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Abstract

In this article we introduce a simple tool to derive polynomial upper bounds for the
probability of observing unusually large maximal components in some models of ran-
dom graphs when considered at criticality. Specifically, we apply our method to a model
of a random intersection graph, a random graph obtained through p-bond percolation on
a general d-regular graph, and a model of an inhomogeneous random graph.
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1. Introduction

The purpose of this paper is to introduce an elementary tool to obtain simple upper bounds
for the probability of observing unusually large maximal components in some important
models of random graphs at criticality.

Given any (undirected) graph G= (V, E) and vertices v, u ∈ V , we write v ∼ u if the edge
{v, u} is present in G and say that vertices u and v are neighbours. We write v ↔ u if there
exists a path of occupied edges connecting vertices v and u and we adopt the convention that
v ↔ v for every v ∈ V . We let C(v) = {u ∈ V : v ↔ u} be the component (or cluster) of vertex
v ∈ V and denote its size by |C(v)|. Moreover, we define a largest component Cmax to be any
cluster C(v) for which |C(v)| is maximal, so that |Cmax| = maxv∈V |C(v)|.

The Erdős–Rényi random graph on [n] = {1, . . . , n}, denoted by G(n, p), is the random
graph obtained from the complete graph on n vertices by independently retaining each edge
with probability p ∈ [0, 1] and deleting it with probability 1 − p.

One of the most surprising aspects of this model is that when p is of the form
p = p(n) = γ /n. then the G(n, p) random graph undergoes a phase transition as γ passes 1.
Specifically, if γ < 1 then |Cmax| is of order log(n), if γ = 1 then |Cmax| is of order n2/3, and if
γ > 1 then |Cmax| is of order n. See for instance the books [3], [13], or [15] for proofs of these
statements and other interesting properties of this model. See also Krivelevich and Sudakov
[19] for a simple proof of the phase transition in G(n, p).

In [9] De Ambroggio and Roberts introduced a ballot-type result (Lemma 1 below) to pro-
vide a new, purely probabilistic proof of the fact that in the G(n, p) model considered in the
so-called critical window, i.e. when p is of the form p = p(n) = n−1 + λn−4/3, the probability
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of observing a maximal cluster of size larger than An2/3 tends to zero (as n → ∞) exponentially
fast in A. More precisely, they proved that, for large enough n,
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(1)

where 0 < c ≤ c′ are two finite constants, thus showing that in the near-critical G(n, p) model
the number of vertices contained in the maximal component is unlikely to be much larger than
n2/3.

We remark that the correct asymptotic for P
(|Cmax| > An2/3

)
in this critical model was

obtained first by Pittel [26] (whose paper is partially based on an earlier article by Łuczak,
Pittel, and Wierman [21]) and more recently by Roberts [27]. We also mention that Nachmias
and Peres [23] used a general martingale argument to establish an exponential upper bound for
the probability in (1), but their bound is not optimal.

The purpose of this work is to show that part of the argument used in [9] to prove the upper
bound in (1) is quite general and can be used to obtain, in a surprisingly simple way, polyno-
mial upper bounds for P(|Cmax| > k) in different models of random graphs when considered at
criticality. Specifically, we apply our method to three different models, namely a model of a
random intersection graph, a random graph obtained through p-bond percolation on a general
d-regular graph, and a model of an inhomogeneous random graph, and we show that |Cmax| is
unlikely to be much larger than n2/3 in these models. In this sense, these random graphs exhibit
a similar critical behaviour.

2. Results

In order to better understand the statement of our main result (Theorem 1 below), we first
need to recall the definition of an exploration process, which is an algorithmic procedure used
to reveal the components of a given graph; see e.g. [9], [22], [23], [27], and references therein.
As we will see in a moment, when the graph under investigation is random such an exploration
process reduces the study of component sizes to the analysis of the trajectory of a random
process, which looks like (but is not quite) a random walk.

Let G= ([n], E) be any (undirected) graph, and let Vn be a vertex selected uniformly at
random from [n]. During the exploration of C(Vn), each vertex will be either active, explored, or
unseen, and its status will change during the course of the exploration. At each step t ∈ {0} ∪ [n]
of the algorithm, the number of explored vertices will be t, whereas the number of active
vertices will be denoted by Yt. At time t = 0, if Vn is an isolated vertex we stop the procedure;
otherwise there exists some vertex u ∈ [n] \ Vn with {Vn, u} ∈ E. In this case vertices Vn and
u are declared active, whereas all other vertices are declared unseen (so that Y0 = 2). At each
step t ∈ [n] of the algorithm we proceed as follows.

