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Abstract

The nonstationary Erlang-A queue is a fundamental queueing model that is used to
describe the dynamic behavior of large-scale multiserver service systems that may
experience customer abandonments, such as call centers, hospitals, and urban mobility
systems. In this paper we develop novel approximations to all of its transient and steady
state moments, the moment generating function, and the cumulant generating function.
We also provide precise bounds for the difference of our approximations and the true
model. More importantly, we show that our approximations have explicit stochastic
representations as shifted Poisson random variables. Moreover, we are also able to show
that our approximations and bounds also hold for nonstationary Erlang-B and Erlang-C
queueing models under certain stability conditions.
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1. Introduction

Markov processes are important modeling tools that help researchers describe real-world
phenomena. Thus, it comes as no surprise that the Erlang-A model, which is a Markovian and
multiserver queueing model that incorporates customer abandonments, is an important model-
ing tool in a multitude of application settings. Some of the more prominent applications include
telecommunications and call/contact centers, healthcare, urban mobility and transportation,
and more recently cloud computing; see, for example, [28], [29], [45], [37], [3], [5], [13], [48],
[44], [2], [41], [20], [42], [12], and [4]. A detailed overview of the model can be found in [26].
There is also a large body of work on non-Markovian abandonment models, such as [46], [25],
[1], [39], [43], and [38], and the references therein. Despite its importance in many different
applications and the well-established history of study regarding customer impatience [34], the
Erlang-A queueing model has remained very difficult to analyze and understand. Even analysis
of its moments beyond the fourth moment has remained an important topic for additional study.

It is well known that the stationary setting of the Erlang-A queue is much easier to analyze
than its nonstationary counterpart [10]. Asymptotic methods, such as heavy traffic limit theory
and strong approximations theory, are common approaches for analyzing nonstationary and
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state-dependent queueing models; see, for example, [16], [27], [40], [7], and [14]. Uniform
acceleration is extremely useful for approximating the transition probabilities and moments,
such as the mean and variance of Markov processes. Moreover, the strong approximation
methods are useful for analyzing the sample path behavior of the Markov process by showing
that the sample paths of properly rescaled queueing processes converge to deterministic
dynamical systems and Gaussian process limits.

There are however two main drawbacks of these asymptotic methods. The first is that
the method is asymptotic as a function of the model parameters and the results really only
hold when the rates are large. Thus, the quality of the approximations significantly depend
on the size of the model parameters, and these asymptotic methods have been shown to
be quite inaccurate for moderate sized model parameter settings; see, for example, [30].
The second main drawback is that the asymptotic methods do not generate any important
insights for the moments or cumulant moments beyond order two since the limits are based on
Brownian motion. Since Brownian motion has symmetry, its cumulants are all zero beyond the
second order. Thus, symmetric Brownian approximations are limited in their power to capture
asymmetries in higher moments or even the dynamics of the moment generating function,
cumulant generating function, or Fourier transform. Moreover, it has been recently shown in
[9] and [35] that the Erlang-A queue and its variants have nontrivial amounts of skewness and
excess kurtosis, which implies that the Erlang-A models are clearly not Gaussian for moderate
sized queues. These results also demonstrate that it is important to capture the behavior of the
Erlang-A model beyond its second moment as this information can be used in staffing decisions
[31] and [47].

One common approximation method that is used in the stochastic networks, queueing,
and chemical reactions literature is a moment closure approximation. Moment closure
approximations are used to approximate the moments of the queueing process with a surrogate
distribution. Often, the set of moment equations for a large number of queueing models is not
closed; see, for example, [32]. Thus, the closure approximation helps approximate the moments
with a closed system using the surrogate distribution. One such method used by Massey and
Pender [30], [49] used Hermite polynomials for approximating the distribution of the queue
length process. In fact, they showed that using a quadratic polynomial works quite well. Since
the Hermite polynomials are orthogonal to the Gaussian distribution, which has support on
the entire real line, these Hermite polynomial approximations do not take into account the
discreteness of the queueing process nor do they account for the nonnegativity of the queueing
process. However, they showed that Hermite polynomials are natural to analyze since they are
orthogonal with respect to the Gaussian distribution and the heavy traffic limits of multiserver
queues are Gaussian. In this paper we perform an in-depth analysis of the moments and the
moment generating function of the nonstationary Erlang-A queue. As the Erlang-B and Erlang-
C queueing models are special cases of the Erlang-A model, we obtain similar results for these
models. In a manner similar to what was observed for peer-to-peer networks in [11], we show
that this novel representation allows us to view our bounds and approximations in a new way.

1.1. Main contributions of the paper

The main contributions of this work can be summarized as follows.

• We provide new approximations for the moments, moment generating function, and
cumulant generating function for the nonstationary Erlang-A queue exploiting the FKG
and Jensen’s inequalities.
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270 A. DAW AND J. PENDER

• We derive a novel stochastic interpretation and representation of our approximations
as shifted Poisson random variables or M/M/∞ queues, depending on the context. This
sheds new light on the complexity of queues in heavy traffic or critically loaded regimes.

• We prove precise error bounds for our approximations and we also prove new upper
and lower bounds for the nonstationary Erlang-A queue that become exact in certain
parameter settings.

1.2. Organization of the paper

The remainder of this paper is organized as follows. In Section 2 we introduce the
nonstationary Erlang-A queueing model and its importance in stochastic network theory. In
Section 3 we provide approximations for the moments of the Erlang-A system and bound the
true values. In Section 4 we derive approximations for the moment generating function of the
Erlang-A queue and find stochastic representations for these approximations. We demonstrate
these results through several numerical illustrations. We conclude in Section 5.

2. The Erlang-A queueing model

The Erlang-A queueing model is a fundamental queueing model in the stochastic processes
literature. The work of Mandelbaum et al. [27] shows that the queue length process for
an M(t)/M/c + M queueing system Q ≡ {Q(t) | t ≥ 0} is represented by the stochastic,
time-changed integral equation

Q(t) = Q(0) + �1

(∫ t

0
λ(s) ds

)
− �2

(∫ t

0
μ(Q(s) ∧ c) ds

)
− �3

(∫ t

0
θ (Q(s) − c)+ ds

)
,

where �i ≡ {�i(t) | t ≥ 0}, for i = 1, 2, 3, are independent and identically distributed (i.i.d.)
standard (rate-1) Poisson processes and (x ∧ y) = min{x, y}. Thus, we can write the sample path
dynamics of the Erlang-A queueing process in terms of three independent unit-rate Poisson
processes. A deterministic time change for �1 transforms it into a nonhomogeneous Poisson
arrival process with rate λ(t) that counts the customer arrivals that occurred in the time interval
[0,t). A random time change for the Poisson process �2 gives a departure process that counts
the number of serviced customers. We implicitly assume that the number of servers is c ∈Z

+
and that each server works at rate μ. Finally, the random time change of �3 gives a counting
process for the number of customers that abandon the system before beginning service. We
also assume that the abandonment distribution is exponential and the rate of abandonments is
equal to θ .

One of the main reasons that the Erlang-A queueing model has been so extensively analyzed
is that several important queueing models are special cases of it. One special case is the infinite
server queue. The infinite-server queue can be derived from the Erlang-A queue in two ways.
The first way is to set the number of servers to ∞. This precludes any abandonments since
the abandonment rate θ (Q(t) − c)+ is always equal to 0 when the number of servers is infinite.
The second way to derive the infinite-server queue is to set the service rate μ equal to the
abandonment rate θ . When μ = θ , this implies that the sum of the service and abandonment
departure processes is equal to a linear function, i.e. μ(Q(t) ∧ c) + θ (Q(t) − c)+ = μQ(t) =
θQ(t). Thus, the Erlang-A queueing model becomes an infinite-server queue.

