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Abstract

Embodiment design (ED) is an early phase of product development. ED problems consist of finding solution principles that
satisfy product requirements such as physics behaviors and interactions between components. Constraint satisfaction
techniques are useful to solve constraint-based models that are often partial, heterogeneous, and uncertain in ED. This
paper proposes new constraint satisfaction techniques to tackle piecewise-defined physics phenomena or skill-based
rules and multiple categories of variables arising in design applications. New search heuristics and a global piecewise
constraint are introduced in the branch and prune framework. The capabilities of these techniques are illustrated with
both academic and real-world problems. Complete models of the latter are presented.
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1. INTRODUCTION

The design process is a sequence of phases from the defini-
tion of needs and requirements to preliminary design and de-
tailed design (Pahl & Beitz, 1996). Preliminary design in-
cludes conceptual design (CD) and embodiment design
(ED). The ED phase investigates the feasibility of some
product schemes obtained from the CD phase. This phase
mainly tackles physics behaviors and interactions between
the product, its components, and environments. Product mod-
eling is based on the definition of the laws of physics, func-
tional models, economic criteria, and so forth.

In this paper we focus on robust ED taking into account
variability, uncertainty, or imprecision in the design process.
The goal is to determine the main structuring characteristics
of a product, such as the working structure, standard compo-
nents, and the main dimensions, whereas no significant deci-
sions have been taken at that point. Several components may
change during this phase. Robust ED can be implemented in a
constraint-based approach. Product models can be translated
into numerical constraints. Uncertainty and imprecision can
be partially captured by interval computations. Heteroge-
neous models and incomplete information can naturally be
dealt with. These models are involved in robust design
approaches taking into account mathematical models during

the early phases of design process. Robustness may be
regarded through its meaning within the design community
(Rothwell & Gardiner, 1990).

Product modeling leads to the definition of several types of
constraints. Behavior laws relating to physics analysis con-
cerning a product are expressed through conservation laws,
which are easily translated into constraints. In some cases, be-
havior laws are defined by sets of phenomenological rela-
tions, namely, piecewise relations depending on one or
several parameters. Product modeling also leads to the defini-
tion of several types of variables. Design variables are related
to the main dimensions and characteristics of the product.
Designers are interested in finding out powerful solution prin-
ciples, where design variable values correspond to high-
performance criteria. Performance criteria may be repre-
sented by performance variables. Other variables of the
model are auxiliary variables, maintained within the model
to link design variables to performance variables to preserve
the model intelligibility. They are introduced by the modeling
phase (see Fig. 1).

In this figure, the ED knowledge of a product takes into ac-
count design variables, which values identify each design so-
lution. Designers use also several criteria to observe and
evaluate the design solutions. Several diagrams and charts
are used to identify the product functions and decomposition
(technical organization charts) and to investigate the physics
phenomena regarding fluxes and induced effects (fluxes flow
diagram and substance field graph). In the modeling part of
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the ED phase, these concepts are translated into a mathemat-
ical representation. Obviously, the variables already defined
in the knowledge representation are also in the mathematical
model, and in most cases, criteria are easily expressed with
constraints and some variables to observe criteria values.
But diagrams and charts must be converted in a computable
form. New variables are introduced, and they do not corre-
spond to decision parameters used by designers. Thus, these
new variables and constraints describe physics phenomena,
products geometry characteristics, and so forth. Some func-
tional variables are defined to preserve the model intelligibil-
ity and to express, for instance, well-known physics dimen-
sionless numbers characterizing physics phenomena. Some
of them are introduced after some steps of model reductions.

Our purpose is to define new constraint satisfaction tech-
niques in the interval-based branch and prune framework to
solve enriched models of ED applications. We investigate en-
riched robust ED models, because we consider various
knowledge about products: specifications and requirements,
knowledge of designers concerning the whole product life
cycle, physics phenomena, and so forth. All this knowledge
is required to compute quite safe and robust values (from a
design point of view) for the main variables of an ED model.
The first problem is to handle specific physics phenomena.
To this end a global piecewise constraint is defined at the
modeling and the solving levels. The second problem is to
tackle the different types of variables. Existential quantifiers
are introduced in the constraint-based model to take into ac-
count the fact that auxiliary variables are meaningless from
a design point of view. New heuristics allow the differentia-
tion of the variables during search, according to their
types. An experimental study from a prototype and several

benchmarks are reported. Complete models are given in the
appendixes for people who want to make their own test
with real-world applications.

Section 2 introduces CSP modeling for ED. Solving prin-
ciples are presented and some search strategies are stated in
Section 3. Experimentations on academic problems are car-
ried out in Section 4. ED models derived from existing engi-
neering models are processed in Section 5. Our approach is
compared to some related work in Section 6.

2. PROBLEM MODELING

We consider ED problems defined as mixed models includ-
ing integer variables, real variables, constraints, and piece-
wise constraints. The main idea of this paper is to distinguish
between variables according to application requirements and
to separate them in several sets during the search phase of so-
lutions. A model is defined by a set X of variables lying in
some domain D and a set of constraints C. Each constraint
is a restriction of D given atomic formula over the usual struc-
ture of real numbers. Our goal is to find values in D for the
variables of X satisfying all the constraints in C.

2.1. Types of variables

In ED problems, two types of variables are highlighted: the
auxiliary variables, and the main variables including the de-
sign variables and the performance variables. The main vari-
ables must be computed at a given discernment precision. The
values of the auxiliary variables may be useless from the de-
signer’s point of view; no initial precision or carefully chosen
precision may be defined. The distinction between main

Fig. 1. The variable kinds in the ED phase.
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variables and auxiliary variables is possible, because main
variables are deduced by the product specifications and
requirements. Most of the main variables are shared by all de-
sign phases. They identify the main characteristics of pro-
ducts; that’s why their domains and precisions are well
known, on the contrary, to the auxiliary variables, which
are specific to each design phase.

NOTATION. Given a variable or a set of variables x, a real
number or a set of real numbers r, and a constraint or a con-
junction of constraints C on x, we write C(r) if C is satisfied
when x has value r. B

Let X ¼ (x1, . . . , xn) denote the main variables, let Y ¼
( y1, . . . , ym) denote the auxiliary variables, and let DX and
DY be their domain. To solve ED problems may be seen as
the computation of the set of solutions for the main variables,
where there is at least one solution for auxiliary variables:

rX [ DX j9rY [ DY ^ C(rX , rY )f g, (1)

where C stands for the constraints to be satisfied.
In other words, the main variables define a scheme of so-

lution for designers, namely, the main architectures of a
product. The description of the product and its components
(behavior, geometry, etc.) makes these architectures physi-
cally valid, if at least one solution is found on the auxiliary
variables for each architecture.

Several approaches can be used to tackle such problems.
Search problems may correspond to our ED problems, be-
cause solutions to ED problems are other than yes or no, con-
trary to decision problems. But it can be seen in Beame et al.
(1995) that for each search problem an equivalent decision
problem exists and in an ED context, it may be expressed as

9r [ DjC(r)f g, (2)

where all variables are linked with an existential quantifier.
Efficient SAT algorithms (Cook & Mitchell, 1997) can be
used in this case, but because an existential quantifier is ap-
plied to each variable, only one solution may be found to
be the yes answer.

The constraint satisfaction problem (CSP) approach de-
fines a framework for solving general problems expressed
as a conjunction of constraints, where all variables are free:

r [ DjC(r)f g: (3)

All values r for variables satisfying C are computed. This ap-
proach does not match the formulation in (1), but the solving
algorithms can be adjusted to undertake an existential quanti-
fier on some variables.

Another type of variables has to be taken into account:
functional variables (considering their mathematical meaning
and not their design meaning). These variables are introduced
by designers while modeling a product. They improve the
expressivity and comprehensibility of a model, while expres-
sing well-known characteristics about a product or its

behavior. It allows designers to better handle and modify a
model. Most of functional variables are expressed as a func-
tion of other variables:

x ¼ f (y),

where x is a functional variable, y a set of variables, and f ( y) is
an expression such as no variable in y is defined from x.
A causal link can be established between a functional variable
x and variables in y: they are used to compute its values. Func-
tional variables can easily be removed from a model. Thus, an
equivalent problem to solve is obtained by replacing their oc-
currences with their expression. Nevertheless, this new prob-
lem is difficult to manage, because most of the constraints
become quite incomprehensible for designers and changings
are hardly performed. Inserting these variables and their do-
main within a problem artificially increases the size of the
search space. Exploring their domain may drastically pena-
lize the solving process because consistent domains can
explicitly be deduced from the evaluation of f ( y). It must
be highlighted that all equality constraints have not to be con-
sidered as a functional variable definition. The knowledge of
designers and the way they build a model define which
variables have to be considered as functional variables.

