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On intersections of polynomial semigroups
orbits with plane lines

Jorge Mello

Abstract. We study intersections of orbits in polynomial semigroup dynamics with lines on the affine

plane over a number field, extending previous work of D. Ghioca, T. Tucker, and M. Zieve (2008).

1 Introduction

One of the most studied topics in complex dynamics is the research on orbits of
polynomialmaps. For a complex number x and polynomialsF = { f1 , . . . , fk} ⊂ C[X],
one is very interested in understanding the orbit

OF(x) = { f i1( f i2(⋯( f in(x))⋯)) ∶ n ∈ N, i j = 1, . . . , k},
Fn = { f i1 ○ ⋯ ○ f in ∶ i j = 1, . . . , k}.

Considering orbits with k = 1, D. Ghioca, T. Tucker, and M. Zieve [8] proved the
following:

Let x0 , y0 ∈ C and f , g ∈ C[X]with deg( f ) = deg(g) > 1. IfO f (x0) ∩Og(y0)
is infinite, then f and g have a common iterate.

Such a result provided the first non-monomial cases of the so-called dynamical
Mordell–Lang Conjecture proposed by Ghioca and Tucker and stated below.

DynamicalMordell–Lang Conjecture Let f1 , . . . , fk be polynomials inC[X], and let
V be a subvariety of the affine spaceAk that contains no positive dimensional subvariety
that is periodic under the action of ( f1 , . . . , fk) onAk .�en V(C) has finite intersection
with each orbit of ( f1 , . . . , fk) on Ak .

For an overview and a more detailed view of the history of the above conjecture,
we refer the reader to [2].

�e results of [8] were also extended by the same authors to the complex numbers
and function fields of characteristic 0, and to cases where the degrees of the poly-
nomials are distinct in [10], in which they also generalised results to cases of a line
in a higher dimensional space intersecting a product of multiple orbits defined by
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one map. As a corollary ([10, Corollary 1.5]), they obtained information about the
intersection of a higher dimensional line with an orbit defined by a semigroup of
polynomial maps that have all but one of its coordinates as the identity. R. Benedetto,
D. Ghioca, P. Kurlberg, and T. Tucker [4] studied cases of intersection of orbits of
rational functions with curves under some natural conditions, and in [3], the same
authors proved that if the conjecture does not hold in the context of endomorphisms
of varieties, then the set of iterates landing on a referred subvariety forms a set
of density zero. For a discussion with an effective viewpoint and monomial maps,
see [13], and for intersection of orbits with finitely generated groups in fields, some
analysis is made in [14]. In [15], intersection of orbits and the Mordell–Lang problem
is studied on the disk, with non-polynomial mappings.

In this paper, we study the extension of the results of [8] to polynomial semigroup
cases with k ≥ 1 over number fields under some natural conditions. Namely, for
sequences Φ = (ϕ i j)∞j=1 of pairs of univariate polynomials in a finite set F whose
coherent orbit

O
c
Φ(x , y) = {(x , y), ϕ i1(x , y), ϕ i1(ϕ i2(x , y)), ϕ i1(ϕ i2(ϕ i3(x , y)), . . . }

intersects the diagonal plane line ∆ on infinitely many points.
Among other results, we prove the following theorem.

�eorem 1.1 Let x0 , y0 ∈ K, and letF = {ϕ1 , . . . , ϕs} ⊂ K[X] × K[X] be a finite set of
pairs of polynomials neither of which are conjugate tomonomials, with ϕ i = ( f i , g i) and
deg f i = deg g i > 1 for each i. Suppose that #(OF(x0 , y0) ∩ ∆) = ∞. Suppose, moreover,
that one of the following conditions is satisfied.

(i) �ere exists a sequence Φ of elements from F such that

#Oc
Φ(x , y) ∩ ∆ =∞.

(ii) �e maps of F commute with each other.

�en there exists ϕ = ( f , g) in the semigroup generated by F such that f = g.

�is result implies, for example, that under the conditions of �eorem 1.1, if
#(O{ f1 , . . . , fs}(x0) ∩O{g1 , . . . ,gs}(y0)) = ∞ with #Oc

Φ(x , y) ∩ ∆ = ∞, then there exists
ϕ = ( f , g) in the semigroup generated by F such that f = g.