A key insight from [16] is that, for multiserver queueing systems, it is natural to scale up the
arrival rate and the number of servers simultaneously. This scaling—known as the Halfin–Whitt
scaling—has been an important technique for modeling call centers in the queueing literature.
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Since the M(t)/M/c + M queueing process is a special case of a single node Markovian service
network, we can also construct an associated, uniformly accelerated queueing process where
both the new arrival rate ηλ(t) and the new number of servers ηc are scaled by the same factor
η > 0. Thus, using the Halfin-Whitt scaling for the Erlang-A model, we arrive at the following
sample path representation for the queue length process:

Qη(t) = Qη(0) + �1

( ∫ t

0
η · λ(s) ds

)
− �2

( ∫ t

0
μ · (Qη(s) ∧ η · c) ds

)

− �3

( ∫ t

0
θ · (Qη(s) − η · c)+ ds

)

= Qη(0) + �1

( ∫ t

0
η · λ(s) ds

)
− �2

( ∫ t

0
η · μ ·

(Qη(s)

η
∧ c

)
ds

)

− �3

( ∫ t

0
η · θ ·

(Qη(s)

η
− c

)+
ds

)
.

The Halfin-Whitt scaling is defined by simultaneously scaling up the rate of customer
demand (which is the arrival rate) with the number of servers. In the context of call centers
this is scaling up the number of customers and scaling up the number of agents to answer the
phones. In the context of hospitals or healthcare this might be scaling up the number of patients
with the number of beds or nurses. Taking the following limits gives us the fluid models of [27],
i.e.

lim
η→∞

1

η
Qη(t) = q(t) almost surely (a.s.)

where the deterministic process q(t), the fluid mean, is governed by the one-dimensional
ordinary differential equation (ODE)

•
q(t) = λ(t) − μ(q(t) ∧ c) − θ (q(t) − c)+. (1)

Moreover, if we take a diffusion limit, i.e.

lim
η→∞

√
η
(1

η
Qη(t) − q(t)

)
⇒ Q̃(t),

we get a diffusion process where the variance of the diffusion is given by the following ODE:

•
var[Q̃(t)] = λ(t) + μ · (q(t) ∧ c) + θ · (q(t) − c)+ − 2 · var[Q̃(t)] · (μ · {q(t) < c}

+ θ · {q(t) ≥ c}).

2.1. Mean-field approximation is identical to the fluid limit

In addition to using strong approximations to analyze the queue length process one can also
use the functional Kolmogorov forward equations, as outlined in [30]. The functional forward
equations for the Erlang-A model are derived as

•
E[ f (Q(t))] ≡ d

dt
E[ f (Q(t))|Q(0) = q(0)] (2)

= λ(t)E[f (Q(t) + 1) − f (Q(t))] +E[δ(Q(t), c)( f (Q(t) − 1) − f (Q(t)))]
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FIGURE 1: Comparison of a simulated Erlang-A queue and fluid model for λ(t) = 10 + 2 sin (t), μ = 1,
Q(0) = 0, c = 10, and (a) θ = 0.5 and (b) θ = 2.

for all appropriate functions f and where δ(Q(t), c) = μ(Q(t) ∧ c) + θ (Q(t) − c)+. For the
special case in which f (x) = x, we can derive an ODE for the mean queue length process as

•
E[Q(t)] = λ(t) − μE[(Q(t) ∧ c)] − θE[(Q(t) − c)+]. (3)

The first thing to note is that this equation is not autonomous and we need to know the
distribution of Q(t) a priori in order to compute the expectations on the right-hand side
of (3). To know the distribution a priori is impossible except in some special cases like
the infinite-server setting. However, it is easy to derive simple approximations for the mean
queue length by making some assumptions on the queue length process. This is known as a
closure approximation and one common closure approximation method is to simply take the
expectations from outside the function to inside the function. This implies that the expectation
E[ f (X)] becomes f (E[X]). This method is known as a mean-field approximation in physics
and is also known as the deterministic mean approximation in [30]. By applying the mean-
field approximation to (3), we can show that the resulting differential equation is given by the
following autonomous ODE:

•
E[Qf(t)] = λ(t) − μ(E[Qf] ∧ c) − θ (E[Qf] − c)+. (4)

By careful inspection, we can observe that the ODE given by the mean-field approximation is
identical to the fluid limit of (1). Moreover, if we simulate the queueing process and compare
it to the mean-field limit, we notice an ordering property. For example, in Figure 1(a), we
simulate the Erlang-A queue and compare it to the fluid model. We observe that, when θ < μ,
the simulated mean is larger than the fluid mean. This is precisely what our results predict.
Moreover, in Figure 1(b), we simulate the Erlang-A queue and compare it to the fluid model
when θ > μ and observe that the simulated queue length is smaller than the fluid limit.

Our goal in this work is to explain the behavior that we observe in Figure 1, which we will
do in the following section. Before concluding our overview of the Erlang-A queueing model,
we make a brief remark for notational clarity.

Remark 1. Throughout the remainder of this work, we use Q(t) to represent the true queueing
process and Qf(t) to represent the fluid approximation of it. This fluid approximation is a
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stochastic process that will be fully described in this work. In fact, in Section 4 we characterize
the fluid approximations and use insight from these representations to bound the true queue
length from above and below.

3. Inequalities for the moments of the Erlang-A queue

In this section we prove conditions under which the true moments of the Erlang-A queue
either dominate their corresponding fluid limits or are dominated by them. We find that the
relationship between the service rate and the abandonment rate determines whether or not the
moments of the Erlang-A queue are dominated by the associated fluid limits. The remainder of
this section is organized as follows. In Subsection 3.1 we derive inequalities for the true mean
of the Erlang-A and its fluid approximation. In Subsection 3.2 we extend these inequalities to
analogous results for the mth moment of the queueing system. Finally, in Subsection 3.3 we
provide figures from numerical experiments that validate our theoretical results.

3.1. Inequalities for the mean

We begin with analysis of the mean of the Erlang-A queue. While we will generalize to
all higher moments in Subsection 3.2, we first provide the mean result separately to give the
reader the essence and elegance of our result. Before we proceed, we first establish a lemma
for comparisons of ordinary differential equations that will be fundamental for our subsequent
analysis.

Lemma 1. (A comparison lemma.) Let f : R2 →R be a continuous function in both variables.
If we assume that the initial value problem

•
x(t) = f (t, x(t)), x(0) = x0,

has a unique solution for the time interval [0,T] and

•
y(t) ≤ f (t, y(t)) for t ∈ [0, T] and y(0) ≤ x0,

then x(t) ≥ y(t) for all t ∈ [0, T].

Proof. The proof of this result is given in [15]. �

With this lemma in hand, we can now derive relationships for the fluid limit and the true
mean. As seen in the proof of Theorem 1 below, this result follows from the application of
Lemma 1 and the convexity seen in the fluid approximation.

Theorem 1. For the Erlang-A queue, if Q(0) = Qf(0) then the true mean dominates the fluid
limit when θ < μ, the fluid limit dominates the true mean when θ > μ, and the two means are
equal when θ = μ.

Proof. Recall from (3) that the true mean satisfies the differential equation

•
E[Q(t)] = λ(t) − μE[(Q ∧ c)] − θE[(Q − c)+],

and from (4) the fluid limit satisfies the differential equation

•
E[Qf(t)] = λ(t) − μ(E[Qf] ∧ c) − θ (E[Qf] − c)+.
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We can simplify both equations by observing that (X ∧ c) + (X − c)+ = X for any random
variable X. Thus, we have the following two equations for the true mean and the fluid limit:

•
E[Q(t)] = λ(t) − θE[Q] + (θ − μ)E[(Q ∧ c)],
•
E[Qf(t)] = λ(t) − θE[Qf] + (θ − μ)(E[Qf] ∧ c).

If we take the difference of the two equations, we obtain

•
E[Q(t)] − •

E[Qf(t)] = θ (E[Qf] −E[Q]) + (θ − μ)(E[(Q ∧ c)] − (E[Qf] ∧ c)).

