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Abstract

When properly arithmetized, Yablo’s paradox results in a set of formulas

which (with local disquotation in the background) turns out to be consistent,

but ω-inconsistent. Adding either uniform disquotation or the ω-rule results in

inconsistency. Since the paradox involves an infinite sequence of sentences, one

might think that it doesn’t arise in finitary contexts. We study whether it does.

It turns out that the issue depends on how the finitistic approach is formalized.

On one of them, proposed by M. Mostowski, all the paradoxical sentences simply

fail to hold. This happens at a price: the underlying finitistic arithmetic itself is

ω-inconsistent. Finally, when studied in the context of a finitistic approach which

preserves the truth of standard arithmetic (developed by one of the authors), the

paradox strikes back — it does so with double force, for now the inconsistency

can be obtained without the use of uniform disquotation or the ω-rule.

1 Introduction

Yablo (1993) provided a by now famous example of a semantic paradox which, accord-

ing to the author, does not involve self-reference. Recall the paradox arises when one

considers the following sequence of sentences:
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Y0 For any k > 0, Yk is false.

Y1 For any k > 1, Yk is false.

Y2 For any k > 2, Yk is false.
...

Yn For any k > n, Yk is false.
...

Take any sentence Yn from the sequence and ask what would happen if it was true.

Suppose it is. Then, things are as it says, and for any j > n Yj is false. In particular

Yn+1 is false and also for any j > n+ 1 Yj is false.

But the second conjunct is exactly what Yn+1 states, so it turns that Yn+1 is true

after all. The assumption that Yn is true led therefore to a contradiction. So it is

false. This means that not all sentences following Yn are false, and so one of them,

say Yk, is true. But then, we can again obtain a contradiction by repeating for Yk

the same reasoning that we have just given for Yn. So, whether Yn is true, or false, a

contradiction follows. Hence the paradox.

The most complete source on Yablo’s paradox is currently a seminal book by Roy

Cook (2014). It can be treated both as a comprehensive guide to the mathematical

foundations behind formalizing the paradox, as well as a philosophical monograph con-

cerning the (alleged) circularity of the paradox and its generalizations. Cook provides

an extensive examination of the concept of circularity and analyzes in which character-

izations (in different languages) Yablo’s paradox can be considered truly non-circular.

Further, he shows how Yabloesque techniques might be generalized to generate (appar-

ently) non-circular versions of other paradoxes. We believe that our results provide new

insights into a slightly different thread of the debate on the paradox than the ones that

are of focus in Cook’s book. We do not engage in the discussion of circularity at all, and

explore meta-logical consequences of introducing a new and independently motivated

way of formalizing the paradox within a modal, finitistic, arithmetical setting.

A fruitful study of the paradox formalized over arithmetic performed e.g. in (Ket-

land, 2005) and AUTHOR’S PAPER has revealed that the reasoning has the following

interesting feature. In order to derive the contradiction one needs to use a strong as-

sumption concerning the notion of truth: namely one has to assume “for all n, Yn if

and only if pYnq is true.” ∀n (Yn ≡ Tr(Yn)). If we wanted to replace this uniform

disquotation with an infinity of local disquotation instances, contradiction could be ob-

tained only if we used some infinitary inference rule (requiring an infinite number of

premises) such as the ω-rule. We’ll begin the paper by surveying the relevant results
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in the next section.

So far, the story is rather well-known. What is somewhat less known, is that there

is a way of handling the paradox which relies on finitistic assumptions. After all, if

the world is finite, there aren’t enough things in the world to interpret all sentences

from the Yablo sequence, and the last interpreted one is vacuously true without any

threat of paradox. Yablo’s paradox can be thought of as an infinitary version of the

Liar paradox, so perhaps thinking it can be dealt with by tackling the notion of infinity

isn’t extremely implausible.

Of course, the finitist owes us a story about how they make sense of arithmetic,

and how the whole thing should be studied by formal methods. It so happens, that

formal tools for this task have already been developed (Mostowski, 2001a), (Mostowski,

2001b), (Mostowski and Zdanowski, 2005). In what follows we’ll explain what the

finitist story about arithmetic is, and we’ll use it to study the Yablo paradox in the

finitistic setting. On this approach, it will turn out that things are as we expected:

Yablo sentences are all false in potentially infinite domains, despite the fact that the

framework is rich enough to incorporate sufficiently strong arithmetic.

There is, however, a glitch. We’ll argue that the way quantifiers are handled in this

finitistic setting results in a somewhat unusual arithmetical theory. For instance, in a

potentially infinite domain it turns out that the sentence “there is a greatest number”

comes out true without making “n is the greatest number” true for any n. If your goal,

as a finitist, is not to revise current mathematics, but to make sense of it in terms of

potential infinity, this approach isn’t for you.

It turns out that there is another formal approach to potential infinity developed in

AUTHOR’S PAPER,which has already been used to obtain standard arithmetic, and

to make sense of abstraction principles (in the neologicist sense). In the third part of

this paper we study how this framework handles Yablo’s paradox. It turns out that

the price of making potential infinity digestible to classical mathematicians is that the

Yablo paradox strikes back, with even more power than in the standard arithmetical

setting.1

1There are some similarities between the potentialist approach to thinking about quantification

(especially higher-order) developed in (Urbaniak, 2008a,b, 2010, 2012, 2014) and (Urbaniak, 2016),

and the one present in (Linnebo, 2013; Linnebo and Shapiro, 2017; Hamkins and Linnebo, 2017), and

(Linnebo, 2018). While there is some overlap of ideas and interests (Urbaniak and Linnebo worked

together in Bristol in 2009), Linnebo’s approach is not motivated by nominalist considerations and

leads to different technical developments. The discussion of these differences lies beyond the scope of

this paper.
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Before presenting our results, we would like to mention it is worth noting that

in a recent paper on A Logical Foundation of Arithmetic by Joongol Kim (2015) the

author developed an approach to formalizing foundations of artihmetic by logical means

only, using modal semantics for expressing logical necessity. He gave an account of

how arithmetical reasoning can be captured in a purely logical framework. This use

of a modal framework is justified by the need to provide a criterion of identity for

numbers, formulated with reference to contexts involving sentences indirectly referring

to cardinalities, such as a simple there are n F s. Kim develops an Adverbial Logic for

Arithmetic (ALA), demonstrates that basic concepts of arithmetic can be explicitly

defined in the language of ALA, and that PA can be derived from those definitions

by what he claims to be logical means alone. A crucial distinction that is made in

Kim’s paper — and which is loosely related to the modal semantics of FM-domains we

introduce in this paper — is the one between generic individual terms and numerical

terms of the language of arithmetic (for the details, see the original paper), and some

heavy lifting is done by their semantics in ALA. What is important in our approach,

which we apply to a finitistically motivated account of arithmetic (rather than Kim’s

approach stemming from the debate on neologicism), is that we are not concerned with

distinguishing between these types of terms explicitly, but rather defining quantifier

clauses so that their semantics includes information concerning the role of terms both

as expressions referring to possible sizes of finite arithmetical models, as well as to the

positions in such models.

