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In pursuit of a universal law for the rate of entrainment across a density interface
driven by the impingement of a localised turbulent flow, the role of the confinement,
wherein the environment is within the confines of a box, has to date been overlooked.
Seeking to unravel the effects of confinement, we develop a phenomenological model
describing the quasi-steady rate at which buoyant fluid is turbulently entrained across
a density interface separating two uniform layers within the confines of a box. The
upper layer is maintained by a turbulent plume, and the localised impingement of a
turbulent fountain with the interface drives entrainment of fluid from the upper layer
into the lower layer. The plume and fountain rise from sources at the base of the box
and are non-interacting. Guided by previous observations, our model characterises
the dynamics of fountain–interface interaction and the steady secondary flow in the
environment that is induced by the perpetual cycle of vertical excursions of the
interface. We reveal that the dimensionless entrainment flux across the interface Ei is
governed not only by an interfacial Froude number Fri but also by a ‘confinement’
parameter λi, which characterises the length scale of interfacial turbulence relative to
the depth of the upper layer. By deducing the range of λi that may be regarded as
‘small’ and ‘large’, we shed new light on the effects of confinement on interfacial
entrainment. We establish that for small λi, a weak secondary flow has little influence
on Ei, which follows a quadratic power law Ei∝Fr2

i . For large λi, a strong secondary
flow significantly influences Ei, which then follows a cubic power law Ei ∝ Fr3

i .
Drawing on these results, and showing that for previous experimental studies λi
exhibits wide variation, we highlight underlying physical reasons for the significant
scatter in the existing measurements of the rate of interfacial entrainment. Finally,
we explore the implications of our results for guiding appropriate choices of box
geometry for experimentally and numerically examining interfacial entrainment.

Key words: convection, plumes/thermals, stratified flows

1. Introduction
We theoretically examine ‘confined’ interfacial entrainment, that is, the turbulent

downward transport of buoyant fluid across a gravitationally stable horizontal density
interface separating two uniform fluid masses within the confines of a box. The
last five decades have witnessed an extensive series of experimental investigations in
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Fountain Plume Jet

(a) (b)

FIGURE 1. Schematics showing turbulent entrainment across an interface separating two
uniform layers of densities ρ1 (lower) and ρ2 <ρ1 (upper). A volume flux Qe is entrained
from the upper layer into the lower layer. (a) Layers confined in a box, as considered
in this paper. A positively buoyant plume maintains the upper layer, a negatively buoyant
impinging fountain drives interfacial entrainment, and a steady flow through a top opening
into an external ambient is established. (b) The unconfined case, shown here with a
neutrally buoyant impinging jet driving interfacial entrainment (cf. Shrinivas & Hunt
2014).

which turbulent entrainment across density interfaces is examined, by necessity, within
the confines of a transparent box or visual tank. The rate of interfacial entrainment
has historically been parameterised solely in terms of quantities local to the interface.
However, in the pursuit of a universal entrainment law (for example relating the
entrainment flux to an interfacial Froude number), the effects of confinement, i.e. the
role of the box, on the dynamics of interfacial entrainment have not, to our knowledge,
been examined explicitly until now. By unravelling the role of confinement, we herein
challenge the notion of a universal entrainment law. Indeed, we deduce that the role
of the box may be sufficient to explain a spread in measured entrainment rates from
quadratic to cubic power laws.

From both experimental and theoretical viewpoints, it is appealing to investigate
the classic transport phenomenon of interfacial entrainment (Fernando 1991) in a
state of (quasi-) steady equilibrium. To this end, we consider the steady two-layer
stratification established by a turbulent plume and a turbulent fountain in a box that
connects to an external unbounded quiescent environment via an opening at the
top. Figure 1(a) depicts the configuration we consider. The localised sources which
give rise to the plume and the fountain are located at the base of the box and are
sufficiently well separated so that the resulting plume and fountain are considered to
be non-interacting. In the context of our study, the plume is essentially an artefact for
enabling a buoyant upper layer of constant depth to be maintained. The impingement
of the fountain with the interface, which separates the resulting upper layer from
the fluid below (the lower layer), creates and sustains a localised turbulent region of
eddying motions that drive entrainment of fluid across the interface. In other words,
the plume establishes the two-layer stratification and the fountain provides the source
of turbulence at the interface. As the flow, pre-impingement, is negatively buoyant
relative to the lower layer, we refer to it as an impinging fountain. The appeal of this
quasi-steady configuration is due to the steadiness eliminating the inherent complex
time-dependent coupling between the entrainment flux across the interface and the
evolution of a stratified intermediate layer. The main question we address is how
does the confinement imposed by the physical boundaries of the box influence the
rate of interfacial entrainment?
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118 A. B. Shrinivas and G. R. Hunt

Our motivation to consider the role of confinement has been fuelled by the
significant scatter in measurements of the entrainment rate. Coffey & Hunt (2010)
comment that the underlying physical reason for this scatter is unknown and, as
nominally identical configurations (e.g. plume/fountain impingement) and techniques
have been used to induce and measure the entrainment rate, the scatter cannot
be explained by experimental variabilities or systematic errors alone. Moreover,
conflicting entrainment laws that stem from existing data currently shroud the
understanding of the problem, thereby casting doubt on the most appropriate empirical
entrainment model for application in engineering flows, the atmospheric sciences or
oceanography, where interfacial entrainment is ubiquitous. Many of these applications
are discussed in the review on mixing in stratified fluids by Fernando (1991).

With the aim of quantifying the volume flux Qe entrained across a density interface,
Shrinivas & Hunt (2014) analysed the large-time quasi-steady flow in an unconfined
environment that is induced, and maintained, by the impingement of a turbulent
axisymmetric jet on an interface separating two layers of uniform densities ρ1 and
ρ2 < ρ1 (figure 1b). Drawing on the wealth of previous observations, Shrinivas &
Hunt (2014) modelled impingements with a small interfacial Froude number (Fri)
as a semi-ellipsoidal dome and characterised large-Fri impingements as a fully
penetrating turbulent fountain. For the high-Reynolds-number and high-Péclet-number
flows of interest, the dimensionless entrainment flux

Ei = Qe

πb2
i wi

(1.1)

is governed solely by the interfacial Froude number Fri = wi/
√

bi1g′, a quantity
which characterises the relative strengths of the inertial forcing associated with the
energy-containing eddies that drive interfacial entrainment and the buoyancy force that
acts to stabilise the interface. Here, bi and wi denote the characteristic length scale
and velocity scale at the interface (the radius and vertical velocity of the jet at the
interface, respectively) and 1g′= g(ρ1− ρ2)/ρ1 the buoyancy step in the environment
across the interface. Shrinivas & Hunt (2014) showed that Ei ∝ Fr2

i for small Fri and
Ei∝Fri for large Fri. Figure 2 plots the solution for this unconfined entrainment model
together with the experimental data from Baines (1975), Kumagai (1984), Baines,
Corriveau & Reedman (1993) and Lin & Linden (2005). These experimental studies
measured interfacial entrainment driven by the localised impingement of a turbulent
axisymmetric plume (Baines 1975; Kumagai 1984) or a turbulent axisymmetric
fountain (Baines et al. 1993; Lin & Linden 2005). A comprehensive review of these
and other previous studies is given in Shrinivas & Hunt (2014). Whilst the general
trends are well captured by Shrinivas & Hunt’s (2014) model (figure 2), it is evident
that there is a significant spread in both the individual and collective data sets, with
experimental values of Ei differing by an order of magnitude for a given Fri. These
disparities compound the inherent challenges and uncertainties experimentalists face
when pursuing an entrainment law of the form Ei ∝ Frn

i . Owing to the complexities
associated with an experimental approach, there is wide variation in the reported
values of the exponent n, which include n = 0 (Lin & Linden 2005), n = 1 (Baines
et al. 1993), n= 2 (Cardoso & Woods 1993; Ching, Fernando & Noh 1993) and n= 3
(Baines 1975; Coffey & Hunt 2010). Although the model developed by Shrinivas &
Hunt (2014) elucidates the dominant physics at the heart of the quadratic and linear
power laws, it does not explain the cubic power law.