For the strategy of the proof, inspired by [8], we first see that condition (i) on the
statement, together with the pigeonhole principle, implies the existence of bivariate
diophantine equations with separable variables with infinite solutions, which can be
tackled by the definitive work of Bilu and Tichy [5]. Such a description is analysed
using results involving decomposition of polynomials and, again, the pigeonhole
principle.

In Section 2we set general notation and definitions used for the paper; in Section 3,
we gather necessary results about polynomial equations and decompositions, and our
main result is proved in Section 4. Further applications of the result and methods are
given in Section 5. Section 6 recalls some known facts about height functions, and
further results for polynomials with distinct degrees are exhibited in Section 7.
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2 Preliminaries on Sequences and Semigroup Orbits

�roughout the paper, K is assumed to be a fixed number field. We consider F =
{ϕ1 , . . . , ϕs} ⊂ K[X] × K[X] to be a finite set of pairs of polynomials, with ϕ i =
( f i , g i). Let x , y ∈ K, and let

OF(x , y) = {ϕ in ○ ⋯ ○ ϕ i1(x , y) ∣ n ∈ N, i j = 1, . . . , s}
denote the forward orbit of P under F.

We set J = {1, . . . , s},W =∏∞i=1 J, and let Φw ∶= (ϕw j
)∞j=1 be a sequence of polyno-

mials from F forw = (w j)∞j=1 ∈W . In this situation, we let Φ
(n)
w = ϕwn

○ ⋯ ○ ϕw1
with

Φ
(0)
w = Id, and also

Fn ∶= {Φ(n)w ∣ w ∈W}.
Precisely, we consider polynomials sequences Φ = (ϕ i j)∞j=1 ∈∏∞i=1 F and x , y ∈ K,

denoting

Φ(n)(x , y) ∶= ϕ in(ϕ in−1(. . . (ϕ i1(x , y))).
�e set

{(x , y), Φ(1)(x , y), Φ(2)(x , y), Φ(3)(x , y), . . . } =
{(x , y), ϕ i1(x , y), ϕ i2(ϕ i1(x , y)), ϕ i3(ϕ i2(ϕ i1(x , y)), . . . }

is called the forward orbit of (x , y) under Φ, denoted by OΦ(x , y).
�e point (x , y) is said to be Φ-preperiodic if OΦ(x , y) is finite.
For a x , y ∈ K, the F-orbit of (x , y) is defined as

OF(x , y) = {ϕ(x , y) ∣ ϕ ∈ ⋃
n≥1

Fn} = {Φ(n)w (x , y) ∣ n ≥ 0,w ∈W}

= ⋃
w∈W

OΦw
(x , y).

�e point (x , y) is called preperiodic for F if OF(x , y) is finite.
We let S be the shi� map that sends Ψ = (ψ i)∞i=1 to

S(Ψ) = (ψ i+1)∞i=1 .
We also define the coherent orbit of a point (x , y) under a sequence Φ = (ϕ i j)∞j=1

to be the set

O
c
Φ(x , y) = {(x , y), ϕ i1(x , y), ϕ i1(ϕ i2(x , y)), ϕ i1(ϕ i2(ϕ i3(x , y)), . . . }.

We let ∆ denote the diagonal line {(x , x) ∣ x ∈ K} in the affine plane A2(K).

3 Some Results on Polynomial Composition

�eresult stated below is a strong fact concerning equations of the form F(X) = G(Y)
with infinitely many integral solutions due to Bilu and Tichy [5].
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Lemma 3.1 ([8, Corollary 2.2]) Let K be a number field, S a finite set of nonar-
chimedean places of K, and F ,G ∈ K[X] with deg(F) = deg(G) > 1. Suppose F(X) =
G(Y) has infinitely many solutions in the ring of S-integers of K. �en F = E ○H ○ a
andG = E ○ c ○H ○ b for some E , a, b, c ∈ K[X]with a, b and c linears, and H ∈ K[X].
Moreover, for fixed K, there are only finitely many possibilities for H.

�e next surprising result shows a certain rigidity on polynomial decomposition.

Lemma 3.2 ([8, Lemma 2.3] (Rigidity)) Let K be a field of characteristic zero. If
A, B,C ,D ∈ K[X] − K satisfy A ○ B = C ○ D and deg(B) = deg(D), then there is a
linear l ∈ K[X] such that A = C ○ l−1 and B = l ○ D.