Now since the minimum function (Q ∧ c) is a concave function, we have

(E[(Q ∧ c)] − (E[Q] ∧ c)) ≤ 0

for any random variable Q. Thus, by Lemma 1, we have, for θ < μ,

E[Q(t)] −E[Qf(t)] ≥ 0

and, for θ > μ,

E[Q(t)] −E[Qf(t)] ≤ 0.

Finally, for θ = μ, we have

E[Q(t)] −E[Qf(t)] = 0

since both differential equations are initialized with the same value and the origin is an
equilibrium point for the difference. �

As discussed in Section 2, the Erlang-A model is quite versatile in its relation to other
queueing systems of practical interest. In the two following corollaries, we find that Theorem 1
can be applied to the Erlang-B and Erlang-C models.

Corollary 1. For the Erlang-B queueing model, if Q(0) = Qf(0) then E[Q(t)] ≤E [Qf(t)] for
all t ≥ 0.

Proof. This is obvious after noting that the Erlang-B queue is a limit of the Erlang-A queue
by letting θ → ∞. �
Corollary 2. For the Erlang-C queueing model, if Q(0) = Qf(0) then E[Q(t)] ≥E [Qf(t)] for
all t ≥ 0.

Proof. This is obvious after noting that the Erlang-C queue is an Erlang-A queue with
θ = 0. Since μ is assumed to be positive, we fall into the case where θ < μ and this completes
the proof. �
Remark 2. Given that we use Jensen’s inequality and the FKG inequality later in the paper, we
consider itr important to differentiate them. Here we give an example that sets the two apart.
If we have the following function Qn then Jensen’s inequality implies that E[Qn] ≥E[Q]n.
However, the FKG inequality implies that E[Qn] ≥E[Qn−1]E[Q]. We note that, by iterating
the FKG inequality n − 2 more times, it yields Jensen’s inequality for the moments of random
variables.
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3.2. Inequalities for the mth moment

In this subsection we extend the previous findings for the mean to higher moments of the
queueing system. Like the result for the mean, this is again built through observation of the
convexity in the differential equation of the fluid approximation.

Theorem 2. For the Erlang-A queue, m ∈Z
+, and t ≥ 0, if Q(0) = Qf(0) then E[Qm(t)] ≥

E[Qm
f (t)] when θ < μ, E[Qm(t)] ≤ E[Qm

f (t)] when θ > μ, and E[Qm(t)] = E[Qm
f (t)] when

θ = μ.

Proof. We will use proof by induction. For the base case, we can apply Theorem 1. Now,
suppose that the statement holds for j ∈ {1, 2, . . . , m − 1}. By (2) and expansion through the
binomial theorem, we note that the mth moment satisfies the differential equation

•
E[Qm(t)]

= λ(t)E

[ m∑
j=0

(
m

j

)
Q j(t) − Qm(t)

]

+ E

[( m∑
j=0

(
m

j

)
( − 1)m−jQ j(t) − Qm(t)

)
(θQ(t) − (θ − μ)(Q(t) ∧ c))

]

= λ(t)
m−1∑
j=0

(
m

j

)
E[Q j(t)] + θ

m−1∑
j=0

(
m

j

)
( − 1)m−jE[Q j+1(t)]

+ (θ − μ)E

[(m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j+1(t)

)
∧

(
c

m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j(t)

)]
,

whereas the approximate autonomous version satisfies

•
E[Qm

f (t)]

= λ(t)
m−1∑
j=0

(
m

j

)
E[Q j

f (t)] + θ

m−1∑
j=0

(
m

j

)
( − 1)m−jE[Q j+1

f (t)]

+ (θ − μ)

(
E

[m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j+1

f (t)

]
∧E

[
c

m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j

f (t)

])
,

which is the closure approximation of the differential equation for E[Qm(t)]. Now by taking
the difference of these ODEs, we have

•
E[Qm(t)] − •

E[Qm
f (t)]

= λ(t)
m−1∑
j=0

(
m

j

)
E[Q j(t) − Q j

f (t)] + θ

m−1∑
j=0

(
m

j

)
( − 1)m−jE[Q j+1(t) − Q j+1

f (t)]
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+ (θ − μ)

(
E

[(m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j+1(t)

)
∧

(
c

m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j(t)

)]

− E

[m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j+1

f (t)

]
∧ E

[
c

m−1∑
j=0

(
m

j

)
( − 1)m−1−jQ j

f (t)

])
.

Because the minimum is a concave function, for any X and Y with real means, E[X ∧ Y] ≤
E[X] ∧ E[Y]. Thus, by Lemma 1, we have, for θ < μ,

E[Qm(t)] −E[Qm
f (t)] ≥ 0,

if θ > μ,

E[Qm(t)] −E[Qm
f (t)] ≤ 0,

and if θ = μ,

E[Qm(t)] −E[Qm
f (t)] = 0

since both differential equations are initialized with the same value, the origin is an equilibrium
point for the difference, and all the lower-power terms in the differential equations follow this
structure, which we know from the inductive hypothesis. Therefore, we see this holds for m,
which completes the proof via Lemma 1. �

Again as we have seen for the mean, we can exploit the versatility of the Erlang-A queue to
extend these insights to the Erlang-B and Erlang-C models as well.

Corollary 3. For the Erlang-B queueing model, if Q(0) = Qf(0) then E[Qm(t)] ≤E[Qm
f (t)] for

all t ≥ 0 and m ∈Z
+.

Proof. This is obvious after noting that the Erlang-B queue is a limit of the Erlang-A queue
by letting θ → ∞. �

Corollary 4. For the Erlang-C queueing model, if Q(0) = Qf(0) then E[Qm(t)] ≥E[Qm
f (t)] for

all t ≥ 0 and m ∈Z
+.

Proof. This is obvious after noting that the Erlang-C queue is an Erlang-A queue with
θ = 0. Since μ is assumed to be positive, we fall into the case where θ < μ and this completes
the proof. �

3.3. Numerical results

In this subsection we describe numerical results for approximating the moments of the
Erlang-A queue and examine them relative to our findings. We do so through Figures 2, 3, 4,
and 5. All four of these figures demonstrate the findings of Theorem 2. In Figures 2 and 3 we
show the first four moments of the Erlang-A queue and their respective fluid approximations
for the θ < μ and θ > μ cases, respectively. In these plots we take the arrival rate at time t ≥ 0
to be λ(t) = 10 + 2 sin (t). We initialize the queue as empty, and we assume that the queueing
system has c = 10 servers each with an exponential service rate μ = 1. We test two different
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FIGURE 2: The first four moments of the Erlang-A queue and their respective fluid approximations for
λ(t) = 10 + 2 sin (t), μ = 1, θ = 0.5, Q(0) = 0, and c = 10.

cases for the abandonment rate, θ = 0.5 and θ = 2. In these settings we observe that, when
θ < μ, the fluid approximations are below their corresponding simulated stochastic values and,
when θ > μ, the fluid values are greater than the simulations, and this matches the statements
of Theorems 1 and 2.

We observe the same relationships in Figures 4 and 5. For both of these figures we set λ(t) =
100 + 20 sin (t) and c = 100, but otherwise use the same values as for Figures 2 and 3. With
this increase in the arrival intensity and the number of servers, we see that the gaps between the
fluid approximations and the simulations are again present, albeit proportionally smaller and
may be most easily observed by inspection at the peaks and valleys of the trigonometric forms.

To gain further insight into the relationship between these moments and their approxima-
tions, we now plot the relative error for each moment displayed in the past four parameter
settings. Specifically, we define the relative error as

RE(t) = |E[Qm(t)] − E [Qm
f (t)]|

E[Qm(t)]
.