Box confinement is an intrinsic feature of all the aforementioned experiments and
the disparities between the reported entrainment laws are irrefutable. This raises
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FIGURE 2. Dimensionless entrainment flux Ei against the interfacial Froude number Fri:
comparison of the theoretical prediction of Shrinivas & Hunt (2014) (solid line) with
previous experimental measurements. The theoretical prediction approximates to Ei =
0.24Fr2

i for Fri < 1.4 and Ei = 0.42Fri for Fri > 3.8.

the question of whether interfacial entrainment and confinement are inextricably
intertwined – confinement leading to secondary flows in the environment and
secondary flows influencing measurements of the entrainment flux. Jirka & Harleman
(1979) demonstrated that turbulent jets and plumes in a confined uniform fluid of
finite depth induce a clearly defined flow pattern: a momentum jet forming circulation
cells, and a buoyant plume forming a gravity current and a horizontal return flow.
Ching et al. (1993) studied the interaction of a turbulent line plume with the density
interface of a two-layer fluid within the confines of a box whose width W far
exceeded its height H (figure 3a). Subsequent to its impingement with the interface,
the plume formed an interfacial gravity current. Akin to the experiments of Jirka
& Harleman (1979), they identified that horizontal secondary flows prevailed in
the confined environment. Jirka & Harleman (1979) reported that entrainment into
a jet/plume is influenced by secondary flows, and thus it is entirely conceivable
that secondary flows in a confined two-layer system influence or modify interfacial
entrainment.

Figure 3(b) shows a vertical profile of the horizontal velocity u in the environment
measured by Ching et al. (1993). A flow in the upper layer, towards the interfacial
dome, occurs by virtue of two independent mechanisms, which we now discuss in
turn. First, plume impingement gives rise to a perpetual cycle of vertical excursions
of the density interface (Ching et al. 1993), and the surplus potential energy that
becomes available, as a result of the interfacial deflections, is converted into kinetic
energy that drives a bulk flow in the environment. This available potential energy is
stored in the horizontal density gradients that manifest when the interface deflects.
Entrainment into the dome (figure 3a) and the requirement for volume conservation
is the second mechanism by which a flow is induced in the upper layer. If we ignore
the flow produced by interfacial deflections and consider just the mean velocity uin
of the flow induced by entrainment, continuity across a vertical section of the upper
layer of depth D requires Qe= uinWD, that is, uin/wi=Eiai/(WD). The area ai of the
localised impingement region is typically a small fraction of the box cross-sectional
area (we note that ai < 0.1WD for the experiments of Ching et al. (1993)) and Ei� 1
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FIGURE 3. (a) Schematic showing the set-up considered by Ching et al. (1993), in
which a turbulent line plume impinges on a density interface within the confines of a
box. (b) Vertical profile of the dimensionless horizontal velocity u/wi in the environment
measured by Ching et al. (1993).

for small-Fri entrainment (figure 2). Thus, the flow induced by interfacial entrainment
is weak, i.e. uin/wi � 1. However, figure 3 indicates that the velocity in the upper
layer can be up to 30 % of wi. We therefore expect that these relatively large velocities
are primarily attributed to the flow produced by interfacial deflections. Hereinafter, we
refer to the flow induced solely by the interfacial deflections as the ‘secondary flow’.

Herein, by considering the steady two-layer stratification established by a plume
and a fountain in a box, we determine the influence of confinement on interfacial
entrainment and establish what the term ‘confinement’ signifies dynamically. In § 2,
we develop a model of turbulent interfacial entrainment in the presence of a secondary
flow induced by vertical excursions of the interface. We reveal that, besides Fri, Ei is
dependent on a second dimensionless quantity, namely a ‘confinement’ parameter λi,
which characterises the length scale of interfacial turbulence relative to the vertical
extent of the confinement, so that in general Ei = Ei(Fri, λi). Analysing the model
predictions in § 3, we establish that for small λi, the secondary flow is weak and has
little influence on Ei. Hence we regard interfacial entrainment in this regime as weakly
confined. By contrast, Ei is significantly influenced by a strong secondary flow when
λi is sufficiently large, and hence we regard interfacial entrainment in this regime as
strongly confined. In these limits of small λi and large λi, the scaling of Ei on Fri is
distinct, giving

Ei ∝
{

Fr2
i for λi� λi,c,

Fr3
i for λi� λi,c,

λi,c = 0.16Fr−2
i . (1.2)

Our theory thereby offers a reason as to why some data sets support a cubic power
law whilst others follow a quadratic power law. Deducing where possible the values
of λi for previous experiments, we highlight physical reasons for the scatter in the
existing data (figure 2). Drawing on our predictions, in § 4 we offer guidance on
an appropriate box geometry and configuration for experimentally and numerically
examining interfacial entrainment.

2. A model for confined interfacial entrainment
Based on the experimental observations of Jirka & Harleman (1979) and Ching

et al. (1993), we hypothesise that secondary flows induced by the deflections of the
interface within the confines of a box may influence or modify the dynamics of
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h
z

g

FIGURE 4. Schematic showing the steady two-layer flow established by a turbulent
fountain (left) and a turbulent pure plume (right) with sources at the base (z = 0) of a
box of height H. The steady density interface is at height z= h.

turbulent entrainment across a density interface. To investigate this hypothesis, we
relax the condition of an unconfined environment and extend the model of Shrinivas
& Hunt (2014) to describe interfacial entrainment within a box of height H and
plan area S. The box interior connects to an unbounded quiescent ambient of uniform
density ρ via an opening of area at at the top (figure 4). At the base of the box (z=0),
a continuous point source of constant buoyancy flux BP gives rise to a turbulent
axisymmetric pure plume, and the continuous vertically forced upward injection of
relatively dense fluid from a circular area source (radius bf0), with constant fluxes of
volume Qf0 , momentum Mf0 and buoyancy Bf0 < 0, produces a turbulent axisymmetric
fountain. The two sources are sufficiently well separated that the resulting plume
and fountain are regarded as non-interacting. As confirmed in the experiments of Lin
& Linden (2005), these sources establish two buoyant layers, separated by a steady
interface at height z= h, as depicted in figure 4. The boundaries of the box are purely
a physical constraint and there are no buoyancy exchanges between them and the
fluid. Our system is a direct analogue of the experiments of Lin & Linden (2005)
and of numerous others (§ 1) that have examined entrainment across interfaces by
using saline releases in water to create density contrasts.

The minimum separation distance between the sources corresponds to the distance
at which the plume and fountain first interact at the top of the box (z = H).
Kaye & Linden (2004) showed that two plumes of similar strength coalesce at a
height of approximately four times the separation of their sources. Thus, for a first
approximation we may take the minimum separation distance between the sources as
H/4. This is consistent with Lin & Linden’s (2005) experiments.

At steady state, the fluxes of volume and buoyancy supplied via the sources are
exactly matched by the corresponding fluxes driven, by the buoyant layers, out
through the top opening. We assume that the flow through the opening remains
unidirectional. Hunt & Coffey (2010) showed that a Froude number Frt associated
with the flow through the top opening characterises the direction of flow and to
achieve a unidirectional outflow requires Frt > 0.33. This requirement restricts the
range of possible dimensionless opening areas at/H2, as discussed in Hunt & Coffey
(2010).

Our model is underpinned by the three key facets of interfacial entrainment noted
by Turner (1986), namely, the dynamics of the energy source driving the entrainment,
the entrainment mechanism and the influence of the energy source on the environment.
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122 A. B. Shrinivas and G. R. Hunt

We now consider each of these in turn. First, energy for interfacial entrainment is
channelled to the interface via the fountain, the dynamics of which are well described
by existing models (see, for example, the review by Hunt & Burridge 2015). Second,
the entrainment mechanism is attributed to the engulfment of fluid by baroclinic
vortices around the periphery of the impingement dome. Shrinivas & Hunt (2014)
developed a mechanistic description of this process and showed that, much as for
plume entrainment, the entrainment velocity is proportional to a local vertical velocity.
The third facet of the problem, namely that which pertains to the fountain–interface
interaction and its influence on the two-layer stratification, has received little attention.
We will see (§§ 2.2, 3) that fountain–interface interaction plays an instrumental role
in the dynamics of confined interfacial entrainment.

Our system is similar to the experimental arrangement of Lin & Linden (2005). For
a laboratory experiment our system would be inverted, with saline solution injected
downwards, from a localised source, into a box of fresh water to generate a dense
plume and by supplying fresh water downwards at the fountain source to produce a
fountain in the steady state. For the Boussinesq flows of concern here, this reversal of
direction of the buoyancy force is unimportant to the dynamics, apart from reversing
the sense of motion. Following Lin & Linden (2005), we assume that the layers are
of uniform density. Accordingly, the mean buoyancies

g′1 = g
(
ρ − ρ1

ρ

)
and g′2 = g

(
ρ − ρ2

ρ

)
(2.1a,b)

are assigned to the lower layer of density ρ1 and the upper layer of density ρ2,
respectively. The measurements of Lin & Linden (2005) showed that this is a very
good assumption for the upper layer. Turbulent fluctuations associated with the
downward entrainment flux across the interface give rise to weak density gradients
adjacent to the interface. However, these gradients are confined in a relatively thin
transitional region (∼0.1H), and so to a first approximation we assume two uniform
layers.