2 Arithmetization of Yablo sentences

Let’s start by going over the results pertaining to Yablo sentences obtained in the

standard arithmetical setting.

2.1 Existence of Yablo sequences

One might ask how we actually know that Yablo sequences exist in formal theories.

This is a legitimate question since we’re moving from the paradox as formulated hand-

wavily in natural language to its properly defined formalized counterpart. It is possible

to construct a Yablo sequence within a given theory, but in order to do so, we need

to use a general version of the diagonal lemma (for formulae with two free variables in

the language containing the truth predicate):
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Diagonal Lemma 1. Let T be a first-order theory in the language LTr (a language of

arithmetic extended by a truth predicate), containing Robinson’s arithmetic Q. Then,

for any LTr-formula ϕ(x, y) there is a LTr-formula ψ(x) such that:

T ` ψ(x) ≡ ϕ(x, pψ(x)q).
a

The expression Qx P (pϕ(ẋ)q), where Q ∈ {∀,∃} is to be read as follows: for all

natural numbers x (there exists a natural number x such that), the result of substituting

a numeral denoting x for a variable free in ϕ has property P . When the intended

meaning is clear from the context, we sometimes omit the dot notation.

Definition 1 (Yablo Formula). Y (x) is a Yablo formula in a theory T iff it satisfies the

Yablo condition, i.e.:

T ` ∀x(Y (x) ≡ ∀w > x¬Tr(pY (ẇ)q)).
a

This also gives rise to a natural way of defining sentences belonging to a Yablo

sequence.

Definition 2 (Yablo Sentence). ϕ is a Yablo sentence in a theory T iff it is obtained by

substituting a numeral for x in Yablo formula Y (x). a

This enables us to prove that we are not dealing with fictitious entities, but with

properly defined formal objects. Next, we prove:

Theorem 1. [Existence of Yablo Formula (Priest, 1997)] Let T be a theory in a language

LTr containing Peano Arithmetic PA. Then there exists a Yablo formula in T.

Proof. Let ϕ(x, y) = ∀w > x ¬Tr(sub(y, pyq, name(w))). By the Diagonal Lemma,

there is a formula Y (x) such that:

T ` Y (x) ≡ ∀w > x ¬Tr(sub(pY (x)q, pyq, name(w))).

Therefore by the fact that sub represents the appropriate function, we have:

T ` Y (x) ≡ ∀w > x ¬Tr(pY (ẇ)q).

Thus we may conclude that Y (x) is a Yablo formula. Hence, Yablo sentences exist.
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2.2 Consistency of Yablo sequences

An interesting question one might ask is exactly what principles about Yablo sentences

lead to the inconsistency of a formal theory. Despite the fact that on the level of

natural language it is not difficult to derive contradiction from the definition of Yablo

sequence, the formal counterpart (to be specified below) is only ω-inconsistent and

consistent. Most of the results from this section were originally obtained by Ketland

(2005); but Theorem 4 is new.

Definition 3 (ω-consistency). Let T be a first-order theory in the arithmetical language

L. T is ω-consistent if there is no ϕ(x) ∈ FrmL such that simultaneously:

∀n ∈ ω T ` ¬ϕ(n)

T ` ∃xϕ(x) a

If there is such a formula ϕ, then we say that T is an ω-inconsistent theory.

Definition 4 (PAF). Let LF be a language of arithmetic extended by one monadic

predicate F .

PAF := PA ∪ {F (n) ≡ ∀x > n ¬F (x) : n ∈ ω} a

Lemma 1. PAF is ω-inconsistent.

Proof. Work in PAF. Fix an n ∈ ω and assume F (n). By the definition of PAF, we have:

∀x > n ¬F (x). (?)

In particular, (?) entails ∀x > n+ 1¬F (x). This sentence is however equivalent to

F (n+ 1). But from (?), ¬F (n+ 1) follows. Contradiction. So ¬F (n).

Since the choice of n was arbitrary, this means:

∀n ∈ ω PAF ` ¬F (n). (1)

But by the definition of PAF we then have:

∀n ∈ ω PAF ` ∃x > n F (x).

In particular:

PAF ` ∃x F (x). (2)

(1) with (2) jointly mean that PAF is ω-inconsistent, as advertised.
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Lemma 2. PAF is consistent.

Proof. Consider any nonstandard modelM of PA. Pick a nonstandard element a ∈M
(M is the domain of M) and let A = {a}. Extend the language of PA with a monadic

predicate F and put FM = A. Since a is nonstandard, we get

∀n ∈ ω (M, A) |= ¬F (n).

But since A is non-empty, (M, A) |= ∃x F (x). Moreover, because there is a non-

standard witness for the formula F (x), we have:

∀n ∈ ω (M, A) |= ∃x > n F (x).

Hence we obtain ∀n ∈ ω (M, A) |= F (n) ≡ ∀x > n ¬F (x) (because both sides of

the equivalence are false in the model). But because M is already a model of PA, the

last statement lets us conclude that (M, A) |= PAF, which by soundness means that

PAF is consistent.

Definition 5 (Local Arithmetical Disquotation).

AD = {Tr(pϕq) ≡ ϕ : ϕ ∈ SentL} a

Definition 6 (Local Yablo Disquotation).

Y D = {Tr(pY (n)q) ≡ Y (n) : Y (n) belongs to the Yablo sequence}.

a

Definition 7 (PAD). Let PAT− be a theory obtained from PA by extending the language

of arithmetic with a truth predicate Tr. Further, let PAT be obtained from PAT−

by allowing the induction scheme to apply also to formulae containing Tr).2 Let

PAD = PAT∪AD ∪ Y D and let PA−D be PAD with the induction axiom scheme restricted

to formulae without the truth predicate.

Theorem 2. PA−D is ω-inconsistent.

2PAT is then not really a theory of truth, with Tr being just a new predicate, without any substance

to it.
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Proof. By Definition 1 (of Yablo formulae) and Theorem 1 we obtain:

∀n ∈ ω PAD ` Y (n) ≡ ∀x > n ¬Tr(pY (ẋ)q).

By the fact that PAD contains Y D we get:

∀n ∈ ω PAD ` Tr(pY (n)q) ≡ ∀x > n ¬Tr(pY (ẋ)q).

Let F (x) := Tr(pY (ẋ)q). With this definition we get:

∀n ∈ ω PAD ` F (n) ≡ ∀x > n¬F (x).

This means PAD contains PAF, and so applying Lemma 1 to this fact ends the proof.

It immediately follows:

Corollary 1. PAD is ω-inconsistent.

However:

Theorem 3. PA−D is consistent.

Proof. Consider any nonstandard model M of PA. Take

ThL(M) = {pϕq :M |= ϕ and ϕ ∈ SentL}.