Using empirically calculated moments via simulation and approximations calculated via
differential equations, we plot this function across the four settings in Figures 6, 7, 8, and 9.
We note that the error appears to become more localized to the valleys of the sine curve as
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FIGURE 3: The first four moments of the Erlang-A queue and their respective fluid approximations for
λ(t) = 10 + 2 sin (t), μ = 1, θ = 2, Q(0) = 0, and c = 10.

the moments grow higher in power or for λ(t) and c of greater magnitude, whereas the errors
of the means when λ(t) and c are not as large (i.e. Figures 6 and 7) oscillate more quickly
with the maxima of its relative error occurring between the mean’s extremes. This difference
makes sense since at this point the denominator is at its smallest and this will have a more
pronounced effect for the larger values at the higher moments. Furthermore, we can also infer
that the highest relative error at the mean takes place when the value of the mean is equal to
the number of servers, which creates a change in behavior. For more on these phenomena, see
[30] and [35]. Additionally, we observe that as the rate and the number of servers grow large,
the approximations appear to be more accurate.

4. Inequalities and characterizations for generating functions of the Erlang-A queue

Building on what we have proved for the moments of the Erlang-A, we can provide similar
inequalities for the moment generating function and the cumulant generating function again
through convexity in the ordinary or partial differential equations for the fluid approximations.
We provide these inequalities in Subsections 4.1 and 4.2, respectively. As a result, we
uncover new stochastic representations for our fluid approximations as shifted Poisson
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FIGURE 4: The first four moments of the Erlang-A queue and their respective fluid approximations for
λ(t) = 100 + 20 sin (t), μ = 1, θ = 0.5, Q(0) = 0, and c = 100.

random variables. We describe these stochastic representations for systems in steady-state in
Subsection 4.3 and for nonstationary systems in Subsection 4.4. We conclude this section with
a variety of demonstrations of these results through numerical experiments in Subsection 4.5.

4.1. An inequality for the moment generating function of the Erlang-A queue

Using the functional forward equations as given by (2), we can show that the moment
generating function for the Erlang-A queue satisfies the following partial differential equation:

•
E[eαQ(t)] = λ(t)(eα − 1)E[eα·Q(t)] + θ (e−α − 1) ·E[Q(t)eα·Q(t)]

−(θ − μ)(e−α − 1)E[(Q(t) ∧ c)eαQ(t)]. (5)

As for the nonautonomous differential equation for the mean in (3), we also cannot
directly compute the moment generating function since we do not know the distribution of
the queue length a priori. This is also true for numerical purposes. Unless we can compute
the expectation that includes the minimum function it is impossible to know the moment
generating function, except in special cases such as the infinite-server queue and some cases of
the stationary Erlang-B queue. Thus, it is useful to obtain approximations that are explicit upper
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FIGURE 5: The first four moments of the Erlang-A queue and their respective fluid approximations for
λ(t) = 100 + 20 sin (t), μ = 1, θ = 2, Q(0) = 0, and c = 100.
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FIGURE 8: The relative error for λ(t) = 100 + 20 sin (t), μ = 1, θ = 0.5, Q(0) = 1, and c = 100.

or lower bounds for the moment generating function. By using Jensen’s inequality for concave
functions, we can approximate the moment generating function with the partial differential
equation

•
E[eαQf(t)] = λ(t)(eα − 1)E[eαQf(t)] + θ (e−α − 1)E[Qf(t)e

αQf(t)]

−(θ − μ)(e−α − 1)(E[Qf(t)e
αQf(t)] ∧E[ceα·Qf(t)]), (6)

which, for Mf (t, α) ≡ E [eαQf(t)], can be expressed as

∂Mf (t, α)

∂t
= λ(t)(eα − 1) · Mf (t, α) + θ (e−α − 1)

∂Mf (t, α)

∂α

−(θ − μ)(e−α − 1)
(∂Mf (t, α)

∂α
∧ cMf (t, α)

)
. (7)
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FIGURE 9: The relative error for λ(t) = 100 + 20 sin (t), μ = 1, θ = 2, Q(0) = 1, and c = 100.

The following theorem specifies when Mf (t, α) =E[eαQf(t)] is a lower or upper bound for the
exact moment generating function of the Erlang-A queue.

Theorem 3. Let t ≥ 0 and α ∈R. For the Erlang-A queue, if Q(0) = Qf(0) then E[eαQ(t)] ≥
E[eαQf(t)] when (θ − μ)(e−α − 1) > 0, E[eαQ(t)] ≤E[eαQf(t)] when (θ − μ)(e−α − 1) < 0, and
E[eαQ(t)] =E[eαQf(t)] when (θ − μ)(e−α − 1) = 0.

Proof. Let M(t, α) = E [eαQ(t)]. From (5), we note that M(t, α) is given by the partial
differential equation

•
M(t, α) = λ(t)(eα − 1)M(t, α) + θ (e−α − 1)

∂M(t, α)

∂α

− (θ − μ)(e−α − 1)E[(Q(t) ∧ c) · eαQ(t)].

If (θ − μ)(e−α − 1) > 0 then, by application of Jensen’s inequality on the minimum function,
we note further that

•
M(t, α) ≤ λ(t)(eα − 1)M(t, α) + θ (e−α − 1)

∂M(t, α)

∂α

− (θ − μ)(e−α − 1)
(∂M(t, α)

∂α
∧ cM(t, α)

)
.

We can now observe by comparison to (7) that the right-hand side of this inequality is
equivalent to the partial differential equation for Mf (t, α), and, thus, by application of
Lemma 1, M(t, α) ≥ Mf (t, α). By symmetric arguments for (θ − μ)(e−α − 1) < 0 and (θ −
μ)(e−α − 1) = 0, we complete the proof. �

Remark 3. If we restrict to α > 0, we can note that (θ − μ)(e−α − 1) > 0 if and only if θ < μ,
forming a connection to the conditions seen in Section 3 for the moment bounds.

As with the moments, we can observe these relationships in our numerical experiments.
Moreover, we provide figures demonstrating our analytical results in Subsection 4.5.
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4.2. An inequality for the cumulant moment generating function of the Erlang-A queue

As a consequence of the findings for the moment generating function, we can also provide
similar inequalities for the cumulant moment generating function. Using (5), we have

log (
•
E[eαQ(t)]) ≡ ∂

∂t
log (E[eαQ(t)])

=
•
E[eαQ(t)]

E[eαQ(t)]

= λ(t)(eα − 1) + θ (e−α − 1)
E[Q(t)eαQ(t)]

E[eαQ(t)]

− (θ − μ)(e−α − 1)
E[(Q(t) ∧ c)eαQ(t)]

E[eαQ(t)]
,

∂

∂t
log (E[eαQ(t)]) = λ(t)(eα − 1) + θ (e−α − 1)

∂

∂α
log (E[eαQ(t)])

− (θ − μ)(e−α − 1)
E[(Q(t) ∧ c)eαQ(t)]

E[eαQ(t)]
.

As for the moment generating function, we note that we cannot compute the cumulant moment
generating function directly without knowing the distribution of the queue length. By applying
Jensen’s inequality again, we can describe the fluid approximation as follows, where we let
G(t, α) = log (E [eαQ(t)]) and Gf (t, α) = log (E [eαQf(t)]):

log (
•
E[eαQf(t)]) = λ(t)(eα − 1) + θ (e−α − 1)

∂

∂α
log (E[eαQf(t)])

− (θ − μ)(e−α − 1)
(
E[Qf(t)eαQf(t)] ∧E[ceαQf(t)]

E[eαQ(t)]

)
,

∂Gf (t, α)

∂t
= λ(t)(eα − 1) + θ (e−α − 1)

∂Gf (t, α)

∂α

− (θ − μ)(e−α − 1)
(∂Gf (t, α)

∂α
∧ c

)
. (8)

Using this observation and our approach in finding the inequalities for the moment
generating function, we find the equivalent inequalities for the cumulant moment generating
function in the following corollary.

Corollary 5. Let t ≥ 0 and α ∈R. For the Erlang-A queue, if Q(0) = Qf(0) then
log (E[eαQ(t)]) ≥ log (E[eαQf(t)]) when (θ − μ)(e−α − 1) > 0, log (E[eαQ(t)]) ≤ log (E[eαQf(t)])
when (θ − μ)(e−α − 1) < 0, and log (E[eαQ(t)]) = log (E[eαQf(t)]) when (θ − μ)(e−α − 1) = 0.

