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Abstract

We study finite maturity American-style stock loans under a two-state regime-switching

economy. We present a thorough semi-analytic discussion of the optimal redeeming

prices, the values and the fair service fees of the stock loans, under the assumption that

the volatility of the underlying is in a state of uncertainty. Numerical experiments are

carried out to show the effects of the volatility regimes and other loan parameters.
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1. Introduction

A stock loan is a financial derivative which provides an alternative for stock owners to

obtain liquidity without selling their stocks. Since the value of a stock is subject to the

fluctuations of the market, the value of the stock loan is affected by market conditions

such as economic growth trends. Therefore, the assumption of constant volatility under

the standard Black–Scholes (BS) framework, which is used in much of the existing

literature on stock loan problems, is inadequate at times [7, 24].

There are various extension studies in the literature of stock loans incorporating a

nonconstant volatility. For example, the stochastic volatility model by Wong and Wong

[20] and their exponential Levy model [21], and the work of Liang et al. [10] extend

the perpetual stock loan valuation under the Levy model to include stock loans with

various dividend distributions.

In recent years, various stock loan models with regime-switching have also emerged

in the literature. The regime-switching models allow key parameters of the stock
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to respond to the market dynamics based on the market mode (or “regime”) which

switches among a finite number of states [24], such that these models are able to

capture the market dynamics more accurately than others [11]. However, analytical

solutions are only available for some special cases, including the stock loans of Euro-

pean style or American style with infinite maturity. Prager and Zhang [17] introduced

a regime-switching model for the finite maturity European-style stock loans, with the

stock dynamics switching between geometric Brownian motion and mean-reversion.

Zhang and Zhou [27] studied American-type perpetual stock loans under a two-state

regime-switching economy, with the states representing the economic conditions,

good and bad. The value of their stock loan is governed by a system of coupled

BS equations and an analytic solution is obtained using the variational inequality

method.

In practice, stock loans have finite maturities and flexible times for redemption of

the stock, such that a typical stock loan resembles a finite maturity American call

option. The finite horizon and American feature make an analytic solution of finite

maturity stock loans unattainable. The additional complexity due to the uncertainty of

states makes it even harder to price stock loans under a regime-switching economy.

Because of the resemblance of the stock loans to American options, we refer to the

literature for the valuation of American options under regime-switching volatility.

While there exist closed-form solutions for European options with regime-switching,

such as those presented in [3, 15, 16, 28], there is no analytical solution for the

American counterpart owing to the presence of free boundaries, except for perpetual

options as presented in [5]. Naturally, one is “forced” to look for approximations in the

form of either analytical or numerical approximations. There are various numerical

approaches, including the tree method [26], finite element methods [6, 23], and the

penalty method [9]. To the best of our knowledge, the only analytical approximation

method for American options with regime-switching in finite maturity is that of

Buffington and Elliott [2]. The price of an American option with regime-switching

is decomposed into a European option part and an extra part as the result of

American-style privilege. However, the implementation of the method in [2] is not

straightforward, and it could be possibly time-consuming. From a practical point of

view, it is more valuable to have a method that produces results in a timely manner. The

semi-analytic approximation developed by Lu and Putri [14] provides a good balance

since it produces an approximate solution efficiently for the original problem, which is

not computationally tractable and is difficult to solve directly. Therefore, in this work,

we utilize the approximation technique of Lu and Putri [14] to develop our solution for

stock loans under a two-state regime-switching economy.

The rest of the paper is organized as follows. Section 2 establishes the governing

equation system for stock loans with regime-switching volatility. In Section 3, our

solution procedure is discussed. Section 4 presents some numerical examples to

illustrate the effects of the loan parameters on the optimal exit prices, the stock loan

values and the service fees under a regime-switching economy. The conclusion is given

in Section 5.
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2. The stock loan formulation

In this study, the stock loan is set in a two-state regime-switching economy, where

the stock (underlying) volatility switches between two states, growth and recession.

Thus, the stock price dynamics can be described as follows:

dS = (r − δ)S dt + σXS dWt,

where Wt is the standard Wiener process, S is the price of the underlying asset, t is the

current time, r is the risk-free interest rate and δ is the constant continuous dividend

rate. X is a continuous-time Markov chain with a finite state space,

X =















1 when the economy is in growth

2 when the economy is in recession,

so σX stands for the asset volatility in state X, and σ1 > σ2. The Markov chain X has a

generator matrix
(

−ξ12 ξ12

ξ21 −ξ21

)

with the transition rate from state i to state j being ξij > 0, i, j = 1, 2. Further, Wt and X

are assumed to be independent.