(a) If Yt−1 > 0, we let ut be the active vertex with the smallest label. We reveal all unseen
neighbours of ut in G and change the status of these vertices to active. Then we set ut

itself to be explored.

(b) If Yt−1 = 0, we let ut be the unseen vertex with the smallest label, and:

(b.1) if ut is isolated, we halt the procedure;

(b.2) otherwise, there is at least one unseen vertex v such that {ut, v} ∈ E, and we declare
both ut and v active; then we continue with step (a).
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Letting ηt denote the number of unseen vertices in G which become active at step t of the
exploration process, we see that:

(i) if Yt−1 > 0 then Yt = Yt−1 + ηt − 1;

(ii) if Yt−1 = 0 then Yt = ηt.

Remark 1. We remark that our description of an exploration process is slightly different from
those provided in [9], [23], and [27], for example. Indeed, in our setting the algorithm is actu-
ally run only in the case where Vn is not an isolated vertex, and the exploration starts from
two active vertices and not from one active vertex, as usually happens. Moreover, whenever
Yt−1 = 0 and ut is not isolated, we first reveal one of the neighbours of ut before proceed-
ing with the exploration. These small modifications will be particularly useful in one of our
applications.

Now let G= ([n], E) be any (undirected) random graph, and use the above algorithm to
reveal the components of G. It is clear that the ηi are now random variables. Observe that, given
any k ∈N= {1, 2, . . . }, if Vn is an isolated vertex then |C(Vn)| = 1 and hence, in particular, we
cannot have |C(Vn)| > k (as k ≥ 1). On the other hand, if Vn is not isolated then |C(Vn)| > k
implies that Yt = 2 +∑t

i=1(ηi − 1) > 0 for all t ∈ [k]. Therefore we can write

P(|C(Vn)| > k) ≤ P

(
2 +

t∑
i=1

(ηi − 1) > 0 for all t ∈ [k]

)
. (2)

Note that the ηi are not independent and, moreover, they have different distributions (one of
the reasons is that the number of unseen vertices in the graph decreases during the course of
the exploration). Therefore Yt does not define a random walk.

In order to bound the probability in (2) from above, the idea is to produce a sequence of
independent and identically distributed (i.i.d.) random variables Xi, bigger than the ηi, that
allow us to replace the probability on the right-hand side of (2) with the probability that a
random walk (started at 2) stays positive up to time k.

In some random graphs this is an immediate consequence of the model construction, while
in other instances one needs more care in order to produce these Xi.

Here is our main result.

Theorem 1. Let G= ([n], E) be any (undirected) random graph. Suppose that there exists a
sequence of i.i.d. random variables (Xi)i≥1 taking values in N0, such that the distribution of X1
may depend on n, satisfying:

(i) P(X1 = 3) ≥ c for all sufficiently large n, for some constant c > 0;

(ii) P(|C(Vn)| > k) ≤ P
(
2 +∑t

i=1(Xi − 1) > 0 for all t ∈ [k]
)

for every k = k(n) ∈N;

(iii) there exist δ, ρ = ρ(n) > 0 and ε = ε(n) ≥ 0 with εn → 0 (as n → ∞) such that
E
(
erX1

)≤ er(1+ε)+r2δ for every r ∈ (0, ρ) and all sufficiently large n.

Suppose that k = k(n) ∈N satisfies ε
√

k ≤ c and ρ
√

k ≥ 1 for all large enough n, for some
finite constant c > 0. Then

P(|Cmax| > k) ≤ C

P(X1 = 3)

n

k3/2

for all sufficiently large n, where C > 0 is a finite positive constant which depends solely on δ

and c.
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Remark 2. In all our applications the probability P(X1 = 3) is bounded away from zero, so
that if k = k(n) = 
An2/3� satisfies the two assumptions in the statement of the theorem, then
P(|Cmax| > 
An2/3�) is indeed O(A−3/2).

Remark 3. We note that condition (iii) in Theorem 1 might be stated in different (possibly
more general) terms, but we decided to state it in this way because of its simplicity to verify,
as shown in our applications.

Our claim that the approach introduced in [9] is robust and that Proposition 1 leads to simple
upper bounds for P(|Cmax| > k) in several models of random graphs at criticality is justified
in Sections 2.1, 2.2, and 2.3 below, where we use Proposition 1 to obtain polynomial upper
bounds for the above probability in three particular models of random graphs.

We remark that our methodology does not lead to upper bounds for the probability of
observing unusually small largest components; in this direction the martingale argument intro-
duced by Nachmias and Peres in [23] seems to be more robust and adaptable to different
models of random graphs.