Proof. The proof follows from the same argument that was given in Theorem 3 applied to
(8) and the fact that the log function is strictly increasing. �

4.3. Characterization of the moment generating function in steady state

From what we have observed for the moment generating function, we can derive an
exact representation for the fluid approximation of the moment generating function in steady
state. We assume a stationary arrival rate λ > 0. We will investigate the differential equations
for the stationary fluid approximation in a casewise manner based on the relationship of λ
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and the system’s service parameters. To do so, we begin with a lemma bounding the fluid
approximation of the mean.

Lemma 2. Suppose that λ is constant. If λ < cμ then E[Qf(∞)] < c. Moreover, if λ ≥ cμ then
E[Qf(∞)] ≥ c.

Proof. We will prove this by contradiction. For the first part, we assume that E[Qf(∞)] ≥ c.
Now by using the differential equation for the mean in steady state, we have

0 = λ − μ(E[Qf(∞)] ∧ c) − θ (E[Qf(∞)] − c)+ = λ − μc − θ (E[Qf(∞)] − c)+.

Since we assumed that E[Qf(∞)] ≥ c, then this yields the inequality

λ ≥ cμ,

which yields a contradiction. For the second case, where we assume that λ ≥ cμ and
E[Qf(∞)] < c, then by the same differential equation we have

λ = μ(E[Qf(∞)] ∧ c) + θ (E[Qf(∞)] − c)+ = μ(E[Qf(∞)] ∧ c) < cμ,

which yields another contradiction. �
We now begin characterizing the fluid approximations with our second case, λ ≥ cμ, in the

following proposition.

Proposition 1. If λ ≥ cμ then in steady state we have

∂Mf (∞, α)

∂α
= λ(eα − 1) + (θ − μ)(1 − e−α)c

θ (1 − e−α)
Mf (∞, α)

with Mf (∞, 0) = 1, which yields a solution of

Mf (∞, α) = e(α(θ−μ)c+λ(eα−1))/θ for α ≥ 0.

Proof. To find the partial differential equation, we use a functional cumulant bound for any
nondecreasing function h( · ) (which can be seen as a form of the FKG inequality as eαx is also
nondecreasing in x for α ≥ 0):

E[h(X)eαX]

E[eαX]
≥E[h(X)].

In the case that λ ≥ cμ we have E[Qf(t)] ≥ c in steady state by Lemma 2, and so we know
how to evaluate the minimum in the fluid equation. Thus, the derivative of Gf (∞, α) =
log (Mf (∞, α)) with respect to α is

dGf (∞, α)

dα
= λ(eα − 1) + c(θ − μ)(1 − e−α)

θ (1 − e−α)
= λeα

θ
+ c(θ − μ)

θ
, (9)

where we have used the identity ex = (ex − 1)/(1 − e−x). Because the moment generating
function is equal to 1 when α = 0, we also have Gf (0) = 0. Using this initial condition and
integrating the left- and right-hand sides of (9) with respect to α, we find that

Gf (∞, α) = λ(eα − 1) + cα(θ − μ)

θ
,

and since Mf (∞, α) = eGf (∞,α), we attain the stated result. �
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We can now observe that the fluid approximation is equivalent in distribution to a Poisson
random variable shifted by γ ≡ c(θ − μ)/θ , as the moment generating function for the Poisson
distribution is eβ(eα−1), where β is the rate of arrival and α is the space parameter of the moment
generating function. This gives rise to the following result.

Theorem 4. For the Erlang-A queue with λ ≥ cμ and m ∈Z
+, if θ > μ,

E[(Qf(∞) − γ )m] ≤ E[(Q(∞))m] ≤ E[(Qf(∞))m],

and, if θ < μ,

E[(Qf(∞))m] ≤ E[(Q(∞))m] ≤ E[(Qf(∞) − γ )m],

where γ = c(θ − μ)/θ .

Proof. From Proposition 1, the fluid approximation of the moment generating function in
steady-state is

Mf (∞, α) = e(λ(eα−1)+cα(θ−μ))/θ = E [eα(�+γ )]

where � ∼ Pois(λ/θ ) and γ = c(θ − μ)/θ . From the uniqueness of moment generating
functions, we have

E[(Qf(∞))m] = E[(� + γ )m] for all m ∈Z
+.

Now, recall that for an M/M/∞ queue with arrival rate λ and service rate θ , the stationary
distribution is that of a Poisson random variable with rate parameter λ/θ . So, we can think of
� as representing the steady-state distribution of an infinite-server queue with Poisson arrival
rate λ and exponential service rate θ .

Suppose now that θ > μ. Then, by Theorem 2 and our preceding observation, we have
E[(Q(∞))m] ≤ E[(� + γ )m]. Additionally, by comparing the steady-state infinite server queue
representation of � to Q(∞), we can further observe that E[(Q(∞))m] ≥ E[�m], as, for any
state j, the service rate in Q(∞) is no more than the service rate in the same state in the �

queueing system. Thus, we have

E[(Qf(∞) − γ )m] = E[�m] ≤ E[(Q(∞))m] ≤ E[(� + γ )m] = E[(Qf(∞))m]

for all m ∈Z
+ whenever θ > μ. By symmetric arguments, we also find that if μ > θ then

E[(Qf(∞))m] = E[(� + γ )m] ≤ E[(Q(∞))m] ≤ E[�m] = E[(Qf(∞) − γ )m]

for all m ∈Z
+, as in this case γ = c(θ − μ)/θ < 0. �

Remark 4. Note that in Theorem 2 we require that Q(0) = Qf(0), but in this case we have not
assumed such a condition. This is because the inequalities in Theorem 2 hold for all time, and
we simply need the relationship to hold in steady state, which can be seen to occur regardless
of initial conditions.

By knowing the fluid form of the moment generating function explicitly as a Poisson
distribution, we can also provide exact expressions for the fluid moments and the fluid
cumulant moments. These are given in the two following corollaries.
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Corollary 6. If λ ≥ cμ then in steady state we find that the first n moments have the steady
state expressions

E[Qn
f (∞)] =

n∑
j=0

(
n

j

)(c(θ − μ)

θ

)jPn−j

(λ

θ

)
,

where Pm(λ/θ ) is the mth Touchard polynomial with parameter λ/θ .

Proof. This can be seen by direct use of the Poisson form of the fluid moment generating
function. Let � ∼ Pois(λ

θ
) and let γ = c(θ−μ)

θ
. Then,

E[Qn
f (∞)] =E[(� + γ )n]

=
n∑

j=0

(
n

j

)
γ j

E[�n−j]

=
n∑

j=0

(
n

j

)
γ jPn−j

(λ

θ

)

=
n∑

j=0

(
n

j

)(c(θ − μ)

θ

)jPn−j

(λ

θ

)
. �

Corollary 7. If λ ≥ cμ then in steady state we have

dGf (∞, α)

dα

∣∣∣
α=0

= λ

θ
+ c(θ − μ)

θ
=E[Qf(∞)]

and, for n ≥ 2,
dnGf (∞, α)

dnα

∣∣∣
α=0

= λ

θ
= C(n)[Qf(∞)],

where C(n)[Qf(∞)] is defined as the nth cumulant moment of Qf(∞).

We now consider the second case in which λ < cμe−α . Note that this now also requires a
relationship involving the space parameter of the moment generating function, α. This is less
general than the first case, but it allows us to derive Lemma 3.

Lemma 3. For α ∈R,

∂Mf (∞, α)

∂α
< cMf (∞, α)

if and only if λ < cμe−α .

