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1. Introduction
Let Ratd(C) be the set of all rational maps on the Riemann sphere C of degree d. When R
is an element of Ratd(C), the postcritical set of R is given by

PR =
⋃

k

⋃
i

Ri (ck),

where the union is taken over all critical points ck of R and i > 0. The Julia set JR

is the set of accumulation points of all periodic points of R, with all isolated points
removed. The Fatou set is given by FR = C \ JR . The map R is called hyperbolic when
PR ∩ JR = ∅. The Fatou conjecture states that hyperbolic maps are open and everywhere
dense in Ratd(C).

Recall that a rational map R is J -stable if there is an open neighbourhood U of
R in Ratd(C), such that for Q ∈U there exists a homeomorphism hQ : JR→ JQ ,
quasiconformal in Pesin’s sense (also known as metric quasiconformal), with

Q = hQ ◦ R ◦ h−1
Q .

Due to a result of Mañé, Sad and Sullivan (see [16]), the set of J -stable maps forms an
open and everywhere dense subset of Ratd(C); moreover, a J -stable map is hyperbolic if
and only if there is no invariant Beltrami differential supported on the Julia set. Since
hyperbolic maps are J -stable, the Fatou conjecture becomes: every J -stable map is
hyperbolic.
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An invariant Beltrami differential µ is a (−1, 1)-differential form locally expressed by
µ(z)dz/dz and whose coefficient µ(z) is an L∞ function satisfying

µ(z)= µ(R(z))
R′(z)
R′(z)

.

That is, µ is a fixed point of the Beltrami operator, as defined below, acting on the space
L∞(C) with respect to the planar Lebesgue measure. In this paper, whenever it is clear
from the context, we will denote both the differential and its coefficient by the same letter.

Sullivan’s conjecture states that there exists an invariant Beltrami differential supported
on the Julia set if and only if R is a flexible Lattès map. For the definitions and further
properties of Lattès maps, see Milnor’s paper [20].

Note that if R is hyperbolic then Rn is hyperbolic and hence J -stable for every n > 1.
We have the following statement (see [3, Theorem 2.1]): if there exists n > 1 such that
the iterated map Rn is J -stable then R is hyperbolic. Therefore the Fatou conjecture is
true when one considers an iterated rational map. On the other hand, Sullivan’s conjecture
predicts not only the absence of fixed points for the Beltrami operator but also the lack of
periodic points for this operator. In other words, there is no eigenvalue of the Beltrami
operator which is a root of unity. Hence Sullivan’s conjecture can be interpreted as a
spectral problem for a semigroup of Beltrami operators.

According to Sullivan’s dictionary between Kleinian groups and holomorphic
dynamics, rational maps correspond to finitely generated Kleinian groups. In this setting,
we can reformulate Teichmüller theorem (see [9]) as follows.

Let 0 be a finitely generated Kleinian group. For every 0-invariant Beltrami differential
µ inducing a non-trivial quasiconformal deformation (see definition below) on the
associated Riemann surface S0 , there exists a 0-invariant holomorphic 2-form φ such
that

∫
F µφ 6= 0 on any fundamental domain F of 0.

In other words, the following separation principle holds: the space of invariant
holomorphic 2-forms separates the space of quasiconformally non-trivial invariant
Beltrami differentials.

The separation principle is well known in ergodic theory for bounded semigroups of
linear endomorphisms of a Banach space. In fact, it is the subject of many ergodic theorems
and is one of the oldest principles in this theory.

Due to the observations above, in this article we discuss the following question. Given
a representation of the dynamics of R into a semigroup of contractions of a suitable
Banach space, what consequences arise from the existence of a common non-trivial fixed
point of such a representation? Furthermore, we will discuss what happens when these
representations satisfy a separation principle (definitions will be given below).

To keep in line with Sullivan’s conjecture we consider representations that arise
as versions of complex pull-back or push-forward operators acting on either invariant
subspaces X ⊂ L p(W ) (not necessarily closed) or spaces which are predual, dual or bidual
to X . Here W is an R-invariant set (i.e. R(W )⊂W ) of positive Lebesgue measure in the
Riemann sphere and 1≤ p ≤∞.

Throughout our discussion, unless otherwise stated, all L p spaces are taken with respect
to the planar Lebesgue measure on the dynamical plane. Also we will use one or some
combination of the following restrictions on R.
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(1) The postcritical set PR 6= C.
(2) The postcritical set has Lebesgue measure zero.
(3) The intersection PR ∩ FR is finite and the Fatou set FR does not contain parabolic or

rotational domains.
In each section we will specify which restrictions apply. But let us note that the class
of rational maps satisfying restrictions (1)–(3) is still relevant for the Fatou–Sullivan
conjecture. In fact, when FR has no rotation or parabolic domains and JR is connected, an
application of quasiconformal surgery gives that the J -stability component of R contains
a map Q which does not admit non-trivial quasiconformal deformations on the Fatou set.
Moreover, by the Mañé–Sad–Sullivan theorem Q is unique up to Möbius conjugacy only
in the case where JQ does not support an invariant Beltrami differential.

Also, after the celebrated examples of Julia sets of positive measure given by Buff and
Cheritat of Cremer polynomials, and by Avila and Lyubich of infinitely renormalizable
polynomials, the main conjecture is that the postcritical set either has measure zero or is
the whole Riemann sphere. So if FR 6= ∅, then restriction (2) is natural.

We summarize the main theorems of this paper in the following two theorems. We
say that an integrable function f is regular whenever its ∂ derivative, in the sense of
distributions, is a finite complex-valued measure. Examples of non-regular functions are
given by characteristic functions of suitable compact subsets of C (see the discussion after
Theorem 4.9 and Proposition 4.14). Other notation and definitions will be given in §2.

THEOREM 1.1. (Fixed points of Ruelle operator) Let R be a rational map. Then the
following statements hold true.
(1) No simple function is invariant under Ruelle operator R∗. Moreover, if SR is

connected, then a non-zero regular function f is a fixed point of R∗ if and only if
R is a flexible Lattès map.

(2) (The L p-case) Let p and q be such that 1< p <∞ and 1/p + 1/q = 1. The
operator R∗p : L p(C)→ L p(C) given by

R∗p(φ)=
1

q√d

∑
φ(ζi )

ζ ′i

ζ ′i

|ζ ′i |
2/p

has a non-zero fixed point if and only if R is a flexible Lattès map.
(3) If R is mixing with respect to any finite invariant measure absolutely continuous and

PR 6= C, then R∗ has a non-zero fixed point in L1(JR) if and only if R is a flexible
Lattès map.

Part (1) follows from Theorem 4.9 and Corollary 4.13. Note that Theorem 4.9 provides
the more general case where SR is not connected. Part (2) is the content of Theorem 5.1.
Part (3) is Theorem 9.2.

For every critical value v of R define the operator Ev : L∞(C)→ `∞ by the formula

Ev(ψ)=
(∫

C
ψ(z)An(γv)(z)|dz|2

)∞
n=0

,

where the An(γv)= (1/n)
∑n−1

i=0 R∗i (γv) are the Cesàro averages and γv(z)= v(v − 1)/
(z(z − 1)(z − v)).
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THEOREM 1.2. (Invariant Beltrami differentials) Given a rational map R, the following
statements hold true.
(1) If PR has zero Lebesgue measure then R satisfies Sullivan’s conjecture if and only if

R∗ is mean ergodic on Hol(R) with the topology inherited from L1(JR).
(2) Assume that PR 6= C and that there are no rotational domains. If T is the Thurston

operator for R then T : B0(SR)→ B0(SR) is mean ergodic. Moreover, let α ∈ B(SR)

with T (α)= α and ‖α‖T = 1, where ‖ · ‖T is the Teichmüller norm. If

inf
φ∈B0(SR)

‖α − φ‖T < 1

then R is a flexible Lattès map.
(3) Assume PR 6= C, the set PR ∩ FR is finite and PR does not admit finite invariant

absolutely continuous complex-valued measures. Then R satisfies Sullivan’s
conjecture if and only if the operator Ev is compact for every critical value v.
Moreover, the operator (Id− T ) : B(SR)→ B(SR) is compact if and only if R is
postcritically finite.

Part (1) follows from Theorem 4.6, which is given in a more general situation where
PR is allowed to have positive Lebesgue measure. Part (2) follows from Theorem 6.8 and
Corollary 6.9. Part (3) follows from Theorem 8.4 and Corollary 8.5.

This paper also includes several results not mentioned in the theorems above which are
of independent interest; for example, Proposition 4.15 compares the masses over the Julia
and Fatou sets for γ ∈ Hol(R). See also Theorems 6.10, 6.11, 7.1 and the discussions in
the respective sections.

Most results in this paper are given in terms of ergodic theory and suggest that Sullivan’s
conjecture holds true.

2. The pull-back and push-forward actions
In this section we give the definition of the Ruelle transfer operator for a rational map R
which is a complex version of the Perron–Frobenius operator. The first instance of this
operator probably appeared in Ruelle’s paper [22].

We take the standpoint of the theory of quasiconformal deformations, which deals with a
dual interplay between Beltrami differentials and quadratic differentials (i.e. between some
(−1, 1)-forms and (2, 0)-forms). In fact, there is a natural action on both spaces induced
by a rational function R of degree d , if we think of R as a ‘local change of variables’.

Let Fm,n be the space of all (m, n)-forms α(z)= φ(z) dzm dzn , where φ is a complex-
valued measurable function on C. The pull-back operator acting on Fm,n is given by

R∗(m,n)(α)= α ◦ R = φ(R(z))R′(z)m R′(z)
n

dzm dzn .

The push-forward operator on Fm,n is given by

R∗(m,n)(α)=
∑

α(ζi ),

where the sum is taken over all branches ζi of R−1. Therefore we have R∗(m,n) ◦ R∗(m,n) =
deg(R)Id.
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The Beltrami operator is BR = R∗(−1,1). The operator |BR | = R∗(0,0) is called the
modulus of BR and satisfies |BR ||φ| = |BR(φ)| almost everywhere for every measurable
function φ.

The Ruelle transfer operator (or the Ruelle operator for short) is R∗ = R∗(2,0), while the
operator |R∗| = R∗(1,1) is called the modulus of the Ruelle operator and satisfies |R∗(φ)| ≤
|R∗||φ| almost everywhere for every measurable function φ. The modulus of the Ruelle
operator is also known as the Perron–Frobenius operator for the map R or as the push-
forward operator on the space of absolutely continuous measures.

Using coefficients, the Beltrami operator and its modulus are defined by the formulas

BR(φ)= φ(R)
R′

R′
and |BR |(φ)= φ(R),

respectively, where φ is a measurable function with respect to the Lebesgue measure.
In turn, the Ruelle operator and its modulus are given by

R∗(φ)=
∑

φ(ζi )(ζ
′

i )
2 and |R∗|(φ)=

∑
φ(ζi )|ζ

′

i |
2,

respectively. Both sums are taken over all branches ζi of R−1. We end this section with the
following simple facts.

PROPOSITION 2.1. Let A be a Lebesgue measurable set, µ ∈ L∞(C) and φ ∈ L1(C).
Then the following statements hold.
(1) ∫

A
µ(z)R∗(φ(z))|dz|2 =

∫
R−1(A)

BR(µ(z))φ(z)|dz|2.

(2) ∫
A
µ(z)|R∗|(φ(z))|dz|2 =

∫
R−1(A)

µ(R(z))φ(z)|dz|2.

(3) Define R∗(φ)= R∗ (2,0)(φ)/deg(R)= φ(R)R′2/deg(R). Then∫
A
|R∗(φ(z))||dz|2 ≤

∫
R(A)
|φ(z)||dz|2.

(4) If φ is a holomorphic function outside the postcritical set PR , then R∗φ is also a
holomorphic function outside PR .

Proof. We begin with part (1). Fix a system of branches of R−1 in the following way. Let
τ be any differentiable arc containing all critical values of R. Take D = C \ τ . Then by
the monodromy theorem each of the branches ζi of R−1 defines a holomorphic function
on D. Set Di = ζi (D). Then Di ∩ D j = ∅ for i 6= j , so we have∫

A
µ(z)R∗(φ(z))|dz|2 =

∫
A∩D

µ(z)R∗(φ(z))|dz|2

=

∫
A∩D

∑
i

µ(z)φ(ζi (z))(ζ ′i (z)
2)|dz|2,

which after a change of variables is equal to∑
i

∫
ζi (A∩D)

µ(R(z))
R
′
(z)

R′(z)
φ(z)|dz|2 =

∫
R−1(A)

BR(µ(z))φ(z)|dz|2.

Similar computations prove parts (2) and (3).
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We now turn to part (4). Again by the monodromy theorem, the Ruelle operator does not
depend on the local choice of branches of R−1. Outside the postcritical set, every branch
of R−1 is a local holomorphic function and R−1(C \ PR)⊂ C \ PR , therefore R∗(φ) is
sum of holomorphic functions, and so is holomorphic. �

Let A be an R-invariant set, that is, R(A)⊂ A. Then R∗ acts on L1(A) with ‖R∗‖ ≤ 1.
Indeed, by extending every element in L1(A) by zero on C \ A, the space L1(A) can
be regarded as a closed subspace of L1(C). By definition, the support supp(R∗ f ) is
contained in R(supp( f )). If A is completely R-invariant (i.e. R−1(A)= A), then BR

acts on L∞(A) with ‖BR‖ = 1 and BR is dual to R∗. It is known that if f is a
quasiconformal automorphism of C then R f = f ◦ R ◦ f −1 is rational if and only if its
Beltrami coefficient µ f (z)= ∂ f/∂ f (z) satisfies µ f (R(z))(R′(z)/R′(z))= µ f (z) almost
everywhere. Hence by the measurable Riemann mapping theorem the unit ball of the space
of fixed points of BR in L∞(C) determines all quasiconformal deformations of the rational
map R.