2.1. Critical random intersection graph

Our first application of Theorem 1 involves a model of a random intersection graph; for an
introduction to this class of models, we refer the reader to [11].

Here we are interested in the random graph described by Lageras and Lindholm [20]. Such a
random graph, denoted by G(n, m, p), with a set of vertices V = {vi : i ∈ [n]} and a set of edges
E, is constructed from a bipartite graph B(n, m, p) with two sets of vertices: A = {aj : j ∈ [m]},
which we call the set of auxiliary vertices, and V (i.e. the vertex set of G(n, m, p)). Edges in
B(n, m, p) between vertices and auxiliary vertices are present independently with probability
p ∈ [0, 1]. Two distinct vertices vi and vj are neighbours in G(n, m, p) (i.e. {vi, vj} ∈ E) if and
only if there exists at least one ak ∈ A such that both edges {ak, vi} and {ak, vj} are present in
the bipartite graph B(n, m, p).

We are interested in the case where p = p(n) = γ /n(1+α)/2 and m = m(n) = �βn�, where
α, β, γ > 0 are fixed parameters of the model.

Stark [28] has shown that the vertex degree distribution (i.e. the distribution of the degree
of a vertex selected uniformly at random) is highly dependent on the value of α. However, as
shown by Deijfen and Kets [10], the clustering is controllable only when α = 1.

The component structure of the graph was studied for α �= 1, γ > 0, and
β = 1 by Behrisch [2], whereas it was studied for α = 1 and β, γ > 0 in [20]. Specifically,
Lageras and Lindholm [20] proved that the G(n, m, p) model undergoes a phase transition
as βγ 2 passes 1. Indeed, setting μ = βγ 2, they proved that if μ < 1 (sub-critical case), then
with probability tending to one there is no component in G(n, m, p) with more than O(log(n))
vertices, while if μ > 1 (super-critical case), then with probability tending to one there exists
a unique giant component of size nδ where δ ∈ (0, 1), and the size of the second largest
component is at most of order log(n).

By means of Theorem 1 we show that, in the critical case μ = 1, it is unlikely for the largest
component to contain more than n2/3 vertices.

Proposition 1. Let G(n, m, p) be the random intersection graph described above. Let m =
�βn�, p = γ /n, and μ = βγ 2. If μ = 1 then, given any A > 1, when n is sufficiently large we
have

P(|Cmax| > 
An2/3�) ≤ c1

A3/2
,

where c1 is a finite constant which depends solely on γ and β.
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2.2. Critical p-bond percolation on d-regular graph

In this section we consider a second application of Theorem 1. Here we analyse a random
graph Gp obtained through p-bond percolation on a general d-regular graph.

In [22] Nachmias and Peres adapted the martingale method they developed in [23] to prove
that, for any d ≥ 3, when p ≤ (d − 1)−1 then

P(|Cmax| > 
An2/3�) ≤ 8

A3/2
; (3)

see [22, Proposition 1.2]. For a random regular graph G(n, d, p) they were also able to sharpen
the upper bound in (3) and to prove a corresponding lower bound. (The G(n, d, p) random
graph is obtained by the following two-step procedure: first we draw uniformly at random a
graph from the set of all simple d-regular graphs on [n], and then we retain each edge inde-
pendently with probability p and delete it with probability 1 − p.) Specifically, in Theorem 2
of [22] it is shown that, when p is of the form

p = p(n, d) = (
1 + λn−1/3)/(d − 1) (λ ∈R) (4)

and d ≥ 3 is fixed, then there are constants C1, C2 ∈ (0, ∞) depending on λ and d such that, for
every A > 0 and all n, P(|Cmax| > An2/3) ≤ A−1C1 e−C2A3

. In [22] it is also shown that there
exists a constant C3 ∈ (0, ∞) (also depending on λ and d) such that, for large enough A and
all n, then P(|Cmax| < 
A−1n2/3�) ≤ C3A−1/2, thus proving that the size of |Cmax| is indeed of
order n2/3 in this model when considered at criticality.

We remark that in [22] the parameter d is not allowed to depend on n. The problem of
determining the size of |Cmax| in the critical G(n, d, p) model when d = d(n) depends on n has
been investigated by Joos and Perarnau [16], where the authors proved (among many other
things) that for any d ∈ {3, . . . , n − 1} and when p is of the form (4), then for all sufficiently
large n and A = A(λ) we have that P(|Cmax| /∈ [A−1n2/3, An2/3]) ≤ 20/

√
A.

Our goal here is to show that, by means of Theorem 1, we can recover (up to a multiplicative
constant) the bound in (3), in a very simple way.

