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Representing complex flows by evolving vortex structures is an important principle in
many investigations of wall-bounded turbulence. The practice of this principle benefits
from the bi-directional transformation between the velocity field and the corresponding
vortex field. While the velocity-to-vortex transformation could be implemented by various
vortex identification criteria, few efforts have been devoted to the inverse process. This
work develops a linear reconstruction method, which allows an effective reconstruction
for the velocity field of wall turbulence based on a given vortex field. The vortex field is
defined as a vector field by combining the swirl strength and the real eigenvector of the
velocity gradient tensor. The reconstructed velocity fields are calculated by convolution
operations on the vortex fields, with the kernel functions derived by the field-based
linear stochastic estimation. The method can effectively recover the turbulent motions
in a large scale range, showing clear advantages over the Biot–Savart formula in the
near-wall region. The method is also employed to investigate the inducing effects of
vortices at different heights. The wall-bounding effect on the induced motions is observed
from the contribution spectra of vortices. The higher-order moments of the reconstructed
streamwise velocity component present larger deviations from the original data, which
is discussed and explained reasonably. At last, the vortex fields filtered by prescribed
thresholds are employed to reconstruct the velocity fields. It is found that the strongest
vortex components occupying 5 % of the total volume can reasonably recover the main
flow features including both the near-wall streaks and the large-scale motions.
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1. Introduction

The concept of vortex is of prime importance in revealing the underlying physics behind
complex flows. In wall-bounded turbulence, the roles of vortices have been emphasized
by extensive research works. In various self-sustaining mechanisms as reviewed by Panton
(2001), quasi-streamwise vortices are closely linked to the low-speed streaks populated in
the buffer layer (Hama 1954; Kline et al. 1967), which is vital for the autonomous cycle
of near-wall turbulence (Einstein & Li 1958; Jiménez & Pinelli 1999; Bandyopadhyay &
Hellum 2014). On the other hand, investigation works focusing on the outer layer provide
accumulated evidence that the hairpin vortices (Theodorsen 1952; Head & Bandyopadhyay
1981) and their well-organized packets (Adrian, Meinhart & Tomkins 2000) are the
building blocks of large-scale motions.

A number of investigators are devoted to the study on the characteristics of vortices
in wall-bounded turbulence. Usually, these vortices were recognized from velocity fields
based on certain identification criteria (Chakraborty, Balachandar & Adrian 2005).
Tanahashi and his coworkers (Tanahashi et al. 2004; Das et al. 2006; Kang, Tanahashi
& Miyauchi 2007) extensively investigated the properties of the tube-like vortices
(termed coherent fine-scale eddies, CFSEs) based on the direct numerical simulations
(DNSs) of turbulent channel flows. When normalized by local Kolmogorov scale (η)
and the root mean square of velocity fluctuations (urms), the diameter and the maximum
azimuthal velocity for CFSEs are 10–12η and 0.5–0.6urms respectively, independent of
the wall-normal positions and Reynolds numbers (Das et al. 2006). The universal scaling
laws gained further supported by the DNS of turbulent channel flow at a higher friction
Reynolds number (Reτ = 1900) (del Álamo et al. 2006), and by the particle image
velocimetry (PIV) of the turbulent boundary flows for Reτ up to 6868 (Stanislas, Perret &
Foucaut 2008; Herpin et al. 2013). Herpin et al. (2013) took into account for the orientation
of vortices by conducting stereo PIVs in both the streamwise–wall-normal plane and the
spanwise-wall-normal plane. They found that the probability density functions (p.d.f.s) of
the vortex radius and the vorticity in the logarithmic layer can be fitted by a log-normal
distribution in good qualities, and the fitting parameters show remarkably independent of
Reynolds numbers.

Orientation is another aspect of vortex characteristics, which implies the elongating
direction of vortex tubes and offers useful information to infer the topologies of dominant
vortex structures. Ong & Wallace (1998), Ganapathisubramani, Longmire & Marusic
(2006) and Kang et al. (2007) inferred the vortex orientation based on the inclination
angles of vorticity vectors. One widely cited result is that the vortex structures at the
logarithmic layer tend to incline at an angle of 45° with respect to the streamwise direction,
which was theoretically explained by Head & Bandyopadhyay (1981). Bandyopadhyay
(1980) conjectured that the upstream interface of large-scale motions consists of an array
of 45°-inclined hairpin vortices with respect to the streamwise direction and derived the
interface slope angle is 18.4°, consistent with the previous experimental observations.
Against the use of vorticity direction as the vortex orientation, Bernard, Thomas & Handler
(1993) and Gao, Ortiz-Dueñas & Longmire (2007) argued that the local vorticity vector
tends to be deflected away from the vortex axis at locations very close to the wall. Zhou
(1997) demonstrated that the real eigenvector (Λr) of the velocity gradient tensor is
well aligned with the vortex axis by tracking Λr within a hairpin vortex. Using Λr as
the indicator for vortex orientation, Gao, Ortiz-Dueñas & Longmire (2011) refined the
vortex characteristics including orientations, circulation, propagation velocities at three
different wall-parallel planes. Recently, Tian et al. (2018) proposed a new definition for
the orientation of vortex based on the coordinate transformation, which turned out to be
Λr (Gao & Liu 2018). Also based on Λr criterion, Wang et al. (2019) extended the work of
922 A18-2
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Gao et al. (2011) and offered full information of vortex orientation, shapes and
organizations for larger Reynolds-number range (Reτ = 1238 ∼ 3081) based on
tomographic PIV data and DNS data.

Besides aforementioned works regarding general vortices, there are also a lot of
investigations focusing on the vortices with specific geometries for the modelling purpose,
such as the hairpin vortices, packets or attached vortex structures. Christensen & Adrian
(2001) statistically investigated the geometrical characteristics of packets structures in the
streamwise–wall-normal plane, and found their streamwise inclination angle with respect
to the wall is 12°–13°. Wu & Christensen (2006) investigated the population trends of
prograde and retrograde spanwise vortices in wall turbulence. Natrajan, Wu & Christensen
(2007) recognized the pairing trend of prograde and retrograde vortices and interpreted
the vortex pairing as the signature of a Ω-shape vortex. Deng et al. (2018) filtered out the
spanwise vortices not aligned in a packet based on proper orthogonal decomposition and
discovered a Re1/2

τ scaling of the saturated streamwise spacing between two hairpin heads
in one packet. Besides these PIV measurements limited in the streamwise–wall-normal
plane, Ganapathisubramani, Longmire & Marusic (2003) recognized the patterns of vortex
packets in the streamwise–spanwise plane and estimated that these patterns contribute
more than 25 % to the total Reynolds stress while occupying only 5 % of the total area in
the logarithmic layer. Hutchins, Hambleton & Marusic (2005) investigated the patterns
of hairpin packets in the 135°-inclined plane with respect to the streamwise direction
and found distinct two-regime behaviours: attached to the wall and detached from it,
with a demarcation scaled well with the outer variables. The attached and detached
structures were also reported by del Álamo et al. (2006), who recognized tall attached
vortex clusters and detached vortex clusters based on three-dimensional (3-D) DNS data of
turbulent channel flow. They found that the attached eddies are self-similar with a constant
height–width–length of 1 : 1.5 : 3 while the sizes of detached eddies are proportional to the
local Kolmogorov scale.