When A is backward R-invariant (i.e. R−1(A)⊂ A) and φ is an integrable function on
A, we have ∫

A
|R∗(φ)| ≤

∫
A
||R∗|(φ)| ≤

∫
A
|R∗||φ| =

∫
R−1(A)

|φ| ≤

∫
A
|φ|.

Here, the integration is with respect to the Lebesgue measure. Therefore the Ruelle
operator is a contraction in the L1 norm.

As another entry of Sullivan’s dictionary the reader may recognize the Ruelle operator
as the relative Poincaré theta operator for branched coverings of the sphere onto itself.

3. The Thurston operator
Following ideas from Teichmüller theory, we consider the action of the Ruelle operator on
spaces of functions that are holomorphic on a given open set.

Let K be a closed subset of C and let H(K ) be the subspace of L1(C) of all
functions holomorphic outside of K with the restricted norm of L1(C). If K is R-
invariant and contains the postcritical set PR then the Ruelle operator R∗ is a contractive
endomorphism of H(K ). Define SK = C \ K , and let A(SK ) be the space of all integrable
holomorphic functions on SK equipped with the L1 norm, so A(SK ) is a Banach space.
By the discussion on the previous section the Ruelle operator also acts as a contracting
endomorphism of A(SK ). Every element f in A(SK ) extends to an element in H(K ); just
set f (z)= 0 for all z in K . This extension gives a canonical inclusion from A(SK ) into
H(K ), which is an isomorphism precisely when the Lebesgue measure of K is zero.

Let B(SK ) denote the associated Bergman space, that is, the space of all holomorphic
functions φ on SK with L∞-norm

‖φ‖ = sup
z∈SK

|λ−2
K (z)φ(z)|,

where λK denotes the complete hyperbolic metric on SK . By the Bers isomorphism
theorem (see Theorem 2.1 in Ch. 3, p. 89 of [11]), the space B(SK ) is linearly isomorphic
to A∗(SK ), the dual of the Banach space A(SK ), by the correspondence that associates
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to every φ ∈ B(SK ) the continuous functional lφ(ψ)=
∫

SK
λ−2φψ |dz|2 in A∗(SK ).

Furthermore, there is an equivalent norm on B(SK ), called the Teichmüller norm, which
is the canonical supremum norm of continuous linear functionals on the unit sphere in
A(SK ).

Let T : B(SK )→ B(SK ) be the dual operator of R∗ up to the identification above. Then
T is a power-bounded operator which is a contraction in the Teichmüller norm. We call the
operator T the infinitesimal Thurston pull-back operator (or Thurston operator for short).
Indeed, as was shown by Douady and Hubbard in [5], when R is a postcritically finite
rational map the operator T is the derivative of the Thurston pull-back map.

Let B0(SK ) be the subspace of all elements in B(SK ) vanishing at infinity. In other
words, B0(SK ) is the space of all φ in B(SK ) such that |λ−2

K φ(z j )| converges to zero,
whenever z j is a sequence converging to the boundary ∂SK .

Let A∗(SK ) be the subspace of A∗(SK ) such that the dual space (A∗(SK ))
∗ is

isometrically isomorphic to A(SK ) (see, for instance, Theorem 5 on p. 52 of [9]). The
space A∗(SK ) is constructed as follows. A sequence {φ j } in A(SK ) is degenerating if
‖φ j‖ = 1 for all j and φ j converges pointwise to zero on SK . Then A∗(SK ) is the kernel
of the seminorm on A∗(SK ) given by

β(l)= sup(lim sup
i
|l(φi )|),

where the supremum is taken over all degenerating sequences {φi } in A(SK ).
Moreover, the ∗-weak topology on A(SK ) induced by A∗(SK ) coincides with the

topology of pointwise convergence of bounded sequences.
The Bers isomorphism theorem, together with [2, Theorem 1], provides a

correspondence between the topologies and the Banach structure of the spaces we are
dealing with as follows:

B(SK )'B0(SK )
∗∗ f ∗∗
←→ A∗(SK )

g∗∗
−→ `∞ = c∗∗0 ,

B0(SK )
∗ f ∗
←→ A(SK )

g∗
←− `1,

B0(SK )
f
←→ A∗(SK )

g
−→ c0.

In the notation above, f is the restriction map of the Bers isomorphism to A∗(SK ) and,
by Lemma 1 and Corollary 1 of pp. 259–260 in [9], it is a surjective map onto B0(SK ).
There is an isomorphism h to its image from B0(SK ) into c0 given by [2, Theorem 1].
The map g is just the composition h ◦ f . Here `∞, `1 and c0 denote the spaces of
complex-valued sequences that are bounded, absolutely summable and converging to zero,
respectively. In this work, we often identify the space A(SK ) with B∗0 (SK ) using Bers’
isomorphism, so the action R∗ : B∗0 (SK )→ B∗0 (SK ) is well defined.

Now we gather together some facts about the geometry and dynamics of operators on
B(SK ) and B0(SK ). First, we need some definitions. A Banach space B is a Grothendieck
space if every ∗-weak convergent sequence of continuous functionals {li } also converges
in the weak topology on the Banach space B∗ dual to B.

Every complemented closed subspace of a Grothendieck space is again a Grothendieck
space. Clearly, every reflexive space is a Grothendieck space.
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A Banach space B has the Dunford–Pettis property if every weakly compact operator
from B into any Banach space maps weakly compact sets into norm compact sets. As
in the case of Grothendieck spaces, the Dunford–Pettis property is also inherited on
complemented closed subspaces. A typical example of a Grothendieck space with the
Dunford–Pettis property is L∞(X, µ), where (X, µ) is a positive measure space (see [13]).

A series
∑

xn in a Banach space X is called weakly unconditionally Cauchy (wuC)
if for every l ∈ X∗ the series

∑
|l(xn)| is bounded. A Banach space X is said to have

Pełczyński’s property (V) if every subset K ⊂ X∗ is relatively weakly compact whenever
K satisfies

lim
n

sup
l∈K
|l(xn)| = 0

for every wuC series
∑

xn in X .
By results of functional analysis (see, for example, Corollary 3.7, p. 132 in [10]) any

closed subspace Y ⊂ c0 has Pełczyński’s property (V).
Hence we have the following:

• B0(SK ) has Pełczyński’s property (V);
• B(SK ) is a Grothendieck space with the Dunford–Pettis property.

Indeed, by results of Bonet and Wolf in [2], the space B0(SK ) is isomorphic to a closed
subspace of c0.

By the Bers isomorphism theorem, we have L∞(SK )∼= N ⊕ B(SK ). So B(SK ) is a
complemented subspace of a Grothendieck space with the Dunford–Pettis property. The
space N = A(SK )

⊥
⊂ L∞(SK ) is the annihilator of A(SK ). In other words, N consists of

the trivial Beltrami differentials.
Again, by a combination of classical results in functional analysis we have the following

fact.
• If E : B0(SK )→ B0(SK ) is a linear operator then either E is compact or there exists

an infinite-dimensional subspace Y , which is isomorphic to c0 such that E |Y is an
isomorphism onto its image.

Indeed, as noted above B0(SK ) has Pełczyński’s property (V), then by Lemma 3.3.A and
Theorem 3.3.B on p. 128 of [10], either E is weakly compact or there exists an infinite-
dimensional subspace Y , which is isomorphic to c0 such that E |Y is an isomorphism onto
its image. However, if E is weakly compact then E∗ : B∗0 (SK )→ B∗0 (SK ) is also weakly
compact. Let us show that every bounded weakly convergent sequence {ψn} ⊂ A(SK )

contains a norm-convergent subsequence. In fact, every bounded sequence in A(SK ) forms
a normal family. Let {ψnk } be a subsequence of {ψn} converging to its pointwise limit
ψ . Hence, ψnk is weakly convergent and, by the Fatou lemma, ψ ∈ A(SK ). Then, by
the uniform integrable convergence in measure theorem (see [23, Theorem 1.5.13]), ψnk

converges to ψ in norm. Therefore E∗, and hence also E , are compact operators.
We say that an invariant Beltrami differential µ ∈ L∞(C̄) defines a non-trivial

quasiconformal deformation if and only if lµ(ψ)=
∫

SK
ψ(z)µ(z)|dz|2 is a non-zero

functional on A(SK ); note that lµ is R∗-invariant, that is, lµ(R∗(ψ))= lµ(ψ) for all
ψ ∈ A(SK ). In other words, lµ induces a non-zero fixed point for T on B(SK ).

Finally, in order to use results given by the second author in [17] without cumbersome
recalculations, throughout this paper we will assume that {0, 1,∞} are fixed points of R.
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This is always the case after passing to a suitable iteration of R and conjugating with a
Möbius map. However, most of our results do not need this normalization. We fix K R =

PR ∪ {0, 1} and set SR = C \ K R and always assume that SR is non-empty.

4. Mean ergodicity in holomorphic dynamics
Given an operator S on a Banach space X , the n-Cesàro averages of S are the operators
An(S) defined for x ∈ X by

An(S)(x)=
1
n

n−1∑
i=0

Si (x).

An operator S on a Banach space X is called mean ergodic if S is power-bounded, that
is, it satisfies ‖Sn

‖ ≤ M for some number M independent of n, and the Cesàro averages
An(S)(x) converge in norm for every x ∈ X .

The topology of convergence in norm is also called the strong topology on X . If An(S)
converges uniformly on the closed unit ball on X then the operator S is called uniformly
ergodic. The following facts can be found, for example, in Krengel’s book [12].
(1) (Separation principle). The operator S is mean ergodic if and only if S satisfies the

principle of separation of points: if x∗ is a fixed point of S∗ then there exists y ∈ X a
fixed point of S such that 〈y, x∗〉 6= 0.

(2) For a power-bounded operator S, the equality limn→∞ An(S)(x)= 0 holds if and
only if x ∈ (Id− S)(X).

(3) (Mean ergodicity lemma). For a power-bounded operator S, consider the convex hull
Conv(S, x) of the orbit of a point x under S. Then y is a weak accumulation point of
Conv(S, x) if and only if y is a fixed point of S. In this situation An(S)(x) converges
to y in norm.
If X is a dual space, then y is a ∗-weak accumulation point of Con(S, x) if and only
if y is a fixed point of S. Here a dual space is a space isometrically isomorphic to B∗,
for some Banach space B where the notion of ∗-weak topology is well defined.

(4) (Uniform ergodicity lemma). A power-bounded operator S acting on a Banach
space B is uniformly ergodic if and only if the subspace (Id− S)B is closed or,
equivalently, if and only if the point 1 either belongs to the resolvent set or is an
isolated eigenvalue of S. If dim(Fix(S)) is finite then the intersection of the spectrum
of S with the unit circle consists of finitely many isolated eigenvalues.

Let Hol(R) be the space of all integrable (with respect to the planar Lebesgue measure)
rational functions having poles in the forward orbit of the set V (R) ∪ {0, 1}, where V (R)
is the set of all critical values of R. Equivalently, Hol(R) consists of all rational functions
with simple poles in the forward orbit of V (R) ∪ {0, 1} and a zero at infinity of multiplicity
at least three. Note that Hol(R) is a normed vector space with the norm inherited from
L1(C). The space Hol(R) is not complete and, by the Bers approximation theorem (see [9,
Theorem 9]), its completion is H(K R) and contains a canonical inclusion of A(SR).
Moreover, the completion of Hol(R) is equal to A(SR) if and only if the Lebesgue measure
of PR is zero.

We recall some facts from ergodic theory which will be used in this work. A positive
measure set M ⊂ C is called wandering when the sets {R−k(M)}k are pairwise almost
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disjoint Lebesgue measurable sets, that is, R−i (M) ∩ R− j (M) has Lebesgue measure zero
whenever i 6= j . Let D(R) be the union of all wandering sets. The set D(R) is called the
dissipative set and the complement C(R)= C \ D(R) is the conservative set. Similarly,
a positive measure set M ⊂ C is called weakly wandering when there is a sequence
0= k0 < k1 < k2 < · · · such that the sets R−ki (M) are pairwise almost disjoint Lebesgue
measurable sets. The weakly dissipative set W (R) is the union of all weakly wandering
sets and SC(R)= C \W (R) is called the strongly conservative set.

The following proposition is a consequence of Theorems 4.6 and 4.11, pp. 141 and 144
in [12], respectively.

PROPOSITION 4.1. Let R be a rational map. Then the Lebesgue measure of the symmetric
difference R(SC(R))4SC(R) is zero. Furthermore, if SC(R) has positive measure there
exists a non-negative integrable function P which is positive on SC(R) and such that
P(z)|dz|2 defines an invariant probability measure supported on SC(R). Moreover, if for
a given non-negative measurable function φ we have that φ(z)|dz|2 defines an invariant
probability measure, then supp(φ) is contained in SC(R).

Proof. Since the weakly dissipative set is backward R-invariant, we have R(SC(R))=
SC(R) almost everywhere. Hence the restriction R : SC(R)→ SC(R) is a null-preserving
transformation. If SC(R) has positive measure, then, by Theorem 4.11, p. 144 in [12],
there exists a finite R-invariant measure ν on SC(R) which is equivalent to the Lebesgue
measure. Let P be the Radon–Nikodym derivative of ν with respect to the Lebesgue
measure, so P(z) > 0 almost everywhere on SC(R). Also every finite invariant measure
absolutely continuous with respect to Lebesgue is zero on the weakly dissipative set.
By Theorem 4.6, p. 141 in [12], the decomposition C= SC(R) ∪W (R) is unique up
to measure. If φ is a non-negative function so that φ|dz|2 defines a finite invariant measure
then supp(φ) is invariant and, again by [12, Theorem 4.11], we have supp(φ)⊂ SC(R). �

Due to the classification of Fatou components and Proposition 4.1, it follows that both
the conservative set C(R) and the strongly conservative set SC(R) intersect the Fatou
set FR precisely at the union of all rotation domain cycles. Indeed, if a periodic Fatou
component D is not a rotation domain then D consists of a union of wandering sets.