Further, let us denote t(x) := pY (ẋ)q (t assigns to any number n, the code of the n-th

Yablo sentence; the value of t depends on the value of x which occurs as a free variable

in the formula Y (x)). The formula t(x) = y is true of infinitely many standard numbers,

and so by overspill there are nonstandard numbers b and c such that tM(b) = c, i.e.

c = pY (b)q. Let S = ThL(M) ∪ {c}. We extend the language of PA with the truth

predicate Tr and put TrM = S. We then have

∀n ∈ ω (M, S) |= ∃x > n Tr(pY (ẋ)q),

since we have (M, S) |= Tr(c) and hence ∀n ∈ ω (M, S) |= b > n ∧ Tr(pY (b)q).

S contains the codes of all true arithmetical sentences, so:

(M, S) |= AD.

The codes of standard sentences Y (n) do not belong to S — such sentences are neither

arithmetical (because they contain the truth predicate) nor coded by c (because c codes

a non-standard Yablo sentence). Thus we conclude that

∀n ∈ ω (M, S) |= ¬Tr(pY (n̄)q).
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Additionally, by Definition 1 and Theorem 1 we have:

∀n ∈ ω PAT− ` Y (n) ≡ ∀x > n ¬Tr(pY (ẋ)q).

Since (M, S) is a model of PAT−, we obtain:

∀n ∈ ω (M, S) |= Y (n) ≡ ∀x > n ¬Tr(pY (ẋ)q).

But from this it follows that

∀n ∈ ω (M, S) |= ¬Y (n). (3)

Therefore we may conclude that

(M, S) |= Y D

which ends the proof.

Note that in what follows some of the arguments are model-theoretic: in such

contexts, we sometimes talk about particular numbers without assuming that they

are standard, and so without assuming that there are standard numerals. For this

reason we’ll follow the shady practice of not using the bar notation for numerals in

such contexts.

Theorem 4. PAD is consistent.

Proof. We will show that PAD is finitely satisfiable. Consider any finite subset ∆ of

PAD. There is only a finite number of elements of YD (that is, instances of disquotation

schema for Yablo sentences) in ∆. Hence, there is a greatest m such that there is an

element of YD for Y (m) in ∆. Without loss of generality, we may assume that for all

n ≤ m ∆ contains elements of YD for sentences Y (n). Now take a modelM |= PA and

expand it by:

TrM := {pY (m)q} ∪ {pϕq : ϕ ∈ SentL ∩∆ and M |= ϕ}.

By this definition we have:

(1) (M, T rM) |= Tr(pY (m)q),

(2) ∀k < m (M, T rM) |= ¬Tr(pY (k)q),

(3) ∀k > m (M, T rM) |= ¬Tr(pY (k)q),
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and for all arithmetical ϕ ∈ ∆ that hold in M:

(4) (M, T rM) |= Tr(pϕq).

From (1) we easily get that: ∀k < m (M, T rM) |= ∃x > k Tr(pY (ẋ)q), and hence by

the definition of Yablo sentences:

(5) ∀k < m (M, T rM) |= ¬Y (k).

By (3) we obtain: (M, T rM) |= ∀x > m ¬Tr(pY (ẋ)q), and hence, again, by the

definition of Yablo sentences:

(6) (M, T rM) |= Y (m).

(1) and (6) give us then:

(M, T rM) |= Y (m) ≡ Tr(pY (m)q),

whereas by (2) and (5) we have:

∀k < m (M, T rM) |= Y (k) ≡ Tr(pY (k)q).

These two statements are obviously equivalent to: ∀n ≤ m (M, T rM) |= Y (n) ≡
Tr(pY (n)q), and it follows that:

(∗) (M, T rM) |= ∆ ∩ Y D.

From (4) and definition of TrM we immediately obtain: (M, T rM) |= ϕ ≡ Tr(pϕq)

for all arithmetical ϕ ∈ ∆, which means that:

(∗∗) (M, T rM) |= ∆ ∩ AD.

Let Ind(ψ) denote the instance of the induction scheme for the LTr formula ψ. Since

M |= PA, clearly for all arithmetical ψ, if Ind(ψ) ∈ ∆, M |= Ind(ψ).

For ψ containing Tr such that Ind(ψ) ∈ ∆, consider that the only atomic ψ that

we care about is of the form Tr(k). The instance of induction for Tr(k) will have the

following form:

Tr(0) ∧ ∀x (Tr(x)→ Tr(x+ 1))→ ∀xTr(x)

Clearly, the antecedent is false: 0 doesn’t code a true sentence, and it is false that if a

number codes a true sentence then so does its successor. It is folklore result that if a
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predicate is inductive, the induction scheme can be extended to all formulae containing

it.3

So, by the reasoning above we can even make a stronger claim that for any ψ ∈ LTr:

(∗ ∗ ∗) (M, T rM) |= Ind(ψ).

It follows from (∗), (∗∗) and (∗ ∗ ∗) that (M, T rM) |= ∆. By compactness, this means

that PAD is satisfiable and therefore consistent.

Corollary 2. PAD is a conservative extension of PA.

Proof. Let us consider an arithmetical sentence ϕ such that PA 0 ϕ. This entails

that PA ∪ {¬ϕ} is consistent. Then there is a nonstandard model M of PA such that

M |= ¬ϕ. Since in the proof of Theorem 4 it did not actually matter what arithmetical

extension of PA we started with, we can repeat the reasoning with Th(M) ⊃ PAD∪{¬ϕ},
and so there is a modelM′ elementarily equivalent toM such that (M′, T rM

′
) |= PAD.

Obviously, since by the construction: ¬ϕ ∈ TrM′
, we have (M′, T rM

′
) 6|= ϕ, and so

PAD 0 ϕ.

It is however still possible to derive a contradiction from the Yablo sequence, but

in order to achieve this we would have to use a generalized version of the truth princi-

ple governing the Yablo sequence — it would be necessary to add to our arithmetical

theory principles that would be strong enough to prove a version of the disquotation

schema uniform for all Yablo sentences.

Definition 8 (Uniform Yablo Disquotation).

∀x(Tr(pY (ẋ)q) ≡ Y (x)) (UYD)

Theorem 5. Let S = PAT + UYD. S is inconsistent.

Proof. We are working in S. By the definition of Yablo formula and Theorem 1, we

have

∀x (Y (x) ≡ ∀w > x¬Tr(pY (ẇ)q)).

From (UYD) we then derive:

∀x (Y (x) ≡ ∀w > x ¬Y (ẇ)). (4)

3This folklore result is usually proved by induction on formula complexity.
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From this and unraveling of Y (w) we infer:

∀x (Y (x) ≡ ∀w > x∃z > w Tr(pY (ż)q)).

By (UYD) again we get

∀x (Y (x) ≡ ∀w > x ∃z > w Y (z)). (5)

By extendability (∀x∃ y x < y) and transitivity of < (both clearly provable in S)

and (5) we get:

∀x (Y (x) ≡ ∃w > x Y (w)). (6)

By (4) and (6) we have:

∀x ((∀w > x¬Y (w)) ≡ (∃w > xY (w)))

Contradiction.

Definition 9 (ω-rule). The ω-rule is the following infinitary inference rule defined for

arithmetical formulae ϕ:

ϕ(0), ϕ(1), ϕ(2), ..., ϕ(n), ...