We implement our approach and its corresponding algo-
rithms within a CSP framework that uses continuous do-
mains. This framework is suitable for solving ED problems
(Zimmer & Zablit, 2001; Gelle & Faltings, 2003; Vareilles
et al., 2005). The CSP approach allows designers to make
their models evolve very quickly as opposed to other
methods, where designers express the knowledge, while car-
rying out its coding related to numerical solving methods
similar to the constraint satisfaction approach. Some exam-
ples based on an evolutionary approach may be found in
Sébastian et al. (2006). Moreover, the solving process of a
CSP guarantees the completeness of the set of approximate
solutions, whereas other methods are often linked with
relaxations and approximations of some stochastic solutions.

2.2. Interval computations and variable precision

The problem of computing solutions for functions on real
numbers is known to be undecidable (Richardson, 1968;
Wang, 1974). Computers arithmetic (see IEEE 754 standard)
defines a subset of real numbers, called the floating-point
numbers. Without any other techniques, computations are
made using floating-point numbers and rounding errors
may be important after several computation steps.

Interval arithmetic (Moore, 1966) guarantees safe compu-
tations using floating-point numbers as interval bounds. For
each real number a, an interval hull(a) ¼ [a2, aþ] may be
used, corresponding to the smallest interval including it,
where a2 is the highest floating-point number smaller than
a and aþ is the lowest floating-point number higher than a.
Furthermore, every operator and function must be extended
from real numbers to intervals with real bounds and then a
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hull with floating-point bounds is computed. For example,
the three basic operators on real numbers can be extended
as follows:

[a, b]þ [c, d] ¼ hull([aþ c, bþ d]),

[a, b]� [c, d] ¼ hull([a� d, b� c]),

[a, b] � [c, d] ¼ hull([ min (a � c, a � d, b � c, b � d),

max (a � c, a � d, b � c, b � d)]),

where hull([a, b]) ¼ [a2, bþ] and a2 and bþ are the closest
floating-point numbers lower than a and upper than b.

OTHER NOTATIONS. Given a variable x, an interval I and a
constraint C on x, we write C(I ) if C is satisfied in the interval
sense [see Section 2.3 and Eq. 6 for more details], when x
takes value I. The size of an interval I ¼ [a, b] is equal to
w(I ) ¼ b 2 a. Given a set of real numbers A, the hull of A,
denoted by hull(A), is the smallest interval enclosing A. B

Real values within intervals cannot be enumerated as val-
ues in discrete domains, but intervals are split to reduce their
width because a smallest hull is computed or an interval pre-
cision is reached. A precision p(x) may be defined for a vari-
able x. It defines the interval width, where we do not want any
more computations to be done. The precision on variable do-
mains can be interpreted as uncertainties about the computed
values of some important variables. Moreover, the precision
on domains of main variables referring to dimensions may
also be viewed as tolerances. Precisions of auxiliary variables
are often difficult to agree on. It must be highlighted that the
set of auxiliary variables is often underconstrained, because,
in the ED phase, some uncertainties remain about some
product characteristics and its behavior. Physical phenomena
are often complex and many simplifying assumptions are
done. Some of them concern the context of the investigated
life situations, whereas others come from a lack of knowledge
about the product behavior and about the interfering
phenomena.

Two types of precisions may be highlighted in ED. The
precision on main variables corresponds to the precision of
discernment of design architectures, whereas precisions on
auxiliary variables define numerical precisions for computa-
tions. To define precisions on all types of variables may
increase the efficiency of the computing process, because
an interval precision is often achieved before the smallest
hull (or canonical hull) of a real number.

Suppose that p(xk) � 0 (the value 0 for a precision expres-
ses the need of a canonical interval box for a variable) is the
desired precision of xk (k ¼ 1, . . . , n). We now consider the
finite set of approximate solutions:

I # DX j9J # DY ^ C(I, J)f g, (4)

where I ¼ I1� . . .� In and J ¼ J1� . . .�Jm, such that I is
precise enough, that is, w(Ik) � p(xk) for k ¼ 1, . . . , n, and
each interval bounds are floating-point numbers. The first
goal is to compute a subset of (4) enclosing (1) having a mini-

mal cardinal. To this end the main variable values must be
close to their precisions, that is, w(Ik) � p(xk). The second
goal is to prove the existence of a solution (element from
set 1) in every resulting box. Proofs of existence can be imple-
mented by interval analysis techniques, and this will be
detailed in the next section.

2.3. CSP notions

A CSP is defined by three sets corresponding to a set X of
variables, a set D corresponding to their domains and a set
C of constraints restricting the variables values. The goal is
to find every element of D that satisfies all constraints at
the same time. This problem is unsolvable given continuous
domains and transcendent functions. A more practical goal is
to compute a finite approximation of the set of solutions
(Lhomme, 1993). The most common approach is to calculate
a set of interval boxes of a given size enclosing the solution
set.

The satisfaction of a numerical constraint is usually de-
fined as follows: every variable is interval valued, every ex-
pression is evaluated using interval arithmetic (Moore,
1966), and every relation between intervals is true whenever
there exist reals within intervals that satisfy the following
relation:

r [ DX :c(r)! C(hull(r))f g, (5)

where C is the interval extension of the constraint c on reals
(i.e., each variable is replaced by its interval domain and
each function or operator is extended to the interval arithmetic).

The satisfaction of constraints is verified using consistency
techniques. Variable domains are checked considering the
whole set of constraints. If a domain is not consistent, then
all unauthorized values (or intervals) are removed as long
as they do not satisfy at least one constraint. Applying a global
consistency is generally too expensive. Thus, local consis-
tency algorithms, such as 2B and 3B consistency (Lhomme,
1993) and box consistency (Benhamou et al., 1999), are used
instead. For instance, we can consider the following defini-
tion of box consistency:

Given C the interval extension of a constraint c on reals and
a box of interval domains I1�. . .�In, c is satisfied according
to box consistency, if for each k in {1, . . . , n}:

Ik ¼ ak [ IkjC(I1, . . . , Ik�1, hull(ak), Ikþ1, . . . , In)f g: (6)

As soon as there are several solutions, consistency tech-
niques are no longer sufficient. Search algorithms are used
to explore the totality of the search space. Typically, a domain
is chosen and is split into two disjoint intervals using a bisec-
tion algorithm. Then, two new smaller problems are solved
with the same iterative approach. The union of these two
problems is equal to the initial CSP, which is finally split in
many subproblems. The choice of the domain to split may
take into account heuristics to optimize the search phase

R. Chenouard et al.178

https://doi.org/10.1017/S0890060409000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000055


(i.e., most constrained variables, greatest domain, smallest
domain, etc.). Then, several algorithms may be used to ex-
plore such hierarchy of problems like generate and test, back-
track search, back jumping, dynamic backtracking, and so
forth (Rossi et al., 2006).

Interval solvers implement branch and prune techniques
(Hyvönen, 1989). The search space is given by an interval
box that is iteratively split and reduced using a fixed-point ap-
proach to guarantee that the solving process converges. Effi-
cient pruning algorithms merge consistency techniques and
numerical methods. In general, splits for real variables are
based on bisection, whereas integer variables are enumerated.
Let us point out that integer variables can be processed as real
variables within interval pruning methods and further refined
using the integrality condition.

2.4. Piecewise constraint

We consider a new type of constraints for modeling piecewise
defined physics phenomena. Behavior laws defining complex
phenomena are often established by experiments. These ex-
periments are done under several hypotheses and conditions
defining the contexts of use for these stated laws. In many
cases, the main context of experiments can be managed by
only one parameter, which values identify the relation to apply.
For instance, many models in fluid mechanics involve the Rey-
nolds dimensionless number. The Reynolds number values

point to different types of fluid flowing (laminar, transient, tur-
bulent) corresponding to fluid mechanics laws (see Fig. 2).

Let this constraint be

piecewise a, I ! C1, . . . , Ip ! Cp

� �
:

Such that a is a variable, each Ik is an interval, and each Ck

is a constraint or a set of constraints. The Ik identify the differ-
ent cases of the piecewise phenomenon considering the pa-
rameter a and the Ck correspond to the relations to use. The
intersection Ij > Ik must be empty for every j = k; otherwise,
at least two constraints will apply for the same phenomenon.
In other words, all the Ik define a partition of the domain of a.
The piecewise constraint is satisfied if

9k [ [1::p], Da # Ik ^ Ck: (7)

The piecewise constraint is equivalent to Ck whenever a
belongs to Ik. At most, one k must exist because the Ik do
not intersect; otherwise, several constraints are taken into ac-
count, which lead to an inconsistent set of constraints.