Now assume D is a rotation domain. Let τθ be an irrational rotation on the unit disk
4. Then for any annulus Tr = {r ≤ |z| ≤ 1}, the function given by P(z)= 1/|z|2mod(Tr )

for z ∈ Tr and zero for z in 4 \ Tr defines a τθ -invariant probability measure. By using
a parametrization of D and Proposition 4.1, we have that rotation domain cycles are
conservative and strongly conservative. Moreover, by Theorem 1.6, p. 117 in [12], we
have the following fact.

LEMMA 4.2. (Almost everywhere convergence on the dissipative set) For every f ≥ 0 in
L1(C), the series

∞∑
n=0

|R∗|n( f )

converges and is finite almost everywhere on the dissipative set.
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Proof. It is enough to show that the series

∞∑
n=0

|R∗|n( f )

converges on every wandering set W of finite positive measure. In fact, we show that the
series defines an integrable function. Since W is wandering, we have, by Proposition 2.1,∫

W

∞∑
n=0

|R∗|n( f )≤
∞∑

n=0

∫
R−n(W )

f =
∫
⋃

R−n(W )

f < ‖ f ‖1. �

Using Proposition 4.1, we reformulate results of Lyubich and McMullen to obtain the
following lemma.

LEMMA 4.3. Let R be a rational map.
• Either C(R) ∩ JR ⊂ PR or C(R)= C.
• Either SC(R) ∩ JR ⊂ PR or SC(R)= C.
• In the case where C(R)= C but PR 6= C, there exists a fixed point of the Beltrami

operator supported on the Julia set if and only if R is a flexible Lattès map.

Proof. We follow ideas and arguments of Lyubich and McMullen (see [15] and [18, §3.3]).
First, by the Poincaré recurrence theorem for conservative actions (see [1]), we have

lim inf
n→∞

d(x, Rn(x))= 0

for almost every x ∈ C(R), where d is the spherical metric. Assume that the set B =
(C(R) ∩ JR) \ PR has positive Lebesgue measure. Then R(B)⊂ B, otherwise if B is not
invariant then the set X = B ∩ R−1(PR) has positive Lebesgue measure. Then Rn(X) ∩ X
has zero Lebesgue measure for n 6= 1 since Rn(X)⊂ PR for all n ≥ 1. This implies that
the sets {R−k(X)} are pairwise almost disjoint, thus X is wandering, which contradicts
that B ⊂ C(R). Then again by the Poincaré recurrent theorem we have

lim sup
n→∞

d(Rn(x), PR)≥ d(x, PR) > 0

for almost every point in B. Now using Koebe distortion arguments as in [14, §1.19] or
[18, §3.3], we obtain that the closure of any invariant positive Lebesgue measure subset E
in B contains a disk and thus E = B = C.

In particular, this holds for E = (SC(R) ∩ JR) \ PR ⊂ B whenever E has positive
measure since, by Proposition 4.1, the set E is invariant.

For the third part, by the hypothesis and Poincaré’s theorem for almost every point
x ∈ C(R) \ PR we have that lim sup d(Rn(x), PR) > 0. Hence, if JR supports a non-zero
invariant Beltrami differential then Theorem 3.17 in McMullen’s book [18] finishes the
proof. �

We also use the following proposition.

PROPOSITION 4.4. Let R be a rational map and let f ∈ L1(C) be a fixed point of the
Ruelle operator R∗.Then there exists a fixed point of the Beltrami operator µ ∈ L∞(C)
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such that
∫
C f (z)µ(z)|dz|2 6= 0. In fact |R∗|| f | = | f | and | f | defines an absolutely

continuous finite invariant measure that satisfies | f |/ f = µ almost everywhere on the
support of f .

Proof. This summarizes the results given in Lemma 11 and Corollary 12 in [17]. �

Note that Lemma 4.3 and Proposition 4.4 give necessary conditions for Sullivan’s and
Fatou’s conjectures.

The following lemma is a consequence of part 3 of Lemma 5 and part 1 of Theorem 3
in [17]. For v in C, define the function γv by

γv(z)=
v(v − 1)

z(z − 1)(z − v)
.

Throughout this paper, the Cesàro averages An(γv) of functions of the form γv will be
always taken with respect to the Ruelle operator R∗.

LEMMA 4.5. Let R be a rational map.
(1) If the Fatou set FR contains a periodic attracting domain V then there exist an

invariant Beltrami differential µ supported on the grand orbit of V and a critical
value v0 such that

∫
C µ(z)γv0(z)|dz|2 6= 0.

(2) If µ is an invariant Beltrami differential in L∞(JR) then µ 6= 0 if and only if there
exists a critical value v0 such that

∫
C µ(z)γv0(z)|dz|2 6= 0.

The following theorem gives a connection between Sullivan’s conjecture and mean
ergodicity on a suitable subspace of L1(C).

THEOREM 4.6. Let R be a rational map such that SC(R) ∩ PR has Lebesgue measure
zero. Then R satisfies Sullivan’s conjecture if and only if R∗ is mean ergodic on Hol(R)
with the topology inherited from L1(JR).

Proof. Assume that R satisfies Sullivan’s conjecture. Then either there is no invariant
Beltrami differential supported on the Julia set or R is a flexible Lattès map. If there is
no invariant Beltrami differential supported on JR then the Beltrami operator on L∞(JR)

does not have fixed points. Hence (Id− R∗)(L1(JR)) is dense in L1(JR). Otherwise,
by the Hahn–Banach theorem, there would exist a non-zero continuous functional L on
L1(JR) such that (Id− R∗)(L1(JR))⊂ ker(L). By the Riesz representation theorem there
exists α ∈ L1(JR) which is fixed by the Beltrami operator and representing the functional
L, which is a contradiction. Then An(R∗)( f ) converges to zero for all f in L1(JR). In
particular, this happens when f ∈ Hol(R). Thus R∗ is mean ergodic.

If R is a flexible Lattès map then, since R is postcritically finite, the space A(SR)

is finite-dimensional. So A(SR) coincides with the subspace Hol(R) and, by the mean
ergodicity lemma, the Ruelle operator R∗ is mean ergodic. Note that for this part of the
proof we do not need that SC(R) ∩ PR has Lebesgue measure zero.

Conversely, assume that R∗ is mean ergodic in Hol(R). To finish the theorem it is
sufficient to show that if the Julia set JR supports an invariant Beltrami differential then R
is a flexible Lattès map. Indeed, by Lemma 4.5, every fixed point of the Beltrami operator
supported on the Julia set defines a continuous invariant functional L on L1(JR) which
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is non-zero on Hol(R). Let φ in Hol(R) be such that L(φ) 6= 0. By mean ergodicity
An(R∗)(φ) converges to some non-zero element f in L1(JR). By Proposition 4.4, | f |
defines an absolutely continuous finite invariant measure, hence supp( f )⊂ SC(R). Since
SC(R) ∩ PR has measure zero, it follows that by Lemma 4.3 the map R is a flexible Lattès
map. �

Let us note that Theorem 4.6 holds even when SR = ∅. Moreover, when PR 6= JR , we
can consider the space A(SR) instead of Hol(R) and get the same conclusion as in the
previous theorem. As mentioned in the introduction, conjecturally, for a map R with non-
empty Fatou set, the condition on the postcritical set of the previous theorem is always
fulfilled. On the other hand, the mean ergodicity of Ruelle operator is a rather simple
consequence of geometric conditions of SR . For example, the Cesàro averages An(γv) are
weakly convergent on measurable subsets Y of SR of finite hyperbolic area (see [4] and
discussion therein). Hence, the existence of fixed points of the Ruelle operator is the main
obstruction to extending Theorem 4.6 in full generality.

In general, as the following corollary shows, the Ruelle operator for rational maps is
not mean ergodic on A(SR) or L1(C).

COROLLARY 4.7. Let R be a rational map.
(1) If FR contains an attracting periodic component then R∗ : A(SR)→ A(SR) is not

mean ergodic.
(2) If FR contains a periodic non-rotational component then R∗ : L1(C)→ L1(C) is not

mean ergodic.

Proof. Part (1) is proved by contradiction. Let V be an attracting domain of FR and
assume that R∗ is mean ergodic on A(SR). Then by part (1) of Lemma 4.5, there exists
a Beltrami differential µ, supported on the grand orbit of V , such that the functional
lµ(φ)=

∫
C µ(z)φ(z)|dz|2 6= 0 on A(SR) and lµ(R∗φ)= lµ(φ). By the mean ergodicity

lemma, there exists ψ ∈ A(SR) with R∗(ψ)= ψ such that lµ(ψ) 6= 0. This implies that
the restriction f of ψ on the grand orbit of V is non-zero and it is a fixed point of R∗.
By Proposition 4.4, the function | f | defines a finite invariant measure. However, the grand
orbit of V belongs to the dissipative set. Hence, using arguments similar to the previous
theorem, we can show that f is zero almost everywhere on the grand orbit of V . This is a
contradiction.

We now turn to part (2). Under this hypothesis, it is enough to show that the grand orbit
of any non-rotational periodic domain supports a non-zero invariant Beltrami differential.
We conclude this part using the classification of Fatou components and arguments similar
to those of part (1). In part (1) we already considered the attracting case, so by the
classification of Fatou components, we have to consider the cases where there is a Fatou
component V which is either parabolic or superattracting. In the parabolic case, let 8
be a linearization function defined on the grand orbit of V , that is, a function satisfying
8(R(z))=8(z)+ 1. Then a short computation shows that the function µ=8′/8′ gives
a non-zero invariant Beltrami differential. In the superattracting case, let 8 now be the
Böttcher coordinate around a neighbourhood U of the superattracting cycle. Let ν(z)=
88
′
/88′. Then for z ∈U we have ν(R(z))(R′(z)/R′(z))= ν(z). Using the dynamics of
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R, we can extend to a non-zero invariant Beltrami differential defined on the grand orbit
of U . �

Remark. By the corollary above, in order to deal with mean ergodicity of the Ruelle
operator on A(SR), we will often assume that R does not accept invariant Beltrami
differentials defining non-trivial quasiconformal deformations supported on the Fatou set.
According to [19, Theorems 6.2 and 6.8], this is the same as saying that there are no
Herman rings and if c is a critical point in FR , then either
(1) O+(c)=

⋃
n Rn(c) is finite, or

(2) O+(c) accumulates to a parabolic point p and there is no other critical point c̃ ∈ FR

with forward orbit O+(c̃) accumulating to p and O+(c̃)
⋂

O+(c)= ∅.

In other words, any non-zero invariant functional on the space A(SR) is induced by an
R∗-invariant Beltrami differential supported on the Julia set. Indeed we have the following
equivalent statement.

PROPOSITION 4.8. Any non-zero invariant functional on the space A(SR) is induced by
an R∗-invariant Beltrami differential supported on the Julia set if and only if the Cesàro
averages An( f ) converge to zero with respect to the L1 norm over the Fatou set for every
f ∈ A(SR).

Proof. Let A(FR) be the space of holomorphic Lebesgue integrable functions on FR . Then
R∗ acts on A(FR) with ‖R∗‖ ≤ 1.

We prove the proposition by contradiction. If there exists f ∈ A(SR) such that∫
FR
|An( f )| does not converge to zero, then by the separation principle on the space A(FR)

there exists a non-zero R∗-invariant continuous functional l with l( f |FR ) 6= 0.
On the other hand, by the Hahn–Banach extension and Riesz representation theorems

there exists a function ν ∈ L∞(FR) representing l on A(FR), that is, l(g)=
∫

FR
gν|dz|2

for every g ∈ A(FR). We claim that we can choose ν to be an invariant Beltrami differential
supported on FR . Indeed, if ν is not invariant then take any ∗-weak accumulation point
of the sequence νn = (1/n)

∑n−1
i=0 Bi (ν) where B is the Beltrami operator. Then by the

mean ergodicity lemma ν∞ ∈ L∞(FR) is an invariant Beltrami differential supported on
the Fatou set. Moreover, ν∞ defines the same functional on A(FR) as ν.

Indeed, consider a subsequence ni such that νni → ν∞ in the ∗-weak topology on
L∞(FR) so we have∫

FR

g(z)ν∞(z)|dz|2 = lim
i→∞

∫
FR

νni (z)g(z)|dz|2

= lim
i→∞

∫
FR

ν(z)Ani (g(z))|dz|2

= lim
i→∞

1
ni

ni−1∑
j=0

l(R∗ j (g))= l(g).

Hence L(g)= l(g|FR ) for g ∈ A(SR) gives a non-zero continuous R∗-invariant functional
on A(SR) induced by an invariant Beltrami differential supported on FR as claimed.
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To get a contradiction we need to show that there is no Beltrami differential µ supported
on JR such that

L(g)=
∫
C
µ(z)g(z)|dz|2 =

∫
C
ν(z)g(z)|dz|2

for any g ∈ A(SR).
Assume that there is such a µ. Let φ(a)=

∫
C γa(z)(ν(z)− µ(z))|dz|2 be the potential

function for the invariant differential ν − µ. Then φ is a continuous function on C. Since
γa ∈ A(SR) for a ∈ PR , we have φ(a)= 0. Now we follow the proof of Theorem 3 in [17].
By invariance we have φ(R(a))= R′(a)φ(a), which implies that φ(a)= 0 for every
repelling periodic point a, and hence on JR . Therefore ∂φ = ν − µ= 0 almost everywhere
in JR , which is a contradiction. �

Later on, we will discuss the relation between the topologies on Hol(R) induced by L1

norms over the Fatou and the Julia set, respectively.
Next we give some conditions under which the Ruelle operator does not have a fixed

point. We call an integrable function f regular if the derivative ∂ f , taken in the sense of
distributions, is a finite complex-valued measure. Examples of non-regular functions are
given by characteristic functions of suitable compact sets. See the remark after the proof
of the following theorem.

THEOREM 4.9. Let R be a rational map. Assume that the postcritical set PR is such that
either
• the diameter with respect to the spherical metric of all components D of SR is

uniformly bounded away from zero, or
• JR ∩ PR is contained in the union of the boundaries of the components of SR .
Then R∗ has a regular non-zero fixed point if and only if R is a flexible Lattès map.