∀x ϕ(x)

Definition 10 (Tω). Let T be an axiomatizable first-order theory in the language LTr.
If α is an ordinal, a sequence (ϕ0, ..., ϕα) of formulae is a derivation in ω-logic (ω-

derivation) from T if and only if, for each ordinal β ≤ α:

1. ϕβ is an axiom of T or

2. there are γ < β and δ < β, such that ϕδ = (ϕγ → ϕβ), or

3. (3) ϕβ = ∀xψ(x) for some ψ(x) ∈ FrmLTr with exactly one free variable and

there is an injective function f : ω → β such that ∀n ∈ ω ϕf(n) = ψ(n) (this

condition means that ϕβ has been introduced by means of the ω-rule).

We say that ϕ is a theorem of T in ω-logic if there is an ω-derivation of ϕ from T. We

also call such ϕ an ω-consequence of T and denote it as follows: Tω ` ϕ. Tω is a set of

sentences that are theorems of T in ω-logic. a

Theorem 6. Let PAω−D = (PAT− ∪ AD ∪ Y D)ω. PAω−D is inconsistent.
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Proof. One way to see why this holds is by reference to Theorem 2: adding the ω-

rule to an ω-inconsistent system results in an inconsistent system. But we find the

slow-motion version of the argument somewhat informative, so here it is.

Since PAω−D is an extension of PAT−, by Theorem 1 Yablo sentences exist in this

theory. We are working in PAω−D . Fix n ∈ ω and suppose Y (n) for reductio. By the

definition of Yablo sentence, we therefore have ∀x (x > n⇒ ¬Tr(pY (ẋ)q)). Hence

¬Tr(pY (n+ 1)q) (7)

as well as ∀x (x > n+ 1 ⇒ ¬Tr(pY (ẋ)q)). But the last sentence is equivalent to

Y (n+ 1). By the appropriate disquotation instance we therefore get

Tr(pY (n+ 1)q)

which contradicts (7). Since the choice of n was arbitrary, we have:

∀n ∈ ω PAω−D ` ¬Y (n).

In particular:

(∗) PAω−D ` ¬Y (23).

By the fact that we have a disquotation instance for every Yablo sentence in our theory

we also have:

∀n ∈ ω PAω−D ` ¬Tr(pY (n)q).

It is worth noting that so far we’ve only used the resources of PAD in this proof. Now

we’ll need to use the specific means of PAω−D . By applying the ω-rule we therefore

obtain:

PAω−D ` ∀x ¬Tr(pY (ẋ)q).

In particular we have

PAω−D ` ∀x (x > 23→ ¬Tr(pY (ẋ)q)).

But this means we have:

(∗∗) PAω−D ` Y (23).

It immediately follows from (∗) and (∗∗) that PAω−D is inconsistent.

Let’s sum up the situation so far. We have a paradox in natural language. For-

malizing it, as long as we work in a disquotational theory of truth without any other

assumptions, even those theories which prove the existence of Yablo sentences are still
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consistent (albeit ω-inconsistent). To obtain a contradiction, we need either inferential

rules that go beyond the standard means of first-order logic (namely: the ω-rule), or a

stronger uniform principle of disquotation for Yablo sentences.

Since the paradox somehow involves the concept of infinity (as the essential role

of the ω-rule suggests), we’ll turn our attention to a formalization of Yablo’s paradox

in a setting that takes a somewhat different approach to infinity. It is the framework

developed by the late Marcin Mostowski and others in (Mostowski, 2001a), (Mostowski,

2001b) and (Mostowski and Zdanowski, 2005), meant as a formalization of the concept

of potential infinity. We’ll describe how one could go about avoiding the paradox by

taking the distinction between potential and actual infinity seriously.

3 Potentially infinite domains and sl-semantics

In this section we consider the so-called sl-semantics of FM -domains. This framework

was motivated by considerations in computational foundations of mathematics and

the search for the semantics under which first-order sentences would be interpreted in

potentially infnite domains.

Potentially infinite domains are in this framework understood as sequences of finite

models increasing without any finite bound. Once we turn to actually finite domains,

we need to overcome a small technical obstacle concerning the arithmetical language:

it seems that the reference of some singular terms should come out undefined. One

way to go would be to employ the apparatus of partial functions. A simpler method,

however, uses relational symbols instead of function symbols. This is the one that we’ll

employ.

Let R ⊆ ωr be an r-ary relation on natural numbers. By R(n) we denote R ∩
{0, 1, ..., n − 1}r, the restriction of this relation to first n natural numbers. For any

model A over some fixed signature σ = (R1, ..., Rk) (in particular, one can take the

signature to comprise the relational counterpart of standard arithmetical functions such

as addition or multiplication) we define the FM -domain of A as follows:

FM(A) = {An : n = 1, 2, ...}

where

An = ({0, 1, ..., n− 1}, R(n)
1 , ..., R

(n)
k ).

That is, FM(A) is the set of all finite initial segments of natural numbers, with the

arithmetical relations appropriately restricted.
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For the purposes of this section, by N we denote the standard model of arithmetic

(ω,+,×, 0, s, <), where the arithmetical functions are interpreted as relations, so we

have that:

FM(N) = {Nn : n = 1, 2, ...},

where

Nn = ({0, 1, ..., n− 1},+(n),×(n), 0(n), s(n), <(n)).

(Note that this means that numerals are replaced with predicates, so that if in a

finite point a numerical would fail to refer, its predicative counterpart refers to the

empty set, and if it wouldn’t, its predicative counterpart refers to an appropriate

singleton. Thus, in the standard arithmetical language each n-ary symbol is replaced

by the corresponding n + 1-ary one; we’ll keep referring to it as L with no threat of

misunderstanding.)

Ultimately, we’ll be evaluating formulas in FM(N); but in order to do that, we first

need to evaluate them in the finite segments that FM(N) contains. Satisfaction at

finite models involved is understood according to the standard notion of satisfaction.

Satisfaction in FM(N) is understood, intuitively, as satisfaction in all sufficiently large

segments from FM(N).

Definition 11 (sl(FM(N))). For any ϕ ∈ SentL we say that ϕ is sl-true in FM(N)

(true in sufficiently large models, hence the abbreviation sl):

FM(N) |=sl ϕ if and only if ∃m ∀k (k ≥ m ⇒ Nk |= ϕ).

Let us then denote:

sl(FM(N)) = {ϕ ∈ SentL : FM(N) |=sl ϕ}.

sl(FM(N)) is called the sl-theory of FM(N). More generally we could say that for a

given class K of finite models:

sl(K) = {ϕ ∈ SentLσ : ∃n ∀M ∈ K (card(M) ≥ n ⇒ M |= ϕ)}.