Proof. To begin, suppose that ∂Mf (∞, α)/∂α < cMf (∞, α). Using this information in
conjunction with the steady-state form of the partial differential equation for the fluid moment
generating function given in (7), we have

0 = λ(eα − 1)Mf (∞, α) + θ (e−α − 1)
∂Mf (∞, α)

∂α
− (θ − μ)(e−α − 1)

∂Mf (∞, α)

∂α
,

which simplifies to

∂Mf (∞, α)

∂α
= λ

μ
eαMf (∞, α).
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Using our assumption, we see that

λ

μ
eαMf (∞, α) < cMf (∞, α)

and this yields λ < cμe−α , which shows one direction.
We now move to showing the opposite direction and instead assume that ∂Mf (∞, α)/∂α ≥

cMf (∞, α). In this case, (7) is equivalently stated as

0 = λ(eα − 1)Mf (∞, α) + θ (e−α − 1)
∂Mf (∞, α)

∂α
− c(θ − μ)(e−α − 1)Mf (∞, α),

and this simplifies to

∂Mf (∞, α)

∂α
= λ(eα − 1) + c(θ − μ)(1 − e−α)

θ (1 − e−α)
Mf (∞, α) = λeα + c(θ − μ)

θ
Mf (∞, α).

Again by use of this case’s assumption, we have

λeα + c(θ − μ)

θ
Mf (∞, α) ≥ cMf (∞, α),

and this now yields

λ ≥ e−α(cθ − c(θ − μ)) = cμe−α,

thus completing the proof. �
We can now use this lemma to find an explicit form for the fluid approximation of the

steady-state moment generating function when λ < cμe−α .

Proposition 2. For α ∈R, if λ < cμe−α then in steady state we have

∂Mf (∞, α)

∂α
= λeα

μ
Mf (∞, α), (10)

which yields the solution

Mf (∞, α) = eλ(eα−1)/μ. (11)

Proof. By Lemma 3 and our assumption that λ < cμe−α , we know that ∂Mf (∞, α)/∂α <

cMf (∞, α). Thus, by observing this in the steady-state moment generating function equation,
we easily obtain the result in (10). Moreover, the solution to (10) can readily be verified by
substitution and it is unique by the properties of linear ODEtheory. �

Here we observe that the right-hand side of (11) is equivalent to the moment generating
function of a Poisson random variable with parameter λ/μ. Now, by recalling again that the
steady-state distribution of an M/M/∞ queue is a Poisson distribution with parameter equal
to the arrival rate divided by the service rate, we find the following inequalities.

Theorem 5. Let λ < cμ and m ∈Z
+. Then, if θ > μ,

E[�m
θ ] ≤ E[Q(∞)m] ≤ E[�m

μ ] = E[Qf(∞)m],

and, if μ > θ,

E[Qf(∞)m] = E[�m
μ ] ≤ E[Q(∞)m] ≤ E[�m

θ ]

where �x ∼ Pois(λ/x) for x > 0.
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Proof. In each case, the inequality involving �μ ∼ Pois(λ/μ) follows directly from
Proposition 2 and Theorem 2 via the observation that the fluid form of the moment generating
function is equivalent in distribution to that of �μ. Thus, we are left to prove the inequalities
for �θ ∼ Pois(λ/θ ).

To this end, let us first note that the stationary distribution of an M/M/∞ queue with service
rate θ is equivalent to that of �θ . Suppose now that θ > μ. Then, any state of such an M/M/∞
queue has a larger rate of departure than the same state in the Erlang-A system. Thus, we have

E[�m
θ ] ≤ E[Q(∞)m] ≤ E[�m

μ ] for all m ∈Z
+.

By symmetric arguments in the θ < μ case, we complete the proof. �
As we did for the case in which λ ≥ cμ, we can use these findings to give explicit

expressions for the fluid approximations of the moments and the cumulant moments.

Corollary 8. If λ < cμ then in steady state we have

dGf (∞, α)

dα

∣∣∣
α=0

= λ

μ
=E[Qf(∞)],

and, for n ∈Z
+,

dnGf (∞, α)

dnα

∣∣∣
α=0

= λ

μ
= C(n)[Qf(∞)],

dnMf (∞, α)

dnα

∣∣∣
α=0

=Pn

( λ

μ

)
= E[Qf(∞)n],

where C(n)[Qf(∞)] is defined as the nth cumulant moment of Qf(∞) and Pm(λ/μ) is the mth
Touchard polynomial with parameter λ/μ.

4.4. Characterization of the nonstationary moment generating function

Many scenarios that feature customer abandonments may also feature an arrival process
that is nonstationary. To address this, we now incorporate a point process that can be used to
approximate any generalized periodic, nonstationary arrival rate function, as discussed in [8].
Specifically, we define λ(t) by a Fourier series: let λ0 and {(ak, bk), k ∈Z

+} be such that

λ(t) = λ0 +
∞∑

k=1

(ak sin (kt) + bk cos (kt)). (12)

We now take λ(t) as the rate of arrivals at time t in the Erlang-A model. Under this setting,
we derive the following expression for the cumulant moment generating function of the fluid
approximation and its corresponding partial differential equation whenever the arrival rate is
greater than a certain threshold. We do so through a series of technical lemmas. First, we bound
the fluid mean when the arrival rate and initial value are sufficiently large.

Lemma 4. Suppose that λ ≡ inft≥0 λ(t) > cμ and that E[Qf(0)] > c. Then

E[Qf(t)] > c

for all time t ≥ 0.
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Proof. We have seen in (4) that E[Qf(t)] evolves according to

•
E [Qf(t)] = λ(t) − μ(E[Qf(t)] ∧ c) − θ (E[Qf(t)] − c)+

at all times t. Now, suppose that t̂ > 0 is a time such that E[Qf(t̂)] = c + ε for some ε > 0. Then,
if ε < (λ − cμ)/θ, we have

•
E[Qf(t̂)] = λ(t̂) − cμ − θε ≥ λ − cμ − θε > 0.

By the continuity of the fluid mean and the fact that E[Qf(0)] > c, we see that E[Qf(t)] > c for
all time t ≥ 0. �

With this in hand, we now also provide the moment generating function for an M/M/∞
queue with nonstationary arrival rate λ(t), which we will use for comparison later in this
section.

Lemma 5. Let Q∞(t) be the number in system for an infinite-server queue with periodic
Poisson arrival rate λ(t) as defined in (12), exponential service rate μ, and initial value
Q∞(0) = q0. Then

E [eαQ∞(0)] = exp

(
(eα − 1)

(
λ0

μ
(1 − e−μt)

+
∞∑

k=1

(akμ + bkk) sin (kt) + (bkμ − akk)( cos (kt) − e−μt)

μ2 + k2

))

× (e−μt(eα − 1) + 1)q0

for all t ≥ 0 and α ∈R.

Proof. To start, the time derivative of the moment generating function is

dE [eαQ∞(0)]

dt
= λ(t)(eα − 1)E [eαQ∞(0)] + μ(e−α − 1)E [Q∞(t)eαQ∞(t)].

This differential equation can be viewed as a partial differential equation when expressed as

μ(1 − e−α)
∂M(t, α)

∂α
+ ∂M(t, α)

∂t
= λ(t)(eα − 1)M(t, α),

where M(t, α) is the moment generating function at time t and space parameter α. To simplify
our effort, we instead consider the differential equation for the cumulant moment generating
function, which is G(α, t) = log (M(t, α)). This PDE is

μ(1 − e−α)
∂G(t, α)

∂α
+ ∂G(t, α)

∂t
= λ(t)(eα − 1)

with the initial condition that

G(0, α) = log (E[eαQ∞(0)]) = log (eαq0 ) = αq0.

Using the compressed notation Gx = ∂G/∂x, we seek to solve the system

μ(1 − e−α)Gα + Gt = λ(t)(eα − 1), G(0, α) = αq0,
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and we do so via the method of characteristics. For this approach, we introduce the
characteristic variables r and s and establish the characteristic equations, which are ODEs, as

dα

ds
(r, s) = μ(1 − e−α),

dt

ds
(r, s) = 1,

dg

ds
(r, s) = λ(t)(eα − 1)

with the initial conditions

α(r, 0) = r, t(r, 0) = 0, g(r, 0) = rq0.