Interval constraint satisfaction techniques are used to re-
duce variable domains. Let Da be the domain of a. Four cases
can be identified:

1. If a k exists such that Da # Ik, then Ck is solved. The
domains of the variables occurring in Ck can be reduced
using, for example, consistency techniques.

Fig. 2. The friction factor as a function of the Reynolds number.
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2. The domain of a can be reduced as follows:

Da ¼ hull
[p
k¼1

(Da > Ik)

 !
:

A failure must happen if no Ik intersects the domain
Da.

3. If Ck is violated for some k, then every element of Ik can
be removed from Da.

4. Otherwise, the constraint is satisfied in the interval
sense but no domain can be reduced and the problem
is still being underconstrained.

Note that the solving process must not stop before Da takes
its values in at most one Ik; otherwise, the piecewise phenom-
enon is not taken into account and many nonphysically valid
solutions may be found (case 4).

2.5. Search issues

The notions of auxiliary variables and piecewise constraints
introduce several difficulties and problems:

PROBLEM 1. The splitting steps of domains for auxiliary
variables may duplicate the solutions on the main variables.
For same values of the main variables, several solutions for
auxiliary variables may satisfy all the constraints. This is
due to some incoherent precisions between auxiliary vari-
ables and main variables. It must also be highlighted that
the set of auxiliary variables is often underconstrained, be-
cause, in the ED phase, some uncertainties remain about
some product characteristics and its behavior. Thus, many so-
lutions may be found for the same tuple of values for main
variables. That may lead to useless redundant computations
and to a huge number of approximate solutions correspond-
ing to the same product architecture. B

PROBLEM 2. The main variables may not be reduced
enough if the auxiliary variables are not split enough. Consis-
tency techniques used on interval domains are based on outer
approximations, which may lead to an overestimation of vari-
able domains. The solving process may be very long, spend-
ing most of the time in pure search on main variables, whereas
auxiliary variables may have wide domains. B

PROBLEM 3. It may be difficult to choose the auxiliary
variables to be split and to set precision thresholds. Proper
precisions are required to efficiently manage Problem 1 and
Problem 2. Moreover, some auxiliary variables are only pre-
sent within the model, because they define well-known prop-
erties of some components, phenomena, and so forth. How-
ever, they are not required to express all the knowledge
about a product. These variables and their values improve
the expressivity and comprehensibility of the product model,
which is important when this model may evolve as in the ED
phase. Previously, we defined them as functional variables,

because their values are directly computed using an expres-
sion of other variables. B

PROBLEM 4. The piecewise constraints must be taken into
account to early reduce the search space. This clearly depends
on the domain of the a variables, which must be reduced to
one of the Ik of the piecewise constraint to apply the constraint
ck and take into account the corresponding phenomenon. B

OTHER ISSUES. ED problems are mainly undercon-
strained, because of the early context of this phase within
the design process. We suppose here that the precisions of
main variables are well chosen enough according to the do-
main sizes to avoid a huge number of approximate solutions.
Another well-known approach is to specialize the search for
integer variables and real variables. B

3. PROBLEM SOLVING

New search heuristics are introduced in this section to tackle
the issues raised above. These heuristics are embedded in the
general interval-based branch and prune model.

3.1. Branch and prune algorithm

The general branch and prune algorithm (Van-Hentenryck
et al., 1997) is defined in Algorithm 1. The input is a CSP
model. The output is a set of approximate solutions enclosing
the solution set.

ALGORITHM 1. General branch and prune algorithm.
Solve(C : set of constraints, D : domains, (x, y) : vars) : a set of
interval approximate solutions

D U Prune(C, D)
if D is empty then

discard D
elsif Dx is precise enough then

b U ProveExistence(C, D)
Insert (Dx, b) in the computed approximation

else
Choose a splittable variable z in (x, y)
Split (D, z, D1 < D2)
Solve(C, D1, (x, y))
Solve(C, D2, (x, y))

endif
end B

The computation is as follows. Every domain is pruned
provided that no solution (element from set 1) is lost. Every
approximate solution (element from set 4) associated with
the result of the existence proof is inserted in the computed
approximation. Nonempty domains are split, provided that
at least one of the main variables is not precise enough.
The subproblems are further solved.
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The algorithm for the existence proof validates the box
computed by the branch and prune algorithm, and several
techniques may be used according to the type of constraints:

† Inequality constraints can be tackled with interval com-
putations.

† Equality constraint systems can be processed by fixed-
point operators (Kearfott, 1996).

These techniques may not operate on heterogeneous and
nondifferentiable problems. In this case, a search process
can be used to prove the existence of canonical approxi-
mate solutions, namely, boxes of maximal precision satisfy-
ing the constraints in the interval sense. We consider that
this smallest interval box, with closest floating-point num-
bers as bounds, is precise enough to claim that we have
found a solution if no inconsistencies are detected. An
other approach is to apply a local search process, where
the optimization function should take into account the num-
ber of inconsistent constraints balanced by the distance of
violation of each one.

However, these algorithms cannot always prove the exis-
tence of a solution within a box in reasonable time. All com-
puted solutions may not be guaranteed, but this is not the
main goal for designers to have safe numerical solutions in
the ED phase. All the uncertainties relating to a model
make the solutions near guaranteed boxes also acceptable.
However, guaranteed boxes may correspond to more robust
solutions than those for which the proof of existence has
failed. In the ED phase, designers are mainly interested in
having an overview of the global shape of the complete space
of solutions, namely, having a better insight of the feasible
product architectures. When designers have an idea of some
robust solutions within a solution set, they can better define
the more interesting parts of this set relating to good perfor-
mances criteria and robust product architectures.

3.2. Search strategies

We propose to implement several search strategies to tackle
the problems described in the previous section.

3.2.1. Splitting ratio

The choice of variables may follow an intensification
process on the main variables and a diversification strategy
on the auxiliary variables. The idea is to limit the duplica-
tion of solutions (Problem 1) and to compute efficient re-
ductions on the whole system (Problem 2). A diversification
process aims at gathering some knowledge on the problem,
whereas an intensification process uses this knowledge to
explore and to focus on interesting areas of the search space
(Blum & Roli, 2003). The intensification/diversification
strategy can be controlled by a ratio between the two types
of variables to choose (see Algorithm 2). Inside each group,
a round-robin strategy may be used to make the algorithm
robust. The round robin strategy is considered more robust

for heterogeneous problems than other strategies (according
to computational concerns), because variables are in equity
chosen and all dimensions of the search space are explored.
Other well-known strategies, like largest domain first, are
not well adapted for a set composed of discrete and con-
tinuous variables, despite the fact that all domains are han-
dled as intervals. Other strategies mainly try to exploit some
characteristics of homogeneous problems. A high ratio cor-
responds to high intensification on main variables and a
small one increases diversification on auxiliary variables.

ALGORITHM 2. Search heuristic favoring main variables.
SelectVariable(X : setofvariables,D : domains,R : integer ratio)

Xm U {x [ X: x is a main var:, Dx can be split}
Xa U {x [ X: Dx can be split} \ Xm

let n be the number of carried out splits
let nm be the number of splits on main var:
if Xa is empty or n ¼ 0 or nm , R(n 2 nm)

nm U nm þ 1
x U SelectRoundRobin(Xm)

else
x U SelectRoundRobin(Xa)

endif
n U n þ 1
return x

end B

This heuristic is applicable to any ED problem, because
ED problems naturally include some main variables (where
values statements are the main objective of the ED phase).
Moreover, If a problem contains only main variables or aux-
iliary variables, then the default round-robin strategy is ap-
plied. This heuristic takes into consideration that main vari-
ables are often useful to compute relevant values for
auxiliary variables. Indeed, auxiliary variables have to ex-
press some characteristics (physics phenomenon, geometry,
etc.) of a specific product architecture. Main variables are bet-
ter defined (small domains and accurate precisions according
to the product specifications) than auxiliary variables (i.e.,
complex phenomena with several simplifying assumptions).
In this way, the constraint propagation phase may be more in-
teresting in reducing domains of auxiliary variables than the
splitting steps on this huge search space.

3.2.2. Precision

Two types of auxiliary variables can be identified (Prob-
lem 3). Auxiliary variables expressed as functions of other
variables may not be split because they correspond to inter-
mediate computations.