Now we can use the notion to define a consequence relation by saying:

Γ |=sl ϕ iff ∀K [Γ ⊆ sl(K)⇒ ϕ ∈ sl(K)]

Obviously, for a given vocabulary, for any class K of finite models and for any set

of sentences ∆ we say that K |=sl ∆ if and only if K |=sl ϕ for any ϕ ∈ ∆. a

15

https://doi.org/10.1017/S1755020322000119 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000119


3.1 Yablo Sequences under sl-semantics

We consider the language obtained by adjoining the truth predicate Tr to the arith-

metical language L and we modify (FM(N)) by adding to its every element Nk an

interpretation Tk of the truth predicate Tr.

Definition 12 (FM(N)T ). Let K = {(Nk, Tk) : k ∈ ω and Tk ⊆ {0, ..., k − 1}}. An

FM(N)T -domain is any subset of K such that for any natural m it contains exactly

one model of the cardinality m. a

We obviously have to ensure that Yablo sentences exist in sl((FM(N)T )). For

this, we need to state some important facts concerning the sl-theory of FM -domains,

leaving them without a proof. Further details may be found in (Mostowski, 2001a),

(Mostowski, 2001b), (Mostowski and Zdanowski, 2005), (Mostowski, 2016).

Theorem 7 (Representability of substitution and naming). There exist formulae

Sub(x, y, z) and Name(x) such that for any FM(N)T -domain the following hold:

• FM(N)T |=sl Sub(pϕ(x)q, pxq, ptq) = pϕ(t)q for any formula ϕ and any term t.

• FM(N)T |=sl Name(n) = pnq for any natural number n.

From the existence of the formulae Sub(x, y, z) and Name(x) we get:

Theorem 8 (FM Diagonal Lemma). The following hold for any FM(N)T :

• For any LTr-formula ϕ(x) with exactly one free variable there is an LTr-sentence

ψ such that FM(N)T |=sl ψ ≡ ϕ(pψq).

• For any LTr-formula ϕ(x, y) with exactly two free variables there is an LTr-formula

ψ(x) such that FM(N)T |=sl ψ(x) ≡ ϕ(x, pψ(x)q).

Theorem 9 (FM-Undefinability of Truth). There is no arithmetical formula ψ(x) such

that for all arithmetical sentences ϕ:

FM(N) |=sl ψ(pϕq) ≡ ϕ.

Corollary 3 (Existence of Yablo sentences in FM(N)T -domains). There exists a formula

Y (x) such that for any FM(N)T -domain we have:

∀n ∈ ω FM(N)T |=sl Y (n) ≡ ∀x (x > n→ ¬Tr(pY (ẋ)q)),

i.e. Yablo sentences exist in sl(FM(N)T ).
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Proof. Obvious by the fact that the diagonal lemma is sl-true in FM(N)T .

Theorem 10 (Yablo sentences are false in the limit). For any class K of finite models,

if K |=sl AD + Y D, then for all n ∈ ω K |=sl ¬Y (n). In fact, AD isn’t essential

(it’s only added to ensure Tr behaves like a truth predicate): for any n ∈ ω we have

Y D |=sl ¬Y (n).

Proof. Let us fix a class K. For the sake of contradiction, suppose that there is a Yablo

sentence that is not false at sufficiently large models, that is which for any size of a

model is true at some model in K of at least that size, that is:

∃n∀k∃M ∈ K (card(M) ≥ k ∧ M |= Y (n)).

Let us take take such n. Let us fix k and take M ∈ K (without loss of generality

we could assume that M = NT
k for some natural k) with card(M) ≥ k such that

pY (n+ 1)q ∈ |M| and:

(i) M |= Y (n).

(ii) M |= Y (n+ 1) ≡ ∀x(x > n+ 1→ ¬Tr(pY (ẋ)q)).

(iii) M |= Y (n+ 1) ≡ Tr(pY (n+ 1)q).

(iv) M |= Y (n) ≡ ∀x (x > n → ¬Tr(pY (ẋ)q)) (this last condition means that M is

sufficiently large to satisfy the defining formula of Yablo sentences).

(i) will be satisfied by the assumption of the proof, (ii) and (iv) follow from Corollary

3 and (iii) results from the assumption that K |=sl Y D once we have enough numbers

to code all the formulas needed for the claims to hold.

From (i) and the fact that M models and therefore the defining formula for Yablo

sentences we obtain:

M |= ¬Tr(pY (n+ 1)q), (8)

as well as:

M |= ∀x(x > n+ 1→ ¬Tr(pY (ẋ)q)). (9)

Now, from (8), by (iii) we have that:

M |= ¬Y (n+ 1),
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and from (9), by (ii) we have that:

M |= Y (n+ 1),

which gives a contradiction that ends the proof.

We will now show a construction of a class K such that K |=sl Y D + AD, which

means that Theorem 10 holds non-vacuously. It turns out that FM(N)Y is such a

class.

Definition 13 (FM(N)Y and sl(FM(N)Y )). We fix a formula Y (x) satisfying the con-

dition specified in Corollary 3. A family of models FM(N)Y is an FM(N)T -domain

{NY
k : k ∈ ω} such that NY

k = (Nk, Tk), where Tk = TAk ∪ TYk, and:

TAk = {pϕq : ϕ ∈ SentL and Nk |= ϕ} ∩ |Nk|
TYk = {pY (m)q : pY (m)q ∈ |Nk| ∧ pY (m+ 1)q /∈ |Nk|}.

If |M| = k, we sometimes write TM instead of Tk.

Naturally, sl(FM(N)Y ) = {ϕ : FM(N)Y |=sl ϕ}. a

It is worth noting that the family FM(N)Y is not a proper potentially-infinite

domain in the sense defined by Mostowski (2016), i.e. for any natural numbers r < s

NY
r is not a submodel of NY

s , since the interpretation of the truth predicate Tr varies

between subsequent models from the domain.

Observation 1. For any class K, if K |=sl Y D, then for sufficiently largeM∈ K, there

is exactly one n ∈ ω s.t. pY (n)q ∈ TM.

Theorem 11. ∀n ∈ ω FM(N)Y |=sl ¬Y (n).

Proof. We claim that for any n there exists m such that for any k > m:

NY
k |= ¬Y (n).

Indeed, let us fix n and take m such that pY (n + 1)q ∈ |NY
m| and for any x < n + 1

and any k > m we have:

NY
k |= Y (x) ≡ ∀w > x ¬Tr(pY (ẇ)q).

Let k > m. Then obviously pY (n + 1)q ∈ |NY
k |. Let j be the greatest number such

that pY (j)q ∈ |NY
k |. Such a number exists since our FM -domain is infinite and every
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model in it is finite. Obviously, n < j. From the definition of the class FM(N)Y and

by the choice of j we obtain:

NY
k |= Tr(pY (j)q),

and for any x < j we get:

NY
k |= ∃w(w > x Tr(pY (ẇ)q)).

Thus, since n < j, we obtain:

NY
k |= ¬Y (n),

which ends the proof.

Corollary 4. sl(FM(N)Y ) is ω-inconsistent.

Proof. We have just shown that

∀n ∈ ω (¬Y (n) ∈ sl(FM(N)Y )).