Proof. Assume that R is a flexible Lattès map. Then R has an invariant Beltrami
differential µ unique up to multiplication by scalars (see Milnor [20]). This differential
µ defines a non-zero functional lµ on A(SR) given by the pairing

lµ(φ)=
∫
C
φ(z)µ(z)|dz|2.

Since A(SR) is finite-dimensional, R∗ is mean ergodic on A(SR), and by the separation
principle there exists a non-zero fixed point f ∈ A(SR) of the Ruelle operator, which is
unique up to multiplication by scalars. Since f is an integrable holomorphic function
outside finitely many points of C, the function f is rational with simple poles only. Hence
the distributional derivative ∂ f is a finite combination of Dirac measures supported on the
poles of f .

The Beltrami differential µ is a unique fixed point of the Beltrami operator. Since the
Beltrami operator B : L1(C)→ L1(C) is dual to R∗, it follows by the separation principle
that the operator R∗ is mean ergodic on L1(C). Hence f ∈ L1(C) is a unique fixed point
of the Ruelle operator up to scalar multiplication.

Now let f be a non-zero regular fixed point of the Ruelle operator. Then by
Proposition 4.4 the function | f | is the density of a finite invariant measure and there is
an invariant Beltrami differential µ with µ= | f |/ f on supp( f ). Hence supp( f )⊂ SC(R)
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by Proposition 4.1. Then by Lemma 4.3 either R is a flexible Lattès map or the support
supp( f ) is contained in the postcritical set.

Without loss of generality we may assume that PR is a proper subset of C. Let ν be such
that dν = ∂ f and set

F(z)=
∫
C

dν(t)
t − z

.

Since the support of ν belongs to the support of f , the map F(z) is holomorphic
outside PR . Note that F(z)= f (z) holds for Lebesgue almost every point. Indeed, by
Weyl’s lemma there exists an entire function h(z) such that h(z)= F(z)− f (z) almost
everywhere. Since f (z) has compact support, F(z) converges to zero as z converges to∞,
thus h(z)= 0. In particular, F(z) is identically zero outside the support of ν.

We claim that the first condition of Theorem 4.9 implies that ν is identically zero on
C. Recall that the generalized Mergelyan theorem (see, for example, Theorem 10.4 in
Gamelin’s paper [8]) states: if the diameters of all components of the complement of a
compact set K on the plane C are bounded away from zero then any continuous function
which is holomorphic on the interior of K is a uniform limit of rational functions with poles
outside of K . Since PR satisfies the conditions of the generalized Mergelyan theorem and
has empty interior, any continuous function on PR is a uniform limit of rational functions
with poles outside PR . Given a finite set of complex numbers bi and points ai in C \ PR ,
define r(z)=

∑
(bi/(z − ai )) and we get∫

rdν =
∑

bi F(ai )= 0.

Hence ν represents a zero functional on the space of continuous functions on PR . By the
Riesz representation theorem the measure ν is null as claimed.

Thus f (z)= 0 almost everywhere, which is a contradiction.
We now assume that PR satisfies the second condition and follow closely the arguments

of part 3 of Proposition 14 in [17]. Let {Yi } be the family of all components of C \ PR .
Then we claim that f (z)= 0 almost everywhere on

⋃
i ∂Yi ⊂ PR whenever F(z)= f (z)

almost everywhere.
Otherwise, there exist a component Yi0 and E ⊂ ∂Yi0 with m(E) > 0 and

∫
E f 6= 0.

Since PR is compact we can assume that ∞ belongs to Yi0 by conjugating by a Möbius
map. Then the function FE (z)=

∫
E (|dt |2/(t − z)) is a continuous function on the plane

which is holomorphic outside ∂Yi0 . Again, by the generalized Mergelyan theorem FE is
a uniform limit of rational functions with poles in Yi0 . Hence, using similar arguments to
those above, we obtain

∫
FE (z)∂ f (z)= 0. Applying Fubini’s theorem, we compute

0=
∫

FE (z)∂ f (z)=
∫
∂ f (z)

∫
E

|dt |2

t − z

=

∫
E
|dt |2

∫
∂ f (z)
t − z

.

=−

∫
E

F(t)|dt |2 =−
∫

E
f (t)|dt |2.

This is a contradiction, so we have the claim.
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Now if PR ⊂
⋃
∂Yi then by the claim f (z)= 0 almost everywhere in C. This

contradiction finishes the proof. �

Let us note that if PR ∩ JR ⊂ ∂V , where V is a component of the Fatou set FR then the
second condition of the theorem is always satisfied. Indeed, in this situation only finitely
many components of FR contain PR ∩ JR on its boundary and hence PR ∩ JR belongs to
the boundary of finitely many components of SR . So if R has a completely invariant Fatou
component then R satisfies the second condition of the theorem. In the other hand, we do
not know an example of a rational map R such that SR has infinitely many components.
On the discussion above we saw that the convergence of Cesàro averages on subspaces
of L1(C) is closely related to the existence of non-trivial invariant Beltrami differentials
under some conditions.

Remark. The arguments of the proof of Theorem 4.9 also provide explicit examples
of compact sets whose characteristic functions are not regular. Indeed, let K be a
compact subset satisfying the generalized Mergelyan theorem (e.g. a positive Lebesgue
measure Cantor set). If the characteristic function χK is regular, by Weyl’s lemma we
have χK (x)=

∫
(∂χK /(z − x)) almost everywhere, which contradicts the generalized

Mergelyan theorem.

COROLLARY 4.10. Let R be a rational map satisfying the conditions of Theorem 4.9.
Suppose there exists a critical value v ∈ V (R) such that the total variation of ∂An(γv) is
uniformly bounded. Then R is not structurally stable.

Proof. Since the total variation of the sequence ∂An(γv) is uniformly bounded, it is ∗-
weakly precompact when acting on continuous functions.

Let m0 be a complex-valued measure which is a ∗-weak accumulation point of this
sequence. Since supp(∂An(γv))⊂ PR , we have supp(m0)⊂ PR . Considering ∂An(γv) as
measures, a straightforward computation shows that

An(γn)(z0)=−

∫
C

∂An(γv)(t)
t − z0

=−

∫
PR

∂An(γv)(t)
t − z0

for every z0 outside PR .
If m0 6= 0 then, as in Theorem 4.9, by the generalized Mergelyan theorem the integral

−
∫
C (dm0(t)/(t − z)) is non-zero and is an accumulation point of An(γv) in the topology

of pointwise convergence on SR . Therefore, this integral is a regular non-zero fixed point.
By Theorem 4.9, the map R is a Lattès map which is not structurally stable.

The remaining the case is when ∂An(γv) converges to zero in the ∗-weak topology. Let
µ ∈ L∞(C) and consider its potential function

Fµ(z)=−
z(z − 1)
π

∫
µ(ζ )|dζ |2

ζ(ζ − 1)(ζ − z)
.

Recall that Fµ is continuous on C and satisfies ∂Fµ(z)= µ(z) in the sense of
distributions. We claim that if µ is a fixed point of the Beltrami operator then we have∫
C µ(z)γv(z)|dz|2 = 0.
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Indeed, since
∫

Fµ(z)∂An(γv)(z) converges to zero and µ is invariant, we have that∫
C

Fµ(z)∂An(γv)(z)=−
∫
C
∂Fµ(z)An(γv)(z)|dz|2

=−

∫
C
µ(z)An(γv)(z)|dz|2,

which by duality and the invariance of µ implies∫
C
µ(z)An(γv)(z)|dz|2 =

∫
C
µ(z)γv(z)|dz|2 = 0

as claimed.
If R is structurally stable and µ is an invariant differential then by part (3) of Lemma 5

in [17], the potential Fµ satisfies for a ∈ C the equation

Fµ(R(a))− R′(a)Fµ(a)=−R′(a)
∑

ci

1
R′′(ci )

Fµ(R(ci ))γa(ci ), (*)

where the sum is taken over all critical points ci with i = 1, . . . , 2deg(R)− 2. Moreover,
by [17, Theorem 3] there exists a (2deg(R)− 2)-dimensional space X of invariant
Beltrami differentials, so that the correspondence

β : µ 7→ Fµ(R(a))− R′(a)Fµ(a)

is a linear isomorphism of X onto its image. But by the claim,

Fµ(v)=
∫
C
µ(z)γv(z)|dz|2 = 0

for every invariant Beltrami differential µ, in particular for µ ∈ X . Since v is a critical
value, we get, using the right part of equation (*), that the space β(X) has dimension at
most 2deg(R)− 3, which is a contradiction. �

As an immediate corollary we have the following result.

COROLLARY 4.11. Assume the Julia set JR has positive Lebesgue measure. Then JR does
not support a non-zero invariant Beltrami differential if and only if, for any critical value
v, the sequence ∂An(γv) converges to zero on every continuous function φ on JR with
distributional derivative φz ∈ L∞(JR).

Proof. The proof is by contradiction. First, note that for every continuous function φ with
distributional derivative φz we have∫

φ∂An(γv)=−

∫
φz An(γv(z))|dz|2.

By duality,

−

∫
φz An(γv(z))|dz|2 =−

1
n

n∑
j=1

∫
B j (φz)γv(z)|dz|2,
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where B is the Beltrami operator. If there exists φ such that the sequence
∫
φ∂An(γv)

does not converge to zero, then any accumulation point of −(1/n)
∑n

j=1 B j (φz) is a non-
zero invariant Beltrami differential. Conversely, if there is a non-zero invariant Beltrami
differential µ, then its potential Fµ is continuous and (Fµ)z = µ, and

−Fµ(v)=
∫
µ(z)An(γv(z))|dz|2 =

∫
Fµ∂An(γv)

converges to zero. So −Fµ(v)= 0 for all critical value v. This contradicts part (2) of
Lemma 4.5. �

In the following statements we show that there are no fixed points of the Ruelle operator
among the examples of non-regular functions mentioned above.

PROPOSITION 4.12. Assume that a function g = f + cχA, where c is a constant and χA

is the characteristic function of a measurable set A such that A \ supp( f ) has positive
measure. If g is a fixed point of the Ruelle operator then R∗( f )= f and c = 0.

Proof. If B = A \ supp( f ), then by Propositions 4.1 and 4.4 we have that D = B ∩
SC(R) has positive measure and µ(z)= |g(z)|/g(z)= µ(R(z))(R′(z)/R′(z)) almost
everywhere on supp(g). Then there exists k such that the measure of D ∩ Rk(D) is
positive, and hence the set C = D ∩ (Rk)−1(D) has positive measure. Moreover, we have
µ= |c|/c on C . If c 6= 0 then by invariance of µ, we have that (Rk)′ is real-valued on C
and thus C ⊂ ((Rk)′)−1(R), which contradicts m(C) > 0. �

As an immediate corollary we have that a simple function cannot be a fixed point of the
Ruelle operator.

COROLLARY 4.13. If f =
∑

ciχAi where the Ai are distinct measurable sets, then f is a
fixed point of the Ruelle operator if and only if ci = 0 for all i .

Let us show that for any infinite closed set K in C, the space H(K ) always contains a
non-regular function, even when K has zero Lebesgue measure. On the other hand, H(K )
contains characteristic functions if and only if K has positive measure. Nevertheless, by
Lemma 4.3, Proposition 4.4 and Theorem 4.6, if the postcritical set has measure zero then
any fixed point of the Ruelle operator is necessarily a regular function. In general, we
conjecture that any fixed point of the Ruelle operator is necessarily a regular function. In
the last section we will discuss the existence of fixed points when the postcritical set has
positive measure.

PROPOSITION 4.14. Let K be an infinite closed subset of C. Then H(K ) contains non-
regular functions.

Proof. It is enough to show the proposition when K is a bounded infinite closed subset
of C. Otherwise we can compose with a Möbius map. For µ ∈ L∞(C) the assignment
µ 7→ Fµ|K defines a continuous compact operator S : L∞(C)→ C(K ) (see Theorem 7 of
Ch. 3, p. 56 of [9]). Then the dual operator S∗ : M(K )→ L∗∞(C) defined on the space
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M(K ) of all finite complex-valued measures with total variation as norm is also compact.
By direct computation we have that if ν ∈ M(K ) then

S∗(ν)(z)=
∫
γa(z) dν(a).

Hence by Fubini’s theorem the image of S∗ belongs to H(K ). If U ∈ M(K ) is the closed
unit ball, then S∗(U ) is closed in H(K ).

If every element in H(K ) is regular so H(K )=
⋃

n≥0(S
∗(nU )) then by Baire’s

category theorem there exists n0 such that S∗(n0U ) has non-empty interior. But, by the
compactness of S∗ any ball inside S∗(n0U ) is finite-dimensional, which implies that H(K )
has finite dimension and hence K is finite. This is a contradiction. �

We endow the space Hol(R) with two non-complete norms. The first is given by | f |1 =∫
FR
| f | and the second by | f |2 =

∫
JR
| f | for f ∈ Hol(R). Let us call Hol1 and Hol2 the

respective normed spaces. If the Fatou set is empty then Hol1 = 0. Similarly, Hol2 = 0
when the Julia set has measure zero. The operator R∗ is a contraction on each space.

Next we show that any compatibility between these two topologies on Hol(R) gives rise
to a sort of rigidity of the dynamics of R.

PROPOSITION 4.15. Fix a rational map R with FR 6= ∅.
(1) If the identity map Id : Hol1→ Hol2 is continuous, then there are no fixed points of

the Beltrami operator on the Julia set JR .
(2) If the Fatou set FR admits an invariant Beltrami differential defining a non-zero

functional on Hol1, then Id : Hol2→ Hol1 is continuous if and only if JR has
Lebesgue measure zero.