To this end, it suffices to bind these variables to an infinite
precision. Their values are computed using the Prune algo-
rithm (constraint propagation). The other auxiliary variables
may be split (Problem 2), but their precisions have to be as
relevant as possible to avoid too many useless splitting steps
(Problem 1).

Search heuristics for constraint-aided embodiment design 181

https://doi.org/10.1017/S0890060409000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000055


3.2.3. Piecewise constraint

The goal is to split the a variable according to the first
pruning case of the constraint in order to answer Problem
4. The domain of a must be included in some Ik to enforce
Ck. To this end, the domain of a can be split on the bounds
of the intervals Ik instead of the classical bisection. Let us
note that even the auxiliary variables with infinite precision
must be considered here. Combining several piecewise con-
straints parametrized by the same variable comes to consider
the set of bounds from all the intervals Ik and to combine the
constraints from the corresponding pieces.

3.2.4. Variable types

A common approach is to choose first integer variables and
then real variables, supposing that different integer values
may correspond to different product architectures. We then
have several choice criteria to be combined: type of variable
(main, auxiliary), domain nature (discrete, continuous), and
more usual criteria (round-robin strategy, largest continuous
domain, smallest discrete domain, most constrained variable,
etc.). Integer variables are supposed to be enumerated and
real variables are bisected.

3.3. Representation

Several approximate solutions are redundant if the domains of
the main variables intersect, because of the search on auxili-
ary variables. In this case, they need to be merged to compute
compact representations of the solution set. In the interval
framework a set of merged boxes can be replaced by their
hull, namely, the smallest box containing each element.

It must be verified that the main variables are still precise
enough after merging. In particular, several boxes enclosing
a continuum of solutions may share only some bounds. The
hull may not be computed to keep fine-grained approxima-
tions.

4. EMPIRICAL EVALUATION ON ACADEMIC
PROBLEMS

The techniques have been implemented in Realpaver (Gran-
villiers & Benhamou, 2006). The pruning step is imple-
mented by constraint propagation using 2B consistency and
box consistency. The next results do not take into account
the computations of any proof of existence algorithm, be-
cause only performances of search heuristics are studied.
These results are only concerned of finding solutions, which
are coherent with precisions of variables. The presented
curves show the number of splits made on domains of vari-
ables. Considering one solving heuristic, this number does
not vary on the contrary to the solving time, which depends
on the computer hardware, the operating system, and so forth.
The number of splitting steps unmistakably represents the
performances of each search heuristics, because the pruning
algorithm is guided by it. For heterogeneous problems over

large search spaces, the search heuristic plays a crucial role
in the efficiency of the solving process.

4.1. Functional variables

ED problems embody many variables expressed as functions
of other variables. They are maintained within the model to
preserve the model intelligibility, although they could be re-
moved and replaced by their expression. The question is
whether these variables have to be split. Let us consider the
following problem parametrized by n � 3:

xk [ [�100, 100] 1 � k � n
yk ¼ x2

k � x2
kþ1 1 � k � n

yk � ykþ1 ¼ k 1 � l � n

8<
: (8)

Let xnþ1 be x1 and let ynþ1 be y1. The goal is to prove that the
problem has no solution. The results are depicted in Figure 3.
The dotted curve corresponds to a round-robin strategy on x
and no split on y. This is clearly not efficient. The square
curve is obtained with a round-robin strategy on x and y.
The growth ratio is almost the same (factor 2) but the number
of splitting steps is decreased by a factor of 50. The triangle
curve is derived by a more robust strategy such that x is split
twice more than y. Surprisingly, the number of splitting steps
decreases when n increases. For instance, given n ¼ 8, the
number of bisections are 93,183, 1791, and 93, respectively,
for the three heuristics.

Let us consider another problem parametrized by n � 3:

xk [ [�p=3, p=3] 1 � k � n
yk ¼ xkþ1 � xkþ2 1 � k � n
tan (xk � yk)þ tan (xk) ¼ k=n 1 � l � n

8<
: (9)

such that xnþi ¼ xi and ynþi ¼ yi for every i� 1. The goal is to
compute the solutions on x considering a precision of 1028

(three solutions for 6 � n � 11). The results are depicted in
Figure 4. The dotted curve corresponds to a round robin strat-
egy on x and no split on y. The square curve is obtained with a
round robin strategy on x and y. We see that it is more efficient
not to split y. The other curves are obtained with a robust

Fig. 3. The search heuristics for functional variables. (*) A round-robin
strategy on x and no split on y, (B) a round-robin strategy on x and y, and
(O) a more robust strategy such that x is split twice more than y.
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strategy such that x is split r times more than y (r¼ 5 and 10).
The improvement increases with ratio r.

The previous results may lead to the following conclu-
sions. In the first problem, every reduction on functional vari-
ables is directly propagated through many constraints, which
is efficient because these variables occur in several con-
straints. If such variables appear in only one constraint, split-
ting them is not efficient, because they only represent inter-
mediary computations. The second problem shows that no
split on functional variables gives bad performances. In
fact, every reduction on yk leads immediately to a reduction
of xkþ1 and xkþ2 because the constraint is simple. This is a
means for tackling two variables using only one split. Finally,
strategies using a ratio are more robust and efficient than
others on these types of problems.

It can be noted that in ED models, functional variables often
take part of underconstrained networkof constraints. Manysplit-
ting steps on them is useless and a high ratio is better. If this ratio
is too difficult to establish, no splitting steps on functional vari-
ables is the easiest and the more efficient approach. Moreover,
all splitting steps on functional variables do not have the same
impact on the pruning of the whole problem and the round-robin
strategy does not take this factor into account. Perhaps some
other strategies, as for instance to choose the most constrained
variable, should be more efficient especially with small ratios,
where functional variables are often split.

4.2. Auxiliary variables

Auxiliary variables are useless from an ED point of view but
they have to be efficiently managed during computations. Let
us consider the following problem where n is an integer main
variable in [2108, 108]; x, y, z are real variables in [210, 10]
with precision 1028; x is a main variable; and y and z are aux-
iliary variables:

x� yþ z ¼ 1� n
x� yz ¼ 0
x2 � yþ z2 ¼ 2

8<
: (10)

The problem projected onto the auxiliary variables is hard
to solve, because this problem is dense. Local reasoning
about projections may not compute efficiently variable do-
mains. As a consequence these variables must often be split.
The curve in Figure 5 is obtained from a robust strategy that
alternatively splits main and auxiliary variables with ratio r.
We observe an exponential behavior when r increases, that
is, when auxiliary variables are seldom split. We also notice
for this problem that labeling is better than bisection on n. In
fact n must be set before solving the whole problem.

The number of splitting steps on auxiliary variables should
follow the hardness of the problem on these variables. This
theoretical criterion is not easily estimated in heterogeneous
problems. It is implemented here by a global ratio on the vari-
able sets. This ratio aims at favoring main variables according
to the existential quantifier, which is defined on auxiliary
variables in the context of ED problems.

4.3. Piecewise constraints

We consider the following problem:

x, y, zð Þ [ [�10, 10]3

yþ y2 ¼ z2 þ 2

xz ¼ z2 � 1

piecewise

x, I1: mid I1ð Þ ¼ x2 � y2 þ x

..

. ..
.

In: mid Inð Þ ¼ x2 � y2 þ x

0
B@

1
CA

8>>>>>>>>>>><
>>>>>>>>>>>:

(11)

where n is the number of pieces of the piecewise constraint,
each interval, and Ik is defined by

Ik ¼ �10þ 20
k � 1

n
þ v, �10þ 20

k

n
� v

� �
, 1 � k � n, (12)

where v . 0 is equal to the machine precision, and mid(Ik)
is the midpoint of Ik. Let 1028 be the precision of every
variable.

Figure 6 depicts the number of splitting steps required for
solving the problem parametrized by the number of pieces of
the piecewise constraint. The variables are chosen following a

Fig. 4. The search heuristics for functional variables. (*) A round robin
strategy on x and no split on y, (B) a round robin strategy on x and y, and
(O, V) a robust strategy such that x is split r times more than y (O, r ¼ 5;
V, r ¼ 10).

Fig. 5. The search heuristics for auxiliary variables.
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round robin strategy. The diamond curve is such that only the
first pruning case of the piecewise constraint is applied. A re-
stricted pruning algorithm is clearly not efficient. In this case,
many approximate solutions include piece bounds, and the
piecewise constraint is useless. The dotted curve corresponds
to a full pruning algorithm with classical bisection, the square
one to a full pruning algorithm with split on the first hole from
the domain of x, and the triangle one to a full pruning algo-
rithm with split on the mid hole. Bisection is more efficient
than split on the first hole. It is known that bisection is
more efficient than labeling for continuous variables. Split
on the mid hole is the best heuristics. The corresponding func-
tion follows np with 0 , p , 1. The new technique seems
effective even for huge piecewise constraints.