Let Vi(S, t;σi) be the value of the stock loan in state i with finite maturity T. We

assume that the risk associated with the regime-switching is diversifiable, so it is not

priced separately as in [1, 14, 16, 25, 28]. Therefore, by utilizing Itô’s lemma [8]

and the principle of risk-neutral valuation, we derive the following coupled partial

differential equations (PDEs) under the BS framework:

∂V1

∂t
+

1

2
σ2

1S2 ∂
2V1

∂S2
+ (r − δ)S

∂V1

∂S
− rV1 = ξ12(V1 − V2),

∂V2

∂t
+

1

2
σ2

2S2 ∂
2V2

∂S2
+ (r − δ)S

∂V2

∂S
− rV2 = ξ21(V2 − V1).

The condition at the boundary S = 0 and the final condition are the same for both V1

and V2, that is, for i = 1, 2,

Vi(0, t) = 0 and Vi(S, T) = max(S − qeγT , 0),

where q is the initial loan amount and γ is the loan interest rate.

Since the stock loan is of American-type, similar to the case in [14], there are two

different optimal exit boundaries corresponding to the two volatility states. Let Sfi be

the optimal exit price for state i for i = 1, 2. A stock loan behaves like an American call

(see, for example, [12, 22]), such that at the optimal exit boundary S = Sfi(t), the value

of the stock loan should take its intrinsic value

Vi(Sfi, t) = Sfi − qeγt.
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However, the optimal boundary Sfi(t), which is not known in advance, needs to be

solved as part of the solution. Therefore, an additional condition is needed:

∂Vi

∂S
(Sfi, t) = 1.

This condition, which is called the smooth pasting condition, indicates that the

partial derivative is continuous across the optimal exit boundary, and financially it

reflects the optimal value of the loan contract for the holder, who has the right to exit

the contract at the optimal boundary [19].

It is known that the higher the volatility of the underlying asset, the higher the

option price for both calls and puts. For an American call, the increased option value

means that the option can be exercised later, which implies a higher optimal exercise

price, such that SBS
f 1
> SBS

f 2
for σ1 > σ2, where SBS

fi
is the optimal exercise price from

the standard BS model. Under a regime-switching economy, it is expected that Sf 2 <

Sf 1, but owing to the potential of the economy state to switch from state 1 to state

2, or vice versa, Sf 1 < SBS
f 1

and Sf 2 > SBS
f 2

so that SBS
f 2
< Sf 2 < Sf 1 < SBS

f 1
. This result is

reported in [2, 14, 23] for American calls under a regime-switching economy. It is,

therefore, reasonable to assume the same is true for stock loan contracts which behave

like American calls with time-dependent strike, and it is proved by Zhang and Zhou

[27] for perpetual stock loans with regime switching. For finite maturity stock loans, it

becomes obvious in dimensionless variables as can be seen in the next section. Thus,

the pricing domain is divided into two regions: the common continuation region (0 ≤

S ≤ Sf 2) and the transition region (Sf 2 ≤ S ≤ Sf 1). We derive the complete BS-type

PDE systems as follows.

In the common continuation region, the value of the stock loan could be V1(S, t)

or V2(S, t) depending on the volatility state. The values of the stock loan, V1 and V2,

satisfy the following PDE system:































































































































∂V1

∂t
+

1

2
σ2

1
S2 ∂

2V1

∂S2
+ (r − δ)S

∂V1

∂S
− rV1 = ξ12(V1 − V2)

V1(0, t) = 0

V1(S, T) = max(S − qeγT , 0)

∂V2

∂t
+

1

2
σ2

2
S2 ∂

2V2

∂S2
+ (r − δ)S

∂V2

∂S
− rV2 = ξ21(V2 − V1)

V2(0, t) = 0

V2(S, T) = max(S − qeγT , 0)

V2(Sf 2(t), t) = Sf 2 − qeγt

∂V2

∂S
(Sf 2(t), t) = 1.