Proof. For part (1), suppose that there is a non-zero fixed point µ of the Beltrami operator
on the Julia set. Then µ defines a non-trivial invariant continuous linear functional lµ on
Hol2. Since Id is a continuous operator, the functional l(α)= lµ(Id(α)) is a continuous
invariant linear functional on Hol1 and hence extends to the completion Hol1 ⊂ L1(FR)

of Hol1 with respect to its norm. By the Hahn–Banach and Riesz representation theorems
there exists a function ν ∈ L∞(FR) such that

l(φ)=
∫

FR

φ(z)ν(z)|dz|2

for all φ ∈ Hol1.
As in the proof of Proposition 4.8, we can assume that ν is a fixed point of the Beltrami

operator supported on the Fatou set.
In particular, for γa ∈ Hol(R) with a ∈ PR, the continuous functions Fν∞(a)=∫

C γa(z)ν∞(z)|dz|2 and Fµ(a)=
∫
C γa(z)µ(z)|dz|2 coincide on the orbit of all critical

values, and hence on PR . However, this contradicts [17, Theorem 3], using an analogous
argument to the proof of Proposition 4.8.

For part (2), notice that if the Julia set has measure zero, then Hol2 consists only of the
zero function. So assume that the Lebesgue measure of the Julia set is not zero. Let µ a
fixed point of Beltrami operator with

lµ(φ)=
∫

FR

φ(z)µ(z)|dz|2 6= 0.
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Applying the same arguments as in part (1), we get a continuous linear functional on
Hol2 defined by a fixed point of the Beltrami operator now supported on the Julia set.
This again, by an analogous argument of Proposition 4.8 gives a contradiction, hence the
Lebesgue measure of JR is zero. �

Now define X = (Id− R∗)(Hol(R)) and let X1 and X2 be the closures of X in the
spaces of Hol1 and Hol2, respectively. The proof of Theorem 4.6 shows that if there is no
invariant Beltrami differential supported on a Julia set of positive measure, then we get
X2 = Hol2 which coincides with Hol(R) as a set and hence also X1 ⊂ X2. We will prove
the converse in Proposition 4.17 below. First we need a technical result.

LEMMA 4.16. Let l be a linear functional on Hol(R). If X1 ⊂ ker(l) then l is continuous
on Hol1.

Proof. Let W be the finite-dimensional space of all linear combinations of the functions
γv , with v a critical value of R. We will show first that Hol1 equals the sum X1 +W ; note
that X1 ∩W may be non-zero. Indeed, by definition the space Hol1 is the linear span of
γa(z) where a is an element in the union of the forward orbits of all critical values. For
every critical value v of R, by Lemma 5 of [17], we have

R∗(γv)=
1

R′(v)
γR(v) + w

for some w in W . Since R∗(γv)− γv ∈ X1 and −w + γv ∈W , the element γR(v) is a sum
of elements in X1 and W . But X1 is invariant under R∗, so by an induction argument
we conclude that γvn ∈ X1 +W for every vn = Rn(v). Therefore the space X1 has finite
codimension on Hol1.

If X1 ⊂ ker(l) then l projects to a linear functional L defined on the finite-dimensional
space Hol1/X1. As X1 is closed this implies that both L and l are continuous. �

PROPOSITION 4.17. Suppose that the Julia set JR 6= C and has positive Lebesgue
measure. Then the only invariant Beltrami differential supported on JR is zero if and only
if X1 ⊂ X2.

Proof. If there is no invariant Beltrami differential supported on the Julia set, then, as in
Theorem 4.6, X2 = Hol2. Since the Lebesgue measure of JR is positive, Hol2 coincides
as a set with Hol(R). In other words, every element ω ∈ Hol(R) can be approximated by
elements of the form αi − R∗(αi ) with αi ∈ Hol(R) in L1(JR) and hence X2 contains X1.

In the other direction, assume X1 ⊂ X2. As in Lemma 4.16, we have Hol(R)= X1 + F
for some finite-dimensional vector space F ⊂W . For an invariant Beltrami differential µ
supported on the Julia set, the assignment lµ(φ)=

∫
JR
φ(z)µ(z)|dz|2 defines an invariant

linear continuous functional on Hol2 for which we have X2 ⊂ ker(lµ). Lemma 4.16
shows that lµ is continuous on Hol1, so by the Riesz representation theorem there is a
function ν ⊂ L∞(FR) so that lµ(φ)=

∫
FR
φ(z)ν(z)|dz|2. However, since µ is invariant,

using analogous arguments to the proof of Proposition 4.15, we again get a contradiction
to [17, Theorem 3]. �
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5. Action on L p spaces
If we want to extend the theory to L p(K ) spaces (with K completely invariant), we need
to modify the operators somehow in an ad hoc manner. In the formulas below, d denotes
the degree of R. Let p, q be such that 1/p + 1/q = 1.

The action of R by pull-back on L p is given by

R∗p(φ)=
1

p√d
(φ ◦ R)|R′|2/p R′

R′(z)
,

when φ ∈ L p.
Similarly, the push-forward action of R on Lq (for 1< q <∞) is defined by

R∗q(φ)=
1

p√d

∑
φ(ζi )

ζ ′i

ζ ′i

|ζ ′i |
2/q ,

where the sum is taken over all branches ζi of R−1, that is, they satisfy R(ζi (z))= z for
almost all z. The constants are suitably chosen so that R∗p and R∗q are mutually dual.
Indeed, if φ ∈ L p then for any g ∈ Lq , we have∫

R∗p(φ(z))g(z) |dz|2 =
1

p√d

∫
φ(R(z))|R′(z)|2/p R′(z)

R′(z)
g(z) |dz|2

and, after changing variables with R(z)= t , is equal to

1
p√d

∫
φ(t)

[ d∑
i=0

(
g|R′|2/p R′

R′

)
(ζi (t))|ζ ′i (t)|

2

]
|dt |2

for all branches ζi of R−1. By direct calculation, for every i we have(
|R′|p/2

R′

R′

)
(ζi )|ζ

′

i |
2
= |ζ ′i |

2/q ζ
′

i

ζ ′i

.

Hence the previous expression is equal to∫
φ(t)[R∗q(g)](t)|dt |2.

Moreover, we have R∗p ◦ R∗p = Id on L p.
We now have two continuous families of contractions depending on p > 0, which are

mutually dual for p ≥ 1 and include the Ruelle and Beltrami operators, for p = 1 and
p =∞, respectively.

The next theorem is the L p version of the action of Ruelle operators (compare with
the previous section). Unfortunately, for 1< p <∞, the Ruelle operator on L p does not
detect whether there is an invariant Beltrami differential without an associated fixed point
for the Ruelle operator.

THEOREM 5.1. Let K be a completely invariant set of positive measure. Given p with
1< p <∞, the operator R∗p has a fixed point in L p(K ) if and only if R is a flexible Lattès
map.
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Proof. If R∗p has a fixed point then its dual R∗q has a fixed point on Lq(K ). Let ψ be a
fixed point of R∗q . Then |ψ |/ψ is an invariant Beltrami differential. On the other hand, the
function f = |ψ |q is integrable and satisfies

f (z)=
f (R(z))|R(z)′|2

deg(R)
.

In this case supp( f ) is completely invariant. By Proposition 4.1 and the discussion
afterwards, either R is a Lattès map or supp( f )⊂ C(R) ∩ PR ⊂ JR . But the latter is not
possible. Indeed, let E be the operator E : C(JR)→ C(JR) on the space of complex-
valued continuous functions φ on JR given by

ER(φ)(z)=
1

deg(R)

∑
i

φ(ζi (z)),

where the sum is taken over all branches ζi of R−1.
Let us recall Lyubich’s theorem [15, Theorem 5] which states that every continuous

functional invariant with respect to E is induced by a multiple of the maximal entropy
measure.

Let ν(z) be the measure such that dν(z)= f (z) |dz|2. Now∫
JR

ER(φ)dν =
1

deg(R)

∫
JR

[∑
i

φ(ζi (z))
]

f (z)|dz|2.

By the arguments and computations of Proposition 2.1, the latter is equal to

1
deg(R)

∫
JR

φ(z) f (R(z))|R′(z)|2|dz|2 =
∫

JR

φ dν.

Then ν is a multiple of the maximal entropy measure. By Zdunik’s theorem (see [24]) R
is a postcritically finite rational map. Hence f (z)= 0 almost everywhere since supp( f )⊂
C(R) ∩ PR , which is a contradiction. Thus R is a flexible Lattès map.

Conversely, if the map R is a flexible Lattès map, then there exists an integrable
function f0 such that f0 = f0(R)(R′)2/degR and µ(z)= f0(z)/| f0(z)| is a fixed point
of the Beltrami operator. Therefore ψ = | f0|

1/pµ is a fixed point for R∗p on L p(K ) and
induces a fixed point of the Ruelle operator in L p(K ). Since the dual operator satisfies
R∗q ◦ R∗q = Id, the converse follows immediately. �

Note that the theorem above shows that if R∗p0
has a non-zero fixed point in L p0(K ) for

some p0, then R∗p has a fixed point in L p(K ) for all p with 1< p <∞.

6. Fixed points of bidual actions and uniform ergodicity
In this section, we start with the following lemma which is a summary of results due to
Lotz in [13].

LEMMA 6.1. Let B be a Grothendieck space with the Dunford–Pettis property and let
S : B→ B be a power-bounded operator.
(1) If S is mean ergodic, then S is uniformly ergodic.
(2) If the space Fix(S∗) of fixed points of the dual of S is separable then S is uniformly

ergodic and the Cesàro averages uniformly converge to a compact projection.
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Part (1) is the content of [13, Theorem 5]. Part (2) is the content of [13, Theorem 7].
For the rational map R, let T : B(SR)→ B(SR) be the Thurston operator as defined in

§3. We have the following theorem.

THEOREM 6.2. Let R be a rational map such that PR is not the whole sphere, the
conservative set C(R) does not contain any Fatou component and 1 belongs to the
spectrum σ(R∗) on A(SR). Then the following four conditions are equivalent.
(1) The space Fix(T ∗) is separable.
(2) The operator T is mean ergodic.
(3) The Ruelle operator R∗ is uniformly ergodic.
(4) The map R is a flexible Lattès map.

Proof. By the discussion on §3, the space B(SR) is a Grothendieck space with the
Dunford–Pettis property. Then Lemma 6.1 applied to the operator T gives the implications
from (1) to (2) and from (2) to (3).

To show that (3) implies (4), note that, since R∗ is a contraction, R∗ is a power-bounded
operator. By the uniform ergodicity lemma and the assumption, the value 1 is an isolated
eigenvalue of σ(R∗). Then the Ruelle operator R∗ has a non-zero fixed point φ in A(SR).
Hence by Proposition 4.4, the modulus |φ| defines an invariant finite measure such that the
support of |φ| contains a component of SR . Then by Proposition 4.1 and Lemma 4.3 the
map R is a flexible Lattès map.

Now we show that (4) implies (1). For a flexible Lattès map, the space A(SR) is
finite-dimensional, and hence A∗(SR) and its dual are finite-dimensional too, which
implies (1). �

The condition that 1 belongs to the spectrum is necessary for the discussion around
Sullivan’s conjecture. Otherwise, the Beltrami operator does not have fixed points.
However, in this situation there are open questions:
(1) Does there exist a rational map R with infinite postcritical set such that the norm of

R∗ on A(SR) is strictly smaller than 1?
(2) Or more generally, is it true that if 1 does not belong to the spectrum of R∗ on A(SR)

then R is postcritically finite?
By the uniform ergodicity lemma, the conditions of the questions above imply that R∗ is
uniformly ergodic on A(SR).

The following corollary gives a partial answer to these questions for the class of J -stable
rational maps.

COROLLARY 6.3. If R is J -stable such that PR 6= JR then the following statements are
equivalent.
(1) The operator R∗ is uniformly ergodic on A(SR).
(2) The map R is hyperbolic and postcritically finite.

Proof. Condition (2) implies (1) since, in this case, A(SR) is finite-dimensional.
For the converse, first note that 1 does not belong to σ(R∗). Indeed, if 1 belongs

to σ(R∗) then, by Theorem 6.2, R is a flexible Lattès map, which contradicts
J -stability. Hence every invariant Beltrami differential supported on SR defines a trivial
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quasiconformal deformation. By Lemma 4.5, any non-zero invariant Beltrami differential
supported on the Julia set defines a non-trivial quasiconformal deformation. Hence by
Theorem E in [16], the map R is hyperbolic. Moreover, by Theorem D in [16], we have
that R is postcritically finite. �

If the Julia set JR has positive measure and does not support non-zero invariant Beltrami
differentials, then the action of the Ruelle operator on L1(JR) is mean ergodic because
lim (1/n)

∑n−1
i=0 Bi (µ)= 0 for all µ ∈ L∞(JR) by the mean ergodicity lemma. Thus, by

duality the Cesàro averages of the Ruelle operator converge to zero in the weak topology
and hence in the strong topology by the mean ergodicity lemma. In contrast with this fact,
we show that the action of R∗ on L1(JR) is uniformly ergodic only when JR has Lebesgue
measure zero. In slightly more generality, we prove the following theorem.

THEOREM 6.4. Let R be a rational map. If K is a completely invariant set of positive
Lebesgue measure, then the Ruelle operator is not uniformly ergodic on L1(K ).

Proof. By contradiction. If the measure of K is positive and R∗ is uniformly ergodic in
L1(K ), we claim that R∗ is an automorphism of L1(K ). It is enough to show that R∗ is
injective since R∗ is surjective by the relation R∗ ◦ R∗ = Id.

For every λ with |λ|< 1 and φ non-zero element in L1(K ), the element

φλ =

∞∑
n=0

λn Rn
∗(φ) 6≡ 0

and satisfies λR∗(φλ)= φλ − φ. If φ is a non-zero element in Ker(R∗) then R∗(φλ)=
λφλ. It follows that 1 is not an isolated eigenvalue in the spectrum, which contradicts the
uniform ergodicity of R∗. Therefore R∗ is an isomorphism as we claimed. This, in turn,
implies

R∗ ◦ R∗ = Id

on L1(K ). Now let x1 and x2 be different fixed points of R, and fix a point b different from
x1 and x2. Then the restriction of ωb(z)= ((x1 − b)(x2 − b))/((z − x1)(z − x2)(z − b))
to K is integrable. Since ωb is rational, and the equation R∗ ◦ R∗(ωb)= ωb holds almost
everywhere on a set of positive measure, then it holds on the whole Riemann sphere. If
we take b such that neither b, R(b) nor R−1(b) are critical values of R, then R∗(ωb) has
a non-trivial pole on R(b), which implies that R∗ ◦ R∗(ωb) has poles in R−1(R(b)) which
are different from the poles of ωb. This contradiction finishes the proof. �

We have the following corollary which complements Corollary 6.3 in the case where
PR = C. In this case, since SR = ∅, we consider the uniform ergodicity over Hol(R)
equipped with the L1 topology on C.