Proposition 2. Let G be a d-regular graph, d > 3, and let Gp denote the random graph
obtained by bond percolation on G with probability p. If p ≤ 1/(d − 1) then, given any A > 1,
when n is sufficiently large we have

P(|Cmax| > 
An2/3�) ≤ c2

A3/2

for some finite positive constant c2 which depends solely on d.

Remark 4. The requirement d > 3 is needed because the i.i.d. random variables (Xi)i≥1 that
dominate the ηi in the exploration process satisfy

P(X1 = 3) = (d − 2)(d − 3)

6(d − 1)2

(
1 − 1

d − 1

)d−4

;

see Section 3.3. Hence, if we want P(X1 = 3) > 0 (a condition required in Theorem 1), we do
need d > 3.

2.3. Critical inhomogeneous random graph

In this section we discuss our final application of Theorem 1. In the random graph model
that we investigate here, the n vertices are endowed with weights, and edges between a pair of
vertices are placed independently with probabilities moderated by such weights.

https://doi.org/10.1017/jpr.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.13


Component sizes in critical random graphs 1233

Specifically, let w = (wi)i∈[n] be a sequence of positive real numbers, which we call the
sequence of vertex weights; we think of wi as the weight assigned to vertex i ∈ [n]. Define
ln =∑

i∈[n] wi, the sum of all weights.
We consider the so-called Norros–Reittu random graph [24] as described by Van der

Hofstad [12]. This is an inhomogeneous random graph, that we denote by NRn(w), in which
the probability that the edge {i, j} is present in NRn(w) (for 1 ≤ i < j ≤ n) is given by

pNR
ij = P({i, j} ∈ E(NRn(w))) = 1 − e−wjwj/ln ,

and edges are present independently.
Inhomogeneous random graphs were studied extensively by Bollobás, Janson, and

Riordan [4]. As explained by Janson [14] and further noted by Van der Hofstad [12], the
NRn(w) random graph is closely related to the models studied by Chung and Lu [5, 6, 7]
and Norros and Reittu [24], so that the results proved for the NRn(w) random graph apply as
well to these other models.

Other models of inhomogeneous random graphs have been studied more recently by
Penrose [25] and by Kang, Pachon, and Rodriguez [18].

It is clear that the topology of the NRn(w) model depends on the choice of the sequence w,
which we now specify.

Let F : (0, ∞) �→ [0, 1] be a distribution function, and define

[1 − F]−1(u) = inf{s : [1 − F(s)] ≤ u}, u ∈ (0, 1).

By convention, we set [1 − F]−1(1) = 0. We construct the weights as in [12], namely we set

wj = [1 − F]−1( j/n), j ∈ [n]. (5)

In [4, Theorem 3.13] it was shown that in the NRn(w) random graph with vertex weights as in
(5), the proportion of vertices having degree k ≥ 0, denoted by Nk, converges in probability (as
n → ∞) to

pk =E

(
e−W Wk

k!
)

,

where W is a random variable taking values in (0, ∞) with distribution function F. The limiting
sequence (pk)k≥0 is a so-called mixed Poisson distribution with mixing distribution F.

In order to describe the phase transition for the size of the largest component, define

ν =E(W2)/E(W).

As explained by Van der Hofstad [12] (see also [8]), this (positive) real number corresponds to
the asymptotic mean of the offspring distribution in a branching process approximation of the
exploration of C(Vn).

In [4, Theorem 3.1] it is shown that the graph undergoes a phase transition as ν passes 1. In
particular, if ν > 1, the largest component contains a positive proportion of the total number of
vertices, whereas if ν ≤ 1 the largest component contains a vanishing proportion of vertices.

Van der Hofstad [12] provided a complete picture of the component structure in the critical
NRn(w) model. Specifically, he proved that in the case where

lim
x→∞ xτ−1(1 − F(x)) = cF (6)
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for some constant cF > 0 and some 3 < τ < 4, there is a constant b > 0 such that for all A > 1
and n ≥ 1, the NRn(w) random graph satisfies

P(|Cmax| /∈ [A−1n(τ−2)/(τ−1), An(τ−2)/(τ−1)]) ≤ b/A. (7)

On the other hand, when
1 − F(x) ≤ cFx−(τ−1) (x ≥ 0) (8)

for some cF > 0 and some τ > 4, then there is a constant b > 0 such that, for all n ≥ 1 and all
A > 1, the NRn(w) random graph satisfies

P(|Cmax| /∈ [A−1n2/3, An2/3]) ≤ b/A. (9)

(In fact Van der Hofstad [12] proved a more general result, namely that the lower bounds (7)
and (9) also remain valid after a small perturbation of the vertex weights; see [12, Theorems
1.1 and 1.2].)