0 ≤ S ≤ Sf 2 (2.1)
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In the transition region, V2(S, t) takes the intrinsic value, that is, S − qeγt, so the

loan value V1 satisfies the PDE system






















































∂V1

∂t
+

1

2
σ2

1
S2 ∂

2V1

∂S2
+ (r − δ)S

∂V1

∂S
− rV1 = ξ12(V1 − (S − qeγt))

V1(S, T) = max(S − qeγT , 0), Sf 2 ≤ S ≤ Sf 1

V1(Sf 1(t), t) = Sf 1(t) − qeγt

∂V1

∂S
(Sf 1(t), t) = 1.

(2.2)

To ensure the continuity and smoothness of V1 at the intersection of the two regions,

S = Sf 2, the following conditions are enforced:

lim
S→S−

f 2

V1 = lim
S→S+

f 2

V1,

lim
S→S−

f 2

∂V1

∂S
= lim

S→S+
f 2

∂V1

∂S
.

(2.3)

Theoretically, the solutions to the PDE systems (2.1) and (2.2) with (2.3) would give

rise to the values of the stock loan and its optimal exit prices. However, not only are

the PDE systems linear owing to the unknown optimal boundaries, the “strike” is also

time dependent, in addition to the coupling of the systems. As it is well known that the

analytical solution of the BS PDE only exists for the simplest case, we attempt to find

an analytical approximation to the solution instead.

3. Solution procedure

First, we apply the following transformation of variables to the PDE systems (2.1)

and (2.2), and condition (2.3):

S = Xqeγt, Sfi = Xfiqeγt, Vi(S, t) = Ui(X, τ) qeγt, t = T − τ, i = 1, 2.

The resulting systems of equations are:






















































































































−
∂U1

∂τ
+

1

2
σ2

1
X2 ∂

2U1

∂X2
+ (r − γ − δ)X

∂U1

∂X
− (r − γ)U1 = ξ12(U1 − U2)

U1(0, τ) = 0

U1(X, 0) = max(X − 1, 0)

−
∂U2

∂τ
+

1

2
σ2

2
X2 ∂

2U2

∂X2
+ (r − γ − δ)X

∂U2

∂X
− (r − γ)U2 = ξ21(U2 − U1)

U2(0, τ) = 0

U2(X, 0) = max(X − 1, 0)

U2(Xf 2, τ) = Xf 2 − 1

∂U2

∂X
(Xf 2, τ) = 1,

(3.1)
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where τ ∈ [0, T], X ∈ [0, Xf 2], and























































−
∂U1

∂τ
+

1

2
σ2

1
X2 ∂

2U1

∂X2
+ (r − γ − δ)X

∂U1

∂X
− (r − γ)U1 = ξ12[U1 − (X − 1)]

U1(X, 0) = X − 1

U1(Xf 1, τ) = Xf 1 − 1

∂U1

∂X
(Xf 1, τ) = 1,

(3.2)

where τ ∈ [0, T], X ∈ [Xf 2, Xf 1].

The continuity conditions are as follows:

lim
X→X−

f 2

U1 = lim
X→X+

f 2

U1,

lim
X→X−

f 2

∂U1

∂X
= lim

X→X+
f 2

∂U1

∂X
.

(3.3)

Clearly, if the term r − γ in systems (3.1) and (3.2) is replaced by r̄, the resulting

systems are the same as those in [14] for the corresponding American option problem.

It is worth noting that r could take a negative value since the loan interest rate γ is

usually higher than the risk-free interest rate r for the loan contract to make financial

sense. As a result, unlike American call options, stock loans could reach optimality for

some parameter range even when no dividend is paid (see the works of Dai and Xu

[4], and Lu and Putri [12]). Thus, we follow the techniques developed in [14] to obtain

our solution for the stock loan PDE systems. For ease of reading, we recap some of the

important steps here.

We apply the Laplace transform to the PDE systems in (3.1) and (3.2) as well as

the conditions in (3). The pricing PDE systems are transformed into a set of ordinary

differential equations (ODEs) in Laplace space. The solutions of the ODE system as

the result of the Laplace transform of the PDE system (3.1) are:

Ū1(X, p) =















A1Xk1
+ A2Xk2

+ A3Xk3
+ A4Xk4

+ φ(X, p) if 1 < X ≤ Xf 2

A5Xk3
+ A6Xk4 if 0 ≤ X ≤ 1,

(3.4)