Entrainment of fluid from the upper layer into the lower layer is driven by energetic
eddying motions contained within a localised region of turbulent flow above the
interface (shown as a dome in figure 4) resulting from the impingement of the
fountain. The morphology and dynamics of this turbulent flow above the interface
are governed primarily by the interfacial Froude number

Fri = wi√
bi1g′

, 1g′ = g′2 − g′1, (2.2a,b)

where wi and bi are the mean vertical velocity and mean radius of the fountain at the
interface. When Fri is small (Fri . 1), the interfacial impingement is weakly energetic
(Shrinivas & Hunt 2014), and strong buoyancy forces local to the interface arrest
the penetration of dense fluid, resulting in the formation of a shallow dome-like
upwelling (figure 4). This behaviour and morphology of flow is confirmed by
several experimental studies (Kumagai 1984; Shy 1995; Hunt & Coffey 2010).
The shadowgraph images from Hunt & Coffey’s (2010) experiments clearly indicate
the presence of impingement domes (figure 5). A volume flux Qe of buoyant fluid
is entrained from the upper layer into the dome by baroclinic vortices around the
periphery of the dome. The entrained fluid is transported downwards across the
interface through an annular region. Our attention is centred around these small-Fri
flows, and we shall restrict our model to Fri < 1.4 (Shrinivas & Hunt 2014). In § 2.1,
we relate Qe to the interface position (z = h) and the layer buoyancies (g′1, g′2) by
considering conservation arguments for the buoyant layers. In §§ 2.2 and 2.3, we seek
a solution for Qe by analysing the local fountain–interface interaction.
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FIGURE 5. Shadowgraph images from Hunt & Coffey’s (2010) experiments: (a) the local
upward deflection of a density interface resulting from the impingement of a turbulent
fountain; (b) the flow 15 s later when the interface has been temporarily restored back to
horizontal.

2.1. Global conservation equations
For an incompressible flow, the volume flux QPi supplied to the upper layer by the
plume at the interface is exactly balanced by the volume flux leaving this layer, i.e.
via the sum of that entrained Qe and driven through the top opening Qt = Qf0 . The
buoyancy flux supplied to the upper layer comprises BP and the flux of buoyancy
g′1QPi entrained by the plume from the lower layer. The impinging fountain entrains
a flux of buoyancy g′2Qe from the upper layer and the outflow from the box expels
buoyant fluid at a rate g′2Qt. Thus, for the upper layer, conservation of volume and
buoyancy require, respectively,

QPi =Qe +Qt, BP + g′1QPi = g′2 (Qe +Qt) . (2.3a,b)

Inspired by the long history of simplified models on turbulent plumes and fountains,
top-hat profiles are adopted for the time-averaged horizontal variation of the vertical
velocity and buoyancy of the plume and fountain. Following the classic plume theory
of Morton, Taylor & Turner (1956),

QPi =CPB1/3
P h5/3, CP = 6αP

5

(
9αPπ

2

10

)1/3

, (2.4a,b)

where αP is the top-hat entrainment coefficient for the plume. Following Turner (1986)
we take αP = 0.117. As the plume is merely an artefact in the problem, in (2.4) we
have neglected the effects of the secondary flow on plume entrainment. Although the
secondary flow may modify the entrainment coefficient αP, the choice of αP does not
influence the scaling of Qe, which is the quantity of primary interest to us.

The source buoyancy flux of the fountain Bf0 and the buoyancy flux turbulently
entrained via the impingement dome from the upper layer g′2Qe are supplied to the
lower layer. Due to entrainment into the plume, a flux of buoyancy g′1QPi is removed
from the lower layer. Thus, conservation of buoyancy for the lower layer requires

Bf0 + g′2Qe = g′1QPi . (2.5)

Denoting bf0 and wf0 as the radius and vertical velocity, respectively, of the fountain
at its source,

Qf0 =πb2
f0wf0, Bf0 =−πg′f0b

2
f0wf0 . (2.6a,b)
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The conservation equations, (2.3) and (2.5), are reduced to their simplest form by
scaling the layer buoyancies on the source buoyancy g′f0 = |Bf0 |/Qf0 of the fountain
and scaling the interface height on the box height H. Accordingly, we introduce the
dimensionless variables

δ1 = g′1
g′f0
, δ2 = g′2

g′f0
, ξ = h

H
. (2.7a−c)

To proceed, we substitute (2.4) into (2.3a) and rearrange for h. We then substitute
for g′1 from (2.5) into (2.3b). Non-dimensionalising the resulting equations yields
closed-form solutions for the dimensionless interface height and the dimensionless
layer buoyancies:

ξ =
(

L Fr2/5
0

ψ1/5

)
(1+ E)3/5 , δ1 = E(ψ − 1)− 1

1+ E
, δ2 =ψ − 1, where E= Qe

Qf0
.

(2.8a−c)
The three resulting non-dimensional parameters (2.9) of our system are the buoyancy
flux ratio ψ , the fountain source Froude number Fr0 and the dimensionless radius L
of the fountain source:

ψ = BP

|Bf0 |
, Fr0 =π1/4 M5/4

f0

Qf0 |Bf0 |1/2
, L =

(
π2/5

C3/5
p

)
bf0

H
. (2.9a−c)

At this stage, E = Qe/Qf0 is the single unknown dimensionless quantity. In order to
determine Qe and hence close the problem, we now model the fountain–interface
interaction.

2.2. Secondary flow in the environment
The impingement of the fountain produces a ‘local’ upward deflection of the interface.
To produce a local deflection, we require the radius of the impinging fountain bi�

√
S.

Although the two-layer fluid remains close to hydrostatic equilibrium, the ‘tilting’ of
the interface indicates that the surfaces of constant pressure and constant density are
no longer parallel. The action of the resulting baroclinic torque reduces the horizontal
density gradients eventuating from the interfacial deflection and restores the interface
back to the horizontal. The sustained forcing of the interface by the fountain gives rise
to a near-continuous cycle of vertical deflections from the horizontal. This perpetual
process is confirmed by several experimental studies (Kumagai 1984; Shy 1995; Hunt
& Coffey 2010). Figure 5 shows shadowgraph images from Hunt & Coffey’s (2010)
experiments; in figure 5(a), the interface between two saline layers of different density
is deflected upwards due to the localised impingement of a fountain from below. A
short time later, the interface has been temporarily restored to its stable horizontal
orientation (figure 5b).

When the interface tilts, (heavy) fluid of density ρ1 within the lower layer is
displaced upwards and (light) fluid of density ρ2 within the upper layer is displaced
downwards. Thence, as the baroclinic torque acts to restore the interface, the
potential energy of the displaced fluids is released and a fraction of this energy
is converted into kinetic energy that drives fluid motions. As a direct consequence of
the near-continuous release of potential energy from the perpetual cycle of interfacial
deflections, a quasi-steady secondary flow is established and maintained in the upper
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D

r

Box top

AA
BB

FIGURE 6. Schematic showing the modelled maximum deflection of the interface resulting
from the impingement of the fountain. The position of the undisturbed interface is ź= 0.
Due to the deflection, fluid is displaced in shaded regions A and B. Solid arrows in the
upper and lower layers indicate the secondary flow induced by interfacial tilting.

and lower layers (see appendix A for arguments on why the secondary flow is
quasi-steady). Crucially, therefore, fluid with non-zero velocity is entrained into the
impingement dome. Ching et al. (1993) observed secondary flows in the environment
with velocities in the upper layer of up to 30 % of the plume’s vertical velocity at
the interface (figure 3). Accordingly, to account for the non-zero flux of momentum
entrained into the dome, we consider a time-averaged picture and seek an expression
for the mean velocity u2 of the secondary flow in the upper layer.