These investigations involve the statistical information about the size, intensity,
orientation and organizations of vortices in wall-bounded turbulence, which add to
the understanding of the wall-turbulence structures and also provide valuable materials
for the modelling works. The hairpin model and the attached eddy model are two
well-known models in the wall-turbulence community. The hairpin model, first proposed
by Theodorsen (1952), gained renewed interest after the experimental investigations of
Bandyopadhyay (1980) and Head & Bandyopadhyay (1981). Adrian (2007) extended the
hairpin model by invoking the packet features found by PIV, and put forward a conceptual
multi-hairpin paradigm to explain many observations in wall turbulence. The attached
eddy model was proposed by Townsend (1956), which provided a theoretical framework
to predict the flow statistics in the logarithmic region. Perry and his coworkers (Perry &
Chong 1982; Perry, Henbest & Chong 1986; Marusic & Perry 1995; Perry & Marusic
1995) advanced the attached eddy model by using a hairpin-shape vortex skeleton as
the attached eddy candidate, and gave a recipe for inferring the turbulence intensity
distributions and the turbulence spectra. More recently, the attached eddy theory has
achieved vast success in predicting the statistics (Woodcock & Marusic 2015; Yang,
Marusic & Meneveau 2016) and in recovering the instantaneous flow features, including
the uniform momentum zone (de Silva, Hutchins & Marusic 2016a) and large coherence
structures of spanwise velocities (de Silva et al. 2018). Marusic & Monty (2019) reviewed
the past research works and discussed underlying assumptions for the attached eddy model.

The hairpin model and the attached eddy model share the same notion that the
chaotic and multiscale wall turbulence can be represented by a collection of more
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elementary structures. These elementary structures could be typical vortex models
obtained by averaging many instantaneous vortex structures in wall turbulence. These
aforementioned investigations regarding vortex characteristics provide references for
refining the geometry of the vortex model. Once the vortex geometry is specified, a
translation from vortex to velocity is necessary, which is termed as the vortex-to-velocity
(V2V) reconstruction in the present work. Perry & Marusic (1995) formulated a Gaussian
distribution of vorticity in the vortex cores, with the vorticity orientation consistent
with the vortex axis. Subsequently, they employed the well-known Biot–Savart law to
reconstruct the velocity field in the logarithmic region. It was assumed that the vorticity
is concentrated inside the vortex cores and the surrounding flows could be regarded as
irrotational (Perry & Chong 1982). Nevertheless, for the buffer layer, the surrounding
vorticity cannot be neglected due to the stronger viscosity effect. Besides, the vorticity
direction could also deviate from the vortex orientation (Wang et al. 2019). Extending
application range for the vortex model to the buffer region will pose new challenges for
the V2V reconstruction, which necessitates new methods in place of the Biot–Savart law.

Besides the velocity reconstruction based on ideal vortex models, the reconstruction
based on real instantaneous vortex fields is also beneficial for the analysis regarding the
inducing effects of vortices in wall turbulence. In the investigation of Ganapathisubramani
et al. (2003), the contribution of vortex packets to the Reynolds shear stress was estimated
based on a pattern-recognized strategy. Specifically, only the low-speed streaks flanked by
packets were counted in the contribution, which caused an underestimated result because
the packets also induce the sweep events (high-speed zones) besides the low-speed streaks
(Marusic & Adrian 2012). Recently, Berk & Ganapathisubramani (2019) employed the
Biot–Savart law to derive the vortex-induced velocity when dealing with a synthetic jet
issuing into a turbulent boundary layer, which highlighted the including effects of vortices.
A more correlated work on canonical wall turbulence is reported by Pirozzoli, Bernardini
& Grasso (2010), who compared the roles of vortex tubes and vorticity sheets (termed as
vortex sheets in their article) by separately reconstructing velocity fields based on these
two types of structures. A Poisson equation was solved to implement the reconstruction,
which had been developed for the reconstruction regarding the intense vorticity (Jiménez
et al. 1993). The reconstructed results based on only vortex tubes are not very organized,
especially at the buffer layer compared with the results of vortex sheets. They concluded
that the vorticity sheets had a more important collective effect and contributed more to
the turbulence production. However, it should be pointed out that the effects of vortex
tubes might be underestimated since the reconstruction method was established for the
vorticity-based reconstruction.

A generalized discussion on how to reconstruct velocity fields based on given vortex
fields also builds on the well-developed vortex identification methods, which remains a
focus in the turbulence community up to the present day (Tian et al. 2018; Xiong & Yang
2019; Zhu & Xi 2019). The starting point of various vortex identification schemes is to
extract tube-like vortices from complex flows, removing the influence of the surrounding
shear layers in the flow. The vortex tubes are quite sparse in the spatial field and
could be simply represented as 3-D curved lines with fewer adjustable parameters. The
process of extracting vortices from turbulence is much like a data compression process,
as pointed out by Chakraborty et al. (2005). V2V reconstruction is the inverse process
of this compression, which decompresses the vortex representations to recover original
turbulence fields. Naturally, the compression and decompression are two fundamental
aspects for the vortex-representing principle of wall-bounded turbulence, yet only the
former has been focused on in the previous investigations.
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Motivated by these considerations, the current work will focus on the topic of the
V2V reconstruction. It should be addressed that the current work mainly considers the
kinematic representation of wall turbulence. The current V2V reconstruction is also
different from the vorticity-based velocity reconstruction involved in the vortex method for
simulating the Navier–Stokes equations (Leonard 1985; Koumoutsakos & Leonard 1995;
Bernard 2013; Caprace, Winckelmans & Chatelain 2020). In those works, the velocity
field is reconstructed based on the vorticity field. Basically, the intense-vorticity regions
could take the forms of filaments, sheets and blobs, yet only the filament (or tube-like)
elements are recognized as vortices for most situations (Marusic & Adrian 2012). The
current work focuses on tubular vortices and regards them as the constructing elements
of wall turbulence, which is the common spirit of many structure-based models. Perry
& Chong (1987) commented that ‘these vortex skeletons are the “genetic code” of the
flow field, since this requires very little specification and the Biot-Savart law can be used
to generate the velocity field’. Thus, we confine that the reconstruction in the current
investigation should use the geometry and strength information of tubular vortices only.
For convenience, a vortex field will be defined by combining the existing identification
criteria for the vortex magnitude and orientation, which contain all the information
required for the reconstruction.