COROLLARY 6.5. Let R be a rational map with PR = C. Then R∗ is not uniformly ergodic
on Hol(R) equipped with the topology of L1(C).

Proof. Since PR = C, we have that Hol(R) is everywhere dense in L1(C). If R∗ is
uniformly ergodic in Hol(R), it is also uniformly ergodic on L1(C), which contradicts
Theorem 6.4. �
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Let us observe that the Thurston operator T leaves B0(SR) invariant. Since the Ruelle
operator is continuous in the ∗-weak topology on B0(SR), it follows that R∗ is dual to the
restriction of T to B0(SR), so we have (T |B0(SR))

∗∗
= T .

By the facts discussed in §3, either every endomorphism Q on B0(SR) is compact
or there exists an infinite-dimensional subspace E of B0(SR) such that the restriction
Q|E : E→ B0(SR) is an isomorphism onto its image. Let us consider Q = Id− T and
investigate two extreme situations: first, when Q : B0(SR)→ B0(SR) is an isomorphism
onto its image, that is, the space E is the whole of B0(SR); and second, when Q is a
compact operator. Our goal is to show that these two extreme situations imply the uniform
ergodicity of the operator T , which is equivalent to the uniform ergodicity of R∗.

THEOREM 6.6. If Q = Id− T is either an isomorphism onto its image or a compact
operator, then T is uniformly ergodic.

Proof. If Q : B0(SR)→ B0(SR) is an isomorphism onto its image, then the subspace (Id−
T )B0(SR) is closed, hence T is uniformly ergodic by the uniform ergodicity lemma.

Now assume Q is compact. As a consequence of the spectral decomposition theorem,
for any ε > 0 there is a splitting B0(SR)= Fε ⊕ Xε in which both subspaces, Fε and
Xε , are invariant under Q, with dim(Xε) <∞ and such that the norm of Q restricted to
Fε is less than ε. As Fε and Xε are Q-invariant these are also T -invariant. Consider the
restriction Q|Fε . Since the norm on Fε is small, it follows that (Id− Q)|Fε is invertible.
The von Neumann series yields (Id− Q)−1

=
∑
∞

n=0 Qn , at least on Fε . This means
that (Id− Q)−1

|Fε is a compact operator as it is the norm limit of compact operators.
We have Id− Q = T , and by above T is invertible on Fε and its inverse T−1

|Fε is a
compact operator. Hence T |Fε is a compact isomorphism, which implies that Fε has finite
dimension. Therefore B0(SR) has finite dimension too since Xε is finite-dimensional and
T is a contraction over a finite-dimensional space, thus is uniformly ergodic by the uniform
ergodicity lemma. �

As an immediate corollary we have the following result.

COROLLARY 6.7. Under the conditions of the last theorem, the operator Q is compact if
and only if R is postcritically finite.

Proof. If R is postcritically finite, then B0(SR) has finite dimension. Since Q is
continuous, Q is compact. Conversely, if Q is compact, as in the proof of the previous
theorem, the linear space A(SR), which is dual to B0(SR), has finite dimension. This is
only possible when PR is finite. �

The following is the main theorem of this section.

THEOREM 6.8. Assume that the conservative set C(R) does not intersect the Fatou set
FR . Then the Thurston operator T is mean ergodic on B0(SR). Moreover, T has a non-
zero fixed point in B0(SR) if and only if R is a flexible Lattès map.

Proof. Assume that there is no non-zero fixed point of R∗ : B∗0 (SR)→ B∗0 (SR). Then by
arguments similar to those of the proof of Theorem 4.6 we have that (I − T )(B0(SR))
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is dense in B0(SR). This implies that for φ ∈ B0(SR) the averages (1/n)
∑n−1

i=0 T i (φ)

converge to zero. Then T is mean ergodic in B0(SR).
If R∗ has a fixed point, by Proposition 4.4, Lemma 4.3 and the arguments presented in

the proof of Theorem 6.2 it follows that R is a flexible Lattès map and T is mean ergodic
on B(SR) and hence on B0(SR).

Finally, by the separation principle of §4, a mean ergodic operator T has a non-trivial
fixed point if and only if its dual R∗ has a non-trivial fixed point. By the arguments above
this is the case precisely when R is a flexible Lattès map. �

The following corollary shows that if T has a fixed point in B(SR) close enough to
B0(SR) in Teichmüller distance, with respect to the Teichmüller norm, then R is a Lattès
map.

COROLLARY 6.9. Let R be as in Theorem 6.8. Let α ∈ B(SR) with T (α)= α and
‖α‖T = 1, where ‖ · ‖T is the Teichmüller norm. If

dist(α, B0(SR))= inf
φ∈B0(SR)

‖α − φ‖T < 1,

then R is a flexible Lattès map.

Proof. Given the hypothesis, we can find φ0 ∈ B0(SR) subject to ‖α − φ0‖T < 1. By
Theorem 6.8, T is mean ergodic. If T has a fixed point in B0(SR) then R is a Lattès
map. Otherwise the Cesàro averages An(φ) converge to zero for every φ in B0(SR). In
particular, we have

1= ‖α‖T = lim ‖An(α − φ0)‖T ≤ ‖α − φ0‖T < 1,

which is a contradiction. Thus T has a fixed point in B0(SR) and R is a Lattès map. �

We say that R is dissipative if the dissipative set of R is the whole Riemann sphere; in
other words, the conservative set has Lebesgue measure zero.

THEOREM 6.10. Let R be a dissipative map. Then, for any α in B0(SR), the orbit under
the Thurston operator T n(α) converges weakly to zero.

Proof. Since the conservative set of R has Lebesgue measure zero, by Lemma 4.2, we have
that

∑
n R∗n(φ)(z) absolutely converges almost everywhere in C for every φ in A(SR).

In particular, it follows that R∗nφ converges to zero almost everywhere on C. But R∗nφ
is a bounded sequence in A(SR). Therefore R∗nφ defines a normal family of holomorphic
functions on SR . Hence R∗nφ converges pointwise to zero. By duality, the T orbit of any
element in B0(SR) weakly converges to zero. �

An operator satisfying the conclusion of the previous theorem is called weakly
asymptotic.

THEOREM 6.11. Suppose that the measure of the postcritical set PR is zero and that the
image of the closed unit ball in B0(SR) under Id− T is closed. Then R satisfies Sullivan’s
conjecture.
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Proof. We use [7, Theorems 2.3 and 3.3], which state that, for a separable Banach space
X and power-bounded operator T , if the image of the closed unit ball under (Id− T ) is
closed then either T is uniformly ergodic or the space (Id− T )(X) contains an isomorphic
copy of an infinite-dimensional dual Banach space.

Now let us show that T is uniformly ergodic on B0(SR). By contradiction, if T is
not uniformly ergodic then the space (Id− T )(B0(SR)) contains an infinite-dimensional
dual Banach space Y . By [2, Theorem 1], B0(SR) is isomorphic to a closed subspace of
c0. On the other hand, any closed infinite-dimensional subspace of c0 contains a closed
subspace isomorphic to c0. Hence Y contains an isomorphic copy of c0. Let h : c0→ Y
be this isomorphism onto the image. Since Y is a dual space, the closed unit ball in Y is
∗-weak compact, so the isomorphism h can be extended to a continuous linear operator
O : `∞→ Y . Then O∗ : Y ∗→ (`∞)

∗ is continuous with respect to the ∗-weak topology.
As Y is separable any bounded set of linear functionals contains a subsequence converging
in the ∗-weak topology. Since `∞ is a Grothendieck space, O∗ is a weakly compact
operator. Thus O and hence h are weakly compact. But a separable Banach space with
weakly compact unit ball is reflexive; this contradicts the fact that c0 is not reflexive.
Therefore T is uniformly ergodic on B0(SR).

If T has a fixed point in B(SR), then Id− T is not invertible in B(SR). Then (Id− T ) :
B0(SR)→ B0(SR) is not an isomorphism. Thus by the uniform ergodicity lemma the value
1 is an isolated eigenvalue for T in B0(SR). Then the value 1 is an isolated eigenvalue for
R∗ in A(SR). Hence R∗ is mean ergodic on A(SR). Therefore by hypothesis R∗ is mean
ergodic in Hol(R) with topology inherited by L1(JR). Then Theorem 4.6 finishes the
proof. �

Let us add some comments about the closeness of the image of the closed unit ball under
(Id− T ). Since B(SR) is a dual space, the image of its closed unit ball under (Id− T ) is
always closed. When the image of the closed unit ball of B0(SR) under (Id− T ) is not
closed, consider the space

X = cl((Id− T )−1(B0(SR)))⊂ B(SR).

Then again on X , the image of the closed unit ball under (Id− T ) is closed. But X is
invariant under T and B0(SR)⊕ Fix(T, B(SR))⊂ X . Then we have the following result.

PROPOSITION 6.12. Let X be as in the discussion above. Assume that X satisfies one of
the following conditions:
(1) X is separable;
(2) X is a Grothendieck space;
(3) the operator T : X→ X is mean ergodic.
Then T : B(SR)→ B(SR) is uniformly ergodic.

Proof. If X is separable, since the image of the closed unit ball under (Id− T ) is closed
and (Id− T )(X)= B0(SR), we have that, as in the proof of Theorem 6.11, either T is
uniformly ergodic or B0(SR) contains an isomorphic copy of infinite-dimensional dual
Banach space. But as the proof of Theorem 6.11 shows, B0(SR) cannot contain such a
copy. Hence T is uniformly ergodic.
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If X is a Grothendieck space, then (Id− T ) : X→ B0(SR) is weakly compact. It
follows that (Id− T ) : B0(SR)→ B0(SR) is also weakly compact. Recall that either every
endomorphism Q of B0(SR) is compact or there exists an infinite-dimensional subspace Y ,
isomorphic to c0, such that the restriction of Q on Y is an isomorphism onto its image. We
conclude that (Id− T ) is a compact endomorphism of B0(SR), and by duality (Id− T ) is
also compact on B(SR). Thus T is uniformly ergodic by Theorem 6.6.

Finally, if T : X→ X is mean ergodic then [7, Proposition 3.8] states precisely that the
image of the closed unit ball in B0(SR) under (Id− T ) is closed and the arguments of
Theorem 6.11 apply again. �

In the next section we analyse further properties of X in a more general setting.

7. Hamilton–Krushkal sequences
In this section, to avoid cumbersome calculations and definitions, we consider rational
maps R satisfying two conditions.
• First, there is no non-trivial quasiconformal deformation supported on the Fatou

set. That is, by definition, every invariant Beltrami differential supported on the
Fatou set defines a zero functional on A(SR). Other characterizations are given by
Proposition 4.8.

As mentioned in the introduction, this condition does not impose any restriction on the
study of Sullivan’s conjecture if the Julia set is connected.
• Second, the postcritical set PR does not support an absolutely continuous invariant

measure with respect to the Lebesgue measure.
In other words, the measure of the intersection of PR with the strongly conservative set
SC(R) is zero. In the last section we will discuss and give partial results for the case
where PR ∩ SC(R) has positive measure.

Let us consider the elements γv(z) with v a critical value. Let D = {An(γvi )} be the
set of Cesàro averages for all γvi with vi in the critical value set V (R). A sequence {φk}

in A(SR) is called degenerating non-normalized, if there are constants C and ε > 0 with
ε < ‖φk‖< C such that φk converges to zero pointwise.

By Bers’ isomorphism theorem, we identify A∗(SR) with the space B(SR) and consider
the seminorm on B(SR) given by

K (l)= sup lim sup
k

(|l(φk(z))|),

where the supremum is taken over all sequences {φk} in D.
Note that a sequence in D is either degenerating or precompact in norm. Indeed, if the

sequence {An(γv)} is not degenerating and does not converge in norm, then there exists a
subsequence which converges pointwise and locally uniformly to a non-zero limit which is
fixed by the Ruelle operator. By Lemma 4.3 and Proposition 4.4, the map R is a Lattès map.
By Theorem 6.2, the Ruelle operator R∗ is uniformly ergodic. Then An(γv) converges in
norm for every critical value v, which is a contradiction.

The Hamilton–Krushkal space H K (R) is the zero set of K . Since we have K (l)≤ ‖l‖
on B(SR), the space H K (R) is a closed subspace of B(SR).

A subspace Y of a Banach space X is called coseparable whenever X/Y is separable.
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THEOREM 7.1. A rational map R satisfies Sullivan’s conjecture if and only if H K (R) is
coseparable in A∗(SR).

Proof. If there is no invariant Beltrami differential supported on the Julia set then, by
Theorem 4.6, the action of R∗ on L1(JR) is mean ergodic and the Cesàro averages
converge to zero in L1(JR). Thus by Proposition 4.8 we have that R∗ is mean ergodic
on A(SR). So we get H K (R)= A∗(SR) and that the quotient is separable. If R is Lattès,
then A∗(SR) is finite-dimensional and so is H K (R).