5. EMPIRICAL EVALUATION ON REAL-WORLD
PROBLEMS

In this section we evaluate our approach on models obtained
for real world applications in mechanical engineering. These
models take into account simplifications and assumptions in-
ferred by the CD phase. Thus, some elements of products are
frozen or neglected because this previous design phase re-
veals their poor significance level, while focusing on most
relevant components and behaviors. This explains some un-
evenness within models in the appendixes. Giving all the de-
tails of the CD phase is too long, and runs over the scope of
this paper. Only a brief introduction of each application is
given followed by some results analysis concerning our con-
tributions.

5.1. A basic batch exchanger system

We first consider a batch exchanger model (see Fig. 7). The
solution principles are defined using five design variables
(three catalogs related to lengths, materials and diameters,
the number of fins, and the gap between fins). In this model,
the variables relating to the choices within catalogs are design
variables instead of the length, materials of fins, and the

diameter of the tube, which ones have their values directly de-
fined by the catalogs. This problem is interesting from an ED
point of view, because we have to choose several components
in (small) catalogs while dimensioning the gap between fins.
In this system, there is a coupling between fluid mechanics
and the geometry of the heat exchanger (namely, the gap be-
tween fins). System modeling introduces five auxiliary vari-
ables and five functional variables. The batch exchanger is
part of a batch cooler system for aperitif, and this model in-
vestigates the feasibility to cool down the aperitif from
258C to 88C in less than 25 s.

Figure 8 depicts the number of splitting steps using the ro-
bust strategy with ratio r. The number of solutions is half of
the number of splitting steps. The square curve comes from
labeling of integer domains and the triangle curve from bisec-
tions. We see that a high splitting ratio allows to decrease the
number of splitting steps. Because of some orientation in the
model the auxiliary variables are directly computed from the
design variable values. Splitting auxiliary variables leads to
duplicate solutions and consequently useless search steps.
Bisection on integer variables is better than labeling. That
is explained by efficient reductions of the number of fins
(integer in [5, 20]) using some bound consistency methods.

5.2. A pump and tank water circuit

This model takes into account three tanks (one upstream and
two downstream) and one water pump (see Fig. 9). The objec-
tive is to study the feasibility of dimensioning the two lines

Fig. 6. The search heuristics for piecewise constraints. (V) Only the first
pruning case of the piecewise constraint is applied, (*) a full pruning algo-
rithm with classical bisection, (B) a full pruning algorithm with split on the
first hole from the domain of x, and (O) a full pruning algorithm with split on
the midhole.

Fig. 7. A batch exchanger. [A color version of this figure can be viewed
online at journals.cambridge.org/aie]

Fig. 8. Solving the batch exchanger problem. (B) Labeling of integer
domains and (O) from bisections.
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diameters after the downstream Y branch. Before the Y
branch, the line diameters are 0.055 m. All the line lengths
are fixed and the two downstream tanks must receive the
same flow, considering that the global line sections are the
same before and after the Y branch. The water pressures in
the tanks are defined initially: the upstream tank is at
40,000 Pa and the two downstream tanks are open to the at-
mosphere air and the pressure is 101,325 Pa. The pump is
standardized and has characteristics (efficiency, manometric
head, required net positive suction head for a water flow,
etc.) given by its manufacturer. The net positive suction
head is investigated to guarantee the safety of the pump.
The solutions are computed taking into account that the

cavitation phenomenon in the pump must not appear; other-
wise, it may be seriously damaged. The downstream circuit
(directly linked to the cavitation phenomenon) is coupled to
the whole circuit (pressure losses) and the Y branch make
the problem nontrivial.

This model is made of two design variables (the two tube
diameters after the Y branch), three auxiliary variables, and
35 functional variables. Figures 10–15 depict the results ob-
tained when functional variables are split considering a
global varying precision. Because the three auxiliary vari-
ables have a fixed precision, a global precision can be defined
on the other variables, namely, functional variables. Thus,
they are split like auxiliary variables. Half of those pictures

Fig. 10. Solving the pump problem with varying precision on functional variables. (*) The worst results, in particular, for the more
accurate precision, but otherwise the results are fairly similar, and (O) the best computing run with three solutions and 296 splits for a func-
tional variables precision of 103.

Fig. 9. A pump and tank water circuit.
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depicts the numbers of splits and the others the number of so-
lutions. The dotted curves show the results obtained with a
classical round-robin strategy for the choices on all variables
(main, auxiliary, and functional variables). The square curves
express the results with a strategy always starting with main
variables. Once they reach the required precision, auxiliary
are variables split. The triangle curves represent the results
with a choice strategy with a ratio defining a priority of three
for the main variables on the auxiliary variables. Only results
found within a reasonable time are written out on each curve:
results with a solving time exceeding 1 h are not taken into
account.

Figures 10 and 11 represent the most general case, and all
the functional variables are defined with the same global pre-
cision. The different number of solutions between each run
can be explained by the miscellany of the duplication of de-
sign solutions and the powerlessness of consistency algo-
rithms on intervals. Indeed, these algorithms have difficulties
to prune accurately some domains and to reject them if they
are near a solution over the real numbers. In this context,
the most accurate precision on functional variables given rea-
sonable solving time is 1021. The dotted curve seems to have
the worst results, in particular, for the more accurate preci-
sion, but otherwise the results are fairly similar. It may be

noted that merging all the computed solutions gives only
one design architecture. Considering that fact, the best com-
puting run is obtained by the triangle curve with three solu-
tions and 296 splits for a functional variables precision of
103. The best approach considering the whole curves seems
to be the triangle curve, where a robust strategy is applied.

After these first results, we can observe that the precision
103 and 104 for functional variables give good results. These
quantities are compatible with some functional variables val-
ues: losses in lines expressed in pascal and Reynolds number
values. Thus, Figures 12 and 13 give results where these func-
tional variables have several fixed precisions. In this case, the
most accurate precision is 10210. Globally, the dotted curve
seems to be again the worst approach, although it gives the
smallest number of solutions after a precision of 1027 for
the same quantity of splits than others. The lowest number
of solutions is given by the square curve with three solutions
for 148 splits for a precision of 100. Previously, the same
small number of solutions was found, but in 296 splits.

From the maximum precision to 101 the results stay sim-
ilar, but until 1022 the number of solutions and the number
of splits decrease. We can conclude that some other func-
tional variables values are compatible with these precisions.
Then, the precision of the net positive suction head, the total

Fig. 11. Solving the pump problem with varying precision on functional variables. (*) The worst results, in particular, for the more
accurate precision, and (O) the best computing run with three solutions and 296 splits for a functional variables precision of 103.

Fig. 12. Solving the pump problem with several fixed and varying precisions on functional variables. (*) The worst approach, although it
gives the smallest number of solutions after a precision of 1027 for the same quantity of splits than others, and (B) the lowest number of
solutions with three solutions for 148 splits for a precision of 100.
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manometric head, and all surfaces are frozen to this last
threshold. Figures 14 and 15 show the results obtained with
all these precisions defined and with only a few still using
the varying global precision. In this case, the robust strategy
fails to give all the solutions within reasonable time after a
precision of 1028, although it seems to give the best results
before a global precision of 1023. The dotted and triangle
curves allow a maximum precision of 10211 and up to a
precision of 1027 the results are interesting. The best run is
obtained by the square curve with three solutions and 148
splits for precisions of 100 and 1021, which is not better
than in the previous case.

With these results, we can conclude that some of the func-
tional variables have to be split (using CSP based on interval
arithmetic). But it is difficult to define a relevant precision on
each functional variable, because some of them are only inter-
mediary computations, which are difficult to measure before
the solving process. Functional variables that can be split
must have a precision relating to the magnitude of their
consistent values and relating to the confidence awarded to
the corresponding constraints. Otherwise, a large precision
inducing few splits is better not to increase the search space
and to dramatically duplicate solutions.