In this work, the V2V reconstruction will be implemented by a data-driven method,
termed field-based linear stochastic estimation, which is a generalized method to estimate
one 3-D field based on another. Mathematically, the new method could be viewed as
the least-square estimation on the linear inducing effects of vortices. The reconstruction
accuracy will be estimated and compared with the Biot–Savart law. Before introducing the
V2V reconstruction, the geometrical property of the vortex field will be investigated, with
the purpose of showing the distinct aspect differing from the vorticity field. An interesting
aspect about the relationship between vortex magnitude and orientation will be revealed
based on the differential geometry, which supports the definition of the vortex vector.

The remainder of this work is arranged as follows. In § 2, the DNS data employed in
this investigation and associated numerical processing techniques are introduced. In § 3,
the geometrical property of the vortex field is discussed. Subsequently, the theory and
implementation for the field-based linear stochastic estimation as a V2V reconstruction
method are introduced in § 4. In § 5, the V2V reconstruction method is numerically
validated and compared with the Biot–Savart law. The inducing effects of vortices, the
limitations of the method and the roles of strong and weak vortex components are further
discussed based on the reconstruction results, followed by the concluding remarks in § 6.

2. The DNS data and processing techniques

2.1. The DNS data
The data employed by this work came from an open-access DNS database (https://
torroja.dmt.upm.es/) for high-Reynolds-number turbulent boundary layer (TBL). A full
description of the algorithm and the computational set-up could be found in the papers
of Simens et al. (2009) and Borrell, Sillero & Jiménez (2013). Basically, their simulation
bypassed the transition stage for boundary layer and directly generated a developed TBL
with accurate inflow conditions. The inflow for this simulation was fed by an auxiliary
simulation, whose calculation domain is located at the upstream of the main simulation
domain. The inflow for the auxiliary simulation was obtained from one plane in its own
domain using a rescaling–recycling scheme (Lund, Wu & Squires 1998).
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The DNS data (Sillero, Jiménez & Moser 2013) have been widely validated by the
Jiménez group (Borrell et al. 2013; Sillero et al. 2013; Sillero, Jiménez & Moser 2014).
Particularly, Sillero et al. (2013) showed that the skin friction and shape factor from this
simulation agree well with the empirical fit of Monkewitz, Chauhan & Nagib (2007), with
the mean percentage deviations less than 1 %. This indicates that the canonical asymptotic
state is attained after the relaxation of the auxiliary simulation. A number of investigators
(Marusic, Baars & Hutchins 2017; Wang, Wang & He 2017; Wang et al. 2018; Chen &
Sreenivasan 2021; Wang, Pan & Wang 2021) cited the DNS dataset in their investigation
works. In our previous work (Wang et al. 2019), we compared the DNS data with 3-D PIV
data regarding several aspects, including the p.d.f. of the vortex orientation angles and
the conditionally averaged vortex structures. The DNS results and the experimental results
were remarkably consistent, which further emboldens us to use the DNS data.

The production DNS field corresponds to a spatially evolving zero pressure gradient
TBL from Reτ ≈ 1000 to Reτ ≈ 2000. The calculation domain contains 15361, 4096 and
535 grid nodes for the streamwise, spanwise and wall-normal directions, respectively.
The separation between adjacent collocation points along the wall-normal direction is
non-uniform, which is determined by local Kolmogorov scale (Borrell et al. 2013). The
DNS dataset is fully resolved and covers a vast scale range, which provides an ideal
database for the implementation and validation of the V2V reconstruction.

In this work, only the data segments for Reτ = 1148 ∼ 1250 were truncated from the
whole DNS field. The average boundary thickness, determined by the height with 99 % of
the free stream velocity, is approximately 1200 wall units, i.e. δ+ ≈ 1200. The selection
for this boundary thickness was based on two considerations. From the perspective of
the V2V reconstruction, the logarithmic layer of this data segment covers a wall-normal
range of approximately 160 wall units (from 80 wall units to 0.2δ+), corresponding to
an acceptable number of computational nodes for the V2V reconstruction. On the other
hand, investigations (Tanahashi et al. 2004; del Álamo et al. 2006; Herpin et al. 2013;
Wang et al. 2019) have validated that the fine-scale vortices populated in TBL present
universal behaviours, independent of the Reynolds number. The truncated DNS data
segment has a streamwise dimension of 8δ+, a spanwise dimension of 13.4δ+, and a
wall-normal range from the viscous sublayer to 0.3δ+, corresponding to a Cartesian grid of
1412 × 4096 × 91. The variation range of the viscous wall unit in the DNS data segments
is ±0.8 %, which is small enough to be viewed as a constant. Totally, twelve frames of DNS
fields were downloaded, providing sufficient data for deriving the statistical quantities. To
minimize the processing errors, all the calculations in the present work were based on
the original DNS grid. The derivative computations were performed via a 5-node central
differential scheme. More parameters about the DNS data segments employed in this work
are collected in table 1.

Throughout this article, the coordinate origin is located on the wall, and x, y, z align with
the streamwise, spanwise and wall-normal directions, respectively. The variable t indicates
the time dimension. u denotes the fluctuating velocity vector, obtained by subtracting the
mean streamwise velocity component from the original DNS vector field; u, v,w designate
the streamwise, spanwise and wall-normal fluctuating velocity components, respectively.
A superscript of ‘+’ indicates that the quantity is normalized by the wall unit or the friction
velocity. Only the fluctuating velocity field is considered in the following analysis.

2.2. The vortex identification
Various vortex identification criteria were developed to extract filamentary (tube-like)
vortices from turbulence. Most of them are based on local velocity gradient tensor (∇u),
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Friction
Reynolds-number Wall unit Streamwise Spanwise Wall-normal
range variation range range range

Reτ = 1148 ∼ 1250 ±0.8 % 8δ+ 13.4δ+ 4.99–359.3

Total number Total number Streamwise Spanwise Wall-normal
of nodes of frames spacing (�x+) spacing (�y+) spacing (�z+)

1412 × 4096 × 91 12 6.80 3.93 1.01–6.26

Table 1. A collection of parameters for the DNS data employed in this work.

including the second invariant Q (Hunt, Wray & Moin 1988), the discriminant Δ (Chong,
Perry & Cantwell 1990), the swirl strength λci (Zhou et al. 1999), the λ2 criterion
(Jeong & Hussain 1995) and so on. Commonly, the iso-surfaces of the criterion for one
prescribed value are displayed as recognized vortices. Chakraborty et al. (2005) revealed
the relationships between these identification criteria and demonstrated that results from
different criteria are approximately equivalent for turbulent flows. Among these criteria,
the swirl strength (λci) corresponds to the imaginary part of the complex eigenvalue of the
velocity gradient tensor, which has the same dimension as vorticity. A lot of investigators
(Ganapathisubramani et al. 2006; Hambleton, Hutchins & Marusic 2006; Lee & Sung
2009) used ‘signed swirl’ as the representative variable for the in-plane component of a
vortex, which is obtained by multiplying λci by the sign of the out-of-plane component of
vorticity. For eduction purposes, Pirozzoli et al. (2010) defined the strength of vortex tubes
by introducing a ‘vorticity-like’ variable, which is equal to 2λci.