In a given cycle of interfacial deflection, the interface attains a maximum
vertical displacement of ź = η from its equilibrium position at ź = 0, as depicted
in figure 6. Dense lower-layer fluid is displaced upwards above ź = 0 in region
A and an equal volume of light upper-layer fluid is displaced downwards below
ź = 0 in region B (of horizontal extent lB). Guided by observations (cf. figure 5),
we assume that the horizontal extent, lA, of the upward deflection is equal to the
horizontal length scale, bi, of the forcing that produces the deflection. The deflection
of the interface is thereby assumed to occur within a circular region of radius
rid = bi + lA + lB = 2bi + lB, which we refer to as the ‘zone of interfacial deflection’
(the subscript ‘id’ meaning ‘interfacial deflection’). Whilst the deflected interface
typically exhibits a relatively smoothly varying profile (figure 5a), the gradient of our
assumed profile is discontinuous at r = rid. Nevertheless, we will see that our model
provides a simple yet effective starting point for quantifying the velocity u2 resulting
from the deflections. For the impingement of an axisymmetric fountain, the deflected
regions are characterised by an annular prism whose outer radius and inner radius are
{2bi, bi} for region A and {2bi + lB, 2bi} for region B. Accordingly, in the displaced
state

π

2
η
[
(2bi)

2 − b2
i

]= π

2
η[(2bi + lB)

2 − (2bi)
2]. (2.10)

Rearranging (2.10) gives a quadratic in lB/bi, which has a single positive root:

l2
B

b2
i
+ 4

lB

bi
− 3= 0,

lB

bi
= (√7− 2)≈ 0.65. (2.11a,b)

When the interface attains its maximum displacement (ź= η), fluid in regions A and
B momentarily comes to rest. Subsequently, as the interface is restored, the displaced
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fluids are set in motion. Thus, at the instant when maximum tilting occurs there
is no flux of momentum into, or out of, region A. Hence, conservation of vertical
momentum for this fluid volume requires

ρiQiwi = 3π

2
b2

i ηρ1g′, (2.12)

i.e. the interface is brought momentarily to rest when the upward excitation force (left-
hand side) causing the interfacial deflection is balanced by the downward restoring
buoyancy force (right-hand side) acting on the displaced fluid of volume 3πb2

i η/2
(2.10). Here, ρi denotes the density of the fountain at the level of the undisturbed
interface. Under the Boussinesq approximation, the maximum vertical displacement of
the interface is, from (2.12),

η

bi
= 2

3
Fr2

i . (2.13)

As we shall see in § 2.3, the penetration depth of the impingement dome is
zd/bi = 0.94Fr2

i . Evidently, the scalings of η and zd on Fri are identical, which
is not surprising given that both the origin of the interfacial deflection and the
shallow-penetration dome is the vertical forcing by the fountain. We note that
η/zd < 1, a result one would expect on physical grounds. Moreover, our prediction
that η/zd ≈ 0.7 is consistent with observations (cf. figure 5a).

Upon calculating the potential energy of the two-layer fluid in the displaced state
PEdis and the potential energy of the equilibrium state PEeq (see appendix B), we find
that the surplus potential energy available for conversion into kinetic energy is

APE= PEdis − PEeq =πρ1g′b2
i η

2. (2.14)

As the action of the baroclinic torque temporarily restores the tilted interface from
the point of maximum deflection (ź = η) to the equilibrium position (ź = 0), the
available potential energy (2.14) is converted into kinetic energy for driving fluid
motion in the upper and lower layers primarily over the radial extent rid. A flow
towards the impingement dome is established within the upper layer, whereby light
fluid of density ρ2 replaces heavy fluid of density ρ1 in region A (figure 6). We
note that the hydrostatic pressure variations established by the tilting, and indeed
the entrainment into the dome, induce a flow towards the dome. Similarly, a flow
towards the side walls of the box is established within the lower layer, whereby
fluid of density ρ1 replaces fluid of density ρ2 in region B. In our time-averaged
conceptualisation, the mean kinetic energy of the secondary flow prevailing in the
upper layer is

KE2 =
∫ H

h
πρ2

u2
2

2
r2

id dz=πρ2r2
id(H − h)

u2
2

2
. (2.15)

Given that we seek a local velocity for the bulk-flow-induced adjacent to the dome,
in (2.15) we have calculated the kinetic energy of the flow within the region of
interfacial deflection (i.e. for r 6 rid). Continuous vertical oscillations of the interface
typically contribute to the generation of interfacial gravity waves that extract a fraction
of the potential energy released from the interfacial deflections. Some of the available
potential energy may also be dissipated due to viscous effects. Thus, a fraction c of
the available potential energy remains after dissipation. For simplicity, and indeed
in the absence of data to support or justify a more complex energy balance, we
apportion the available potential energy (after dissipation) equally between the kinetic
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energies of the flows in the upper and lower layers, i.e. KE2= c(APE/2). Seeking an
upper-bound solution for u2, we neglect local energy losses so that c= 1. Under the
Boussinesq approximation, the dimensionless mean velocity ũ2 of the secondary flow
in the upper layer is then

ũ2 = u2

wi
= 2

3
√

7
cFri

√
λi ≈ 0.25Fri

√
λi, (2.16)

where the ‘confinement’ parameter

λi = bi

H − h
. (2.17)

Evidently, λi characterises the length scale of interfacial turbulence relative to
the vertical extent (H − h) of the confinement. Accordingly, hereafter ‘confinement’
refers to ‘vertical confinement’. For a given bi and Fri, a relatively weak secondary
flow (ũ2� 1) is established in the upper layer when the impingement occurs at low
elevations (h � H) in a tall box such that λi is relatively small. In this limit, we
expect our prediction of u2 to be less reliable as the local interfacial deflections
are unlikely to induce fluid motions over the depth of a relatively deep upper layer.
However, we note that in the absence of confinement λi → 0 and ũ2 → 0 (2.16),
which is entirely consistent with the unconfined case where interfacial entrainment
occurs in the absence of a secondary flow (Shrinivas & Hunt 2014).

In contrast, the secondary flow is relatively strong when the impingement occurs
at high elevations in a short box such that λi is relatively large. In this limit, we
expect our model to capture well the dynamics of the secondary flow as the interfacial
deflections are likely to excite fluid motions over the full depth of a relatively shallow
upper layer, as indicated in figure 3(b). Indeed, it is this limit that is of primary
interest to us. Moreover, we will see that for previous experimental studies λi varies
in the range 0.1< λi < 1, with the majority of the values of λi exceeding λi= 0.3, i.e.
λi was relatively large for previous experiments. Given that we focus on Fri . 1, ũ2∼
O(1) (2.16). Thus, the velocity ũ2 of the secondary flow cannot be reasonably ignored.
In § 3.1, we establish the range of λi that may be regarded as ‘small’ and ‘large’.

2.3. Impingement dome
Having determined u2, our attention turns to the volume flux Qe of buoyant fluid,
with velocity u2, turbulently entrained from the upper layer into the axisymmetric
semi-ellipsoidal impingement dome atop the incident fountain (figure 7). To model
the entrainment into the dome, we employ the theoretical framework developed in
Shrinivas & Hunt (2014). The entrained fluid is transported across the interface
through an annulus of width (bd − bi). Adopting top-hat profiles for the variation
of the vertical downward velocity ẁd < 0 and density ρd across this annular region,
conservation of volume for the impingement dome requires

πb2
i wi +Qe =π(b2

d − b2
i )wd, (2.18)

where wd = |ẁd|. The dome receives a flux of momentum πρib2
i w2

i from the fountain
and a flux of momentum πρd(b2

d − b2
i )w

2
d is transported out of the dome through

the annulus. Guided by the measurements of Ching et al. (1993) (figure 3), we
assume that the secondary flow in the vicinity of the dome boundary is horizontal.
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g

r r

Dome perimeter

Vortex layer

(a) (b)

FIGURE 7. Schematic showing (a) the small-Fri axisymmetric semi-ellipsoidal
impingement dome atop the impinging fountain and (b) the modelled vortex layer
(shaded area) of the dome. In (b), the dashed box is the control volume considered for
the inflow into the dome due to turbulent entrainment.

Accordingly, the flux of vertical momentum entrained into the dome is zero. Therefore,
conservation of vertical momentum for the dome requires

πρib2
i w2

i +πρd(b2
d − b2

i )w
2
d =

2π

3
b2

dzdρig′i, g′i = g
(
ρi − ρ2

ρ

)
, (2.19)

where g′i is the mean buoyancy experienced by dense fluid within the dome of volume
2πb2

dzd/3. Substituting for wd from (2.18) into (2.19) gives

E2
i + 2Ei = 2

3k4

ẑ5
dǧ′i

Fr2
i
− 2

3k2

ẑ3
dǧ′i

Fr2
i
− 1

k2
ẑ2

d, (2.20)

for Boussinesq flows, where

ẑd = zd

bi
, k= zd

bd
, ǧ′i =

g′i
1g′

(2.21a−c)

are the dimensionless penetration depth, the aspect ratio of the dome and the
dimensionless buoyancy of the fountain at the interface, respectively. We will see
(§§ 3.2, 3.3) that solutions of (2.8) are realised for fountains with source Froude
numbers Fr0� 1 and source buoyancy flux ratios ψ� 1, i.e. the impinging fountain
is highly forced at its source. For these source conditions, the fountain behaviour is
jet-like over a significant fraction of the rise height, and hence its density ρi at the
interface is comparable with ρ1 for Boussinesq flows. Accordingly, we invoke the
approximation that ǧ′i ≈ 1, which considerably simplifies the analysis whilst having
little effect on the solution. By considering conservation of buoyancy for the dome,
we find that our approximation ǧi= 1 leads to a marginal overprediction (by no more
than 4 %) of Qe (see appendix C).