Finally, we show, under some conditions, when polynomials from a finite set can
be obtained from the same set through composition with linear polynomials.

Lemma 3.3 Let K be a field of characteristic zero, and suppose {F1 , . . . , Fh} ⊂ K[X]
is a finite set of polynomials of degree d > 1 with the property that u ○ Fi ○ v is not a
monomial whenever u, v ∈ K[X] are linear for each i.�en the equations a ○ Fi = F j ○ b
have only finitely many solutions in linear polynomials a, b ∈ K[X] for each 1 ≤ i , j ≤ h.

Proof Suppose a ○ F1 = F2 ○ b; we denote the coefficients of Xd and Xd−1 in F1 by
θd and θd−1, and in F2 by τd and τd−1. We put β1 = −θd−1/dθd , α1 = −F1(β1) and β2 =
−τd−1/dτd , α2 = −F2(β2) and see that F̂i ∶= α i + Fi(X + β i)(i = 1, 2)have no terms of

degree d − 1 and 0. Putting â ∶= α2 + a(x − α1) and b̂ ∶= β2 + b(X + β1), we have that
â ○ F̂1 = F̂2 ○ b̂, and both have no term of degree d − 1. Hence, b̂ cannot have a term of

degree 0, neither F̂2 ○ b̂ nor â. Hence, we canmake â = δX and b̂ = γX, which implies
that δF̂1(X) = F̂2(γX). Writing F̂1(X) = ∑i u iX

i , F̂2 = ∑i v iX
i , we have γ i = δ u i

v i
for

each non-zero i term. As F̂1 , F̂2 have at least two terms of distinct degrees, let us say
i > j, we have δ i− j =

u iv j

u jv i
, and there are finitely many possibilities for δ. Since by our

construction, a = −α2 + γ
r vr
ur
(X + α1) and b = β2 + γ(X − β1), there are only finitely

many possibilities for a and b. Repeating the same procedure for any pair (Fi , F j)
yields the desired result. ∎

4 Proof of Theorem 1.1

Proof We start by letting S be a finite set of nonarchimedean places of K such that
the ring of S-integers OS contains x0 , y0 and every coefficient of ϕ1 , . . . , ϕs . �en O2

S

contains ϕ(x0 , y0) for every ϕ ∈ ⋃n≥1 Fn .
By hypothesis, we can suppose first that #(OF(x0 , y0) ∩ ∆) = ∞ with #(Oc

Φ(x0 ,
y0) ∩ ∆) = ∞ for some sequence Φ = (F ,G) = (ϕ i j)∞j=1 = (( f i j , g i j))∞j=1 of terms

belonging to F, so that #Oc
F(x0) = ∞ and #Oc

G(y0) = ∞ . Let (n j) j∈N be such that

ϕ i1 ○ ⋯ ○ ϕ in j
(x0 , y0) ∈ ∆

for each j ∈ N.
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By the pigeonhole principle, there exists a t1 ∈ {1, . . . , s} such that for infinitely
many j, we have that ϕ in j

= ϕt1 , so that ϕ i1 ○ ⋯ ○ ϕ in j
(x0 , y0) = ϕ i1 ○ ⋯ ○ ϕt1(x0 , y0) ∈

∆. Again, for the same reason, there must exist a ϕt2 ∈ F such that ϕ in j
= ϕt1 , ϕ in j−1

=

ϕt2 , and ϕ i1 ○ ⋯ ○ ϕ in j
(x0 , y0) = ϕ i1 ○ ⋯ ○ ϕt2 ○ ϕt1(x0 , y0) ∈ ∆ for infinitely many j.

Obtaining tn inductively in this way, we can consider the sequence Φ∗ = (F∗ ,G∗) =
(ϕ∗k)∞k=1 ∶= (ϕtk)∞k=1, which by its construction satisfies that for every k ∈ N, the

equation F∗
(k)(X) = G∗(k)(Y) has infinitely many solutions in OS ×OS . By Lemma

3.1, for each k, we have F∗
(k) = Ek ○Hk ○ ak and G

∗(k) = Ek ○ ck ○Hk ○ bk with Ek ∈
K[X], linears ak , bk , ck ∈ K[X], and some Hk ∈ K[X] that comes from a finite set of
polynomials. �us, Hk = H l for some k < l .