5.3. A bootstrap problem

A basic model of an aircraft air conditioning system is investi-
gated (see Fig. 16). Air coming from a turboreactor and from
the atmosphere is used to produce suitable air for the crew.
The atmosphere air cools down the air coming from the tur-
boreactor through a heat exchanger where complex piecewise
defined physics phenomena are studied (Fanning friction fac-
tor and Nusselt number). The turboreactor air flow passes
through a compressor to improve the heat transfer phenom-
enon inside the exchanger. Before exiting the air conditioning
system, a turbine releases its pressure and makes its tempera-
ture decrease. A coupling shaft conveys to the compressor the
mechanical energy produced by the turbine. This problem is
difficult to solve because many physics phenomena interfere.
The loop corresponding to the bootstrap make its components
coupled according to the temperatures and pressures of the air
flux. These temperatures and pressures are also linked to the
heat exchanger geometry (gap between plates).

In this model, the compressor, the turbine and the coupling
shaft are standardized components, and only the heat exchanger
has to be embodied as it mainly determines the air-conditioning
performances. The main objective of the system is to bring air

Fig. 13. Solving the pump problem with several fixed and varying precisions on functional variables.

Fig. 14. Solving the pump problem with more fixed precisions on functional variables and fewer ones varying than for Figures 12 and 13.
(*, O) A maximum precision of 10211, and (B) the best run with three solutions and 148 splits for precisions of 100 and 1021.
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to the passengers and the crew of the aircraft and to control the
air temperature and pressure inside the cockpit. But some other
criteria are important in an aircraft, as the air flow taken from the
turboreactor (that decreases its efficiency), the increase of the
aircraft drag, the weight of the air-conditioning system, and
so forth. This problem is efficiently solved with piecewise con-
straints: 6734 splitting steps and 1262 approximate solutions
with respect to 36,978 splitting steps and 18,860 approximate
solutions without piecewise constraints.

Moreover, this problem cannot be solved within reasonable
time with classical round-robin strategies on all the variables.
The search space is so wide that if the ED knowledge about
main variables is not used, the solving process becomes
very long. The use of functional variables with infinite preci-
sion is the easiest way, because the model is complex. More-
over, quantities represented by functional variable values can

vary, as for instance the Reynolds number, which takes its
values from 100 to 200,000.

It may be noted in the solution set of these real problems,
that auxiliary variables precision are sometimes large. Indeed,
the interval computations compute interval solutions, which
is an approximation of at least one solution over the real num-
bers. If the model is very sensitive to main variables values
and if their precisions are not small enough, auxiliary vari-
ables may have large domains, which contain several consis-
tent values. In the context of ED, the main goal for designers
is to investigate the feasibility of design concepts. Their first
interest is to know where there is no solution in the search
space. If they really want to have more precise auxiliary vari-
able values for one specific design architecture, they just have
to change all variables domains corresponding to one or sev-
eral computing solution values and then to increase variable

Fig. 15. Solving the pump problem with more fixed precisions on functional variables and fewer ones varying than for Figures 12 and 13.

Fig. 16. The bootstrap flux flow diagram in an aircraft. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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precisions. They can start a new solving phase on this more
restricted search space and find more accurate numerical
solutions.

6. RELATED WORK

Constraint techniques may be used at two successive stages of
preliminary design. Discrete constraints may lead to deter-
mine the architecture of a product during the CD phase
(O’Sullivan, 2001). CD using components from the shelf is
known as configuration. These problems can be represented
by dynamic constraint satisfaction problems (Mittal &
Falkenhainer, 1990) such that the involved components are
activated and the corresponding constraints are solved. The
notion of component (or variable) activation can be tackled
by conditional constraints (Gelle & Faltings, 2003; Sabin
et al., 2003). Larger and more complex problems are also
tackled by Mailharro (1998) and Stumptner et al. (1998).
From a solving point of view the main goal is to efficiently
traverse the tree of architectures. Numerical nonlinear con-
straints are more involved in the ED phase. The frontier be-
tween CD and ED may be thin because mixed constraints
can be considered (Gelle & Faltings, 2003) to tackle both
phases at the same time. But However, the ED physics mod-
els are in general more complex.

Sam-Haroud and Faltings (1996) have proposed to repre-
sent numerical constraints by 2k-trees, namely, decomposi-
tions of the feasible regions using interval boxes. Strong
consistency techniques have been defined through the combi-
nation of 2k-trees. Design applications such as bridge design
have been efficiently solved. In this framework, constraint
systems are decomposed in binary and ternary constraints
in order to limit the size of 2k-trees (quadtrees if k ¼ 2 and
octrees if k ¼ 3).

Classical interval techniques have been implemented in the
ED platform Constraint Explorer (Zimmer & Zablit, 2001).
The solving engine combines interval arithmetic, constraint
propagation, and search. An important feature is the analysis
of the constraint network using graph decomposition (Bliek
et al., 1998). The result of this analysis is an ordering of vari-
ables to be fixed before solving the associated constraint
blocks. Recent developments can be found in (Neveu et al.,
(2006). Our approach can be directly integrated for solving
one block. In particular, large blocks may arise in ED models,
for instance, in the study of the equilibrium of a system.

Piecewise constraints can be implemented by means of
conditional constraints (Zimmer & Zablit, 2001). This
method amounts to the first case of our pruning algorithm.
More recently, binary piecewise constraints with pieces in
the form of (x, y) [ Ik� Jk : Ck(x, y) have been represented
by quadtrees (Vareilles et al., 2005). It seems difficult to ex-
tend this approach to constraints of higher arities, which is re-
quired for solving the problems described in this paper.

Solution sets with nonzero volumes may be characterized
by inner approximations, namely, interval boxes of which
every point is a solution. Several works have tackled specific

cases: inequality constraints by means of 2k-trees (Sam-
Haroud & Faltings, 1996), interval boxes (Collavizza et al.,
1999), or the extreme vertex representation (Vu et al.,
2002), and equality constraint systems with at least as many
existential quantifiers as equations (Goldsztejn & Jaulin,
2006). The study of such techniques for more heterogeneous
constraint systems is an issue.

Other works have taken into account relations that are not
described by analytical expressions (Yannou et al., 2003;
Fischer et al., 2004), exploiting in the constraint framework
simulation results or data from black box numerical tools.
The main idea is to compute approximate constraint-based
models of these relations.

7. CONCLUSION

ED problems have been represented by constraint satisfaction
problems with existential quantifiers. ED knowledge con-
cerning types of variables and their precision has been used
to improve the solving efficiency. New search heuristics
based on a splitting ratio have been introduced to tackle the
quantified variables. Duplicated solutions of main variables
are drastically reduced, and decisions concerning the design
solution principles are easier to make for designers. A global
constraint has been defined for piecewise defined physics
phenomena. Experimental results from academic and real-
world problems are promising. ED goals are better taken
into account because the main purpose is to investigate the
feasibility of the search space while getting a set of approxi-
mated solution principles covering the whole solution
principles.

There are many directions for future research. The notion
of splitting ratio could be refined to tackle the hardness of ev-
ery variable. The hardness of a variable should be clearly de-
fined. For instance, dependencies between variables may also
indicate variables relevance in the model and surely partici-
pate to evaluate their hardness. Auxiliary variables precision
and the validation of solutions could be more studied. The no-
tion of precision is essential in numerical computations. The
precision on auxiliary variables is not often chosen appropri-
ately, and it induces many useless computations steps in all
search heuristics. Precision of main variables is easily defined
considering the design knowledge about the model (i.e., epis-
temic knowledge about main variable values). In contrast,
auxiliary variables are often part of complex mathematical
expressions. In fact, the sensitivity of each variable should
be investigated, and precision should be defined considering
the numerical analysis of each constraint in which variables
are involved. Nevertheless, in practice, it is very difficult to
apply over heterogeneous problems, and designers have no
time to investigate in those fastidious calculations. The solv-
ing process has to be fast because designers do not want to
perform complete simulations of a product. Moreover, the in-
tegration of our techniques in a block solving approach could
be explored. The block decomposition of a CSP takes into ac-
count the constraints network and allows the establishing of

Search heuristics for constraint-aided embodiment design 189

https://doi.org/10.1017/S0890060409000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000055


an order or a causality on variables or blocks of variables. In
most design models, starting variables are needed to compute
a relevant order, because models are often underconstrained.
Several orders on variables may be defined for the same con-
straint graph, and the choice of the optimal one is undecidable
within reasonable time (Jégou & Terrioux, 2003), but our
heuristic favoring main variables may help in this ordering
task, while taking into account design knowledge.
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P. Sébastian is an Associate Professor of energy and process
engineering at the University of Bordeaux 1. He is a member
of the Scientific Advisory Board of the International Confer-
ence on Virtual Concept. His current research includes em-
bodiment design of complex mechanical systems using, for
instance, adaptation methods to improve decision support
provided by models at this early design stage.