Ū2(X, p) =















B1Xk1
+ B2Xk2

+ B3Xk3
+ B4Xk4

+ φ(X, p) if 1 < X ≤ Xf 2

B5Xk3
+ B6Xk4 if 0 ≤ X ≤ 1,

(3.5)

where

φ(X, p) =
1

p + δ
X −

1

p + r
,

and k1 < k2 < 0 < k3 < k4 are the roots of the quartic indicial equation for the ODE

system; Ai and Bi, i = 1, 2, 3 . . . 6, are some constants in Laplace space.
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The solution of the ODE in Laplace space corresponding to the PDE system (3.2)

in the transition region is

Ū1(X, p) = m1Xγ1
+ m2Xγ2

+ ψ1X − ψ2, Xf 2 ≤ X ≤ Xf 1, (3.6)

where

ψ1 =
p + ξ12

p(p + δ + ξ12)
, ψ2 =

p + ξ12

p(p + r + ξ12)
,

m1 and m2 are integration constants, and γ1 and γ2 are the solutions to the indicial

equation of the ODE.

Applying all the necessary conditions of the PDE system to solutions (3.4)–(3.6),

after some tedious algebraic manipulations we obtain the following coupled equation

system for the computation of X̄f 1 and X̄f 2, the optimal exit prices in Laplace space:

(

(pX̄f 1)−γ1 0

0 (pX̄f 1)−γ2

)

F1(pX̄f 1) =

(

(pX̄f 2)−γ1 0

0 (pX̄f 2)−γ2

)

F2(pX̄f 2), (3.7)

where functions F1 and F2 are listed in the Appendix.

Equation (3.7) is the end of the analytical approach; the highly nonlinear equation

has to be solved numerically. However, only a simple MATLAB solver, fsolve, is

needed for the solution of the nonlinear equation. Once equation (3.7) is solved for

X̄f 1 and X̄f 2, it is routine to compute solutions Ū1(X, p) and Ū1(X, p) from equations

(3.4)–(3.6). A numerical inversion scheme (the Stehfest method [18]) is used to obtain

the optimal exit prices and the values of the stock loans in the original space. It is then

straightforward to calculate the fair service fees.

4. Numerical experiments

In this section, numerical examples are presented to show the effects of the volatility

states on the optimal exit prices, stock loan values and service fees. The effects of

different loan parameters on basic properties of the stock loans are also explored.

Our calculations are carried out using MATLAB R2015a on an Intel(R) Core(TM)2

Quad CPU Q9550 @2.38GHz RAM 8 GB on a Windows 7 Enterprise Service Pack 1

system.

4.1. Perpetual stock loans To validate our solution technique, we present a

comparison of the results of our calculations for maturity T tending to infinity with

those from the analytic method in [27], for a perpetual American-style stock loan under

a regime-switching economy. For the purpose of comparison, the same parameters are

used as in [27].

Table 1 shows the dimensionless optimal exit prices for various values of σ2
2

with

a fixed σ2
1

value. As shown in the table, the relative errors are far less than 0.1%,

indicating the accuracy of our method for the calculation of the optimal exit price of

perpetual stock loans.
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TABLE 1. Dimensionless optimal exit price of a perpetual stock loan.

r̄ = r − γ = −0.03, δ = 0, σ2
1
= 0.04, ξ12 = ξ21 = 2, and q = 1

Analytic [27] Our results Relative error (%)

σ2
2

Xf 1 Xf 2 Xf 1 Xf 2 Xf 1 Xf 2

0.001 1.589 1.423 1.589 1.423 0 0

0.005 1.664 1.525 1.663 1.524 0.0601 0.0656

0.01 1.770 1.653 1.769 1.652 0.0565 0.0605

0.02 2.034 1.946 2.033 1.944 0.0492 0.0103

0.03 2.422 2.378 2.420 2.372 0.0826 0.0252

TABLE 2. Dimensionless perpetual stock loan value at t = 0.

r = 0.05, γ = 0.15, δ = 0, σ1 = 0.4, σ2 = 0.15, ξ12 = ξ21 = 4, and q = 5

Analytic [27] Our results Relative error (%)

X U1 U2 U1 U2 U1 U2

1 0.034 0.033 0.034 0.033 0 0

2 0.153 0.150 0.153 0.150 0 0

3 0.370 0.362 0.370 0.362 0 0

4 0.691 0.676 0.691 0.676 0 0

5 1.122 1.098 1.122 1.097 0 0.09

6 1.668 1.632 1.667 1.631 0.06 0.06

7 2.332 2.281 2.331 2.281 0.04 0

The values of perpetual American stock loans under a regime-switching economy

are also calculated and compared with those obtained in [27], as shown in Table 2.