For a heuristic explanation of the critical behaviour described by (7) and (9), we refer to
[12, Section 1.3].

We also mention that De Ambroggio and Pachon [8] used the first part of the martingale
argument introduced by Nachmias and Peres [23] to obtain simple upper bounds for the proba-
bility of observing unusually large maximal components in the (critical) NRn(w) random graph
for both regimes τ ∈ (3, 4) and τ > 4, even if in the former case (i.e. for τ ∈ (3, 4)) the distri-
bution function F is required to satisfy a stronger condition with respect to the one stated
in (6).

Our goal here is to use Theorem 1 to provide a very simple proof of the fact that, in the
critical NRn(w) model with vertex weights as in (5) and distribution function F satisfying (8),
the largest component is unlikely to contain more than n2/3 vertices. More precisely, we prove
the following.

Proposition 3. Consider the NRn(w) random graph with weights defined as in (5) above.
Suppose that there exists a constant cF > 0 and a τ > 4 such that 1 − F(x) ≤ cFx−(τ−1) for
all x ≥ 0. Then, given any A > 1, when n is large enough we have that

P(|Cmax| > 
An2/3�) ≤ c3

A3/2
,

where c3 is a finite positive constant which depends solely on cF and τ .

3. Proofs

Here we are going to prove the results stated in Section 2. We start by proving Theorem 1
and subsequently we prove the remaining results, namely Propositions 1, 2, and 3.

The proof of Theorem 1 relies on the following ballot-type estimate, which is taken from
[9]. For a general introduction to classical ballot theorems and their generalisations, see for
instance [1], [17], and references therein.

Lemma 1. Fix n ∈N and let (Wi)i≥1 be a sequence of i.i.d. valued random variables taking
values in Z. Let r ∈N, and suppose that P(W1 = r) > 0. Define St =∑t

i=1 Wi for t ∈N0. Then,
for any j ≥ 1, we have

P(r + St > 0 for all t ∈ [n], r + Sn = j) ≤ P(X1 = r)−1 j

n + 1
P(Sn+1 = j).
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3.1. Proof of Theorem 1

Let k = k(n) ∈N. By hypothesis, there is a sequence of i.i.d. random variables Xi taking
values in N0 such that, setting St =∑t

i=1(Xi − 1),

P(|C(Vn)| > k) ≤ P(2 + St > 0 for all t ∈ [k]).

Using Lemma 1 with Wi = Xi − 1 and r = 2, we obtain

P(2 + St > 0 for all t ∈ [k]) =
∞∑

h=1

P(2 + St > 0 for all t ∈ [k], 2 + Sk = h)

≤ a
∞∑

h=1

h

k + 1
P(Sk+1 = h), (10)

where we set a = 1/P(X1 = 3) ∈ (0, ∞). Now let m be a non-negative integer to be specified
later. By splitting the series in (10) at h = m we can write

a
∞∑

h=1

h

k + 1
P(Sk+1 = h) ≤ a

m

k + 1
+ a

k + 1

∞∑
h=m+1

hP(Sk+1 = h). (11)

Now the series in (11) equals

a

k + 1

∞∑
h=m+1

hP

(
k+1∑
i=1

Xi = h + k + 1

)

= a

k + 1

∞∑
z=m+k+2

zP

(
k+1∑
i=1

Xi = z

)
− aP

(
k+1∑
i=1

Xi ≥ m + k + 2

)
. (12)

To proceed, we observe the following: if X is a random variable taking values in N0, then for
any h ≥ 1, we have

E(X1{X≥h}) =E

( ∞∑
i=1

1{i≤X}1{X≥h}

)
= hP(X ≥ h) +

∞∑
i=h+1

P(X ≥ i).

Thus the series in (12) equals

a
m + 1

k + 1
P

(
k+1∑
i=1

Xi ≥ m + k + 2

)
+ aP

(
k+1∑
i=1

Xi ≥ m + k + 2

)
+ a

k + 1

∞∑
z=m+k+3

P

(
k+1∑
i=1

Xi ≥ z

)
.

Substituting the series in (12) with these three terms, we obtain

a

k + 1

∞∑
h=m+1

hP(Sk+1 = h) = a
m

k + 1
P

(
k+1∑
i=1

Xi ≥ m + k + 2

)
+ a

k + 1

∞∑
z=m+k+2

P

(
k+1∑
i=1

Xi ≥ z

)
.