To close the problem, it is necessary to describe the mechanism by which external
fluid is entrained into the dome. The representation of turbulence, necessary to close
the problem mathematically, forms the cornerstone of the mechanistic entrainment
model developed by Shrinivas & Hunt (2014). Shy (1995) and Cotel et al. (1997)
identified that the interaction between the incident vorticity within the impinging flow
and the baroclinic vorticity generated at the interface, due to its tilting, results in
the formation of strong persistent vortices within a relatively thin layer around the
perimeter of the dome. These rotational motions are predominantly responsible for
the entrainment into the dome. By modelling this peripheral region of strong vorticity
as a finite-thickness vortex layer (the shaded region of the schematic of figure 7b),
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Shrinivas & Hunt (2014) related the generation of baroclinic vorticity to the resulting
mean entrainment velocity ue and showed that

ue = αd

√
21g′(zd − ź), (2.22)

i.e. the entrainment velocity is proportional to a local buoyancy velocity. Here, αd is
an entrainment coefficient, an appropriate value for which is αd = 0.1 (Turner 1986).

To account for the horizontal momentum (∝u2) of the fluid entrained from the
upper layer, we consider a control volume of height dź around the dome perimeter
(figure 7b). Owing to the secondary flow, a volume flux q2 per unit height with fluid
of velocity u2 enters the control volume. A volume flux q∗ per unit height leaves the
control volume and enters the dome at velocity u∗. Thus, conservation of horizontal
momentum for the flow near the dome boundary requires

ρ∗q∗u∗ dź− ρ2q2u2 dź= Fe, (2.23)

where Fe denotes the inertial force of the peripheral energy-containing vortices that
drive entrainment into the dome and ρ∗ denotes the density of the fluid entering the
vortex layer. Over a vertical extent dź of the vortex layer, a volume dVe of external
fluid is engulfed at velocity ue in a time dt. Therefore, the inertial force associated
with the energy-containing vortices that gives rise to and maintains the steady inflow
into the dome is

Fe = ρ2ue dVe/dt. (2.24)

Under the Boussinesq approximation, substituting for Fe (2.24) into (2.23) and given
that conservation of volume for the steady flow requires q2 dź = qe dź = dVe/dt, we
obtain

u∗ = ue + u2, (2.25)

i.e. the mean horizontal inflow velocity u∗ across the boundary between the turbulent
flow and the external environment is given by the sum of the entrainment velocity of
the peripheral vortices and the velocity of the secondary flow in the upper layer. To
further support this entrainment formulation, we may draw a direct analogy between
plumes rising in a weak crossflow and our dome in the midst of a predominantly
horizontal secondary flow. The net entrainment into a plume rising in a crossflow is
the sum of two parts, namely, the entrainment driven by the vertical shear and the
entrainment of the crossflow (Hoult & Weil 1972; Lee & Chu 1979; Devenish et al.
2010). Similarly, the net entrainment into the dome in the presence of a secondary
flow comprises two components, namely, the entrainment driven by baroclinic
vortices and the entrainment of the secondary flow. Thus, (2.25) is consistent with
well-established entrainment models for plumes in a crossflow.

The total volume flux entrained into the dome over the height 0 6 ź 6 zd is

Qe =
∫ zd

0
2πbpu∗ dź=

∫ zd

0
2πbp(ue + u2) dź, (2.26)

where bp is the radius of the dome at height ź. The dome perimeter is the semi-ellipse:

b2
p(ź)

b2
d
+ ź2

z2
d
= 1, for 0 6 ź 6 zd. (2.27)
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Substituting for u2 (2.16), ue (2.22) and bp (2.27) into (2.26) gives

Qe =πCbd

√
1g′z3/2

d +
π2

2
bdzdu2, C= 4αd

√
2

15
(8
√

2− 7). (2.28a,b)

To complete our solution we require the penetration depth zd of the dome. For the
unconfined case, wherein interfacial entrainment occurs in the absence of a secondary
flow (i.e. ũ2 → 0 as λi → 0), Shrinivas & Hunt (2014) considered conservation of
energy for the dome and showed that

ẑd = zd

bi
= BFr2

i , B= 0.94. (2.29)

For the confined problem of interest here, entrainment of fluid into the dome results
in an inflow of kinetic energy ∝u2

2 and potential energy ∝1g′zd. Whilst both can
be accounted for in the energy budget, an elegant approximation becomes evident
on examining the relative magnitudes of the kinetic and potential energies entrained.
Given that zd/bi∝Fr2

i , the ratio of the entrained energies is u2
2/(1g′zd)∝u2

2/w
2
i . Noting

that u2
2/w

2
i �1 (2.16) for the range of {Fri, λi} considered, the kinetic energy entrained

into the dome is relatively small and thus may reasonably be neglected. Hence, the
secondary flow has a relatively minor influence on the energy budget for the dome.
Thus, to a good approximation, the penetration depth of the confined dome is given
by (2.29).

With the problem fully closed, we substitute for u2 (2.16) and zd (2.29) into (2.28).
The resulting expression is rearranged for the aspect ratio k and substituted into (2.20).
This yields a cubic in Ei as a function of the interfacial Froude number and the
confinement parameter:

E3
i − a1Ei − a2 = 0, (2.30)

where

a1 = 3a2
3

2B

(
1+ 2B

3
+ a2

3

)
, a2 = 3

B
a4

3, a3 = B3/2CFr2
i +

πB
8
λ

1/2
i Fr3

i . (2.31a−c)

This cubic has a single positive root, namely

Ei =
{

a2

2
+
√(a2

2

)2 −
(a1

3

)3
}1/3

+
{

a2

2
−
√(a2

2

)2 −
(a1

3

)3
}1/3

. (2.32)

For Fri < 1 and λi < 1, a two-step procedure (see appendix D) reduces (2.32) to the
simple analytic solution

Ei = AFr2
i︸︷︷︸

unconfined
component

+K
√
λiFr3

i︸ ︷︷ ︸
confined

component

, (2.33)

which closely approximates the full solution. In (2.33),

A= BC

√
B+ 3

2
≈ 0.24 and K = πA

8
√

BC
≈ 0.60. (2.34a,b)

The first term of (2.33) is the contribution to the total volume flux into the dome due
to entrainment driven by peripheral vortices and the second term is the volume flux
into the dome due to entrainment of the secondary flow.
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When interfacial entrainment occurs in an unconfined environment, λi → 0 and
ũ2 → 0 (2.16). In this limit Ei = Ei(Fri) and we recover our solution Ei = AFr2

i
for unconfined entrainment (Shrinivas & Hunt 2014). When interfacial entrainment
occurs within the confines of a box so that λi > 0, a secondary flow persists (ũ2 > 0)
and Ei = Ei(Fri, λi). Thus, the second term of (2.33) solely accounts for the role of
confinement. To quantify the influence of confinement on Ei, we consider the total
entrainment flux Ei relative to the entrainment flux in the absence of confinement (i.e.
the unconfined component in (2.33)). Accordingly, we introduce the ratio

φ = AFr2
i + Ei,c

AFr2
i

, where Ei,c =K
√
λiFr3

i (2.35)

is the rate of entrainment of the secondary flow (the subscript ‘c’ meaning ‘confined’).
When φ ∼ 1, the contribution of Ei,c to Ei is small and box confinement does not
significantly influence the rate of interfacial entrainment. When φ� 1, Ei,c provides
a significant contribution to Ei, and hence confinement plays an instrumental role in
increasing the total entrainment flux Ei.

2.4. Impinging fountain
To predict Fri and λi, it is necessary to model the fountain. Assuming that the
downflow of the fountain is fully incorporated into the lower layer, conservation of
volume flux (πb2

f wf ), momentum flux (πb2
f w2

f ) and buoyancy flux (−πb2
f wf g′f ) for the

fountain upflow requires (Morton et al. 1956)

d
dz
(πb2

f wf )= 2παf bf wf ,
d
dz
(πb2

f w2
f )=−πb2

f g′f ,
d
dz
(πb2

f wf g′f )= 0, (2.36a−c)

where αf is the top-hat entrainment coefficient for the fountain. Following Kaye
& Hunt (2006), we take αf = 0.085. Given that the fountain behaviour is jet-like
for the majority of its rise height, the vertical velocity wf of the fountain is large
compared with the velocity of the secondary flow in the lower layer. Therefore, it is
reasonable to assume that entrainment into the fountain is not significantly influenced
by the secondary flow in the lower layer. Whilst the secondary flow may modify the
entrainment coefficient αf , it is reassuring that the choice of αf does not influence
the scaling of Ei, the quantity of primary interest to us.

Scaling quantities of interest on their values at the fountain source, we seek the
vertical variation of the dimensionless radius βf = bf /bf0 , vertical velocity ωf =wf /wf0

and local Froude number Frf = wf /
√

bf g′f of the fountain. The non-dimensional
governing equations for the fountain are

dβf

dZ
= 5

3

(
1+ 1

4αf Fr2
f

)
,

dωf

dZ
=−5

3
ωf

βf

(
1+ 1

2αf Fr2
f

)
,

dFrf

dZ
=−5

3
Frf

βf

(
1+ 5

8αf Fr2
f

)
,

(2.37a−c)
where Z = (6αf /5)z/bf0 . The source conditions of the fountain are βf (Z = 0) = 1,
ωf (Z = 0)= 1 and Frf (Z = 0)= Fr0.