Intuitively speaking, for each sufficiently large finite segment, the last Yablo sen-

tence whose code exists in it will be satisfied, and so the existential claim some Yablo

sentence is true will be satisfied in all sufficiently large segments, without the n-th

Yablo sentence is true being satisfied in all sufficiently large segments (because in dif-

ferent segments different objects will be the last Yablo sentences). The argument for

ω-inconsistency relies on this tension.

We obviously also have that for all sufficiently large k there exists j < k such that

by the definition of FM(N)Y ) we have NY
k |= Y (j), so by existential generalization we

obtain that there is m such that for all k > m NY
k |= ∃xY (x) and thus:

∃xY (x) ∈ sl(FM(N)Y ).

So, it seems, there is a finitistic approach to arithmetic, according to which which

all Yablo sentences are false. The cost of this move, however, isn’t negligible: the set

of arithmetical formulae true in the intended model is ω-inconsistent. Therefore, we

pursue the topic further, looking at another way to think finitistically about the issue.
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4 Modal Interpretation of Quantifiers in Potentially

Infinite Domains

Definition 14 (Accessibility relation in FM-domains). Let K be an FM-domain. For

any M,N ∈ K N is accessible from M (R(M,N)) if M ⊆ N . For m,n ∈ ω and

elements Nm, Nn of the FM-domain FM(N) this boils down to the condition m ≤ n.

Definition 15 (Modal semantics for FM-domains (m-semantics)). Let K be an FM-

domain over some structure A (i.e. K = FM(A)) and M ∈ K:

• If ϕ is atomic, then (K,M) |=m ϕ, if M |= ϕ.

• Satisfaction clauses for boolean connectives and negation are standard.

• (K,M) |=m ∃xϕ(x) iff there are N ∈ K and a ∈ N s.t.

R(M,N) and (K, N) |=m ϕ[a].

Thus we also have that (K,M) |=m ∀xϕ(x) iff for all N ∈ K s.t.

R(M,N) and for all a ∈ N (K, N) |=m ϕ[a].

The intuition behind this semantics is as follows. ‘∃x ϕ(x)’ reads ‘there could be

enough objects so that for some a, ϕ(a)’ and ‘∀x ϕ(x)’ reads ‘however many more

objects there could be, it still would be the case that for any a, ϕ(a)’.

Now, let msl(FM(N)) = {ϕ : ∃n ∀k k ≥ n ⇒ (FM(N),Nk) |=m ϕ}. That is,

intuitively, msl(FM(N)) is the set of those formulas, which are true in all sufficiently

large models, where the notion of truth involves the modal reading of quantifiers.

As an example, let ϕ = ∃x ∀y x ≥ y — that is, ϕ says: there exists a maximal

element. While, as we remember, ϕ ∈ sl(FM(N)), things are different under m-

semantics — ϕ is false in every possible world of the FM-domain.

Before we move on, let us emphasize that just as with sl-semantics, we work with

a relational arithmetical language. While in the case of sl-semantics this wasn’t too

important, it becomes crucial when we turn to msl-semantics.

For otherwise, we need to treat, say, addition and successor as total functions. This

being the case, for each finite initial segment we’d need to identify the candidates for

the values of functions which intuitively should surpass the capabilities of that segment.

The least unnatural way to do this would be to plug in loops at ends of segments, so

that s(max(Nk)) = max(Nk) etc. But then we would run into problems. For instance,

take ϕ := ∃x x+ x = x∧ x 6= 0. If we evaluate atomic sentences in the elements of our
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FM-domain, then for any k we have:

Nk |=m ϕ iff ∃j ≥ k ∃a < j Nj |= a+ a = a ∧ a 6= 0.

However, the above would come out true. After all, let a = max(Nj). Then, a + a =

s . . . s︸ ︷︷ ︸
a

a = a and we have Nj |= a 6= 0∧ a+ a = a and so Nk |=m ϕ for any k. Thus, we

would have ϕ ∈ msl(FM(N)), while PA ` ¬ϕ.

The underlying cause of the issue is that when we work with a functional language

we cannot think about the initial segments as submodels of larger initial segments,

because the functions are not preserved when we move to superstructures. The problem

disappears when we abandon function symbols and use a relational language instead.

So this is what we’ll do in what follows.

In particular, we’ll be working towards a theorem according to which the resulting

arithmetic is the classical arithmetic, unlike in the previous case. We’ll start with two

lemmata.

Lemma 3. For any k > 0, Nk is a submodel of N.

Proof. This holds because our language is relational, and for any r-ary relation symbol

Rr we have (Rr)N ∩ Nr
k = (Rr)Nk .

Lemma 4. For any quantifier-free ϕ(x1, . . . , xn) and for any choice of parameters a1, . . . an ∈
N, if we have a1, . . . , an ∈ Nk, then it holds that:

Nk |= ϕ[a1, . . . , an] iff N |= ϕ[a1, . . . , an]

Proof. Immediate by Lemma 3.

Theorem 12. Let msl(FM(N)) denote the msl theory (i.e. the sl-theory of the FM -

domain of natural numbers with the modal interpretation of quantifiers). Then we

have: msl(FM(N)) = Th(N).4

Proof. The proof is by induction on formula complexity.

For the basic case of quantifier-free formulae, the claim holds by Lemma 4. For

boolean connectives, the equivalence is trivial. The only interesting case is for

ϕ := ∃xψ(x).

4Here, we’re concerned with initial segments of N. The result clearly generalizes to collections of

models, as long as accessibility correlates with the submodel relation; not even the assumption of

finitude is required. Such collections are studied for instance in Hamkins and Linnebo (2017).
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⊇: Suppose ϕ ∈ Th(N), that is, N |= ∃xψ(x). Then there is a witness a ∈ N, such

that ψ[a] ∈ Th(N). By IH, ψ[a] ∈ msl(FM(N)). This means:

∃k ∀l ≥ kNl |=m ψ[a] (10)

and from this it follows that:

∃k∀l ≥ k ∃j ≥ l ∃a < j Nj |=m ψ[a]. (11)

which means that ϕ ∈ msl(FM(N)).

⊆: Say ϕ := ∃xψ(x) ∈ msl(FM(N)). So (11) holds as well and there is an a such

that (10) also holds. This step essentially depends on the language being relational;

thanks to this assumption for any k1 < k2 we have Nk1 ⊆ Nk2 ⊆ N (we mean the

submodel relation here) and by the m-semantics witnesses of existential claims remain

such witnesses in supermodels). This means ψ[a] ∈ msl(FM(N)), and so by the IH,

ψ[a] ∈ Th(N), and therefore ϕ ∈ Th(N).

5 Yablo Sequences in Potentially Infinite Domains

under the Modal Interpretation of Quantifiers

The semantics in sufficiently large models in potentially infinite domains under modal

interpretation of quantifiers presented above entails that Yablo sentences stay para-

doxical even for the finitist, if she interprets the quantifiers in the modal manner.

That is, we’ll be arguing that not even local Yablo Disquotation can be included in an

msl-theory. Let’s start with a lemma.