R. Chenouard et al.190

https://doi.org/10.1017/S0890060409000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000055


APPENDIX A: Batch-exchanger model APPENDIX B: Pump and tank water circuit model

Functional variable names and definition

Surface of a semifin (m2) Aail ¼
L2 � (p=4) � d 2

1000000

Exchanger surface (m2) A ¼

N � 2 � Aail þ
p � e � d

1000000

 !
dose

V
Exchange coefficient in the batch

exchanger (2) h ¼
1200

e

Efficiency coefficient for a fin (2) fi ¼
L� d

2000
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2000 � h

l

eail

vuuut

Fin efficiency (2) h ¼

exp (2 � fi)� 1
exp (2 � fi)þ 1

fi

Design variable names, domains, and precisions

Catalog for the fins materials (2) mater [ {1, 2}
Catalog for the fins length (2) eail [ {1, 2}
Catalog for the tube diameter (2) diam [ {1, 2}
Number of fins (2) N [ [5..20]: integer
Space between fins (mm) e [ [1..4]: p(e) ¼ 1021

Auxiliary variable names and domains

Time to cool down the aperitif (s) t [ [11..15]: p(t) ¼ 1021

Tube diameter (mm) d [ [0..50]: integer
Fin length (mm) L [ [0..50]: integer
Fin conductivity (W/m/K) l [ [1..200]: integer
Saturation temperature (8C) Tsat [ [–15..2]: p(Tsat) ¼ 1021

Constant names and values

Batch volume (cl) V :¼ 6
Fin thickness (mm) eail :¼ 0.5
Initial temperature of the aperitif (8C) Ti :¼ 20
Final temperature of the aperitif (8C) Tf :¼ 8
Volume of aperitif to cool down (cl) Dose :¼ 4

Constant names and values

Pressure in the upstream tank (Pa) Pamont :¼ 40,000
Pressure in the downstream tanks (Pa) Paval :¼ 101,325
Height of the vertical downstream line before

the Y branch (m) Hr1 :¼ 5
Height of the vertical downstream line after

the Y branch (m) Hr2 :¼ 2
Height of the vertical upstream line (m) Ha :¼ 2
Height of water in the upstream tank (m) Hw :¼ 0.5
Water density (kg/m3) r :¼ 1e3
Water viscosity (m2/s) m :¼ 1e – 3
Acceleration due to gravity (m/s2) g :¼ 9.81
Lines diameter before the Y branch (m) D :¼ 0.055
Losses coefficient in entry of upstream line j1 :¼ 0.5
Losses coefficient exiting downstream lines j3 :¼ 1
Losses coefficient in the Y branch toward the

first downstream tank j4 :¼ 0.5
Losses coefficient in the Y branch toward the

second downstream tank j5 :¼ 0.1
Water temperature (8C) T :¼ 13

Design variable names, domains, and precisions

Line diameter after the Y
branch toward the first
downstream tank (m) Dr1 [ [0:02, 0:1]: p(Dr1) ¼ 10�3

Line diameter after the Y
branch toward the second
downstream tank (m) Dr2 [ [0:03, 0:1]: p(Dr2) ¼ 10�3

Auxiliary variable names and domains

Flow in the lines before
the Y branch Q0 [ [17=3600, 96=3600]: p(Q0) ¼ 10�5

Flow in the lines after the
Y branch toward the
first downstream tank Qr1 [ [0, 96=3600]: p(Qr1) ¼ 10�5

Flow in the lines after the
Y branch toward the
second downstream
tank Qr2 [ [0, 96=3600]: p(Qr2) ¼ 10�5

Constraints

Balance of heat energy T f ¼ Tsat þ (T i � T satÞ

� expf[ð�h � A � t � h)=39]=doseg

Batch volume V ¼ e � Aail � N � 100
Catalog of

Tube diameters diam ¼ 1! d ¼ 16
diam ¼ 2! d ¼ 18

Fin materials mater ¼ 1! l ¼ 200
mater ¼ 2! l ¼ 20

Fin length ail ¼ 1! L ¼ 40
ail ¼ 2! L ¼ 50
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Functional variable names and definition

Section of cylindrical upstream lines (m2) S ¼
p � D2

4

Section of cylindrical downstream lines toward the first tank (m2) Sr1 ¼
p � D2

r1

4

Section of cylindrical downstream lines toward the second tank (m2) Sr2 ¼
p � D2

r2

4
Surface of the vertical upstream line (m2) Ae1 ¼ p � D � Ha

Surface of the horizontal upstream line (m2) Ae2 ¼ p � D � La

Surface of the vertical downstream line before the Y branch (m2) Ae3 ¼ p � D � Hr1

Surface of the horizontal line toward the first downstream tank (m2) Ae4 ¼ p � Dr1 � Lr1

Surface of the vertical downstream line toward the second tank (m2) Ae5 ¼ p � Dr2 � Hr2

Surface of the horizontal line toward the second downstream tank (m2) Ae6 ¼ p � Dr2 � L2

Flowing speed in the lines before the Y branch (m/s) Vo ¼
Qo

S

Reynolds number for the water before the Y branch (2) Re1 ¼
r � Vo � D

mu

Piecewise definition of Fanning friction factor for flowing before the Y branch Re1 [ [0, 2100]! f1 ¼
16
Re1

Re1 [ [2100, 50000]! f1 ¼ 0:10512 � Re�0:244
1

Re1 [ [50000, 1000000]! f1 ¼ 0:04234 � Re�0:164
1

Reynolds number for the water between the Y branch and the first downstream
tank (2)

Re2 ¼
(Qr1=Sr1)

mu

Definition of Fanning friction factor for flowing between Y branch and tank 1 Re2 [ [0, 2100]! f2 ¼
16
Re2

Re2 [ [2100, 50000]! f2 ¼ 0:10512 � Re�0:244
2

Re2 [ [50000, 1000000]! f2 ¼ 0:04234 � Re�0:164
2

Reynolds number for the water between the Y branch and the second downstream
tank (2)

Re3 ¼
r � (Qr2=Sr2) � Dr2

mu

Definition of Fanning friction factor for flowing between the Y branch and tank 1 Re3 [ [0, 2100]! f3 ¼
16
Re3

Re3 [ [2100, 50000]! f3 ¼ 0:10512 � Re�0:244
3

Re3 [ [50000, 1000000]! f3 ¼ 0:04234 � Re�0:164
3

Losses coefficient in the upstream elbow (Pa) j2 ¼ 0:15þ 0:0175 � 4 � f1 � 2 � 90
Losses coeffilicient in the downstream elbow (Pa) j6 ¼ 0:15þ 0:0175 � 4 � f3 � 2 � 90

Total manometric head (m) H ¼ �1:1763 � 105 � (Q0 � 3600)3 � 2:2052 � 10�4 � (Q0 � 3600)2

þ 1:4384 � 10�2 � (Q0 � 3600)þ 21:554
Net positive suction head required NPSH ¼ 1:2144 � 10�5 � (Q0 � 3600)3 � 1:2301 � 10�3 � (Q0 � 3600)2

þ 4:9136 � 10�2 � (Q0 � 3600)þ 0:49957

Net positive suction head available NPSH ¼
Pamont � Psat

r � g
þ (Ha þ 2 � D)�

DPOþ DP1þ DP2þ DP3
Ro � g

Water saturation vapor pressure (Pa) Psat ¼ exp 23:3265� (3802:7=T þ 273:18)� [(472:68=T þ 273:18)]2
� �

Total losses in the circuit (Pa) DP ¼ DP0 þ DP1 þ DP2 þ DP3 þ DP4 þ DP5 þ DP6 þ DP7

Losses in entry of the vertical upstream line (Pa) DP0 ¼
j1 � rV2

0

2

Losses in the vertical upstream line (Pa) DP1 ¼
f1 � Ae1

S3
�
r � Q2

0

2

Losses in the upstream elbow (Pa) DP2 ¼
j2 � r � V

2
0

2

Losses in the horizontal upstream line (Pa) DP3 ¼
f1 � Ae2

S3
�
r � Q2

0

2

Losses in the vertical downstream line before the Y branch (Pa) DP4 ¼
f1 � Ae3

S3
r1

�
r � Q2

0

2

Losses in the Y branch toward the first downstream tank (Pa) DP5 ¼
j4 � r (Qr1=S)2

2

Losses in the horizontal line toward the first downstream tank (Pa) DP6 ¼
f2 � Ae4