Conversely, assume that H K (R) is coseparable. Then there exist a countable set {αi }

of elements in A∗(SR) such that S = {αi } + H K (R) is dense in A∗(SR). By induction,
and a diagonal argument, we can pick a sequence {nk} such that for every i and every
critical value v the sequence αi (Ank (γv)) converges. Since R∗ is a contraction and S is
an everywhere dense subset of A∗(SR), the Cesàro averages Ank (γv) converge weakly for
every v. By the mean ergodicity lemma, the sequence Ank (γv) converges in norm for all
v. Let µ be a non-zero invariant Beltrami differential. By Lemma 4.5 there exists a critical
value v0 such that

∫
C µ(z)γv0(z) 6= 0. Thus the limit f0 = lim Ank (γv0) is a non-zero fixed

point of the Ruelle operator in A(SR). Since the measure of PR ∩ SC(R) is zero and
SC(R) contains supp( f ), we have that SC(R)= C by part (2) of Lemma 4.3. But µ(z)
not zero almost everywhere, so by part (3) of Lemma 4.3 the map R is a flexible Lattès
map. �

From the arguments in the previous proof, we have the following corollary.

COROLLARY 7.2. If H K (R) is coseparable then the Ruelle operator R∗ is mean ergodic
on A(SR) equipped with the norm inherited from L1(JR).

Also, we have the following result.

COROLLARY 7.3. The space H K (R) is coseparable if and only if codim(H K (R))= 0.

8. Amenability and compactness
In this section our goal is to give compactness conditions for suitable operators under
which a map R satisfies the Sullivan conjecture. We will keep the technical assumptions
given at the beginning of the previous section.

For every critical value v of R define the operator Ev : B(SR)→ `∞ by the formula

Ev(ψ)=
(∫

C
λ−2(z)ψ(z)An(γv)(z)|dz|2

)∞
n=0

.

In particular, an element φ ∈ A∗(SR) belongs to H K (R)whenever Ev(φ) ∈ c0 for every
critical value v. On the image of Ev , the Thurston operator T acts as

T̂v(Ev(ψ))= Ev(T (ψ)).

This formula defines T̂v as a linear endomorphism, not necessarily continuous, of the
image of Ev .
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A mean m on `∞ is a positive linear functional which satisfies three conditions.
• m(1, 1, 1, . . .)= 1.
• If σ is the shift σ(a1, a2, . . .)= (a2, a3, . . .), then m(x)= m(σ (x)) for any x ∈ `∞.
• lim inf |ai | ≤ |m(a1, a2, . . .)| ≤ lim sup |ai |.

A mean is also known as a Banach limit on `∞.
A linear operator O : X→ X (not necessarily continuous) defined on a linear subspace

X (not necessarily closed) of `∞ has an invariant mean if there is a mean on `∞ with
non-zero restriction to X that satisfies m(O(α))= m(α) for α ∈ X . We denote by M(O)
the set of all invariant means for O .

LEMMA 8.1. The set M(T̂v) is empty if and only if Ev(A∗(SR)) consists exclusively of
sequences that converge to zero.

Proof. By definition means are invariant under the shift and bounded by the supremum of
the elements of the sequence; this implies that c0 ⊂ ker(m) for every mean m. Hence, if
Ev(A∗(SR))⊂ c0, we get M(T̂v)= ∅.

Conversely, if there is an element h ∈ A∗(SR) with Ev(h) ∈ Ev(A∗(SR)) \ c0 then
there is a subsequence {n j } such that h(An j (γv)) converges to a non-zero number a. By
duality this implies that A∗n j

(h) allows a subsequence which converges ∗-weakly to a non-
zero element l0 ∈ A∗(SR) that satisfies T (l0)= l0. Then Ev(l0)= (l0(γv), l0(γv), . . .) and,
since Ev(A∗(SR)) is a subspace of `∞, we conclude that Ev(A∗(SR)) contains the constant
sequence 1. This implies that Ev(A∗(SR)) intersects the space of convergent sequences in
a non-empty set. On convergent sequences, the functional l : {ci } 7→ lim ci is continuous.
By the Banach limit theorem there exists an extension L to all of `∞, which is a mean.

Next we show that L is T̂v-invariant on Ev(A∗(SR)). In fact, we have

|T (h)(An(γv))− h(An+1(γv))| ≤
4‖h‖‖γv‖

n
,

for h ∈ A∗(SR). So the difference

|T (h)(An(γv))− h(An+1(γv))|

converges uniformly to zero as n tends to ∞ on any ball of A∗(SR), and hence (σ −
T̂v)Ev(A∗(SR))⊂ c0. Thus (σ − T̂v)Ev(A∗(SR)) belongs to ker(L). The invariance of L
with respect to σ implies the invariance of L with respect to T̂v . Therefore M(T̂v) is non-
empty. �

Next we show the finiteness of M(T̂v) in very special cases.

THEOREM 8.2. The set M(T̂v) is finite if and only if M(T̂v) contains at most one element
or, equivalently, if and only if Ev(A∗(SR)) consists exclusively of convergent sequences.

Proof. The first equivalence is clear after one notices that M(T̂v) is convex, so we just
worry about the second.

If M(T̂v) is empty, by Lemma 8.1 we are done. Otherwise, again by the arguments in
Lemma 8.1, if Ev(A∗(SR))⊂ c then the only invariant mean is given by the restriction of
the limit functional, {an} 7→ lim an . Conversely, we assume that there is only one invariant

https://doi.org/10.1017/etds.2019.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.109


1056 C. Cabrera and P. Makienko

mean m and set X = Ev(A∗(SR)). Again, by the same arguments given in Lemma 8.1, the
space Ev(A∗(SR)) contains the element (1, 1, 1, . . .).

Now we claim that if L is a mean then L(x)= m(x) for all x ∈ X . Indeed, by
Lemma 8.1, we have that (σ − T̂v)Ev(A∗(SR))⊂ c0. It follows that L(T̂v(x))= L(x)
for all x ∈ Ev(A∗(SR)). Since (1, 1, 1, . . .) ∈ Ev(A∗(SR)), we have L|Ev(A∗(SR)) 6= 0. By
uniqueness L(x)= m(x) on Ev(A∗(SR)), so by the continuity of L and m we get our
claim. In particular, Ev(A∗(SR)) ∩ ker(m)⊂

⋂
L ker(L) where the intersection is taken

over all means L .
The space X admits the decomposition X = C · (1, 1, 1 . . .)⊕ (ker(m) ∩ X), and there

is a fixed point of the Beltrami operator µ such that E−1
v (X)= Cµ⊕ E−1

v (ker(m)).
By the Banach limit theorem (see [12, Theorem 4.1]) and the claim above, for every
h ∈ E−1

v (ker(m)) we get

lim
k→∞

1
k

k−1∑
j=0

h(A j (γv))= 0.

But we have
1
k

k−1∑
j=0

h(A j (γv))= h
(

1
k

k−1∑
j=0

A j (γv)

)
,

and thus the sequence fk = (1/k)
∑k−1

j=0 A j (γv) is a weakly convergent sequence of
integrable holomorphic functions. Let φ0 be a weak limit of fk . Then φ0 ∈ A(SR) and
{ fk} is a bounded sequence which, in particular, converges to φ0 in ∗-weak topology,
hence φ0 is a pointwise limit of { fk}. Since µ is invariant and

∫
µγv 6= 0, we have that∫

µφ0 6= 0. Now recall that the sequence {An(γv)} is either degenerating or converges by
norm. If {An(γv)} is degenerating then fk is also degenerating. This implies that φ0 = 0,
which contradicts the existence of µ. Thus {An(γv)} converges in norm. Then Ev(h) is a
convergent sequence for every h ∈ A∗(SR). �

We have the following result.

THEOREM 8.3. The map R is satisfies Sullivan’s conjecture if and only if M(T̂v) is finite
for every critical value v.

Proof. If M(T̂v) is finite then, by Theorem 8.2, it consists of at most one element mv .
The space Ev(A∗(SR)) consists only of convergent sequences for every critical value v.
By definition H K (R) contains all elements h in A∗(SR) such that Ev(h) is a sequence
converging to zero for every critical value v. In other words,

⋂
v ker(mv(Ev(A∗(SR))))⊂

H K (R). But the space ∩vker(mv(Ev(A∗(SR)))) has finite codimension in A∗(SR).
This implies that H K (R) is coseparable in A∗(SR), and by Theorem 7.1 the map R

satisfies Sullivan’s conjecture.
By Corollary 7.3 the space H K (R) coincides with A∗(SR), and by Lemma 8.1 and

Theorem 8.2, the converse follows. �

Now we prove the following theorem.

THEOREM 8.4. Let R be a rational map without rotational domains. Then for any given
critical value v of R, the following statements are equivalent.
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(1) The space M(T̂v) is finite.
(2) The restriction Ev : B0(SR)→ `∞ is weakly compact.
(3) The restriction Ev : H K (R)→ `∞ is compact.
(4) The operator Ev : B(SR)→ `∞ is compact.

Proof. Clearly, we have that (4) implies (3) and (3) implies (2).
Let us show that (2) implies (4). Recall that R does not admit non-trivial quasiconformal

deformations on the Fatou set, that the measure of PR ∩ SC(R) is zero, and FR does
not have rotational domains. Hence by Theorem 6.8, the Thurston operator T is mean
ergodic on B0(SR), so Ev(B0) consists of convergent sequences. Since `1 is isometrically
isomorphic to c∗, it follows that, by duality E∗v : `1→ A(SR)= B∗0 (SR) is given by
E∗v ({an})=

∑
n an An(γv). If Ev is weakly compact on B0(SR) then E∗v is weakly compact

on `1. The image of the canonical basis of `1 is {An(γv)}. By the mean ergodicity lemma,
the sequence {An(γv)} is precompact in norm. Then E∗v is a compact operator. By duality
the operator E∗∗v : B→ `∞ given by Ev|∗∗B0(SR)

(l)= Ev(l)= {l(An(γv))} is compact.
Now let us show that (1) implies (2). By Theorem 8.2, Ev(B(SR)) consists of

convergent sequences. In other words, Ev defines a continuous operator from a
Grothendieck space into a separable space. Since the unit ball in `1 is sequentially
precompact in the ∗-weak topology, by definition of a Grothendieck space, we have that
Ev is a weakly compact operator on B(SR). Hence the restriction of Ev on B0(SR) is also
weakly compact.

Finally, let us show that (2) implies (1). By Theorem 8.2 it is enough to show that
Ev(B(SR)) consists of convergent sequences. But Ev is a compact operator on B(SR) and
Ev(B(SR))= E∗∗v (B0(SR)⊂ Ev(B0(SR)). By mean ergodicity of T on B0(SR), the set
Ev(B0(SR)) consists only of convergent sequences. �

The following corollary is one of the main results of this paper.

COROLLARY 8.5. A rational map R satisfies Sullivan’s conjecture if and only if either the
operator Id− T is compact or the operator Ev is compact for every critical value v.

Proof. First we prove the implication⇒. If R is either a Lattès map or the Julia set does
not support a non-zero invariant Beltrami differential. If R is Lattès the operator Id− T is
compact. The rest follows from Theorems 8.3 and 8.4.

Next we prove the implication ⇐. If Id− T is compact then, by Theorem 6.6, the
operator T is uniformly ergodic on B(SR). If R admits an invariant non-zero Beltrami
differential supported on the Julia set then 1 belongs to the spectrum of T . Then
Theorem 6.2 implies that the map R is Lattès. If Ev is compact for every critical value
v, then R satisfies Sullivan’s conjecture by Theorems 8.3 and 8.4. �

Note that if Id− T is compact then the operators Ev are compact but the converse is not
true. A map R where Ev ◦ (Id− T ) is not compact, for some critical value v, would serve
as a counterexample to Sullivan’s conjecture. However, we have the following observation
which is one of the main motivations of the present work.

PROPOSITION 8.6. The operator Ev ◦ (Id− T ) : B(SR)→ `∞ is compact for every
critical value v.
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Proof. A bounded sequence on B(SR) contains a subsequence which is ∗-weakly
convergent. Let µi be a sequence on B(SR) with ∗-weak limit µ0. Define ωi = Ev ◦ (Id−
T )(µi ) and ω0 = Ev ◦ (Id− T )(µ0). We will prove that ωi converges to ω0 in norm.

From the definition we have

‖ωi − ω0‖ = sup
n

∣∣∣∣∫
SR

An(γv) · (Id− T )(µi )− An(γv) · (Id− T )(µ0)

∣∣∣∣
= sup

n

∣∣∣∣∫
SR

An(γv) · (Id− T )(µi − µ0)

∣∣∣∣ .
However, as T is dual to the Ruelle operator we get∣∣∣∣∫

SR

An(γv) · (Id− T )(µi − µ0)

∣∣∣∣= ∣∣∣∣∫
SR

(Id− R∗)(An(γv)) · (µi − µ0)

∣∣∣∣
≤

2‖γv‖
n
‖µi − µ0‖.

Since ‖γv‖‖µi − µ0‖ is bounded and µi converges ∗-weakly to µ0, we have that
‖ωi − ω0‖ converges to zero as i→∞. Hence Ev ◦ (Id− T ) is compact. �

In general, the compactness of the composition Ev ◦ (Id− T ) does not imply the
compactness of any of the factors. But this implication is true, by Theorem 8.4, if and
only if Sullivan’s conjecture holds true.

For every v, the operator Ev has a canonical extension on L∞(C)with the same defining
formula. When PR 6= C and SC(R) ∩ PR has Lebesgue measure zero, the extension of
Ev on L∞(C) is compact if and only if Ev is compact on B(SR). The extension of the
operators Ev on L∞(C), which we also denote by Ev , gives a sort of “marking” for a
rational map R. Furthermore, the operators Ev induce a topology on the rational maps as
follows.

A sequence of rational maps Ri converges to R0 in the v-sense, where v is a critical
value of R0, if and only if for a given µ ∈ L∞(C) there exists a sequence of critical values
vi of Ri such that Evi (µ)→ Ev(µ) in `∞. When Ri converges to R0 in the v-sense we
will say that R0 is a v-limit of Ri .

PROPOSITION 8.7. If R0 is a v-limit of Ri such that M(T̂vi ) is finite for all critical values
vi of Ri , then M(T̂v) is also finite.