The non-dimensional parameters of our system (2.9) are the source Froude number
Fr0 of the fountain, the buoyancy flux ratio ψ and the fountain source radius L .
For a given {Fr0, ψ,L }, solutions were obtained using an iterative procedure. First,
by making an initial estimate of E = Qe/Qf0 , the interface position (ξ) and mean
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FIGURE 8. Dimensionless entrainment flux Ei across the interface: (a) as a function of
the confinement parameter λi for Fri= 0.7 and (b) as a function of the interfacial Froude
number Fri for λi = {0, 0.5}.

layer buoyancies (δ1, δ2) were calculated from (2.8a−c). Subsequently, the fountain
equations (2.37) were solved to obtain the dimensionless vertical velocity ωi and
dimensionless radius βi of the fountain at the interface. The interfacial Froude
number and the confinement parameter were determined from

Fri = Fr0
ωi√

βi (δ2 − δ1)
, λi =

(
L C3/5

p

π2/5

)
βi

1− ξ . (2.38a,b)

We then calculated the dimensionless entrainment flux Ei (2.33) and re-estimated E=
Eiβ

2
i ωi, the interface position and the layer buoyancies. This procedure was repeated

until Ei, ξ , δ1 and δ2 converged to fixed values.

3. Model predictions and analysis of results
3.1. Power laws for unconfined and confined entrainment

As an illustrative example of the role of confinement, figure 8(a) plots Ei as a function
of λi for Fri= 0.7. Also plotted is the power law Ei=AFr2

i for unconfined interfacial
entrainment. As λi increases, and thus the confinement is enhanced, the velocity ũ2(∝√
λi) of the secondary flow increases (see § 3.3 for a further discussion on the role of
λi). Therefore, the rate of entrainment Ei,c(∝ ũ2) of the secondary flow and hence Ei

increase with λi (figure 8a). Notably, when the radius of the impinging fountain equals
the depth of the upper layer (i.e. λi= 1), Ei exceeds the rate of interfacial entrainment
in an unconfined environment by a factor of three.

Figure 8(b) plots Ei as a function of Fri for λi = {0, 0.5} and further emphasises
the disparities between entrainment in unconfined and confined environments. As
Fri increases, and thus the vertical forcing of the interface is strengthened, larger
deflections η (∝ Fr2

i ) are produced. Hence, for λi > 0 a greater amount of potential
energy is released and converted into kinetic energy of the secondary flow. Therefore,
ũ2 and Ei increase with Fri (figure 8b). Significantly, when the diameter (2bi) of the
impinging fountain equals the upper-layer depth (i.e. λi = 0.5), doubling Fri from
Fri = 0.5 to Fri = 1 gives rise to a sevenfold increase in Ei; this compares with a
fourfold increase in the unconfined case.
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FIGURE 9. (a) Interface height ξ against the source Froude number Fr0 of the fountain
and (b) velocity ũ2 of secondary flow against the confinement parameter λi for buoyancy
flux ratio ψ = 25 and fountain source radius L = 0.1.

Crucially, the scaling of Ei on Fri is determined by λi. From (2.33), our entrainment
law follows

Ei ∝
{

Fr2
i for λi� λi,c,

Fr3
i for λi� λi,c,

λi,c = 64BC2

π2Fr2
i
. (3.1)

In other words, when λi � λi,c, the secondary flow is sufficiently weak such that
the contribution of Ei,c to Ei is small, and thus Ei is quadratic in Fri as per
‘unconfined’ entrainment (Shrinivas & Hunt 2014). When λi � λi,c, the secondary
flow is sufficiently strong such that Ei,c provides the dominant contribution to Ei and
thus, Ei is cubic in Fri (2.33). We refer to interfacial entrainment in these small-λi
and large-λi limits as weakly confined and strongly confined, respectively.

This result provides a plausible physical explanation for why some experimental
studies support a Ei∝Fr2

i power law, whereas others report Ei∝Fr3
i . Our model (3.1)

indicates that measurements of Ei following a cubic power law (Baines 1975; Coffey
& Hunt 2010) may have been influenced by a secondary flow owing to relatively
large values of λi. Inferring values of λi from previous works, we find that for the
experiments of Coffey & Hunt (2010), λi was as large as unity, as discussed in § 3.3.
Conversely, measurements of Ei supporting a quadratic power law (Cardoso & Woods
1993; Ching et al. 1993) were not significantly influenced by a secondary flow as λi
was sufficiently small. Indeed, for the experiments of Ching et al. (1993), a value
of λi = 0.2 was never exceeded. We will see (§ 3.3) that for previous studies, λi
exhibits wide variation, spanning the range 0.1< λi < 1. Hence, these studies capture
Ei not only within the weakly confined and strongly confined regimes, but also in
the transitional regime where comparable contributions from the quadratic and cubic
components are expected.

3.2. Entrainment for varying Fri and λi

Thus far, we have focused on entrainment for constant Fri or constant λi (figure 8).
The difficulty in achieving this in practice is exemplified by the significant variation
of Fri and λi in previous experiments (see § 3.3). To examine Ei when both Fri and
λi vary, we increase the source Froude number Fr0 of the fountain, whilst holding the
source radius L and buoyancy flux ratio ψ constant. As this produces more energetic
interfacial impingements, the rate of entrainment (Ei) of fluid from the upper layer
increases and hence the interface height ξ increases (figure 9a). Consequently, the
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FIGURE 10. Entrainment flux ratio φ (2.35): (a) against the interfacial Froude number Fri
and (b) against the confinement parameter λi for source buoyancy flux ratio ψ = 25 and
fountain source radius L = 0.1.

radius βi of the fountain at the interface increases. Therefore, increasing Fr0 results in
larger values of λi ∝ βi/(1− ξ). Enhancing the confinement in this way gives rise to
stronger secondary flows, i.e. ũ2 increases with λi, as shown in figure 9(b). Notably,
u2 is approximately 25 % of the fountain’s vertical velocity wi at the interface when
λi ∼ 1.

Figures 10(a) and 10(b) plot the entrainment flux ratio φ (2.35) against Fri and
λi, respectively. Two limiting cases can be identified: one in which Fri and λi are
small and a second in which Fri and λi are large. For Fri � 1 a weak forcing of
the interface by the fountain produces relatively small deflections as η∝ Fr2

i , and for
λi� 1 the zone of interfacial deflection (rid ∝ bi) is small compared with the depth of
the upper layer, rid�D. Thus, a relatively small amount of potential energy (∼b2

i η
2)

is released from the deflections and converted into kinetic energy of a relatively large
mass of upper-layer fluid. As a result, the secondary flow is weak (ũ2� 1), and hence
the rate of entrainment Ei,c of the secondary flow provides only a small contribution
to Ei. For example, φ ∼ 1 when {Fri, λi} � 1 (figure 10). When Fri and λi are both
large, the vertical excursions of the interface are relatively large (η is comparable
with bi) and the zone of deflection is comparable with the upper-layer depth. Thus, a
significant amount of potential energy is released and converted into kinetic energy of
a relatively shallow mass of upper-layer fluid. As a result, the secondary flow is strong
and hence, Ei,c provides a significant contribution to the total entrainment flux Ei. For
example, φ ≈ 4 when {Fri, λi} ∼ 1, i.e. with identical forcing, the entrainment flux in
the confined environment exceeds that in an unconfined environment by a factor of
almost four (figure 10).

3.3. Confinement in previous experimental studies
Figure 11 plots contours of constant Ei in {λi, Fri} space, thereby encompassing the
dynamics of interfacial entrainment in a confined environment. For a given Fri, Ei
can vary by up to 80 % depending on λi. For example with Fri= 0.7, Ei= 0.18 when
λi = 0.1, whereas Ei = 0.32 when λi = 0.8. Given that λi plays an instrumental role
in the entrainment dynamics, it is informative to examine the confinement in previous
experimental studies.

A wide range of box geometries have been used in experiments to measure Ei, with
the box height H differing by more than a factor of two: see table 1. Accordingly,
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FIGURE 11. Contours of constant entrainment flux Ei in {λi, Fri} space.