As for the vortex orientation, Gao et al. (2011) and Tian et al. (2018) suggested using the
real eigenvector of ∇u (denoted as Λr). Tian et al. (2018) gave a mathematical discussion
on the definition of the vortex vector based on the Schur decomposition theory (Gentle
1998). According to the viewpoint of Tian et al. (2018), the vortex orientation (Λr)
corresponds to a direction with zero rotation speed. As indicated by the definition of
velocity gradient tensor (∇u), the relative velocity δu for two points separated by a small
position vector δr could be expressed as

δu = ∇u · δr. (2.1)

The non-rotation requirement means that the relative velocity should be along δr, which
means

∇u · δr = μδr, (2.2)

where μ should be a real constant. The above equation implies that δr is the real
eigenvector of ∇u, viz. Λr.

Considering the eigenvector (Λr) contains no sign information about rotation, the local
vorticity ω is used as a reference. Specifically, the eigendirection (Λr or −Λr) forming
an acute included angle with ω is viewed as the vortex orientation. In this work, for the
convenience of numerical implementation, the swirl strength λci and the orientation vector
Λr are combined to define a vector field as

Λ = λcisign(Λr · ω)Λr, (2.3)

where ‘sign’ is the sign function, returning the sign of the bracketed variable. Throughout
this article, the vortex field refers to Λ as default, which is consistent with the definition by
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Wang et al. (2019). It should be remembered that (2.3) is not a widely accepted expression
since no mathematical definition for a vortex is available so far. In this work, the vortex
field serves as a carrier for the geometrical and strength information of tubular vortices,
which is necessary for the V2V reconstruction. In the following § 3, we will inspect the
definition of (2.3) from the respect of the geometrical property of the recognized vortices.

2.3. The correlation coefficient and the complex coherence spectrum
A successful V2V reconstruction should return a velocity field sharing a high degree
of similarity with the original DNS field, which can be measured by the correlation
coefficient (CC). The CC is an indicator of the linear correlation degree between two
input signals. In the current investigation, the CC for the reconstructed/original streamwise
velocity components at one wall-normal position (z0) is calculated by

CC(z0) = 〈urec(x, y, z0, t)uDNS(x, y, z0, t)〉x,y,t√
〈urec(x, y, z0, t)2〉x,y,t〈uDNS(x, y, z0, t)2〉x,y,t

. (2.4)

Herein, urec(x, y, z, t) and uDNS(x, y, z, t) denote the reconstructed streamwise velocity
component field and the corresponding DNS field; 〈·〉x,y,t represents the ensemble average,
which is implemented by averaging the quantities in the brackets along the homogeneous
dimensions, including the temporal dimension (t) and the wall-parallel dimensions (x and
y), as indicated by the subscript x, y, t. The CCs regarding other velocity components (v
and w) are calculated based on similar expressions with (2.4).

As a refined variant for CC, the complex coherence spectrum (CCS) measures the
scale-specific linear coherence of two input signals (Stoica & Moses 2005; Ramirez, Via
& Santamaria 2008). In the current work, the CCS formula takes a form resembling the
correlation coefficient, but in the spectral representation. Specifically, the streamwise CCS
between urec(x, y, z, t) and uDNS(x, y, z, t) at a given wall-normal position (z0) could be
calculated by

CCS(k) = 〈ũrec(k, y, z0, t)ũDNS(k, y, z0, t)∗〉y,t√
〈ũrec(k, y, z0, t)ũrec(k, y, z0, t)∗〉y,t〈ũDNS(k, y, z0, t)ũDNS(k, y, z0, t)∗〉y,t

.

(2.5)

In (2.5), ũrec(k, y, z0, t) and ũDNS(k, y, z0, t) denotes the streamwise (1-D) Fourier-transform
coefficient of urec(x, y, z, t) and uDNS(x, y, z, t), respectively; k denotes the corresponding
wavenumber. For convenience, ũrec(k, y, z0, t) and ũDNS(k, y, z0, t) are simply represented
by ũrec(k) and ũDNS(k) in the following discussions. Notably, both ũrec(k) and ũDNS(k)
are complex numbers, carrying the scale-specific amplitude and phase information of
the input velocity fields. The asterisk designates the complex conjugate operation; 〈·〉y,t
indicates averaging the quantities in the brackets along the temporal dimension and the
spanwise direction, which is simply denoted as 〈·〉 in the following discussions. Equation
(2.5) results in a complex number, which is different from the linear coherence spectrum
(LCS) used by Baars & Marusic (2020a). In their work, the LCS was defined as the squared
magnitude of the current CCS, which measures the scale-by-scale coupling degree for
two-point velocity signals. The phase angle of the CCS indicates the scale-by-scale phase
deviation, which is also considered as the indicator for accessing the V2V reconstruction.

To illuminate the physical implication of (2.5), we express ũrec(k) and ũDNS(k)
by the exponential forms, viz. ũrec(k) = Arec(k) eiγrec(k) and ũDNS(k) = ADNS(k) eiγDNS(k).
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Figure 1. Schematic plots for illustrating the relation between CCS and the distribution of the phase deviations
(�γ ) for a set of input signal samples. The sample data of ei�γ are schematically displayed in the complex
coordinate system by hollow blue circles. The red dot, which is the centre of the blue circles, marks the position
of CCS (CCS(k) = 〈ei�γ 〉). Panel (a) corresponds to the situation with a small CCS magnitude; (b) corresponds
to the situation with a large CCS magnitude.

Herein, Arec(k) and ADNS(k) stand for the amplitudes of ũrec(k) and ũDNS(k), respectively;
γrec(k) and γDNS(k) indicate the corresponding phase angles. By substituting ũrec(k) and
ũDNS(k) in (2.5) with their exponential forms, it could be easily derived that

CCS(k) = 〈Ârec(k)ÂDNS(k) ei�γ (k)〉. (2.6)

In (2.6), Ârec(k) = Arec(k)/
√

〈Arec(k)2〉 and ÂDNS(k) = ADNS(k)/
√

〈ADNS(k)2〉, which
could be viewed as the normalized amplitudes; �γ (k) = γrec(k)− γDNS(k) represents
the phase deviation between ũrec(k) and ũDNS(k); ei�γ (k) is the polar representation for
the phase deviation �γ (k). Equation (2.6) means that the CCS equals the weighted
average of the sample data for ei�γ (k), and the corresponding weighting coefficients are
Ârec(k)ÂDNS(k).