Again, there is good agreement between our results and those obtained by the

analytical method, with maximum relative error less than 0.1%.

4.2. Finite maturity stock loans Having validated the accuracy of our method in

the previous section, we present our calculations of the optimal exit prices, values and

fair service fees of a finite maturity stock loan under a regime-switching economy in

dimensional variables.

4.2.1. Optimal exit prices. We first present a comparison of the optimal exit prices

under a regime-switching economy with those under the standard BS framework

(Figures 1 and 2). The parameters used in the computation are, unless otherwise stated,

r̄ = r − γ = −0.03, δ = 0, σ2
1
= 0.04, σ2

2
= 0.02, ξ12 = ξ21 = 2, q = 1, and T = 5. As

expected, the curves of the optimal exit prices for the higher volatility are above the
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FIGURE 1. Dimensionless optimal exit price.
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FIGURE 2. Dimensional optimal exit price.
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FIGURE 3. Optimal exit price with regime-switching volatility for different risk-free interest rates.

ones for the lower volatility, and the ones with regime-switching volatility are bounded

in-between by the ones with constant volatility (the standard BS model).

Under a regime-switching economy, the dimensionless optimal exit prices for stock

loans follow the same trend as those for American call options—the dimensionless

optimal exit price Xfi is finite and monotonically increasing with respect to time to

expiry (Figure 1). However, unlike an American call, a stock loan can reach optimality

even when no dividend is paid for the underlying stock, as long as r < γ for standard

stock loans, which is true for financially viable stock loan settings [4, 12]. It is

also worth pointing out that the dimensional optimal exit price Sfi is not monotonic

with respect to time (Figure 2). This is is due to the two competing factors: the

time-dependent “strike” (qeγt, t ∈ [0, T]) and the “call” nature of the loan near expiry

as discussed in [13]. Since the dimensional optimal exit price increases with time, the

longer the loan contract, the higher the optimal exit price near maturity. Nevertheless,

a stock loan contract should always have a finite maturity, such that its optimal exit

price will remain finite.

Figure 3 displays the optimal exit prices for different values of r, with γ fixed at

0.09 and all other parameters the same as before. Clearly, when the risk-free interest

rate r is lower, the optimal exit price is also less compared with the one for higher r at

the same volatility, consistent with the trend for American calls.

The optimal exit prices for different dividend rates are presented in Figure 4, with

other parameters as stated before. Again, as for American call options, higher dividend

rates correspond to lower optimal exit prices. The stock price is expected to drop by
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FIGURE 4. Optimal exit price with regime-switching volatility for different dividend rates.

the dividend amount on the ex-dividend date, so a higher amount of dividend paid will

lead to a lower optimal exit price and a lower value of the stock loans.

Figure 5 depicts the optimal exit prices corresponding to different loan interest rates

γ. It is interesting to note that the curves of the optimal prices under the same economy

state intersect. This is a unique feature of the stock loans. A stock loan behaves like

an American call, whose optimal exercise price increases if the strike price is higher.

On the one hand, the time-dependent “strike” of a stock loan increases exponentially

with the loan interest rate γ, so the optimal exit price for the loan with higher γ (higher

strike) increases at a faster rate. On the other hand, the initial value of the loan with

higher γ is lower, and so is its optimal exit price. As a result, both optimal prices

increase at first, with the rate of increase dominated by γ, so the initially lower optimal

price surpasses the other optimal price at some time during the lifetime of the loan,

[0, T], and eventually both decrease to lower values close to the time of maturity.

4.2.2. Stock loan values. Here we present a comparison of the values of stock loans

under a regime-switching economy and under the BS framework at different times

for the following loan parameters: r = 0.06, γ = 0.09, δ = 0, σ2
1
= 0.04, σ2

2
= 0.02,

ξ12 = ξ21 = 2, q = 1 and T = 5.

As shown in Tables 3 and 4, the values of the stock loans under a regime-switching

economy are bounded by those under the BS model, that is, VBS
2
< VRS

2
< VRS

1
< VBS

1
.

This makes financial sense, because while the economy is in state 1 (growth), there is

always a possibility that it will go into state 2 (recession) during the life of the loan
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FIGURE 5. Optimal exit price with regime-switching volatility for different loan interest rates.