(13)

Now observe that the series in (13) can be rewritten as follows:

a

k + 1

∞∑
z=m+k+2

P

(
k+1∑
i=1

Xi ≥ z

)
= a

k + 1

∞∑
h=m+1

P

(
k+1∑
i=1

Xi ≥ h + k + 1

)
.
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Summarizing, so far we have shown that

P(|C(Vn)| > k) ≤ a
m

k + 1
+ a

m

k + 1
P

(
k+1∑
i=1

Xi ≥ k + 1 + (m + 1)

)

+ a

k + 1

∞∑
h=m+1

P

(
k+1∑
i=1

Xi ≥ k + 1 + h

)
. (14)

Using our assumption on E(erX1 ) and Markov’s inequality, we have, for all h ≥ m + 1 and all
r ∈ (0, ρ),

P

(
k+1∑
i=1

Xi ≥ k + 1 + h

)
≤ e−r(k+1)−rh

E(erX1 )k+1

≤ exp
{−r(k + 1) − rh + r(1 + ε)(k + 1) + δr2(k + 1)

}
= exp

{−rh + rε(k + 1) + δr2(k + 1)
}
.

Now if k is such that ρ
√

k ≥ 1 for all large enough n, then r = 1/
√

k + 1 < ρ, and hence using
this specific value of r we obtain

P

(
k+1∑
i=1

Xi ≥ k + 1 + h

)
≤ e−h/

√
k+1 eε

√
k+1+δ .

Also, if k satisfies ε
√

k ≤ c for all sufficiently large n, we see that ε
√

k + 1 ≤ 2c and hence we
can bound the series in (14) from above as follows:

a

k + 1

∞∑
h=m+1

P

(
k+1∑
i=1

Xi ≥ h + k + 1

)
≤ a eδ+2c

k + 1

∞∑
h=m+1

e−h/
√

k+1. (15)

Now observe that ∞∑
h=m+1

e−h/
√

k+1 = e−(m+1)/
√

k+1 1

1 − e−1/
√

k+1
.

Using the inequality e−x ≤ 1 − x + x2/2 (which is valid for all x ≥ 0), we see that

1 − e−1/
√

k+1 ≥ 1√
k + 1

− 1

2(k + 1)
≥ 1

2
√

k + 1
,

and hence the expression on the right-hand side of (15) is at most

a eδ+2c

k + 1
e−(m+1)/

√
k+12

√
k + 1 = 2a eδ+2c

√
k + 1

e−(m+1)/
√

k+1.

Thus we obtain

P(|C(Vn)| > k) ≤ a
m

k + 1
+ a eδ+2c m

k + 1
e−(m+1)/

√
k+1 + 2a eδ+2c

√
k + 1

e−(m+1)/
√

k+1.
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Taking m = �√k + 1� we see that

P(|C(Vn)| > k) ≤ a√
k + 1

+ 3a eδ+2c e−1

√
k + 1

= C
a√

k + 1
,

where we set C = C(δ, c) = 1 + 3 eδ+2c−1. Finally, letting

Nk =
∑
v∈[n]

1{|C(v)|>k}

denote the number of vertices that are contained in components of size at least k, we obtain

P(|Cmax| > k) = P(Nk > k) ≤ 1

k
E(Nk) = n

k
P(|C(Vn)| > k) ≤ C

P(X1 = 3)

n

k3/2
,

completing the proof of the theorem. �

3.2. Proof of Proposition 1

Let H(n, m, p) be a random (multi-)graph constructed from the bipartite graph B(n, m, p)
by letting the number of edges between vi, vj ∈ V equal the number of auxiliary vertices ak

that are adjacent to both vi and vj. (Recall that V is the vertex set of the random intersection
graph G(n, m, p) under investigation.) Notice that G(n, m, p) can be obtained from H(n, m, p)
by coalescing multiple edges between vertices into one single edge. Hence, thanks to this
construction, we see that the degree distribution in G(n, m, p) is dominated by the degree dis-
tribution in H(n, m, p). Notice that the latter is a compound binomial distribution with moment
generating function

E(erX1 ) =
{

1 − γ

n
+ γ

n

(
1 − γ

n
+ γ

n
er
)n−1}�βn�

, (16)

since (by construction) a vertex v ∈H(n, m, p) is connected to a Bin(m, p) number of auxiliary
vertices, and each one of them is connected to an independent Bin(n − 1, p) number of vertices
in V \ {v}.

Therefore, by revealing the components of G(n, m, p) using the exploration process
described at the beginning of Section 2, we can write

P(|C(Vn)| > k) ≤ P

(
2 +

t∑
i=1

(Xi − 1) > 0 for all t ∈ [k]

)
,

where the Xi are i.i.d. compound binomial random variables with moment generating function
given in (16).