For the sake of clarity, we first disregard the weighting coefficient and consider the
special case of LCS(k) = 〈ei�γ (k)〉. In this case, the CCS is determined by the phase
deviation between ũrec(k) and ũDNS(k). If ũrec(k) and ũDNS(k) are extremely incoherent
in phase, their phase deviation, deemed as a random variable, would present a uniform
probability distribution between 0 and 2π. In the complex coordinate system (as shown by
figure 1a), the samples of ei�γ (k) (blue circles) would be spread evenly on the unit circle
around the origin. Thus, the centre of these scattered numbers (i.e. the statistical average,
CCS) would occur very close to the origin. On the contrary, if the ũrec(k) and ũDNS(k)
are coupled in phase, these hollow circles would cluster towards one specific orientation
(as shown in figure 1b). The central point (the red dot) would be in close proximity to
the unit circle, giving a CCS with a magnitude close to one. The above explanation can
be extended to the general cases of (2.6), as long as these scattered sampling points are
given different weighting coefficients when calculating the central point. In this sense, the
CCS incorporates both the phase and magnitude information from ũrec(k) and ũDNS(k),
and provides a comprehensive diagnosis on their scale-specific coherence relation.
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Figure 2. Instantaneous flow structures identified by vorticity magnitude (a) and vortex magnitude (b). The
surfaces in the two plots correspond to ω+ = 0.42 and λ+ci=0.10 respectively, coloured based on the distance
from the wall. Orientations of vorticity and vortex on the surfaces are also displayed by red vectors. For clarity,
only one in four vectors in each direction are shown.

3. The geometrical property of the vortex field

As the cornerstone of the V2V reconstruction, the vortex field defined in § 2.2 merits a
special discussion. This section will focus on the geometrical property of the vortex field.
To start this discussion, an observation on the instantaneous field is beneficial. Figure 2
shows the structures identified by iso-surfaces of vorticity magnitude (ω) and vortex
intensity (λci), with orientation vectors displayed on the surfaces. For a clear display,
only the iso-surfaces for z+ ≤ 120 are shown in the figure. Since both ω and λci are
calculated based on the fluctuating velocity field, the influence of mean shear in TBL has
been removed. The thresholds for ω and λci are prescribed so that the identified structures
occupy approximately 10 % of the total volume displayed. Distinct characteristics for the
ω-identified and λci-identified structures are noticed. The former contains large bulks
of flat sheet-like entities at the lower layer and thin tube-like entities above. The latter
recognizes only the vortex tubes with a thickness of about ten wall units. In figure 2(b),
several vortex tubes incline at an angle of approximately 45° with respect to the streamwise
direction, which is similar to the criss-cross patterns observed by Bandyopadhyay (1989)
in the laser-light-sheet smoke flow visualization pictures. While a typical hairpin vortex is
not observed, there are some vortex tubes resembling twisted single-leg hairpin vortices.
Mostly, the vortex vectors are attached in the vortex surface and pointing to the extending
direction of the vortex tubes. This property has also been reported by Tian et al. (2018),
who regarded it as a support for their definition of vortex orientation. For the vorticity
field, the property does not hold at the near-wall region, where the vorticities tend to be
aligned with the spanwise direction. A correlated work involving this property is reported
by Xiong & Yang (2019), who attempted to calculate the ‘vorticity surface field’ based on
the vorticity field. A scalar field is called the vorticity surface field if the normal vector
of its iso-surface is perpendicular to the local vorticity vector. If this concept is used for
the present vortex field, we can see that λci could be approximately regarded as the ‘vortex
surface field’.

To quantitatively analyse the relationship between the vortex surface and the vortex
orientation, we resort to the differential geometry, which is a useful mathematical tool to
describe the local curvatures of a surface. Consider a small vortex surface element S as
shown in figure 3(a), which can be viewed as a quadratic surface; n denotes the normal
vector of S, pointing to the side with smaller vortex magnitude. Generally, two orthogonal
principal directions (indicated by two unite vectors: κ1 and κ2) can be determined on
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Figure 3. Diagrammatic sketches for the principal directions of the local curvatures.

S, which correspond to the directions with the maximum and minimum curvatures,
respectively; κ1 and κ2 refer to the first principal direction and the second principal
direction for the local curvatures. Taking an example of a straight vortex tube with a
uniform radius (see figure 3b), the two principal directions (κ1 and κ2) are aligned with
the axial direction and azimuthal direction, respectively. The corresponding curvatures for
κ1 and κ2 refer to the local curvatures of lines extracted along the two directions from the
surface (see l1 and l2 in figure 3b), which are 0 and −1/R respectively. The negative sign
indicates that the extracted line (l2) bends toward the negative direction of n. Thus, we can
see that the vortex orientation is aligned with κ1 for a straight vortex tube. For general thin
and tube-like vortices, one can guess that the vortex orientation also tends to align with
κ1, which will be tested and verified in the following discussion.

For each point in the vortex field, the vortex surface passing this point could be extracted,
and correspondingly the normal vector n and the principal directions (κ1 and κ2) can
be determined. Detailed introduction for this process is provided in Appendix A of this
article; κ1, κ2 and n constitute a local coordinate system, and we can investigate the
vortex orientation in this local coordinate system. Specifically, a transformation from the
global coordinate system to this local coordinate system is performed on the vortex vector.
Subsequently, in the local coordinate system, the vortex vector is further expressed by
three spherical coordinates: radical distance (ρ), azimuth angle (ψ) and zenith angle (θ).
The joint p.d.f. of ψ and θ is calculated based on the data points with λ+ci > 0.10 and
z+ ≤ 0.3δ+. The threshold, which is consistent with the one used in figure 2, is deployed
here to exclude the influence of weak vortices. The resulting p.d.f. is further normalized
by sin(θ) before displayed on a unit sphere surface (figure 4) in order to reflect the local
areal density of probability, which is called a spherical p.d.f..

In figure 4, only a quarter of a complete sphere is contoured since κ1, κ2 could change
direction by 180°, blurring the definitions of vortex orientation in these four quarters.
As a reference, the spherical p.d.f. for vorticity orientation in the curvature coordinates
of the vorticity magnitude is also provided. As we can see, two concentrations of the
spherical p.d.f. for the vorticity orientation are observed nearby the axes of κ1 and κ2
(figure 4a). Differently, the spherical p.d.f. for vortex orientation shown in figure 4(b)
presents an extremely dense distribution along the κ1 direction. Specifically, the largest
probability density appearing nearby κ2 axis is approximately 6.8, which is 21 times as
large as the average probability on the sphere quarter (1/π). This verifies that the vortex
vector has a strong disposition to be aligned with the first principal direction of vortex
surface curvature. What is noteworthy is that the first principal direction for curvature also
corresponds to the direction along which the vortex magnitude changes the least. Thus,
we can restate that the vortex orientation tends to be aligned with the slowest-changing
direction of the vortex magnitude. The above discussion reveals an interesting aspect of
the relationship between the vortex orientation and the vortex magnitude. It indicates that
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Figure 4. The spherical p.d.f. for ω (a) and Λ (b) orientations in the coordinate system of the local
curvatures. Note that the colour scales in the two panels are different for better visualization.

the swirl strength λci and the eigenvector Λr are closely associated and thus combining
them to define a vortex vector as we did in this work makes some sense. Finally, it should
be pointed out that the alignment property holds for comparatively smooth vortex tubes.
For the complex vortices such as a bursting vortex (Bandyopadhyay 2020), the alignment
trend is more likely to be obscured.