Lemma 5. For any FM(N)Y -domain with Y D ⊆ msl(FM(N)Y ) it holds that:

∀n ∈ ω Y (n) 6∈ msl(FM(N)Y ).

Proof. First note that the Diagonal Lemma holds for the extended language in the

msl-theory (because its arithmetical part is Th(N)). So Yablo sentences belong to it.

Now, suppose some Yablo sentence is in the msl-theory, that is

∃n
[
Y (n) ∈ msl(FM(NY ))

]
.

This means:

∃l ∀k ≥ l Nk |=m Y (n).

Pick an l witnessing this. By the definition of Yablo sentences this entails:

∀k ≥ lNk |=m ∀x (x > n→ ¬Tr(Y (x))).
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By the semantics, this means:

∀k ≥ l∀p ≥ k∀a < p Np |=m a > n→ ¬Tr(Y (a)).

But then:

∀p ≥ l ∀a ∈ (n, p) Np |=m ¬Tr(Y (a)). (12)

So, by Yablo Disquotation, if we take a p sufficiently large to satisfy Tarski bi-

conditionals for Yablo sentences Y (a) for n < a < p (such p exist by the fact that

Y D ⊆ msl(FM(N)Y )), we have that models of size p fail to satisfy Yablo sentences

for numbers between n and p:

∀p ≥ l ∀a ∈ (n, p) Np |=m ¬Y (a).

Now, fix p and a. By the definition of Y (x) the above means:

Np |=m ∃x > aTr(Y (x)).

By our definition of |=m this is equivalent to:

∃q ≥ p ∃b < qNq |=m b > a ∧ Tr(Y (b)).

Hence:

∃q ≥ p ∃b ∈ (a, q)Nq |=m Tr(Y (b)).

This, however, contradicts (12), which completes the argument.

With this lemma at hand, we can proceed to the theorem which tells us that not

only Yablo sentences are not in any msl-theory, but also that no msl-domain can

(modally) satisfy the local Yablo Disquotation principles either.

Theorem 13. There is no FM(N)Y -domain such that Y D ⊆ msl(FM(N)Y ).

Proof. Suppose there is an msl(FM(N)Y ) which contains all Local Yablo Disquotation

sentences.

By Lemma 5, we know that ∀n Y (n) 6∈ msl(FM(N)Y ). We therefore have:

∀n∀l ∃k ≥ l Nk 6|=m Y (n).

By the definition of the Yablo sentences we infer:

∀n∀l∃p ≥ l∃a > n Np |=m Tr(Y (a)).
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Which, by Yablo Disquotation, yields:

∀n∀l∃p ≥ l∃a > n Np |=m Y (a).

The claim holds for any n and l. For us, it is enough to look at n = l = 0. By the

definition of Y (a) and m-semantics we obtain:

∃p, a > 0∀q ≥ p Nq |=m ∀x > a ¬Tr(Y (x)).

Pick an a > 0 witnessing the above claim. By the definition of msl-theory we now

have

Y (a) ∈ msl(FM(N)Y ),

which is impossible by Lemma 5.

So, when we consider Yablo sequences with different treatments of infinity in the

background, the following observations come to mind:

1. In the standard setting, without potential infinity, Local Arithmetical Disquo-

tation and Local Yablo Disquotation are consistent, yet ω-inconsistent with the

background arithmetical theory. Once ω-rule or Uniform Yablo Disquotation are

introduced, the theory is inconsistent.

2. Under sl-semantics, Yablo sentences are all false (in the limit), yet the sl-theory

of a given FM -domain is consistent, but ω-inconsistent. This is a particular case

of a general flaw of sl-semantics, because sl(FM(N)) itself is ω-inconsistent.

3. Under msl-semantics, i.e. semantics in sufficiently large models in potentially

infinite domains under the modal interpretation of quantifiers, even adding only

the Local Arithmetical Disquotation and Yablo Disquotation results in an incon-

sistent theory. Uniform Yablo Disquotation or ω-rule is not needed to ensure

this.

6 A remark on semantics & ontology

One question that might come to mind in this context is this. If for the first-order rela-

tional language in the limit we simply get the true arithmetic, what’s the point? Why

isn’t this just syntactic sugar? Doesn’t this mean that the finitistic and potentialist

parlance is a bit of cheating and that the entire framework gives rise to actualism with

respect to the structure that we approximate?
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Well, while the semantics—as desired—legitimates the (prima facie infinitistic)

theory of the standard model of arithmetic, at the ontological level the difference

remains: the ontology is indeed finitistic and we evaluate formulae in finite models.

While it is hard to capture this idea in terms of a first-order language, it becomes more

transparent when we look at a second-order language.

If we take a relational second-order relational language, where in the standard

model quantifiers range over the powerset of N and in m-semantics at each segment

they only range over its powerset, the set of formulae belonging to the msl-theory

will be quite different from those true in the standard model. Namely, it will be those

formulae which are true in the standard model where second-order quantifiers are taken

to range over finite sets.

Formally, let us extend the definition of m-satisfaction for the standard FM -

domain, including the second order domain of quantification. Let P(Nk) denote the

powerset of the set |Nk| = {0, ..., k − 1}, i.e.

P(Nk) = P({0, ..., k − 1}).

Now add the following clause for the existential second-order quantification to the

definition of m-semantics. (Nk,P(Nk)) |=m ∃Xφ(X) iff

∃n ≥ k∃A ∈ P (Nn)(Nn,P(Nn)) |=m φ[A].

Further, we extend the definition of the msl-theory of the FM -domain for the

standard second-order model of arithmetic, i.e. to the structure N2 := (N,P(N)) in

the obvious way. Observe, that for the expanded models, it still holds that if k < n,

then (Nk,P(Nk)) is a submodel of (Nn,P(Nn)).

Interestingly, the following now holds:

Theorem 14. For any second-order arithmetical formula ψ the following are equivalent:

1. ψ ∈ msl(FM((N2))),

2. (N,Pfin(N)) |= ψ,

where Pfin(N) denotes the family of all finite subsets of natural numbers.

Proof. We just need to extend the proof for the formulae containing second-order

quantifiers. The case of atomic second-order formulae is trivial. Suppose ψ = ∃Xϕ(X).
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(⇒) By assumption, for sufficiently large k ψ holds under m-semantics in every

(Nk,P(Nk)). So, by definition, for each such k there is an n > k and A ⊂ |Nn| with

(Nn,P(Nn)) |= ϕ[A].

This means that we almost always (i.e. for all but finitely many finite models – the

ones given by the sufficiently large k) have finite witnesses for existential second-order

claims. By the extended m-semantics, witnesses of existential claims remain such

witnesses in supermodels, thus ϕ[A] ∈ msl(FM((N2))). Since A ∈ Pfin(N), by the

Inductive Hypothesis,

(N,Pfin(N)) |= ϕ[A],

so by existential generalization

(N,Pfin(N)) |= ∃Xϕ(X).