We can first see that the ODEs for α and t solve to

α(r, s) = log (ec1(r)+μs + 1) −→ α(r, s) = log ((er − 1)eμs + 1),

t(r, s) = s + c2(r) −→ t(r, s) = s,

and so we can now use these to solve the remaining ODE. After substituting we have

dg

ds
(r, s) = λ(s)(er − 1)eμs,

which gives the solution

g(r, s) = (er − 1)

×
(

λ0

μ
(eμs − 1) +

∞∑
k=1

(akμ + bkk) sin (ks)eμs + (bkμ − akk)( cos (ks)eμs − 1)

μ2 + k2

)

+ rq0.

So, using s = t and r = log (e−μt(eα − 1) + 1), we have

G(t, α) = g( log (e−μt(eα − 1) + 1), t)

= (eα − 1)

(
λ0

μ
(1 − e−μt)

+
∞∑

k=1

(akμ + bkk) sin (kt) + (bkμ − akk)( cos (kt) − e−μt)

μ2 + k2

)

+ log (e−μt(eα − 1) + 1)q0

and, therefore, by solving for M(t, α) = eG(t,α) we attain the stated result. �

Now that we have established these lemmas we proceed with the analysis of the nonsta-
tionary Erlang-A model. In the next theorem we give explicit forms for the fluid form of the
cumulant moment generating function and its corresponding partial differential equation.

Theorem 6. If inft≤∞ λ(t) ≡ λ > cμ, where λ(t) is given by (12) and Qf(0) = q0 > c, then, for
all t ≥ 0, we have

∂Gf (t, α)

∂t
= λ(t)(eα − 1) + θ (e−α − 1)

∂Gf (t, α)

∂α
− c(θ − μ)(e−α − 1), (13)
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which gives the solution

Gf (t, α) = (eα − 1)

×
(

λ0

θ
(1 − e−θ t) +

∞∑
k=1

(akθ + bkk) sin (kt) + (bkθ − akk)( cos (kt) − e−θ t)

θ2 + k2

)

+ c(θ − μ)

θ
α + log ((eα − 1)e−θ t + 1)

(
q0 − c(θ − μ)

θ

)
(14)

for all t ≥ 0 and all α ≥ 0.

Proof. From (8), the PDE for the fluid approximation’s cumulant moment generating
function is

∂Gf (t, α)

∂t
= λ(t)(eα − 1) + θ (e−α − 1)

∂Gf (t, α)

∂α
− (θ − μ)(e−α − 1)

(∂Gf (t, α)

∂α
∧ c

)
.

Now, recall that ∂Gf (t, α)/∂α = E[Qf(t)eαQf(t)]/E [eαQf(t)]. Using the FKG inequality and our
observation from Lemma 4 that E[Qf(t)] > c, we have

E[Qf(t)e
αQf(t)] ≥ E[Qf(t)]E [eαQf(t)] > cE [eαQf(t)],

and so (∂Gf (t, α)/∂α ∧ c) = c. Thus, we have the PDE given in (13) and so now we seek
to find its solution. We approach this via the method of characteristics. Because Gf (0, α) =
log (E[eαQf(0)]) = αq0, we see that we seek to solve the system

θ (1 − e−α)G(α) + G(t) = λ(t)(eα − 1) + c(θ − μ)(1 − e−α), Gf (0, α) = αq0,

where G(x) = ∂Gf /∂x. Introducing characteristic variables r and s, we have the characteristic
ODEs as

dα

ds
(r, s) = θ (1 − e−α),

dt

ds
(r, s) = 1,

dg

ds
(r, s) = λ(t)(eα − 1) + c(θ − μ)(1 − e−α)

with initial conditions α(r, 0) = r, t(r, 0) = t, and g(r, 0) = rq0. Then we can solve the first two
ODEs to show that

α(r, s) = log ((er − 1)eθs + 1), t(r, s) = s.

Substituting these solutions into the remaining ODE, we have

dg

ds
(r, s) = λ(s)eθs(er − 1) + c(θ − μ)

eθs(er − 1)

eθs(er − 1) + 1
,

and this now solves to

g(r, s) = (er − 1)

×
(

λ0

θ
(eθs − 1) +

∞∑
k=1

(akθ + bkk) sin (ks)eθs + (bkθ − akk)( cos (ks)eθs − 1)

θ2 + k2

)

+ c(θ − μ)

θ
( log ((er − 1)eθs + 1) − r) + rq0.
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Now, we can rearrange our solutions to find s = t and r = log ((eα − 1)e−θ t + 1). Then, we
have

Gf (t, α) = g( log ((eα − 1)e−θ t + 1), t)

= (eα − 1)e−θ t

×
(

λ0

θ
(eθ t − 1) +

∞∑
k=1

(akθ + bkk) sin (kt)eθ t + (bkθ − akk)( cos (kt)eθ t − 1)

θ2 + k2

)

+ c(θ − μ)

θ
(α − log ((eα − 1)e−θ t + 1)) + log ((eα − 1)e−θ t + 1)q0,

and this simplifies to the stated result. �
Like the approach in our investigation of the steady-state scenario, we can now observe that

the fluid approximation is equivalent in distribution to the number in system for an infinite-
server queue shifted by γ ≡ c(θ − μ)/θ . This gives rise to the following result.

Theorem 7. For the Erlang-A queue with periodic arrival rate λ(t) given by (12) such that
λ ≡ inft≥0 λ(t) > cμ and initial value q0 > c, the fluid approximation of the moment generating
function is equal to the moment generating function of a shifted M/M/∞ queue length process
with arrival rate λ(t), service rate θ , initial value q0 − c(θ − μ)/θ , and linear shift c(θ − μ)/θ .

Proof. Observe from Theorem 6 that the fluid moment generating function for the Erlang-A
queue under these conditions is

Mf (t, α) = eGf (t,α)

= exp

(
(eα − 1)

×
(

λ0

θ
(1 − e−θ t)

∞∑
k=1

(akθ + bkk) sin (kt) + (bkθ − akk)( cos (kt) − e−θ t)

θ2 + k2

)

+ c(θ − μ)

θ
α

)
((eα − 1)e−θ t + 1)q0−c(θ−μ)/θ ,

which is of a form that we can recognize. Comparing it to Lemma 5, we can see that Qf is
equivalent to the number in system of a shifted M/M/∞ queue with arrival rate λ(t), service
rate θ , initial value q0 − c(θ − μ)/θ , and linear shift c(θ − μ)/θ , thus enforcing that the fluid
model does start at q0. �

This representation of the fluid approximation now allows us to provide upper and lower
bounds for the moments of the Erlang-A system.

Corollary 9. Let Q(t) represent the Erlang-A queue with periodic arrival rate λ(t) given
by (12) such that λ ≡ inft≥0 λ(t) > cμ and initial value q0 > c, and let Qf(t) represent the
corresponding fluid approximation. Then, if θ > μ,

E[(Qf(t) − γ )m] ≤ E[Q(t)m] ≤ E[Qf(t)
m],

and, if θ < μ,

E[Qf(t)
m] ≤ E[Q(t)m] ≤ E[(Qf(t) − γ )m],

for all time t > 0 and all m ∈Z
+, where γ = c(θ − μ)/θ .
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Proof. In each case, the bound involving the fluid approximation of the moment is a direct
consequence of Theorem 2 and so only the other two bounds remain to be shown. We now
note that since we have characterized the fluid approximation as a shifted M/M/∞ queue, the
remaining bounds are from the unshifted version of this system and, by following the same
arguments as in Theorems 4 and 5 regarding the rates of departure in the corresponding states
of the Erlang-A queue and the M/M/∞ queue, this completes the proof. �

4.5. Numerical results

In this subsection we provide numerical experiments that demonstrate the findings of the
previous subsections. For the interested reader, we note that an extended version of this paper
containing additional plots and figures is available on arxiv.