Based on the above geometrical property, the tube-like vortices could be simplified
as 3-D curved centrelines along with a Gaussian distribution of vortex intensity in the
cross-sections, which would lead to a significant reduction in the description variables.
Lundgren (1982) validated that the spiral vorticity distribution in the cross-section is
necessary in producing the −5/3 law of the energy spectra for isotropic turbulence.
Thus, simple line-vortex elements with an axisymmetric intensity distribution may not
be complete in describing the turbulent motions in the inertial range. In addition, reducing
vortices to line elements requires sophisticated processing steps, which might introduce
artificial or unphysical factors into the final results. Therefore, in the present investigation,
we directly employ the vortex fields as the input information for the V2V reconstruction.

Before shifting to the subject of the V2V reconstruction, a further discussion on the use
of vorticity and vortex in turbulence representation and modelling is beneficial. In earlier
investigations, each one of the blob-like, sheet-like and tube-like vorticity models was
used as the constructing elements for isotropic turbulence (Synge & Lin 1943; Townsend
1951; Corrsin 1962; Tennekes 1968). Kuo & Corrsin (1972) provided convincing evidence
that the fine-scale turbulence was more likely to be the collections of vortex tubes than
other possibilities. Vortex tubes are preferred because sheet-like structures have a strong
tendency to roll up (Lundgren 1982). In the wall-turbulence community, the hairpin vortex
model or attached eddy model could also be represented by a combination of vortex tubes.
Also, large numbers of research works (Tanahashi et al. 2004; del Álamo et al. 2006;
Stanislas et al. 2008; Wang et al. 2019) have revealed the universal behaviours of tubular
vortices in the radius, intensity, orientation and correlation functions. The discussion
provides more evidence that the tube-like vortices should be viewed as the building blocks,
supporting the following efforts to reconstruct wall turbulence based on them.

4. The V2V reconstruction

The primary challenge for the V2V reconstruction is the information loss caused by
the vortex identification process. To fill the information gap, empirical parameters or
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data-driven models should be introduced in the V2V reconstruction. On the other hand, a
linear reconstruction scheme is preferred because it benefits both physical interpretation
and numerical implementation. The linear reconstruction scheme is based on the opinion
that the induced velocity field by a vortex field could be regarded as the superposition of
the inducing effects from individual vortices, which is familiar in the attached eddy model
(Townsend 1956).

Based on these considerations, we resort to the linear stochastic estimation (LSE) for
the V2V reconstruction. Generally, LSE attempts to estimate the unknown variables based
on the known variables by a linear expression containing empirical parameters. In the
wall-bounded turbulence community, the application of LSE in extracting conditionally
averaged structures has been widely reported; see Adrian (1994), Christensen & Adrian
(2001), and Wang et al. (2019). In these works, LSE served to estimate the neighbouring
velocities of a reference even occurring at one spatial position, which is basically a
point-based (zero dimension) estimation. As an extension, LSE based on 1-D signals
has been reported by Tinney et al. (2006), who developed the so-called spectral LSE for
this purpose. When it comes to the V2V reconstruction, the problem is to estimate one
3-D field (velocity field) based on another 3-D field (vortex field), which is a 3-D-to-3-D
estimation and has not been reported in the wall-turbulence community. In this section, the
V2V reconstruction problem will be discussed under the general theoretical framework
of LSE and the general governing equations will be deduced. Subsequently, the V2V
reconstruction regarding wall-bounded turbulence is focused on, and the homogeneous
condition in the wall-parallel plane is employed to simplify the governing equations.
Finally, the corresponding implementation scheme and several considerations will be
introduced in detail.

For the convenience of the following discussion, we give the conventions for symbols
first. Let u and Λ with a subscript i or j denote the ith or the jth component of velocity
and vortex (i = 1, 2, 3; j = 1, 2, 3). Einstein’s summation convention is adopted so that
two repeated indices occurring in one term automatically trigger a summation for all
possible realizations of these indices; r = (x, y, z), r′ = (x′, y′, z′) denote 3-D spatial
position vectors in the considered spatial domain (denoted as Ω).

4.1. The general theory for the V2V reconstruction
Denote ûi as the estimation variable for ui, and suppose that ûi could be expressed by linear
operators (Lij) acting on Λj, which yields

ûi = LijΛj, (4.1)

where [Lij] is a 3 × 3 matrix of linear operators. The linear operators can be viewed as
continuous transformations onΛj, and no limitations on their realization forms are needed
in this general analysis. (4.1) is a general form for the V2V reconstruction, and Lij needs
to be determined by minimizing the reconstruction deviations.

Considering both ûi and ui are 3-D vector fields, their deviation (D) can be defined by
an integral form as

D =
∫∫∫

Ω

(ûi − ui)(ûi − ui) dΩ/
∫∫∫

Ω

dΩ. (4.2)

Facilitated by the above definition, the optimal Lij can be determined by minimizing the
deviation in a statistical sense, i.e.

min〈D〉, (4.3)
where 〈·〉 represents an ensemble average.
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According to the calculus of variation (Appendix B), the above optimization problem is
equivalent to the following equations,

Lij〈ΛjΛm(r′)〉 = 〈uiΛm(r′)〉 for ∀Λm(r′) (r′ ∈ Ω; m = 1, 2, 3). (4.4)

Equations (4.4) constitute the governing equations for the linear operators Lij. Note that
both Λj and ui are 3-D functions of the implicit position vector r, and 〈ΛjΛm(r′)〉 should
also be regarded as a 3-D function of r rather than r′ when the linear operators (Lij) act
on it. For any given Λm(r′), the form of 〈ΛjΛm(r′)〉 or 〈uiΛm(r′)〉 indicates a conditional
average for the event Λm(r′). Here, 〈ΛjΛm(r′)〉 can be understood as the averaged vortex
distribution given an event ofΛm occurring at r′, and similarly, 〈uiΛm(r′)〉 could be viewed
as the conditionally averaged velocity distribution. The operators Lij always act on the
local statistical vortex distribution and return the corresponding velocity distribution.

Equation (4.4) are comparable to the Yule–Walker equation from classical LSE (Adrian
1994). The latter was established to determine the unknown parameters in the estimating
expression, the number of which is usually small or finite at least. In this work, (4.4)
is established to determine the linear operators Lij, which have infinite dimensions. The
starting point of the current method is to estimate one 3-D field based on another given
3-D field, which is named field-based linear stochastic estimation (FLSE) in this work.