S3
r1

�
r � Q2

r1

2

Losses exiting the line in the first downstream tank (Pa) DP7 ¼
j3 � r � (Qr1=Sr1)2

2

Losses in the Y branch toward the second downstream tank (Pa) DP8 ¼
j5 � r � (Qr2=Sr2)2

2

R. Chenouard et al.192

https://doi.org/10.1017/S0890060409000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000055


APPENDIX C: Bootstrap model

Constant names and values

Flying altitude (m) Z ¼ 10,500
Calorific capacity difference (J/kg/K) r ¼ 287
Mass capacity ratio (2) t ¼ 10
Plate conductivity (W/m/K) kp ¼ 20
Plate thickness (m) tp ¼ 0.001
Mass flow (kg/s) q ¼ 0.7
Isentropic efficiency of the turboreactor’s diffuser (2) hTRd ¼ 0.9
Compression ratio of the turboreactor (2) TCTR ¼ 8
Isentropic efficiency of the turboreactor’s compressor (2) hTRc ¼ 0.8
Isentropic efficiency of the compressor (2) hc ¼ 0.75
Isentropic efficiency of the coupling shaft (2) hAT ¼ 0.95
Isentropic efficiency of the turbine (2) h t ¼ 0.8
Heat capacity ratio (2) g ¼ 1.4
Mach number (2) M ¼ 0.8

Design variable names, domains, and precisions

Width of the exchanger (m) Lx [ [0:1::1]: p(Lx) ¼ 10�2

Spacing between plates in
the exchanger (m) rh [ [0:001::0:1]: p(rh) ¼ 10�3

Auxiliary variable names and domains

Temperature between the compressor and the
exchanger (K) T2 [ [0..1000]

Temperature between the exchanger and the
turbine (K) T3 [ [0..1000]

Temperature after the turbine (K) T4 [ [230..500]
Pressure between the compressor and the

exchanger (Pa) p2 [ [0..10000000]
Pressure between the exchanger and the

turbine (Pa) p3 [ [0..10000000]
Pressure after the turbine (Pa) p4 [ [0..10000000]
Mass flow in the bootstrap (kg/s) q [ [0..1]

Losses in the vertical downstream line after the Y branch (Pa) DP9 ¼
f3 � Ae5

S3
r2

�
r � Q2

r2

2

Losses in the elbow toward the second downstream tank (Pa) DP10 ¼
j6 � r � (Qr2=Sr2)2

2

Losses in the horizontal line toward the second downstream tank (Pa) DP11 ¼
f3 � Ae6

S3
r2

�
r � Q2

r2

2

Losses exiting the line in the second downstream tank (Pa) DP12 ¼
j3 � r � (Qr2=Sr2)2

2

Constraints

Y branch water flow Qr1 þ Qr2 ¼ Q0

equality Qr1 ¼ Qr2

Downstream tubes
section equality

Sr1 þ Sr2 ¼ S

Total manometric head H ¼
Paval� Pamont

r � g
� (Hw þ Ha)

þ Hr1 þ
DP

p � g
Downstream energy DP5 þ DP6 þ DP7 ¼¼ DP8

balance þ DP9 þ DP10 þ DP11

þ DP12 þ Hr2 � p � g
No cavitation NPSHa , NPSHr

phenomenon
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Functional variable names and definition

Length of the exchanger (m) Ly ¼ Lx

Height of the exchanger (m) Lz ¼ 0.25 . Lx

Temperature of the atmosphere (K) Ta ¼ 288.2 – 0.00649 . Z

Pressure of the atmosphere (Pa) pa ¼ 101290 �
Ta

288:02

� �5:256

Temperature between the diffuser and the compressor of the
turboreactor (K) T0 ¼ Ta �

�
1þ

M2 � ðg� 1)
2

�
Pressure between the diffuser and the compressor of the

turboreactor (Pa) p0 ¼ pa �

�
hTRd �

M2 � ðg� 1)
2

þ 1

� �g=ðg�1)�

Temperature between the turboreactor and the compressor (K) T1 ¼ T0 �

�
1þ

1
hTRc

�

�
p1

p0

� �(g�1Þ=g

� 1

��
Pressure between the turboreactor and the compressor (Pa) p1 ¼ TCTR � p0

Porosity (2) s ¼
rh

(rh þ tp)

Reynolds number (2) Re ¼
4 � rh � G

m

Prandtl number (2) Pr ¼ 0:825� 0:00054 � T2 þ 5 � 10�7 � T2
2

Nusselt number (2) piecewise definition Re [ [0, 2100]!Nu¼ 1:86 �
Pr � Re � 2 � rh

Lx

� �0:33

Re [ [2100, 8000]!Nu¼ 0:116 � (Re0:66�125) � Pr0:33

Re [ [8000, 10000]!Nu¼
10000�Re

10000�8000
� 0:116 � (Re0:66�125) � Pr0:33

þ
Re�8000

10000�8000
� 0:023 � Re0:8 � Pr0:33

Re [ [10000, 1000000]!Nu¼ 0:023 � ðRe0:8 � Pr0:33Þ

Fanning factor (2) piecewise definition Re [ [0, 2100]! f ¼ 16 � Re�1

Re [ [2100, 100000]! f ¼ 0:10512 � Re�0:243

Re [ [100000, 10000000]! f ¼ 0:04234 � Re�0:164

Air viscosity (kg/m/s) m ¼ �1:075 � 10�5 � 2:225 � 10�9 � T2 þ 1:725 � 10�6 �
ffiffiffiffiffi
T2
p

Air thermal conductivity (W/m/K) l ¼ ((�2:620052386818974 � 10�6)

�
T3 þ T2

2

� �2

þ (9:169307749941458 � 10�3Þ

�
T3 þ T2

2

� �2

þ 1:075874105919108 � 10�1) � ð10�2Þ

Air density between the turboreator and the compressor (kg/m3) r1 ¼
p1

r � T1

Air density between the compressor and the exchanger (kg/m3) r2 ¼
p2

r � T2

Air density between the exchanger and the turbine (kg/m3) r3 ¼
p3

r � T3

Number of transfer units (2) Nut ¼
H � A

q � Cp

Exchanger efficiency (2) e ¼ 1� et�Nut0:22
� [e(�1=t)�Nut0:78

� 1]
Exchanger inlet pressure loss coefficient (2) Ke ¼ ((�0:00496672650332) � s2

þ (0:00113607587171) � s
þ (�0:00001379297260)) � ln(Re)2

þ ((0:06612031387891) � s2

þ (0:03340063900613) � s
þ (�0:00178687092114)) � ln(Re)
þ (0:96233612367662) � s2

þ (�2:55595501972796) � s
þ 1:01310287017856)

Exchanger outlet pressure loss coefficient (2) Kc ¼ ((0:00505236835109) � s2

þ (�0:00414707431984) � s
þ (0:00347507173062)) � ln(Re)2

þ ((�0:08548307647633) � s2

þ (0:06740608329495) � s
þ (�0:09241949837272)) � ln(Re)
þ (�0:18282301765817) � s2

þ (�0:17962391485785) � s
þ 1:00333194877608)
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Mass velocity (kg/m2/s) G ¼
q

Af

Exchange surface (m2) A ¼
Lx � Ly � (Lz � 2 � rh � tp)

rh þ (tp=2)
Flowing section (m2) Af ¼ Ly � Lz

Convective transfer coefficient (W/m2/K) h ¼
Nu � l

rh

Global heat transfer coefficient (W/m2/K) H ¼
1

1=hþ (2 � tp=kp)

Pressure loss in the exchanger (Pa) Dpe¼
G2

2 �r2

� �
� (Kcþ1�s2) þ f

A

Af

� �
� 2 �

r2

r2þr3

� �
þ (Keþs

2�1) �
r2

r3

� �
Exchanger volume (m3) V ¼ Lx � Ly � Lz

Plate volume Vp ¼
A

2
� tp

Air flowing speed in the exchanger (m/s) C ¼
q

Af � r2

Iron plate mass (kg) me ¼ Vp � 7800

Constraints

Compressor energy conservation hc �
T2

T1
� 1

� �
¼

p2
p1

� �g=ðg�1Þ

� 1

Coupling shaft energy conservation (T2 � T1) ¼ hAT � (T3 � T4)

Turbine energy conservation 1�
T3

T4
¼ ht � ð1�

p3
p4

� �ðg�1Þ=g

Exchanger pressure loss D pe ¼ p2 � p3

Exchanger efficiency e ¼
T2 � T3

T2 � T0

Search heuristics for constraint-aided embodiment design 195

https://doi.org/10.1017/S0890060409000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000055