(⇐) Assume (N,Pfin(N)) |= ∃Xϕ(X), which means that there is a finite set of

natural number A such that

N |= ϕ[A].5

By the inductive assumption, for sufficiently large k we have

(Nk,P(Nk)) |=m ϕ[A],

thus giving that for all but finitely many k:

∃A ∈ P(Nk) (Nk,P(Nk)) |=m ϕ[A],

and therefore (since k < n and A ⊆ |Nk|, then also A ⊆ |Nn|), we have that for all but

finitely many k there is an n > k with

∃A ∈ P(Nn) (Nn,P(Nn)) |=m ϕ[A].

This, by the extended definition ofm-semantics, means that ∃Xϕ(X) ∈ msl(FM((N2))).

This fact is best understood as: in our potentialist-finitistic framework, the finitist

ontology is hidden in the realm of the domain of second-order quantification, not in

the semantics of first-order formulas, which – as desired – gives rise to true arithmetic,

5Formally this holds with A as a parameter, but all finite sets are definable, so we do not have to

worry about that.

26

https://doi.org/10.1017/S1755020322000119 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000119


and thus vindicates the infinitistic idealization for arithmetic on potentialist-finitistic

grounds. We can adopt a purely instrumentalist approach to the extension of m-

semantics to the level of subsets of natural numbers and treat it just as an explanatory

tool needed to answer a question about location of finitism in the potentialist framework

that we propose. The answer then should be that although within the potentialist

semantics for first-order arithmetic we essentially quantify over all natural numbers

(with the modal understanding of this!), when it comes to collections of numbers, we

can only express and recognize the truths concerning finite sets. This is exactly as

it should be. The ontology of FM -domains is finitistic in the sense that the domain

does not provide a single infinite universe, but a family of its approximations — finite

initial segments, the universes of which (and subsets of these) are precisely the finite

sets of natural numbers, so if we allow quantification over not only numbers, but also

of their collections, i.e. if we turn to second-order semantics, it is quite natural that

we will be able to capture the properties of finite sets only. What seems to require

an explanation then is why — under modal potentialist semantics — can we capture

all the properties of individual natural numbers (i.e. in the first-order setting)? The

answer lies in the question itself — if one shares finitistic intuitions, formalizes them

in a model-theoretic manner and adopts correct potentialist semantics, then there is

indeed no difference from the perspective of first-order number theory. The reason why

this is the case is that — in a sense specified by the modal semantics — a position

of an extremely local object such as an individual number in a finite structure that

can be indefinitely extended is not distinct from the position of such object in the

entire structure, provided we can make references to individual objects only. In a very

loose sense, it does not matter whether we look at a number form the perspective of

an infinite set or from the perspective of a finite, yet unbounded one. Consequently,

finitism isn’t too revolutionary in the context of first-order arithmetic, since the modal

finitistic semantics vindicates the corresponding infinitistic idealization.

However, finitistically available sets of numbers, provided we can refer to such sets

using quantification (i.e. in the second-order setting), can have very different properties

in an infinite structure and in its finite approximations, even if allow the finite segments

to be indefinitely extendable, since in the system of approximations there simply are

no infinite sets — they are never objects in the FM -domains framework (whereas

individual numbers are always finite objects, irregardless of whether they are located

in N or in the elements of FM(N)).

We claim that this is the correct (ontological) commitment of (arithmetical) finitism.

Any (finite) number of individual objects can be added to a given finite universe and
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it will still be finite, but there is no way to finitely extend the universe of a finite

model so that the model becomes infinite, and this affects the properties of subsets

of a given structure rather than individual elements of the structure. To illustrate

the consequences of this, observe that for each particular number n one can always

extend a finite initial segment A of N to B so that n is not the maximal element of

B even if it was a maximal element of A. However, for no subset X of A can we

find an extension to B so that X was not injectable into its proper subset in A, but

is injectable in its proper subset in B.6 So while it seems that for first-order context

extreme finitism is untenable, and one might thus think that our potentialist account

of arithmetic ideologically reduces to actualism, it is our results concerning the second-

order framework that suggest that there is an open door for an argument against the

claim that arithmetical potentialism is actualism in sheep’s clothing. There still can

be a difference between the family of approximations of a structure and the structure

itself, but semantically it has to be captured by higher-order means. Whether these

means are allowed, is a completely different question that we do not engage with here.

Interestingly, our approach somehow contrasts with the so-called predicativist ap-

proach to arithmetic, under which reference to all subsets of an infinite set is not

legitimate, and only some infinite subsets of natural numbers are accepted if they can

be referred to, where what type of predicativism we’re dealing with largely depends

on what means of reference are admissible.7 Under the modal semantics, the theory of

sets of natural numbers seems to be more restrictive, since, in a sense, only finite sets

are allowed. Consequently, there will be sentences of second-order arithmetic true un-

der msl-semantics that are false in predicative second-order arithmetic. This, however,

does not present a problem, since msl-semantics is provided to give account not of pred-

icativism in arithmetic, but of finitism and potentialism therein. The contrast between

predicativism and our formalism thus plays its role in reflecting on the difference be-

tween these philosophical approaches to arithmetic, and illustrating yet another (apart

from the vindication of infinitistic idealization above) possible weak point in finitism

— at the second-order level it is a position even more restrictive than predicativism.

We leave it for further work to investigate if this is an accurate argument.

All in all, our reading of the results concerning the first and second-order theories

of arithmetic under msl-semantics provide the following philosophical standpoints:

6We thank the anonymuous Referee for this example - it illustrates one of our points.
7Some authors have claimed that the arithmetical theory ATR0 captures the idea of predicativism,

however the details of this debate are not important to us here.
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• It is second-order potentialist semantics (rather than the first-order one) that

captures the finitistic ontology of FM -domains.

• At the first-order level, the potentialist semantics vindicates the infinistic ideal-

ization of natural numbers,

• For this reason, a revisionary finitistic approach to first-order arithmetic is un-

justified.

• Nevertheless, the difference between second-order msl theory of natural numbers

and standard second-order true arithmetic allow for arguing that that potential-

ist systems of approximations to a given structure does not reduce to hidden

actualism.

• However, the second-order msl-theory of N is very restrictive.
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(Leśniewski style). Axioms, 5(2):18.

Yablo, S. (1993). Paradox without self-reference. Analysis, 53.

30

https://doi.org/10.1017/S1755020322000119 Published online by Cambridge University Press

https://dspace.ucalgary.ca/handle/1880/46697
https://dspace.ucalgary.ca/handle/1880/46697
[DOI: 10.1007/s11229-013-0354-5]
https://doi.org/10.1017/S1755020322000119

	1 Introduction
	2 Arithmetization of Yablo sentences
	2.1 Existence of Yablo sequences
	2.2 Consistency of Yablo sequences

	3 Potentially infinite domains and sl-semantics
	3.1 Yablo Sequences under sl-semantics

	4 Modal Interpretation of Quantifiers in Potentially Infinite Domains
	5 Yablo Sequences in Potentially Infinite Domains under the Modal Interpretation of Quantifiers
	6 A remark on semantics & ontology

