1, . . . , 4}, the computation

of c′
i = 〈sh ′

i, f
′
i , l

′
i〉 = amgu

(
ci, x = f(y, w)

)
, where we have l′1 = l′2 = l′3 = VI

and l′4 = {w, z}. In all four cases, we have z ∈ l′i , so that z keeps its linearity

even after merging the results of the four subcomputations into a single abstract

description.

In contrast, when performing the same computation with the original abstract

description d in the decomposition phase, we also obtain a fifth component,

c5 = 〈{w, xyz}, f, l〉.

When computing c′
5 = 〈sh ′

5, f
′
5, l

′
5〉 = amgu

(
c5, x = f(y, w)

)
, we obtain l′5 = {w},

so that z loses its linearity when merging the five results into a single abstract

description. Note that this is not an avoidable precision loss, since in the concrete

https://doi.org/10.1017/S1471068404001978 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404001978


Enhanced sharing analysis techniques: a comprehensive evaluation 35

computation path corresponding to the substitution σ we would have computed

σ′ = {x �→ f(x, w), y �→ f(y, w), z �→ f(z, w)},

where z is bound to a non-linear term (namely, an infinite rational term with an

infinite number of occurrences of variable w). Therefore, the result obtained when

using the abstract description dred is not correct.

As already observed in Section 7, the above correctness problem lies not in the

SFL2 domain itself, but rather in our optimized implementation, which removes the

ρ-redundant elements from the set-sharing description.

We implemented the first idea by Filé (i.e. the exploitation of property 1) on the

usual base domain Pos × SFL2. As noted above, this implementation may yield

results that are not correct: the precision comparison reported in Table 10 provides

an over-estimation of the actual improvements that could be obtained by a correct

implementation. However, it is not possible to assess the magnitude of this over-

estimation, since our implementation of this enhancement on the domain Pos×SFL,

where no ρ-redundancy elimination is performed, times-out on a large fraction of

the benchmarks. The results in Table 10 show that precision improvements are only

observed for goal-independent analysis. When looking at the time comparisons, it

should be observed that the analysis of several programs had to be stopped because

of the combinatorial explosion in the decomposition, even though we used the

domain Pos × SFL2. Among the proposals experimentally evaluated in this paper,

this one shows the worst trade-off between cost and precision.

Note that, in principle, such an approach to the recovery of disjunctive information

can be pursued beyond the integration of sharing with freeness. In fact, by exploiting

the ground-or-free information as in Section 8, it is possible to obtain decompositions

where each component contains at most one occurrence (in contrast with the exactly

one occurrence of Filé’s idea) of each ground-or-free variable. In each component,

the ground-or-free variable could then be “promoted” as either a ground variable

(if it does not occur in the sharing groups of that component) or as a free variable

(if it occurs in exactly one sharing group).

It would be interesting to experiment with the second idea of Filé. However,

such a goal would require a big implementation effort, since at present there is no

easy way to incorporate this enhancement into the modular design of the China

analyzer.21

11 Tracking compoundness

Bruynooghe et al. (1994a, b) considered the combination of the standard set-

sharing, freeness, and linearity domains with compoundness information. As for

21 Roughly speaking, the SFL component should be able to produce some new (implicit) structural
information and notify it to the enclosing Pattern(·) component, which would then need to combine
this information with the (explicit) structural information already available. However, to be able to
receive notifications from its parameter, the Pattern(·) component, which is implemented as a C++

template, would have to be heavily modified.
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Table 10. The effect of enhanced freeness on Pos × SFL2

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

p > 20 0.3 0.3 – – – – – – – –

5 < p � 10 – – – – – 0.3 – – – 0.3

0 < p � 2 0.9 0.3 – – 0.6 3.6 3.0 – – 0.6

Same precision 94.6 95.2 95.8 95.8 95.2 86.1 87.0 90.1 90.1 89.2

Unknown 4.2 4.2 4.2 4.2 4.2 9.9 9.9 9.9 9.9 9.9

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

Same precision 96.4 96.4 96.4 96.4 96.4 89.6 89.6 89.6 89.6 89.6

Unknown 3.6 3.6 3.6 3.6 3.6 10.4 10.4 10.4 10.4 10.4

Goal Ind. Goal Dep.

Time diff. class w/o SI with SI w/o SI with SI

degradation > 1 9.6 13.6 3.2 5.9

0.5 < degradation � 1 0.6 1.8 1.4 1.4

0.2 < degradation � 0.5 3.3 2.4 1.8 3.6

0.1 < degradation � 0.2 0.6 1.5 2.3 1.4

both timed out 3.3 6.6 3.6 9.5

same time 82.2 73.5 87.8 77.8

0.1 < improvement � 0.2 – – – –

0.2 < improvement � 0.5 0.3 – – –

0.5 < improvement � 1 – – – –

improvement > 1 – 0.6 – 0.5

Goal Independent Goal Dependent

without SI with SI without SI with SI

Total time class %1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 4.2 0.9 6.6 9.9 3.3 3.6 3.6 – 9.5 10.4 0.9

t > 10 9.0 9.6 0.6 8.4 8.4 – 7.2 7.2 – 8.6 8.1 −0.5

5 < t � 10 0.3 0.9 0.6 1.5 1.2 −0.3 1.4 1.4 – 1.8 1.8 –

1 < t � 5 7.5 6.9 −0.6 6.6 5.7 −0.9 3.6 3.6 – 5.0 4.5 −0.5

0.5 < t � 1 2.7 2.1 −0.6 3.3 4.5 1.2 5.4 5.9 0.5 3.2 3.2 –

0.2 < t � 0.5 8.4 8.4 – 10.2 12.0 1.8 13.1 12.7 −0.5 13.6 14.9 1.4

t � 0.2 68.7 67.8 −0.9 63.3 58.1 −5.1 65.6 65.6 – 58.4 57.0 −1.4
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freeness and linearity, compoundness was represented by the set of variables that

definitely have the corresponding property.