In Figure 10 we plot the limiting distribution for the steady-state Erlang-A model. For these
plots we take λ = 20 and μ = 1, and then vary θ and c. For the three plots on the left, we take
the abandonment rate to be θ = 0.5 and, for those on the right, we set θ = 2. For the top two
plots, we set the number of servers as c = 15, in the middle two c = 20, and in the bottom two
we make c = 25. We observe that the approximate distribution is quite close when λ is not near
cμ, but the approximation is less accurate when λ = cμ. This finding is consistent with much of
the literature that focuses on finding novel approximations for queueing networks and optimal
control of these networks; see, for example, [17], [18], [19], and [33]. We note here that these
approximations are not all of the same form: recall that when λ ≥ cμ the fluid approximation
is equivalent in distribution to a shifted Poisson random variable with parameter λ/θ , but when
λ < cμ it is equivalent to a Poisson distribution with parameter λ/μ.

In Figure 11 we examine the limiting distributions for the single server case. In these plots
we set μ = 1 and then vary the arrival rate and the abandonment rate. For all plots on the
left, we set θ = 0.5 and on the right θ = 2. Furthermore, for the top, middle, and bottom pairs
of plots, we set λ to 0.8, 1, and 1.2, respectively. As in Figure 10, Figure 11 shows that our
approximations are quite good. Thus, we are able to capture single server dynamics as well
as large-scale multiserver dynamics even though they are quite different. This is even more
useful as our approximations are nonasymptotic and do not rely on scaling the number of
servers.

In Figure 12 we take the arrival rate as λ(t) = 6.5 + sin (t), the service rate as μ = 1, and
the number of servers as c = 5. Because inft≥0 λ(t) > cμ, we use the characterization of the
fluid approximation as a shifted M/M/∞ queue and compare the simulated system, the fluid
approximation, and the unshifted M/M/∞, as stated in Theorem 7. We consider the mean for
θ = 1.1 and θ = 0.9 and find that while the fluid approximation is quite close the unshifted
system is not near to the Erlang-A system, even for these relatively similar rates of service
and abandonment. We note that the simulated values in Figure 12 are plotted using a dashed
line, and the differences between these points and the fluid approximations can be most readily
observed at the extremes of the trigonometric function.

As a final comparison, in Table 1 we test the bounds in Theorems 4 and 5 by comparison
to simulations of the first three moments. We perform this experiment with c = 10 and μ = 1
while taking λ ∈ {8, 10, 12} and θ ∈ {0.5, 2} so that we have considered all different conditions
contained in these two results. As can also be observed in Figure 12, the empirical values are
much closer to the fluid approximation than they are to the opposite bounds from Theorems 4
and 5. This is to be expected since the fluid values are the only intended approximation. Still,
the pursuit of closer bounds in conjunction with the fluid approximation may be a future
direction of practical importance.
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FIGURE 10: Empirical and fluid limiting distributions for λ = 20 and μ = 1.

5. Conclusion

In this paper we investigated the Erlang-A queueing system through comparison to the
fluid approximations of its moments, moment generating function, and cumulant moment
generating function. Through recognizing the convexity in the differential equations describing
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FIGURE 11: Empirical and fluid limiting distributions for c = 1 and μ = 1.

these approximations, we found fundamental relationships between the values of these
quantities and their fluid counterparts: when the rate of abandonment is less than the rate
of service the true value dominates the approximation, when the service rate is smaller the
approximation dominates the true value, and when the rates of abandonment and service are
equal, the two are equivalent. That is, for any (possibly nonstationary) arrival rate, and for θ
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θ = 0.9.

TABLE 1: Comparison of the opposite (opp.) bounds from Theorems 4 and 5 with simulations (sim.) for
the first three moments for various λ and θ , where μ = 1 and c = 10.

1st 2nd 3rd

Scenario Sim Fluid Opp. Sim Fluid Opp. Sim Fluid Opp.

λ = 8, θ = .5 8.4 8 16 80.4 72 272 864.4 712 4880
λ = 8, θ = 2 7.8 8 4 67 72 20 626.8 712 116
λ = 10, θ = .5 11.1 10 20 137.4 120 420 1883.5 1620 9220
λ = 10, θ = 2 9.2 10 5 92.5 105 30 986.8 1155 205
λ = 12, θ = .5 14.3 14 24 225.8 220 600 3873.7 3776 15576
λ = 12, θ = 2 10.6 11 6 119.4 127 42 1422.3 1535 330

TABLE 2: Approximation characterization overview.

Parameter condition Approximation and model relationship

θ > μ Approximation ≥ true value
θ < μ Approximation ≤ true value
θ = μ The approximation and the true value are equal

as the abandonment rate and μ as the service rate, we can summarize these relationships as
follows.

Note that the parameter conditions in Table 2 have actually been subjected to some
specification in the case of the generating functions. As used in Subsections 4.1 and 4.2,
the general conditions are actually (θ − μ)(e−α − 1) < 0, (θ − μ)(e−α − 1) > 0, and (θ −
μ)(e−α − 1) > 0. However, as we remarked previously, these conditions are equivalent when
the space parameter of the generating functions is restricted to positive values, i.e. α > 0.

In forming these inequalities we have found explicit representations of the fluid approxima-
tions through equivalences in distribution with Poisson random variables and infinite-server
queues, in cases of stationary and nonstationary arrival rates, respectively. The respective
subsection references for these are Subsections 4.3 and 4.4. For convenience, in Table 3 we
give an overview of the bounds and characterizations shown in this paper.
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TABLE 3: Approximation characterization overview.

Model type Fluid characterization Opposite bound

Stationary with λ ≥ cμ Pois(λ
θ

) + c(θ−μ)
θ

Pois(λ
θ

)

Stationary with λ < cμ Pois( λ
μ

) Pois(λ
θ

)

Periodic with λ > cμ Mt/M(θ )/∞ shifted by c(θ−μ)
θ

Mt/M(θ )/∞

We note here that we use the notation Mt/M(θ )/∞ to represent an infinite-server queue
with arrivals according to the nonstationary Poisson process with rate λ(t) as given in (12) and
exponential service with rate θ > 0. We should also note that the periodic case also requires
the initial number in system to be greater than c. These characterizations both give insight
into the approximations themselves and yield natural inequalities that complement those
from the approximations. We have demonstrated the performance of these bounds through
simulations. Through consideration of both these findings and the empirical experiments,
we can identify interesting directions for future work. For example, it would be of great
interest to gain more explicit insights into the gap between the fluid approximations and
the true values. This is a nontrivial endeavor, which stems from the nondifferentiability and
nonclosure in the differential equations for the true expectations. The numerical experiments
in this work indicate that the fluid approximations may often be quite close but not exact,
and additional understanding would be useful in practice. Moreover, extending our results to
more complicated queueing systems where the arrival and service processes follow phase type
distributions is of interest given the new work of Ko and Pender [36], [22], [21].

It would be additionally useful to gain a better understanding of the limiting distribution of
the Erlang-A queue. As we discuss in the paper, the empirical experiments in Subsection 4.5 in-
dicate that the true limiting distributions closely resemble the shifted Poisson approximations.
In particular, the approximations seem quite close when λ is not near cμ. As a simple extension
of this work, it can be observed that some sort of combination of the approximation when
λ < cμ and of the approximation when λ > cμ could make a nice choice for approximation
of the distribution when λ = cμ. In some sense, it is not surprising that these approximations
are similar to the true limiting distribution, as the Erlang-A queue appears to be an M/M/∞
queue with service rate μ (the approximation when λ < cμ), when only considering the states
up to c, and it also resembles some sort of shifted M/M/∞ queue with service rate θ (which
also describes the approximation when λ ≥ cμ) for states c + 1 and beyond.

Because the relationships between the true quantities and their approximations are condi-
tioned only on the service and abandonment rate, it may be possible for this to be extended to
stochastic-intensity, non-Poisson arrival processes, such as the Hawkes process or shot noise
driven queues studied in [23], [24], and [6]. Finally, in a similar manner it would be interesting
to extend this to networks of Erlang-A queues; however, we would have to keep track of the
routeing probabilities carefully to keep track of the convexity/concavity of the rate functions.
We plan to consider these extensions in future work.
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