Proof. Let c be the space of convergent sequences. By Theorem 8.2, it is enough to show
that the image Ev belongs to c. By the hypothesis, for every critical value w of Ri the
image of Ew belongs to c. As the space c is closed in `∞, the image of Ev is also a subset
of c. �

In other words, roughly speaking, any v-limit of rational maps satisfying Sullivan’s
conjecture also satisfies Sullivan’s conjecture. Moreover, in general not every
accumulation point in the v-sense has the same degree as the approximating elements.
Further details on this topology will be the subject of a forthcoming work.
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9. A mixing condition
In this section we show that the Ruelle operator does not have fixed points when R satisfies
a kind of mixing condition over its strongly conservative set.

We say that R satisfies the M-condition if, for an invariant ergodic probability measure
ν which is absolutely continuous with respect to the Lebesgue measure supported on the
Julia set JR , R satisfies the following two properties.
(1) If A and B are ν-measurable subsets of SC(R) ∩ JR , then lim ν(B ∩ R−n(A))=

ν(A)ν(B).
(2) There exists a ν-measurable set Aν ⊂ SC(R) ∩ JR with ν(Aν) > 0 such that the

sequence of functions

Bn(χSC(R)(x))=
(Rn)′(x)
(Rn)′(x)

is precompact in the topology of convergence in measure on Aν .
The reader might recognize in the first property the classical mixing condition for invariant
probability measures. We will comment on the second property at the end of this section.
If there is no invariant absolutely continuous probability measure, then the M-condition
is vacuously satisfied. This is the case when the Lebesgue measure of the strongly
conservative set is zero.

PROPOSITION 9.1. Assume R satisfies the first property of the M-condition. Let ν be an
invariant ergodic probability measure absolutely continuous with respect to Lebesgue. Let
W = supp(ν) be the support of ν. Then for every φ in L∞(W, ν), the sequence

(|R∗|)∗n(φ)

converges ∗-weakly to a constant.

Proof. The proof follows from classical ergodic theory, and for the reader’s convenience
we include it here. Let φ be a non-negative function such that dν = φ(z)|dz|2. Since ν is
an invariant probability measure we have |R∗|(φ)= φ. Now consider the space L1(W, ν)
and the operator S on L1(W, ν) given by S(g)= (1/φ)|R∗|(gφ) with dual S∗(ω)= ω(R)
for ω in L∗1(W, ν). Note that S and S∗ are contractions in both L1(W, ν) and L∞(W, ν).
By well-known ergodic theorems (see, for instance, Ch. 6 of Dunford and Schwartz [6]),
both S and S∗ are contracting mean ergodic operators on L p(W, ν) for all 1≤ p <∞.
The first part of the M-condition implies that, for every f and g in L2(W, ν), we have

lim
∫

Sn( f ) gdν = lim
∫

f S∗n(g)dν = lim
∫

f g(Rn)dν =
∫

f dν
∫

gdν.

Since ν is a probability measure, we get the chain of inclusions

L∞(W, ν)⊂ L2(W, ν)⊂ L1(W, ν),

and L2(W, ν) defines an everywhere dense subspace in L1(W, ν). Hence the orbits of S
and S∗ converge weakly in L1(W, ν) and ∗-weakly in L∞(W, ν), respectively. Let f0

be an element in L2(W, ν). Then the weak limits of Sn( f0) and Sn∗( f0) are fixed points
for S and S∗, respectively. But ν is ergodic, so the spaces of fixed points of S and S∗

consist only of constants. The conclusion of the proposition follows from the equality
S∗(µ)= µ(R)= |R∗|∗(µ). �
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THEOREM 9.2. Assume that R is not a Lattès map, that it satisfies the M-condition, and
PR 6= C. Then there is no non-zero fixed point of the Ruelle operator in L1(JR).

Proof. Without loss of generality we can assume that PR is bounded. Now, assume
that there exists a non-zero fixed point f of the Ruelle operator in L1(JR). Then
by Proposition 4.4 there exists a fixed point of the Beltrami operator µ with µ(z)=
f (z)/| f (z)| almost everywhere on supp( f ) and | f | = µ f is the density of a finite invariant
measure ν. After normalization we can assume that ν is a probability measure. By
Proposition 4.1, we have that supp( f )⊂ SC(R). Since µ(z) is not zero almost everywhere
and R is not a Lattès map, by the part (3) of Lemma 4.3 the support of f is a bounded
measurable subset of the postcritical set PR .

For S and S∗ as in the proof of Proposition 9.1, consider the operator given by

Z(g)=
1
| f |

R∗(g| f |),

which defines an endomorphism of L1(supp( f ), ν). In this situation we have that

Z∗(α)(z)= B(α)(z)= α(R)(z)
R′(z)
R′(z)

defines an endomorphism of L∞(supp( f ), ν). We obtain Z(g)= µS(µg) and Z∗(α)=
µS∗(µα). By Proposition 9.1 the orbits of S and S∗ converge weakly to constants; hence
the orbits of the operators Z and Z∗ converge weakly to scalar multiples of µ and µ,
respectively. Let cg be the constant such that Z∗n(g) converges weakly to cgµ.

Let z0 be a density point of supp( f ) and a continuity point of µ. Since supp( f ) is a
subset of the strongly conservative set SC(R) and almost every point supp( f ) is recurrent,
we can assume that z0 is also recurrent. This implies that there exists a sequence {ni } such
that

|µ(Rni (z0))− µ(z0)| → 0.

But µ is invariant, so that |((Rni )′/(Rni )′)(z0)− 1| converges to zero. Using together
that supp( f ) is bounded and the M-condition holds, we can assume that the previous
sequence converges pointwise almost everywhere in Aν ⊂ supp( f ). In this case we have
(Rni )′/Rni (z0)= (Z∗)ni (χsupp( f ))(z0). By the Lebesgue dominated convergence theorem
(Rni )′/Rni converges to its pointwise almost everywhere limit in the L1 norm on Aν .
As norm and weak limits agree whenever they both exist we have cχsupp( f ) = 1/µ(z0).

But cχsupp( f ) does not depend on the point z0 or on the sequence {ni }. Therefore µ(z)=
1/cχsupp( f ) for almost every z in Aν . Since Aν ⊂ SC(R) there exists a natural k0 such that
ν(Aν ∩ Rk0(Aν)) > 0. Hence for a density point y of Aν ∩ Rk0(Aν) there exists a density
point x ∈ Aν so that y = Rk0(x) and by invariance we have

cχsupp( f )(x)= µ(x)= µ(y)
(Rk0)′(x)
(Rk0)′(x)

= cχsupp( f )(x)
(Rk0)′(x)
(Rk0)′(x)

.

Then, again as in the proof of Proposition 4.12, we have Aν ∩ (Rk0)−1(Aν ∩ Rk0(Aν))⊂
((Rk0)′)−1(R). But ν is absolutely continuous with respect to the Lebesgue measure and
ν(Aν) > 0. This contradiction completes the proof. �
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As an immediate corollary we have the following result.

COROLLARY 9.3. If R satisfies the conditions of Theorem 9.2 and there exists a non-zero
invariant Beltrami differential µ, then supp(µ) ∩ SC(R) has Lebesgue measure zero.

Finally, let us comment on the M-condition. According to Rees (see [21]), the
known examples of rational maps for which the strongly conservative set has positive
Lebesgue measure forms a set of positive Lebesgue measure consisting of ergodic maps
R with SC(R)= C. In other words, there exists a unique invariant absolutely continuous
probability measure ρ on C so that for any pair A, B of measurable subsets there exists
n0 ∈ N such that the Lebesgue measure of Rn0(A) ∩ Rn0(B) is positive. In ergodic theory
this corresponds to the fact that the operator S of Proposition 9.1 has strongly convergent
orbits in L1(C, ρ). The first part of our definition of the M-condition is equivalent to weak
convergence of orbits in L1(C, ρ) with respect to |R∗|, and this is the classical definition
of mixing dynamical systems with respect to a not necessarily invariant measure.

Now, concerning the second property of the M-condition: the precompactness in
measure of a family of bounded measurable functions on probability measure spaces is
a rather simple consequence of Komlós theorem (see, for example, [1, p. 39]) which states
that: if (X, α) is a probability measure space and fn is a sequence in L1(X, α) with
sup ‖ fn‖1 <∞, then there exist f0 ∈ L1(X, α) and a subsequence {gk := fnk } ⊂ { fn}

such that for any subsequence gki of gk we have

1
m

m∑
i=1

gki → f0,

α-almost everywhere for m→∞. We call the sequence gk a Komlós subsequence of fn .
Then we have the following proposition.

PROPOSITION 9.4. Let (X, α) be a probability space and gk be a Komlós subsequence of
a sequence of measurable functions fn with | fn| ≤ M <∞ almost everywhere. Then there
exists a subset A ⊂ X with α(A) > 0 such that gk converges pointwise almost everywhere
on A.

Proof. Let f0 be a measurable function satisfying the Komlós theorem for gk . Then
| f0| ≤ M almost everywhere. Let x0 ∈ X be a point such that the functions f0 and gk

are well defined at x0 and (1/N )
∑N

k=1 gk(x0)→ f0(x0) as N →∞.
Let us show that the bounded sequence of complex numbers {gk(x0)} converges to

f0(x0). Since {gk(x0)} is bounded, it is sufficient to check that the accumulation set of
gk(x0) consists of a single point f0(x0). Assume that there exists a subsequence gki (x0)

converging to b 6= f0(x0). Then the Cesàro averages

1
N

N∑
i=1

gki (x0)→ b

as N →∞. But this contradicts that gk is a Komlós subsequence. �

Since pointwise convergence almost everywhere implies convergence in measure in
finite measure spaces, we conclude that the second condition is always fulfilled on SC(R).
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Let us note that if µ is an invariant Beltrami differential then by Birkhoff’s theorem we
have

1
n

n−1∑
i=0

µ(Ri (z))= µ(z)

[
1
n

n−1∑
i=0

(
R′i (z)
R′i (z)

)]
→

∫
µ(z) dν(z).

Here the convergence is almost everywhere and in the L1 norm on supp(ν), where
ν is an invariant absolutely continuous probability measure. So the Cesàro averages
(1/n)

∑n−1
i=0 Bi (χSC(R)) converge almost everywhere to a multiple of µ on supp(µ) ∩

supp(ν)⊂ SC(R). If every Komlós subsequence of any subsequence of Bn(χSC(R))

converges to a multiple ofµ then the whole sequence Bn(χSC(R)) converges toµ pointwise
almost everywhere and hence converges in norm in L1(ν) by the Lebesgue dominated
theorem.

Therefore, the second part of the M-condition is an analogue of weak mixing of the
complex Perron–Frobenius operator acting on L1(ν) as the operator Z defined on the proof
of Theorem 9.2.

Finally, the next observation is the main motivation of this section. This proposition
follows from classical ergodic theorems and a well-known fact, due to Sullivan, which
states that a measurable set A ⊂ JR has zero Lebesgue measure whenever the iterates Rn

are injective on A and the Lebesgue measure of Rn(A) ∩ Rm(A) is zero for all distinct
m, n > 0.

PROPOSITION 9.5. Assume that a rational map R is injective on PR ∩ JR and the
Lebesgue measure of PR ∩ SC(R) is zero. Then the Lebesgue measure of PR is zero if
and only if R is mixing on its conservative part with respect to the Lebesgue measure
restricted on PR .

Proof. If the Lebesgue measure of PR is zero then clearly R is mixing on PR with respect
to Lebesgue measure.

Assume that the Lebesgue measure of PR is positive. Let us consider the dynamics of
R restricted to PR and let C(PR) and D(PR) be the conservative and dissipative parts of
this action, respectively. As R is injective on PR ∩ JR , by Sullivan’s lemma stated above,
the Lebesgue measure of D(PR) is zero. Since the measure of SC(R) ∩ PR is zero, then
by Proposition 4.1 there are no invariant absolutely continuous measures on PR .

Assume that R is mixing on the conservative part of PR . Using Theorem 1.4 on p. 255
of [12] which states that every positive contraction E on a L1 space has orbits strongly
convergent to zero whenever E has weakly convergent orbits and E has no non-zero
fixed points, for every φ ∈ L1(C(R)) the orbit of |R∗|n(φ) converges strongly to zero.
As R(C(R))= C(R), we have

0= lim
n→∞

∫
C(R)
|R∗n|χC(R) = lim

n→∞

∫
R−n(C(R))

χC(R) =

∫
χC(R).

Thus the Lebesgue measure of C(R) is zero and hence PR has also Lebesgue measure
zero. �
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(1983), 193–217.
[17] P. Makienko. Remarks on the Ruelle operator and the invariant line fields problem: II. Ergod. Th. &

Dynam. Sys. 25(05) (2005), 1561–1581.
[18] C. McMullen. Complex Dynamics and Renormalization (Annals of Mathematics Studies, 135). Princeton

University Press, Princeton, NJ, 1994.
[19] C. McMullen and D. Sullivan. Quasiconformal homeomorphisms and dynamics. III. The Teichmüller

space of a holomorphic dynamical system. Adv. Math. 135(2) (1998), 351–395.
[20] J. Milnor. On Lattès maps. Dynamics on the Riemann Sphere. Eds. P. Hjorth and C. L. Petersen. European

Mathematical Society, Zürich, 2006, pp. 9–43.
[21] M. Rees. Positive measure sets of ergodic rational maps. Ann. Sci. Éc. Norm. Supér. (4) 19(3) (1986),

383–407.
[22] D. Ruelle. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34(3) (1976), 231–242.
[23] T. Tao. An Introduction to Measure Theory (Graduate Studies in Mathematics, 126). American

Mathematical Society, Providence, RI, 2011.
[24] A. Zdunik. Parabolic orbifolds and the dimension of the maximal measure for rational maps. Invent. Math.

99(3) (1990), 627–649.

https://doi.org/10.1017/etds.2019.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.109

	Introduction
	The pull-back and push-forward actions
	The Thurston operator
	Mean ergodicity in holomorphic dynamics
	Action on Lp spaces
	Fixed points of bidual actions and uniform ergodicity
	Hamilton–Krushkal sequences
	Amenability and compactness
	A mixing condition
	Acknowledgements
	References