Researcher(s) H (cm) bf0 (cm) L ∝ bf0/H (2.9)

Lin & Linden (2005) 23, 25 1.27 0.216, 0.259
Baines (1975) 30 0.5 0.085
Cardoso & Woods (1993) 30, 44 0.7 0.081, 0.119
Coffey & Hunt (2010) 30 1.5 0.255
Kumagai (1984) 37 0.5 0.069
Baines et al. (1993) 50 0.16 0.016

TABLE 1. Examples of the box height H, source radius bf0 and dimensionless source
radius L used in previous experimental studies.

it is instructive to examine the effect of the vertical extent H of the confinement
on Ei. To this end, we vary the box height H for constant {bf0, Fr0, ψ}, equivalent
to varying L ∝ bf0/H, and calculate Ei. Figure 12 plots the entrainment flux ratio
φ against L . The values of L we consider span those of the experimental studies
(table 1). Reducing H (i.e. increasing L ) strengthens the confinement and hence
results in stronger secondary flows. Consequently, the rate of entrainment Ei,c of the
secondary flow increases, and thus φ increases with L . For a typical source radius
of bf0 = 0.6 cm, the dashed lines in figure 12 indicate the values of φ corresponding
to the minimum and maximum box heights used in experiment (table 1). Evidently,
the enhancement of Ei due to the confinement increases by more than 50 % when
the box height is decreased from H = 50 cm to H = 23 cm.

These results highlight that confinement has a significant effect on the strength
of the secondary flow and thus on the entrainment flux. Of course, this variation
is entirely unwanted from a practical perspective as experiments have sought to
determine a universal entrainment law.

To establish whether the role of confinement can shed new light on the significant
spread in the existing measurements of Ei (figure 2), figure 13 plots λi for the
experiments of Kumagai (1984), Lin & Linden (2005) and Coffey & Hunt (2010) in
{Fri, λi} space. We note that Baines (1975) does not provide sufficient information
to calculate λi for his experiments. Evidently, the experimental values of λi vary by
up to an order of magnitude for a given Fri. Notably, the range of experimental
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FIGURE 12. Entrainment flux ratio φ against dimensionless source radius L for source
Froude number Fr0 = 20 and buoyancy flux ratio ψ = 10. The dashed lines indicate φ =
{2.75, 1.8} for box height H = {23, 50} cm and source radius bf0 = 0.6 cm.

values of λi (0.1 < λi < 1) corresponds to the range of values of λi predicted by
our model (figure 10b). Moreover, there is no systematic variation of λi with Fri,
thus affirming that λi is an independent parameter. Based on this evidence and given
that the influence of λi on Ei has not been previously considered, it is plausible and
indeed we assert that the spread in the existing data of Ei is attributed, at least in part,
to the dependence of Ei on λi. To reinforce this assertion, also shown in figure 13
are our theoretical curves of constant φ = {1.2, 4}. Clearly, almost all the data points
lie within the shaded region bounded by these curves. In other words, we predict
that for the majority of existing measurements, at least 20 % of Ei may be attributed
to the rate of entrainment Ei,c of the secondary flow, and that for strongly confined
flows, the entrainment flux inferred from measurements is increased by a factor of
four over that which may be expected for truly unconfined interfacial entrainment.
This is compelling evidence that previous measurements have been influenced by a
secondary flow and that the disparities in Ei are likely to be associated with variations
in λi.

Baines (1975), Kumagai (1984) and Coffey & Hunt (2010) inferred Ei by tracking
the position of a moving interface and, as a consequence, λi was time-dependent
in their experiments. By using a wide tank, Ching et al. (1993) measured the
entrainment rate before the interfacial gravity current reached the side boundaries.
Thus, the interface position and λi were invariant for the duration of interest. It
is therefore unsurprising that their measurements of the entrainment rate exhibit
considerably less scatter than the data sets of Baines (1975) and Kumagai (1984), for
which λi differs by almost an order of magnitude (figure 13).

3.4. Implications for the design of an experiment
It is not immediately clear for a given experiment (or indeed from the wealth of
previous measurements) how the individual components of Ei (2.33) may be accurately
determined. What is clear is that in search of a universal law it is the entrainment flux
in the absence of confinement that has been, and arguably remains, the true goal. Our
analysis raises the question of what is an appropriate box height H for measuring the
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FIGURE 13. Confinement parameter λi against the interfacial Froude number Fri for the
experiments of Kumagai (1984) (@), Lin & Linden (2005) (+) and Coffey & Hunt (2010)
(A). Solid lines are our theoretical curves of constant entrainment flux ratio φ = {1.2, 4}.

entrainment flux. As a secondary flow persists for H> 0, the influence of confinement
on Ei is inexorable. However, through careful selection of the box height, it is possible
to tailor the contribution of Ei,c to Ei in an experiment so that φ= (AFr2

i +Ei,c)/AFr2
i

does not exceed an acceptable threshold, φT . Based on the accuracy to which Ei is
measured, experimentalists can specify φT . By ensuring that φ < φT , the effect of
confinement on Ei can, in principle, be restricted solely to the realms of experimental
uncertainty.

With a view to guiding future experiments, we seek the box height required to
achieve a given φ=φT . While the plan area S of the box is needed to fully define the
geometry, its precise value is not of concern, and implicit in the following discussion
is that S is sufficiently large that both the plume and fountain are free to entrain
and their sources sufficiently well separated that they may be considered to be non-
interacting. Moreover, the sources are sufficiently small in area that they approximate
to localised sources (e.g. bf0 � h). As the fountain exhibits jet-like behaviour below
the interface (see § 2.3), its radius scales approximately linearly with height (Kaye
& Hunt 2006), and hence we take bi = c1h, where c1 is a constant. Recalling that
λi = bi/(H − h), we substitute for bi into (2.35) and rearrange for h/H to give(

h
H

)
design

=
{

1+ c1K2

A2

Fr2
i

(1− φT)
2

}−1

. (3.2)

Taking c1=0.17 (Mizushina et al. 1982), figure 14 plots (h/H)design (3.2) as a function
of Fri for φT = {1.2, 1.5, 2.0, 2.5}. The region beneath a given curve of constant φT

encompasses the values of (h/H)design for which φ < φT . Hence, for a given interface
position h, figure 14 indicates the box height H required to limit the influence of the
confinement on Ei to φ=φT . For example, if the interface is established 12 cm above
the base of the box and Fri= 0.3, we would require H> 47 cm to restrict the rate of
entrainment Ei,c of the secondary flow to no more than 20 % of Ei. Lower box heights
could be used, but with the penalty of higher thresholds φT .
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FIGURE 14. Interface height h scaled on box height H as a function of Fri for a constant
entrainment flux ratio φT = {1.2, 1.5, 2.0, 2.5}.

3.5. Summary of key modelling assumptions
Guided by previous experimental results and observations, a number of key modelling
assumptions and simplifications have been made and these are as follows.

(i) The interfacial deflections occur within a circular region of finite radius.
(ii) The fountain, the dome and the plume occupy only a small fraction of the total

volume of the box, so we may ignore the potential energies contained in these
regions.

(iii) Interfacial deflections induce a flow predominantly within the zone of interfacial
deflection.

(iv) Energy losses associated with the generation of interfacial waves and the
energy dissipated due to viscous effects may be neglected in our analysis of
the secondary flow.

(v) Persistent baroclinic vortices around the periphery of the dome are primarily
responsible for entrainment into the dome.

(vi) The entrainment coefficients for the plume and the fountain are not significantly
influenced by the secondary flow in the lower layer.

(vii) The available potential energy is apportioned equally between the kinetic energies
of the secondary flows in the upper and lower layers.

Whilst the interfacial Froude number and the confinement parameter are instrumental
in determining the entrainment flux across the interface, their values here are not
specified a priori but span the range 0.1 . λi . 1, 0.1 . Fri . 1.4 as a consequence
of the system we consider (see figures 10 and 13).

4. Conclusions

Over the last five decades, a host of experimental studies have sought to determine
the dimensionless volume flux Ei turbulently entrained across a stable density interface.
A wider understanding of this problem has been shrouded by the significant spread in
the measurements of Ei and by the conflicting power laws describing its dependence
on the interfacial Froude number Fri. Whilst all experiments have been conducted,
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by necessity, within the confines of a (transparent) box or visual tank, the effects of
confinement on interfacial entrainment have not been previously examined. Seeking
to establish the role of confinement, we theoretically examined turbulent entrainment
across an interface separating two uniform fluid masses within a box. Complexities
associated with the time-dependent coupling between Ei and the growth of a stratified
intermediate layer were overcome by considering the steady two-layer stratification
established by a turbulent plume and a turbulent fountain rising from the base of the
box. The plume maintains the buoyant upper layer and the localised impingement of
the fountain with the interface drives entrainment of fluid from the upper layer into
the lower layer via an interfacial dome.

Guided by previous experimental studies, we developed a model describing the
dynamics of fountain–interface interaction and the steady secondary flow in the
environment that is induced and maintained by the perpetual cycle of interfacial
deflections. We deduced that besides Fri, Ei is dependent on a confinement parameter
λi which characterises the length scale of interfacial turbulence relative to the depth
of the upper layer. For small λi, a weak secondary flow has little influence on Ei
which is governed by a quadratic power law Ei ∝ Fr2

i . For large λi, however, Ei is
significantly influenced by a strong secondary flow and is governed by a cubic power
law Ei ∝ Fr3

i . By establishing the range of λi that may be regarded as small and
large, we classified the dynamics of confined interfacial entrainment into the weakly
confined and strongly confined regimes.