If we write F∗
(l) = F̃ ○ F∗(k) and G∗

(l) = G̃ ○G∗(k) with (F̃ , G̃) ∈ Fl−k , we have

F̃ ○ Ek ○Hk ○ ak = F
∗(l) = E l ○Hk ○ a l ,

G̃ ○ Ek ○ ck ○Hk ○ bk = G
∗(l) = E l ○ c l ○Hk ○ b l .

By Lemma 3.2, there are linears u, v ∈ K[X] such that

Hk ○ ak = u ○Hk ○ a l and ck ○Hk ○ bk = v ○ c l ○Hk ○ b l .

�us,

F̃ ○ Ek ○ u = E l = G̃ ○ Ek ○ v ,

and by Lemma 3.2, it follows that F̃ = G̃ ○ l1 for some l1 ∈ K[X] linear.
Again from the pigeonhole principle, there exists some integer k0 so that for

infinitely many ℓ > k0, we have that

Hk0 = Hℓ .

So, for these infinitely many ℓ, we have that there exists some linear polynomial aℓ
such that

ϕ∗ℓ ○ ⋯ϕ
∗
k0+1
∶= (Fk0 ,ℓ ,Gk0 ,ℓ)

satisfies

Fk0 ,ℓ = Gk0 ,ℓ ○ aℓ .

Inductively, we obtain in this way an infinite N ⊂ N and an infinite sequence Ψ =
(F,G) = (ψ i)∞i=1 of terms in ⋃n≥1 Fn satisfying

F
(n) = G(n) ○ ln , with n ∈ N.

By Lemma 3.2, this means that un ○ f i j = g i j ○ ln for some 1 ≤ i j ≤ s and un linear.
Since {ln ∣ n ∈ N} is finite by Lemma 3.3, there exist N > n such that lN = ln .�en,

denoting F
(N) = FN−n ○ F

(n) and G
(N) = GN−n ○G

(n) where FN−n ,GN−n ∈ Fm for
somem, we have

F
(N) = G(N) ○ lN = GN−n ○G

(n) ○ ln = FN−n ○ F
(n) = FN−n ○G

(n) ○ ln ,
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and thus

FN−n = GN−n

as desired.
If, otherwise, we suppose that #(OF(x0 , y0) ∩ ∆) = ∞ and the maps of F com-

mute, we take t1 such that ϕ(x0 , y0) = (ϕt1 ○ ⋯)(x0 , y0) ∈ ∆ for infinitely many
ϕ if the semigroup generated by F, so that, ft1(X) = gt1(Y) has infinitely many
solutions in OS ×OS . �en we choose t2 such that ϕ = (ϕt1 ○ ϕt2 ○ ⋯)(x0 , y0) =
(ϕt2 ○ ϕt1 ○ ⋯)(x0 , y0) ∈ ∆ for infinitely many ϕ ∈ ∪n≥0Fn (commutativity), so that
( ft2 ○ ft1)(X) = (gt2 ○ gt1)(Y) has infinitely many solutions in OS ×OS . In this way,

we build a sequence Φ∗ = (F∗ ,G∗) = (ϕtn)n∈N such that F∗
(k)(X) = G∗(k)(Y) has

infinitely many solutions in OS ×OS for each k ∈ N. �en one can proceed as in the
first case to achieve the desired conclusion. ∎

It turns out that this result is actually true for orbits that intersect an arbitrary line
at infinitely many points.

Corollary 4.1 Under the conditions of �eorem 1.1, with L ∶ X = l(Y) (l linear over
K) in place of ∆, there must exist ϕ = ( f , g) in the semigroup generated by F such that
f = l ○ g.

Proof Suppose #(OF(x0 , y0) ∩ L) = ∞. �en defining a new system

F
l ∶= {( f1 , l ○ g1 ○ l−1), . . . , ( fs , l ○ gs ○ l−1)},

we have that #(OF l (x0 , l(y0)) ∩ ∆) = ∞ with the conditions of �eorem 1.1, from
which the result follows. ∎

5 Further Applications

�e two next corollaries are straightforward consequences of �eorem 1.1.