For a general case, the discretizing of (4.4) leads to a linear system with huge
numbers of variables. For examples, if the spatial domain is discretized into Nx ×
Ny × Nz computation nodes, numbers of the undetermined variables in Lij would
be (3 × Nx × Ny × Nz)

2, which might be huge for a typical case. Fortunately, for
wall-bounded turbulence flows such as the turbulent channel flow and TBL, the flow can
be regarded as homogeneous in the wall planes, at least for a limited streamwise range.
The homogeneous property would significantly reduce the numbers of variables and will
be discussed in the following subsection.

For the convenience of the following discussion, denote that

Rjm(r, r′) = 〈ΛjΛm(r′)〉, (4.5)

qim(r, r′) = 〈uiΛm(r′)〉. (4.6)

Thus (4.4) can be rewritten as

LijRjm(r, r′) = qim(r, r′) for ∀ r′ ∈ Ω; m = 1, 2, 3. (4.7)

4.2. FLSE for wall-bounded turbulence
The estimated velocity ûi could be viewed as a result of the joint inducing effects caused
by the neighbouring vortices. Suppose that the inducing effect of a vortex field could be
expressed as an integral of the inducing effects of vortex vectors at different locations,
which yields a form of integral transformation as

ûi(r) =
∫∫∫

Ω

ϕij(r; r′)Λj(r′) dx′ dy′ dz′. (4.8)

In the equation, ϕij(r; r′) is a kernel function, which indicates the contribution of Λj(r′)
with unit magnitude to the ith velocity component at the position r. Equation (4.8) provides
a specific realization form for the linear operator Lij.

For wall-bounded turbulence, as discussed before, the flow could be treated as a
homogeneous field in the x–y plane. Thus, the inducing effect of a vortex should keep
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invariable when its position is shifted in the x–y plane, which yields

ϕij(r; r′) = ϕij(x, y, z; x′, y′, z′) = ϕij(x − x′, y − y′, z; 0, 0, z′). (4.9)

For simplicity, it is denoted that

ϕij(x − x′, y − y′, z; 0, 0, z′) = ϕij(x − x′, y − y′, z; z′). (4.10)

By the way, such a shifting-invariable property also holds for Rjm(r, r′) and
qim(r, r′), thus we also have Rjm(x, y, z; z′) and qim(x, y, z; z′) as the simplifications for
Rjm(x, y, z; 0, 0, z′) and qim(x, y, z; 0, 0, z′).

Combining (4.8) and (4.9), we have

ûi(r) =
∫∫∫

Ω

ϕij(x − x′, y − y′, z; z′)Λj(r′) dx′ dy′ dz′,

=
∫

z′

(∫∫
x′−y′

ϕij(x − x′, y − y′, z; z′)�j(r′) dx′ dy′
)

dz′.
(4.11)

The bracketed term is a 2-D convolution operation in the x–y plane, which could be
denoted as an asterisk. Thus, (4.11) can be simplified as

ûi(r) = LijΛj =
∫

z′
ϕij(·, ·, z; z′) ∗Λj(·, ·, z′) dz′, (4.12)

where the position variables x and y are substituted as dots, indicating the convolution
works in the x–y plane. Equation (4.12) is the formula for the so-called V2V reconstruction,
where ϕij(x, y, z; z′) needs to be determined first. By definition, ϕij(x, y, z; z′) reflects the
inducing effect of an individual vortex vector at different wall-normal positions, which is
named the inducing model function in this work.

Substituting the linear operators in (4.7) by the explicit expression of (4.12), the
governing equations for ϕij(x, y, z; z′) are obtained as∫

z′′
ϕij(·, ·, z; z′′) ∗ Rjm(·, ·, z′′; z′) dz′′ = qim(x, y, z; z′) for ∀ z′; m = 1, 2, 3. (4.13)

Note that only the equations for x′ = 0 and y′ = 0 in (4.7) are collected into (4.13)
since the number for unknown variables have been significantly reduced by using the
homogeneous condition.

4.3. Discretization and implementation for FLSE
Equations (4.13) need to be solved in the discrete form. Suppose that the domain is
discretized as Nx × Ny × Nz computation nodes, and we use the symbols a, b, c, c′, c′′
as the indices for discretized variables of x, y, z, z′, z′′, respectively. The integral operation
could be discretized as a summation implied by the repeated subscript of c′′. Thus, we
have

ϕij(·, ·, zc; z′′
c′′) ∗ Rjm(·, ·, z′′

c′′ ; z′
c′) = qim(xa, yb, zc; z′

c′) for ∀ c′,m. (4.14)

Equation (4.14) is a linear system with underdetermined variables of ϕij(xa, yb, zc; z′′
c′′) for

all the realizations of i, j, a, b, c, c′′. The asterisk herein indicates the discrete convolution
operation. Consistent with the former regulation, xa, yb are omitted in (4.14) in order to
indicate the working dimensions for the convolution operation. The regulation also avoids
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the occurrence of repeated a, b, which would cause confusion by erroneously triggering
the automatic summation.

The number of underdetermined variables corresponding to all the possible realizations
of i, j, a, b, c, c′′ is 3 × 3 × Nx × Ny × Nz × Nz, which might be of the order of 109.
Fortunately, these variables do not need to be solved simultaneously. Closer observation
on the indices occurring in the left term of (4.14) reveals that the indices i and c occur
only once, which implies that ϕij(xa, yb, zc; z′′

c′′) could be independently solved for the
two indices. Specifically, for any prescribed indices i and c, the equations from (4.14)
constitute a closed linear system with respect to all the realizations of ϕij(xa, yb, zc; z′′

c′′)
for ∀ j, a, b, c′′, which could be written as a matrix form.

Rϕi,c = qi,c, (4.15)

where R is a matrix formed by arranging the realizations of Rjm(xa, yb, z′′
c′′ ; z′

c′);
ϕi,c, qi,c are vectors formed by collecting all the realizations of ϕij(xa, yb, zc; z′′

c′′) and
qim(xa, yb, zc; z′

c′) for prescribed indices i and c. In this way, equations (4.14) could be
divided into Nz × 3 sets of reduced equations based on the different combinations of
indices i and c. Each set of equations contains 3 × Nx × Ny × Nz variables and can be
solved independently.