Using the probability generating function of X1 (which coincides with (16) after substituting
er with r), it is not difficult to show that (for large enough n) the probability P(X1 = 3) is
bounded from below by a positive constant which depends solely on γ and β.

Next, in order to apply Theorem 1, we simply need to prove an upper bound for E(erX1 ).
Recalling the expression of the moment generating function of X1 given in (16), we obtain

E(erX1 ) = exp

{
�βn� log

(
1 − γ

n
+ γ

n

[
1 + γ

n
(er − 1)

]n−1)}
. (17)
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Taking r ∈ (0, 1), we have that er − 1 ≤ r + r2. Then, since 1 + x ≤ ex for all x ∈R, we see that
(17) is at most

exp

{
�βn� log

(
1 + γ

n
(exp{γ (r + r2)} − 1)

)}
.

Thus, taking r < min{1, 1/2γ } (so that γ (r + r2) < 1), we see that

exp{γ (r + r2)} − 1 ≤ γ (r + r2) + γ 2(r + r2)2

and hence, using the fact that log(1 + x) ≤ x for all x > −1, we can write

exp

{
�βn� log

(
1 + γ

n
(exp{γ (r + r2)} − 1)

)}
≤ exp

{
�βn�

(
γ 2

n
(r + r2) + γ 3

n
(r + r2)2

)}
.

Recalling that βγ 2 = 1, we obtain

exp

{
�βn�

(
γ 2

n
(r + r2) + γ 3

n
(r + r2)2

)}
≤ exp{r + r2(1 + 4γ )}.

Therefore, for all r ∈ (0, min{1, 1/2γ }), we have

E(erX1 ) ≤ er+r2(1+4γ )

and hence condition (iii) in Theorem 1 is satisfied for ρ = min{1, 1/2γ }, δ = 1 + 4γ , and
ε = 0. Hence, taking k = 
An2/3� (which clearly satisfies the requirement ε

√
k ≤ c for c = 0

as well as the condition ρ
√

k ≥ 1) and applying Theorem 1, we obtain

P(|Cmax| > 
An2/3�) ≤ c1

A3/2

for some finite positive constant c1 which depends solely on γ and β. �

3.3. Proof of Proposition 2

Since G is d-regular, we can use the exploration process described at the beginning of
Section 2 to conclude that

P(|C(Vn)| > k) ≤ P

(
2 +

t∑
i=1

(Xi − 1) > 0 for all t ∈ [k]

)
,

where the Xi are i.i.d. random variables with Xi ∼ Bin(d − 1, p), so that

k+1∑
i=1

Xi ∼ Bin((k + 1)(d − 1), p).

(Note that if we had started the exploration process with only one active vertex, now we would
have η1 ∼ Bin(d, p), and hence in particular it would be impossible to dominate η1 with a
Bin(d − 1, p) random variable.) Using a monotonicity argument we can focus on the (critical)
case p = 1/(d − 1). Note that, since d > 3,

P(X1 = 3) = (d − 2)(d − 3)

6(d − 1)2

(
1 − 1

d − 1

)d−4

> 0.
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Next, for all r ∈ (0, 1), using the inequality 1 + x ≤ ex (valid for all x ∈R) we see that

E(erX1 ) =
(

1 + 1

d − 1
(er − 1)

)d−1

≤ eer−1 ≤ er+r2
.

Hence condition (iii) of Theorem 1 is satisfied for ρ, δ = 1 and ε = 0. Thus, taking k = 
An2/3�
(which satisfies ε

√
k ≤ c for c = 0, as well as ρ

√
k ≥ 1), we arrive at

P(|Cmax| > k) ≤ c2
n

k3/2

for some finite positive constant c2 which depends solely on d. �

3.4. Proof of Proposition 3

Before starting the actual proof, we need to recall the definition of size-biased distribution
of a non-negative random variable and to introduce a few facts.

Definition 1. For a non-negative random variable X with E(X) > 0, the size-biased distribution
of X, denoted by X∗, is the random variable defined by

P(X∗ ≤ x) = E(X1{X≤x})
E(X)

.

For proofs of the assertions that appear in the statement of the next result, see [8].

Lemma 2. Suppose that 1 − F(x) ≤ cFx−(τ−1) for all x ≥ 0, for some cF > 0 and τ > 4. Let wi

be as in (5). Then max{wi : i ∈ [n]} ≤ (cFn)1/(τ−1). Moreover, defining

Fn(x) = 1

n

n∑
i=1

1{wi≤x} (18)

and letting Wn being a random variable with distribution function Fn and size-biased distribu-
tion W∗

n , then E((W∗
n )2) ≤ C1 and |1 −E(W∗

n )| ≤ C2n−(τ−3)/(τ−1) for all large enough n, where
C1 and C2 are two positive constants which depend on cF and τ .