Corollary 5.1 Let x0 , y0 ∈ K, and let F = {ϕ1 , . . . , ϕs} ⊂ K[X] × K[X] be a set of
pairs of polynomials neither of which are conjugate tomonomials, with ϕ i = ( f i , g i) and
deg f i = deg g i > 1 for each i. Suppose that #(O{ f1 , . . . , fs}(x0) ∩O{g1 , . . . ,gs}(y0)) = ∞,
such that for some sequence Φ of terms in { f1 , . . . , fs} × {g1 , . . . , gs}, we have

O
c
Φ(x0 , y0) ∩ ∆ = ∞.

�en there exists ϕ = ( f , g) in the semigroup generated by F such that f = g.

Proof �e result follows from the conditions of �eorem 1.1. ∎

Corollary 5.2 Let x0 ∈ K, and let F = { f1 , . . . , fs} ⊂ K[X] be a set of polynomials
neither of which are conjugate to monomials, with deg f1 = deg f2⋯ = deg fs > 1. Sup-
pose there are two sequences (trajectoriesΦ = ( fu i

)∞i=1 andΨ = ( fv i )∞i=1 in the semigroup
generated by F satisfying one of the conditions below:
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(i) Oc
Φ(x0) ∩Oc

Ψ(x0) =∞, or
(ii) #(OΦ(x0) ∩OΨ(x0)) =∞ and the elements of F commute.

�en Φ and Ψ have two “words” in common; namely, there exist m, k ∈ N such that

fum+k
○ ⋯ ○ fum

= fvm+k ○ ⋯ ○ fvm .

Proof We apply the proof of �eorem 1.1 for F and G = F with (x0 , x0). ∎

Remark 5.3 In a similar way as in the proof of Corollary 4.1, it can be seen that
Corollaries 5.1 and 5.2 can be extended with ∆ being replaced by an arbitrary plane
line L ∶ X = l(Y) and the set {Φ(n j)(x0) = Ψ(n j)(x0) ∣ n1 < n2 < ⋯} by {Φ(n j)(x0) =
l(Ψ(n j)(x0))∣n1 < n2 < ⋯}, respectively, implying the more general conclusions f =
l ○ g and Sm(Φ)(k) = l ○ Sm(Ψ)(k), respectively.

6 Preliminaries about Height Functions

In order to deal with pairs of polynomials with distinct degrees, we recall known
results about certain canonical heights.

Recall that for x ∈ Q, the naive logarithmic height is given by

h(x) = ∑
v∈MK

[Kv ∶ Qv]
[K ∶ Q] log (max{1, ∣x∣v}),

where MK is the set of places of K, M∞K is the set of archimedean (infinite) places of
K, M0

K is the set of nonarchimedean (finite) places of K, and for each v ∈ MK , ∣ ⋅ ∣v
denotes the corresponding absolute value on K whose restriction toQ gives the usual
v-adic absolute value onQ. Also, we write Kv for the completion of K with respect to
∣ ⋅ ∣, and we let Cv denote the completion of an algebraic closure of Kv .

Considering the affine plane over a field L to be A2(L) = L × L, there is a way
to construct height functions associated with sequences of polynomials. �is was
done by S. Kawaguchi, by defining and proving the convergence of the sequence
(h(Φ(n)(P))/deg(Φ(n)))∞n=1, inspired by other classical canonical heights. We point
out that in hiswork,Kawaguchi showed the existence of such heights in amore general
context of smooth projective varieties with polarized morphisms.

Lemma 6.1 ([12, �eorem 2.3]) �ere is a unique way to attach to each sequence
Φ = (ϕ i)∞i=1 , with deg ϕ i ≥ 2 as above, a canonical height function

ĥΦ ∶ A
2(K̄)Ð→ R

such that

(i) supP∈A2(K) ∣ ĥΦ(P) − h(P)∣ ≤ O(1);
(ii) ĥS(Φ) ○ ϕ1 = (deg ϕ1)ĥΦ ; in particular,

ĥSn(Φ) ○ ϕn ○⋯ ○ ϕ1 = (deg ϕn)⋯(degϕ1)ĥΦ .
(iii) ĥΦ(P) ≥ 0 for all P;
(iv) ĥΦ(P) = 0 if and only if P is Φ-preperiodic.

We call ĥΦ a canonical height function (normalized) for Φ.
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Considering conditions as above, namely, a number field K, andH = {ϕ1 , . . . ϕk}
now with ∑i deg g i > k, the uple (A2(K), g1 , . . . , gk) becomes a particular case
of what we call a dynamical eigensystem of degree deg ϕ1 +⋯+ deg ϕk . For such,
Kawaguchi also proved the following lemma.