TABLE 3. Value of stock loan with regime-switching (RS) volatility at t = 0.

S = Xqeγt VBS
1

VRS
1

VRS
2

VBS
2

CPU time (s)

0.4 ∗ 1 0.869e-3 0.271e-3 0.223e-3 0.016e-3 1.934

0.6 ∗ 1 0.012 0.006 0.006 0.002 1.936

0.8 ∗ 1 0.051 0.035 0.033 0.019 1.934

1.0 ∗ 1 0.129 0.104 0.101 0.080 1.931

1.2 ∗ 1 0.248 0.220 0.216 0.205 1.932

TABLE 4. Value of stock loan with regime-switching (RS) volatility at t = 2.

S = Xqeγt VBS
1

VRS
1

VRS
2

VBS
2

CPU time (s)

0.4 ∗ 1.0942 0.001 0.000 0.000 0.000 1.914

0.6 ∗ 1.0942 0.014 0.003 0.002 0.002 1.913

0.8 ∗ 1.0942 0.060 0.027 0.025 0.023 1.914

1.0 ∗ 1.0942 0.154 0.105 0.101 0.096 1.915

1.2 ∗ 1.0942 0.296 0.250 0.245 0.244 1.925
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TABLE 5. Fair service fee under regime-switching economy (T = 5 and S0 = 1).

LTV 0.8 0.9 1 1.1 1.2

c1 0.056 0.063 0.104 0.167 0.243

c2 0.052 0.059 0.101 0.165 0.242

contract, so that VRS
1
< VBS

1
. Similarly, there is always a chance of the economy moving

to state 1 from state 2, so that VRS
2
> VBS

2
.

Although the computation is carried out on a relatively slow computer, the time

used to calculate a value of stock loan is still less than 2 s. Considering that the

computation time includes the calculation of the optimal exit prices, our technique

is efficient compared with purely numerical methods such as finite difference methods

and simulation methods.

4.2.3. Fair service fees. So far we have seen that under a regime-switching

economy, the value of stock loans is affected by the probability of changes in the state

of the economy. Naturally, the fair service fee is also dependent on the state of the

economy, and it can be computed in a similar way to that for the standard stock loan

[12]. The service fee is determined at the beginning of the contract based on the initial

value of the stock loan, and it can be calculated as ci = Vi0 − (S0 − q), where ci is the

fair service fee in state i of the economy when the contract is made, S0 is the initial

value of the collateral stock, q is the loan principal, and Vi0 is the initial value of the

stock loan in state i. Since a stock loan has a greater valuein a state of higher volatility,

for a loan of the same amount, the fair service fee is higher if the loan is established in

the state of growth, and vice versa.

Table 5 lists the fair service fees corresponding to various loan-to-value (LTV)

ratios, where LTV= q/S0. A larger loan amount requires a higher service fee as the

lender bears more risk. A stock loan contract under a regime-switching economy is

marketable for any LTV > q/Sf 1 = 0.740 if the economy is initially in state 1, and LTV

> q/Sf 2 = 0.687 if the economy is in state 2.

5. Conclusion

In this paper, we have formulated a pricing system for a stock loan under a

regime-switching economy, and solved the resulting PDEs by using the approach

developed by Lu and Putri [14] for the corresponding American option problem. Our

results could help the lender to decide on a marketable stock loan and its fair service

fee, and help the borrower to decide on an exit strategy, when the state of the economy

is subject to change.

The work presented here is for a “standard” stock loan in the sense that the dividend

payment is collected by the lender, and paid back to the borrower at maturity or upon
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exit from the loan. It can also be extended to stock loans with other dividend payment

distributions (see the work of Dai and Xu, and Lu and Putri [4, 12]).

Appendix. Functions F1 and F2

Here we list the functions F1 and F2, and other constants in equation (3.7).

F1(pX̄f 1) = a1 + a2(pX̄f 1),

a1 =
1

γ2 − γ1

(

−γ2

γ1

)

(

1

p
− ψ2

)

,

a2 =
ψ1

γ2 − γ1

(

γ2 − 1

1 − γ1

)

(

1

p
− ψ1

)

,

F2(pX̄f 2) = b1 + b2(pX̄f 2) + b3

(

(pX̄f 2)k3 0

0 (pX̄f 2)k4

) (

A3

A4

)

,
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(

1 1
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)−1
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1 1
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) (
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