Crucially, we established that a secondary flow persists for all box heights.
Therefore, the effect of box confinement on Ei is an inescapable feature of laboratory
experiments. We showed that for previous experiments, λi varies in the range
0.1 < λi < 1. A key result from our model is that depending on λi, Ei can vary
by up to an order of magnitude for a given Fri. Thus, the modification of Ei due
to the confinement provides a plausible physical explanation for the wide disparities
evident in the existing data. Based on our model, we suggest that the effects of
confinement on Ei can be minimised by designing experimental configurations that
satisfy λi� 0.16Fr−2

i .
For unsteady experiments (e.g. Kumagai 1984) wherein Ei is inferred by tracking

the position of a moving interface, λi varies significantly with time, thereby
compounding the inherent challenges associated with the pursuit of a universal
relationship between Ei and Fri. To overcome this complexity, one could examine
interfacial entrainment in a box whose width far exceeds its height. Measurements
of Ei can then be made prior to the interfacial gravity current reaching the side
walls so that the interface position and λi remain constant. A second option is to
consider a steady system. To this end, the steady two-layer stratification established
by a plume and a fountain, as considered in this paper, provides a convenient means
of measuring Ei for a given λi. With a view to guiding future experiments, we
established (figure 14) box geometries which enable the contribution of confinement
to the total entrainment flux to be bounded.

Our complementary studies of unconfined (Shrinivas & Hunt 2014) and confined
(herein) interfacial entrainment elucidate the key physics that underpins the entrainment
law Ei ∝ Frn

i . We have shown that n = 1 for large Fri, n = 2 for small Fri and n =
3 for large λi. The results and recommendations stemming from our investigation of
confined entrainment may enable future studies to account for, or minimise, the effects
of confinement in their experiments or numerical work. Nevertheless, the dependence
of Ei on the confinement throws into question and challenges the notion of a universal
entrainment law.
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Appendix A. Steadiness of the secondary flow

Linden (1974) and Shy (1995) showed that the time scale associated with the
displacement of the interface is Tdis ∝√bi/1g′. Prior to reaching the dome boundary,
the secondary flow in the upper layer develops over the length scale lA + lB

(figure 6). Given that this flow is buoyancy-driven and is established within the
zone of interfacial deflection of radial extent rid, its characteristic velocity scale is
the buoyancy velocity

√
rid1g′. Noting that lA+ lB≈ 1.65bi and rid = 2.65bi, the time

scale for the secondary flow is

Tflow ∝ lA + lB√
rid1g′

= 1.65

√
bi

2.651g′
. (A 1)

Therefore,
Tdis

Tflow
∝
√

2.65
1.65

≈ 0.98, (A 2)

i.e. the time scale associated with the interfacial deflections is approximately the same
as the time scale for the secondary flow. Therefore, one would anticipate the secondary
flow to be quasi-steady.

Appendix B. Potential energy of two-layer fluid in the displaced state and
equilibrium state

For r > rid, the depths of the upper and lower layers are unaffected by interfacial
tilting. Hence, the potential energy outside the zone of interfacial deflection PEout

remains unchanged from the equilibrium state. The potential energy of the two-layer
fluid in the displaced state is then

PEdis =
∫

V
ρgz dV = 1

2
πρ2gr2

idD2

(
1+ 2

h
D
+ ρ1

ρ2

h2

D2

)
+πρ1g′b2

i η
2 + PEout, (B 1)

where V denotes volume and D= H − h is the upper-layer depth of the equilibrium
state. In (B 1) we have implicitly assumed that the fountain, the dome and the plume
occupy only a small fraction of the total volume of the box so we may ignore the
potential energies contained in these regions. By definition, the non-zero potential
energy of the equilibrium state PEeq cannot be reduced by any adiabatic rearrangement
of fluid parcels and hence this energy is unavailable for conversion into kinetic energy
of fluid motion. Given that

PEeq = 1
2
πρ2gr2

idD2

(
1+ 2

h
D
+ ρ1

ρ2

h2

D2

)
+ PEout, (B 2)

and PEdis>PEeq, subtracting (B 2) from (B 1) gives the available potential energy APE
(2.14).
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Appendix C. Buoyancy of the impinging fountain

We seek the buoyancy g′i (2.19) of the fluid supplied by the impinging fountain to
the interfacial dome (figure 7). Conservation of buoyancy for the dome requires

g′iQi = g′dQd, g′i = g
(
ρi − ρ2

ρ

)
, g′d = g

(
ρd − ρ2

ρ

)
, (C 1)

where Qi and Qd are the fluxes of volume into and out of the dome, respectively. The
outflow from the dome via the annular region is turbulently mixed with the fluid in the
lower layer. This is consistent with our argument (§ 2.4) that the fountain’s downflow
(which is fed by the outflow from the dome) is fully incorporated into the lower layer.
Our model assumes that the upper and lower layers are of uniform density. Thus, the
density ρd of the fluid entering the lower layer equals the density of the lower layer.
As Qd =Qi +Qe, substituting ρd = ρ1 in (C 1) gives

ǧ′i =
g′i
1g′
= Qi +Qe

Qi
. (C 2)

Owing to the dependence of ǧ′i on Ei, it is no longer possible to analytically solve
(2.20) for Ei. To proceed, we non-dimensionalise equation (2.28) describing the
entrainment mechanism for the dome. We recall that the equations describing the
conservation of volume and momentum for the dome were combined to form a
single expression (2.20). Thus, the non-dimensional equations governing Ei are, from
(2.20) and (2.28), respectively,

E2
i + 2Ei = 2

3k4

ẑ5
dǧ′i

Fr2
i
− 2

3k2

ẑ3
dǧ′i

Fr2
i
− 1

k2
ẑ2

d, Ei = ẑ2
d

k

(
Cẑ1/2

d

Fri
+ π

2
ũ2

)
. (C 3)

Noting that the quantities ẑd, ũ2 and ǧ′i are given by (2.29), (2.16) and (C 2),
respectively, (C 3) can be solved to obtain Ei for a given {Fri, λi}. To calculate
Fri and λi, we follow the solution procedure outlined in § 2.4. Figure 15 plots Ei

against Fri for ǧ′i = 1 and when ǧ′i is given by (C 2). Evidently, the two solutions are
graphically indistinguishable for Fri . 0.6 and the difference between the solutions is
less than 4 % at Fri = 0.8. Hence, our simplifying assumption that ǧ′i ≈ 1 has only a
minor effect on the final solution. This simplification enables us to obtain an analytic
solution (2.33) for Ei and deduce the scaling of Ei on Fri in the small-λi and large-λi

limits.

Appendix D. Simplified solution for the entrainment flux Ei

For Fri < 1 and λi < 1, a two-step procedure reduces (2.32) to a simple analytic
solution that closely approximates the full solution. First, as B ≈ 0.94 (2.29), the
third term within the parenthesis of (2.31a) is sufficiently small compared with 2B/3
that it may be neglected when a2

3� 2B/3≈ 0.6. Second, with C≈ 0.16 (2.28), upon
examining the relative magnitudes of the two terms ((a2/2)2, (a1/3)3) within the
square-root in (2.32), we find that

(a2/2)2

(a1/3)3
= 27a2

2

4a3
1
� 1 for λi� 64

π2B2Fr6
i

{
(1+ 2B/3)3/2√

18B
− B3/2CFr2

i

}2

. (D 1)
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FIGURE 15. Entrainment flux Ei against interfacial Froude number Fri for ǧ′i= 1 (dashed
line) and when ǧ′i is given by (C 2) (solid line). Solutions obtained for ψ = 25 and
L = 0.1.

Noting that our approximation holds for λi� 0.9 when Fri = 1, and given that λi is
inversely proportional to Fri, this constraint (D 1) on λi is satisfied for the range of
Fri considered. Restricting our attention to these values of λi, we may simplify the
full solution (2.32) to

Ei =R
{√

a1

3

(
i1/3 + (−i)1/3

)}
,

i1/3 = {−i, (
√

3+ i)/2, (−√3+ i)/2},
(−i)1/3 = {i, (−√3− i)/2, (

√
3− i)/2},

}
(D 2)

where i=√−1. The only solutions for i1/3 and (−i)1/3 that yield real, positive values
of Ei are i1/3 = (√3 + i)/2 and (−i)1/3 = (√3 − i)/2. Substituting i1/3 = (√3 + i)/2
and (−i)1/3 = (√3− i)/2 in (D 2) gives the analytic solution (2.33).
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