As explained in Van der Hofstad [12] (see also [8]), the cluster exploration of Vn in the
NRn(w) random graph can be dominated by the total progeny of a (marked mixed-Poisson)
branching process. Specifically, following Van der Hofstad [12], we can write

P(|C(Vn)| > k) ≤ P

(
2 +

t∑
i=1

(Xi − 1) > 0 for all t ∈ [k]

)
,

where the Xi are independent mixed Poisson random variables with Xi ∼ Poi(wMi) and the Mi

are i.i.d. random variables, all distributed as a random variable M with distribution given by

P(M = m) = wm

ln
, m ∈ [n].

As remarked in [12], a Poi(wM) random variable converges in distribution to a mixed
Poisson random variable with random parameter W∗, where W∗ is the size-biased distribu-
tion of W, the latter being a positive random variable with distribution function F. Therefore
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P(X1 = 3) converges to P(Z = 3), where Z ∼ Poi(W∗). It follows that P(X1 = 3) ≥ P(Z = 3)/2
for all large enough n, and hence we obtain

P(X1 = 3) ≥ 1

2
E(P(Z = 3|W∗)) =E(e−W∗

(W∗)3)/12 > 0.

Taking r ∈ (0, 1) so that er − 1 ≤ r + r2, we obtain

E
[
erX1

]= ∞∑
h=0

erh
∑
i∈[n]

wi

ln
e−wi

wh
i

h!

=
∑
i∈[n]

wi

ln
ewi(er−1)

≤
∑
i∈[n]

wi

ln
ewi(r+r2)

= exp

{
log

(∑
i∈[n]

wi

ln
ewi(er−1)

)}
.

If moreover r < (2 max{wi : i ∈ [n]})−1, then wi(r + r2) < 2rwi ≤ 1 for every i ∈ [n] and hence,
for 0 < r < min{1, 1/2 max{wi : i ∈ [n]}}, we can bound

log

(∑
i∈[n]

wi

ln
ewi(er−1)

)
≤ log

(∑
i∈[n]

wi

ln
(1 + wi(r + r2) + w2

i 4r2)

)

= log

(
1 + (r + r2)

∑
i∈[n]

w2
i

ln
+ 4r2

∑
i∈[n]

w3
i

ln

)
.

Note that if Wn is a random variable with distribution function Fn given in (18) and W∗
n is its

size-biased distribution, then

∑
i∈[n]

w2
i

ln
=E(W∗

n ) and
∑
i∈[n]

w3
i

ln
=E((W∗

n )2).

Therefore we arrive at

log

(∑
i∈[n]

wi

ln
ewi(er−1)

)
≤ log

(
1 + (r + r2)E(W∗

n ) + 4r2
E((W∗

n )2)
)
.

Thanks to Lemma 2 we know that E((W∗
n )2) ≤ C1 and E(W∗

n ) ≤ 1 + C2n−(τ−3)/(τ−1) for all
sufficiently large n (for some finite constants C1, C2 > 0 which depend on cF and τ ), we see
that

log
(
1 + (r + r2)E(W∗

n ) + 4r2
E((W∗

n )2)
)≤ r

(
1 + C2n−(τ−3)/(τ−1))+ r2(1 + 5C1)

for all large enough n. Summarizing, for all positive r < min{1, 1/2 max{wi : i ∈ [n]}} we have
shown that

E(erX1 ) ≤ exp
{
r
(
1 + C2n−(τ−3)/(τ−1))+ r2(1 + 5C1)

}
,
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provided n is sufficiently large. Hence condition (iii) in Theorem 1 is satisfied for
ρ = ρ(n) = min{1, 1/2 max{wi : i ∈ [n]}}, δ = 1 + 5C1, and ε = ε(n) = C2n−(τ−3)/(τ−1). Note
that k = 
An2/3� satisfies

ε
√

k = O
(
A1/2C2n−(τ−4)/(3(τ−1)))≤ 1

for all large enough n since A is fixed and τ > 4, and ρ
√

k ≥ 1 since

(2 max{wi : i ∈ [n]})−1
√

k ≥ A1/2n(τ−4)/(3(τ−1))(2c1/(τ−1)
F

)−1 ≥ 1.

Hence we can apply Theorem 1 to conclude that

P(|Cmax| > 
An2/3�) ≤ c3

A3/2
,

for some finite positive constant c3 that depends solely on cF and τ . �
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