Lemma 6.2 ([11, �eorem 1.2.1]) �ere exists a unique canonical height function

ĥH ∶ A
2(K̄)Ð→ R

for (X , ϕ1 , . . . , ϕk) characterized by the following two properties:
(i) ĥH = h + O(1);
(ii) ∑

k
j=1 ĥH ○ g j = (deg g1 +⋯+ deg gk)ĥH.

�e result below is also well known.

Lemma 6.3 ([8, Lemma 5.4]) If l ∈ K[X] is linear, then there exists c l > 0 such that
∣h(l(x)) − h(x)∣ ≤ c l for all x ∈ K.

7 Further Results

Finally, we obtain information in some cases of polynomial semigroup orbits with
polynomials with distinct degrees, for which the theory of canonical heights is useful.

Proposition 7.1 Let x0 , y0 ∈ K, and let F = {ϕ1 , . . . , ϕs} ⊂ K[X] × K[X] be a set of
pairs of polynomials of degree at least 2, and letΦ = (F ,G) be a sequence of terms in F
such that deg(G(n)) = o(deg(F(n))). �en

#(OΦ(x0 , y0) ∩ ∆) <∞.

In particular, if deg f i > deg g i for each i = 1, . . . , s, then every sequence (trajectory) of
F intersects ∆ in only finitely many points.

Proof If x0 or y0 is preperiodic for F or G , respectively, then the result is true.

Otherwise, Lemma 6.1 states that ĥF(x0) > 0, so there is a δ > 0 such that every k big
enough satisfies

h(F(k)(x0)) > deg(F(k))δ.
Also, there exists ε > 0 such that

h(G(k)(y0)) < deg(G(k))ε,

and by the hypothesis, we know that deg(F(k))δ > deg(G(k))ε for every k large
enough. �erefore, h(F(k)(x0)) > h(G(k)(y0)) and F(k)(x0) ≠ G(k)(y0) for every
k large as wanted. ∎

�eresult above shows, in particular, that if #(OΦ(x0 , y0) ∩ ∆) =∞, then it cannot

be true that limn
deg(G(k))

deg(F(k))
or limn

deg(F(k))

deg(G(k))
is equal to zero, so that the distance
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between the canonical heights of x0 and y0 associated with F and G , respectively,
cannot be increasingly large.

Related to Proposition 7.1 and considering the difference between the degree sum
of the coordinates in the sequence, we have that if the n-iterates of a point under the
semigroup are all contained in ∆ for infinitely many n, then the sum of the degrees of
the polynomials in the first coordinate of the generator set is equal to such a sum for
the second coordinate polynomials, as in the following proposition.

Proposition 7.2 Let x0 , y0 ∈ K, and let F = {ϕ1 , . . . , ϕs} ⊂ K[X] × K[X] be a set
of pairs of polynomials ϕ i = ( f i , g i) such that ∑i deg f i > ∑i deg g i > s. Suppose that
x0 and y0 are not preperiodic for { f1 , . . . , fs} and {g1 , . . . , gs}, respectively. �en
{ϕ(x0 , y0) ∣ ϕ ∈ Fn} /⊂ ∆ for all but finitely many numbers n.

Proof Using Lemma6.2 and the hypothesis, we proceed similarly as in the previous
proof, so that for some positive numbers δ and ε, we have that

∑
f ∈Fk

h( f (x0)) = (∑
i

deg f i)
k

δ

> (∑
i

deg g i)
k

ε

> ∑
g∈Fk

h(g(y0))

for every k large enough, from which the result follows. ∎

Remark 7.3 We believe that the results of this paper could be extended to the
complex numbers, paying the price of obtaining some function field results to the
general context of semigroups of polynomials. For example, [8, Lemma6.5], which is a
specialization limit result of Call and Silverman that is not yet proved for Kawaguchi’s
canonical height of sequences of maps presented here, and [8, Lemma 6.8] due to
Benedetto, which characterizes preperiodic points for polynomials over function
fields, and whose proof uses non archimedean analysis. Besides, one would also need
to work out versions of [8, Proposition 6.3, Corollary 6.4] for the context of several
maps, that do not commute for instance.
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