As discussed in Bruynooghe et al. (1994a, 1994b), compoundness information is

useful in its own right for clause indexing. Here though, the focus is on improving

sharing information, so that the question to be answered is: can the tracking of

compoundness improve the sharing analysis itself? This question is also considered

in Bruynooghe et al. (1994a, 1994b) where a technique is proposed that exploits the

combination of sharing, freeness and compoundness. This technique relies on the

presence of the occurs-check.

Informally, consider the binding x = t together with an abstract description where

x is a free variable, t is a compound term and x definitely shares with t. Since x

is free, x is aliased to one of the variables occurring in t. As a consequence, the

execution of the binding x = t will fail due to the occurs-check. In a more general

case, when only possible sharing information is available, the precision of the abstract

description can be safely improved by removing, just before computing the abstract

binding, all the sharing groups containing both x and a variable in t. In addition, if

this reduction step removes all the sharing groups containing a free variable, then it

can be safely concluded that the computation will fail.

To see how this works in practice, consider the binding x = f(y, z) and the

description d1
def
= 〈sh1, f1, l1〉 ∈ SFL such that

sh1
def
= {wx, xy, xz, y, z},

f1
def
= {x},

l1
def
= {w, x, y, z}.

Since x is free and f(y, z) is compound, the sharing-groups xy and xz can be removed

so that the amgu computation will give the set-sharing and linearity components

sh ′
1

def
= {wxy, wxz},

l′1
def
= {w, x, y, z}

instead of the less precise

sh ′
1

def
= {wxy, wxz, xy, xyz, xz},

l′1
def
= {w}.

Note that the precision improvement of this particular example could also be

obtained by applying, in its full generality, the second technique proposed by Filé

and sketched in the previous section. This is because the term with which x is unified

is “explicitly” compound. However, if the term t was “implicitly” compound (i.e. if

it was an abstract variable known to represent compound terms) then the technique

by Filé would not be applicable. For example, consider the binding x = y and the
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description d2
def
= 〈sh2, f2, l2〉 ∈ SFL such that

sh2
def
= {wx, xyz, y},

f2
def
= {x},

l2
def
= {w, x, y, z}

supplemented by a compoundness component ensuring that y is compound. Then

the sharing-group xyz can be removed so that the amgu will compute

sh ′
2

def
= {wxy},

l′2
def
= {w, x, y, z}

instead of

sh ′
2

def
= {wxy, wxyz, xyz},

l′2
def
= {w}.

To see how a knowledge of the compoundness can be used to identify definite failure,

consider the unification x = f(y, z) and the description d3
def
= 〈sh3, f3, l3〉 ∈ SFL such

that

sh3
def
= {wxy, wxz, x, y, z},

f3
def
= {w, x},

l3
def
= {w, x, y, z}.

As in the examples above, variable x is free and term t
def
= f(y, z) is compound so

that, by applying the reduction step, we can remove the sharing groups wxy and

wxz. However, this has removed all the sharing groups containing the free variable

w, resulting in an inconsistent computation state.

We did not implement this technique, since it is only sound for the analysis

of systems performing the occurs-check, whereas we are targeting at the analysis

of systems possibly omitting it. Nonetheless, an experimental evaluation would

be interesting for assessing how much this precision improvement can affect the

accuracy of applications such as occurs-check reduction.

12 Conclusion

In this paper we have investigated eight enhanced sharing analysis techniques that,

at least in principle, have the potential for improving the precision of the sharing

information over and above that obtainable using the classical combination of set-

sharing with freeness and linearity information. These techniques either make a

better use of the already available sharing information, by defining more powerful

abstract semantic operators, or combine this sharing information with that captured

by other domains. Our work has been systematic since, to the best of our knowledge,

we have considered all the proposals that have appeared in the literature: that is,

https://doi.org/10.1017/S1471068404001978 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404001978


Enhanced sharing analysis techniques: a comprehensive evaluation 39

better exploitation of groundness, freeness, linearity, compoundness, and structural

information.

Using the China analyzer, seven of the eight enhancements have been experi-

mentally evaluated. Because of the availability of a very large benchmark suite,

including several programs of respectable size, the precision results are as conclusive

as possible and provide an almost complete account of what is to be expected when

analyzing any real program using these domains.

The results demonstrate that good precision improvements can be obtained with

the inclusion of explicit structural information. For the groundness domain Pos,

several good reasons have been given as to why it should be combined with set-

sharing. As for the remaining proposals, it is hard to justify them as far as the

precision of the analysis is concerned.

Regarding the efficiency of the analysis, it has been explained why the reported

time comparisons can be considered as upper bounds to the additional cost required

by the inclusion of each technique. Moreover, it has been argued that, from this point

of view, the addition of a ‘ground-or-free’ mode and the more precise exploitation

of linearity are both interesting: they are not likely to affect the cost of the analysis

and, when this is the case, they usually give rise to speed-ups.

No further positive indications can be derived from the precision and time

comparisons of the remaining techniques. In particular, it has not been possible

to identify a good heuristic for the reordering of the non-grounding bindings. The

experimentation suggests that sensible precision improvements cannot be expected

from this technique. When considering these negative results, the reader should be

aware that the precision gains are measured with respect to an analysis tool built on

the base domain Pos × SFL which, to our knowledge, is the most accurate sharing

analysis tool ever implemented.

The experimentation reported in this paper resulted in both positive and negative

indications. We believe that all of these will provide the right focus in the design

and development of useful tools for sharing analysis.
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