Besides directly solving (4.15), the problem could also be efficiently solved by using
fast Fourier-transform (FFT) technique. We perform 2-D discrete FFT in the x–y plane on
each term of (4.14), and apply the well-known convolution theorem of FFT. Let R̃jm, ϕ̃ij
denote the FFT results of Rjm, ϕij, and kα, kβ indicate the discrete wavenumbers along the
x, y direction. Thus we have∑

c′′,j
R̃jm(kα, kβ, z′′

c′′ ; z′
c′)ϕ̃ij(kα, kβ, zc; z′′

c′′) = q̃im(kα, kβ, zc; z′
c′) for ∀ c′,m. (4.16)

Einstein’s summation convention is abandoned in this equation since the repeated indices
α, β do not imply a summation here. For numerical implementation, (4.16) should also
be written as the matrix form. In this case, we can see ϕ̃ij(kα, kβ, zc; z′′

c′′) is independent
with the indices of i, α, β, c. Therefore, for fixed indices of i, α, β, c, we can collect all
realizations for R̃jm(kα, kβ, z′′

c′′ ; z′
c′) and arrange them into a matrix (Aα,β). Similarly, ϕ̃ij

and q̃im are arranged as vector forms as ϕi,α,β,c and bi,α,β,c for prescribed indices i, α, β, c.
Facilitated by these conventions, (4.16) could be rewritten as

Aα,βϕi,α,β,c = bi,α,β,c. (4.17)

Einstein’s summation convention is abandoned in this expression. For each set of
indices i, α, β, c, the equations of (4.17) constitute a closed linear system for ϕi,α,β,c,
which contains Nz × 3 variables. After all the equations are solved, ϕ̃ij(kα, kβ, zc; z′′

c′′)
is recovered based on all the results. Inverse FFT operation is subsequently performed
on ϕ̃ij(kα, kβ, zc; z′′

c′′) to return ϕij(xa, yb, zc; z′′
c′′). For clarify, a procedure card illustrating

the FFT implementation has been provided in Appendix C. This card also incorporates
the strategy of dealing with the numerical instability issue, which will be introduced in the
next subsection.

4.4. Issues and considerations for numerical implementation
Although the FFT implementation significantly improves the computation efficiency, some
considerations need to be addressed. In theory, the convolution theorem for FFT exactly
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holds for the circular convolution operation, which imposes a periodic extension on the
input functions. If the computation domain Ω is not large enough, the magnitudes of Rjm
or qim would not decay sufficiently at borders. The periodic extension leads to strong
disconnections on borders, which would cause numerical instability in the FFT results.
Therefore, the windowed FFT technique is suggested to deal with this issue. In this
situation, the FFT method would be viewed as an approximate method, whose accuracy
depends on the computation domain and needs to be further validated by the results.

The numerical stability for solving (4.15) or (4.17) requires that R and Aα,β should
be sufficiently positive definite, which means all the eigenvalues should be larger than a
positive critical number. In practical implementation, both R and Aα,β have zeros or very
small eigenvalues, which cause ill-posed systems. In order to avoid this problem, Tikhonov
regularization (Kress 2014) is suggested to improve the numerical stability. Specifically,
(4.15) and (4.17) are reshaped into the following forms

(R + sI)ϕi,c = qi,c, (4.18)

(Aα,β + sδ̃(kα, kβ)I)ϕi,α,β,c = bi,α,β,c, (4.19)

where I is the identity matrix and s is the regularization parameter. Einstein’s summation
convention is cancelled in the equation. Here, δ̃(kα, kβ) is the 2-D FFT result for a discrete
2-D Dirac function δ(xa, yb), which is defined as

δ(xa, yb) =
{

1 for xa = 0, yb = 0
0 otherwise

. (4.20)

In (4.18) and (4.19), s plays a role in improving the statistical convergence and controlling
the smoothness of the solution, which will be tested in § 5.

The FFT implementation of FLSE is a reminiscence of spectral linear stochastic
estimation (SLSE) proposed by Tinney et al. (2006). Baars, Hutchins & Marusic (2016)
applied SLSE to predict the velocity signals in wall-bounded turbulence and refined
the inner–outer interaction model proposed by Marusic, Mathis & Hutchins (2010).
More recently, Baars & Marusic (2020a) developed a data-driven decomposition scheme
to decouple inner–outer coherence based on SLSE. Basically, SLSE reconstructs the
prediction for 1-D signal by minimizing the estimation error in spectral space, which
avoids the phase mismatch issue. While expanding SLSE from one dimension to two
dimensions in x-y plane is straightforward, further expanding to 3-D application needs
special treatment for the wall-normal dimension. In this work, FLSE offers a general
routine to estimate one field based on another, regardless of the dimensions. As the
implementation of FLSE, the FFT method expands spectra-based LSE to 3-D application
in wall-bounded turbulence.

5. Numerical validation and application of FLSE

This section will focus on the validation and application of FLSE. The correlation
functions involved in the governing equations (4.13) and the solved inducing model
functions will be displayed, which helps to illustrate how FLSE works, and also benefits
the discussion about how to set the calculation domain and the regularization parameters.
Subsequently, the performance of FLSE will be comprehensively compared with the
Biot–Savart law with the aim of promoting the FLSE method. The performance of
FLSE in recovering energy spectra will be accessed, which provides some reference for
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vortex-based modelling works. A novel application of FLSE in shedding light on the
energy contributions from different heights will be introduced, and the results will be
linked to the topic of the inner–outer interaction. Furthermore, the high-order moments
for FLSE-reconstructed fields will be evaluated, which will arouse discussions about the
limitations of FLSE. At last, the V2V reconstructions based on threshold-filtered vortex
fields will be investigated.

5.1. The correlation functions: Rjm and qim

Before performing FLSE, the self-correlation function for vortex fields (Rjm) and
vortex–velocity correlation function (qim) need to be derived from the DNS data. In this
work, these correlation functions are calculated based on twelve large-size instantaneous
DNS fields (as shown in table 1). The ensemble average is implemented by averaging along
the statistically uniform dimensions, including the x–y plane and the temporal dimension.
Concretely, the two correlation functions are calculated by

Rjm(x, y, z; z′) = 〈Λj(x0 + x, y0 + y, z)Λm(x0, y0, z′)〉x0,y0,t, (5.1)

qim(x, y, z; z′) = 〈ui(x0 + x, y0 + y, z)Λm(x0, y0, z′)〉x0,y0,t. (5.2)

Noting that 〈·〉x0,y0,t denotes averaging the bracketed quantity for all the realizations of
x0, y0, t.

In order to avoid the resolution issue, the calculation is carried out on the original
computational grid of DNS. The statistical range for correlation functions is set as x+ ∈
[−0.5δ+, 0.5δ+], y+ ∈ [−0.25δ+, 0.25δ+], z+ ∈ [5, 0.3δ+], resulting in a computation
grid of 179 × 155 × 91. The investigation of del Álamo et al. (2006) on the size of attaching
clusters supported the aspect ratio prescribed in this work. The wall-normal range covers
the whole buffer layer and logarithmic layer, which contains most of the vortex populations
in TBL. It should be pointed out that the statistical range for correlation functions also
determines the calculation domain of ϕij, which is correlated with the reconstruction
accuracy. More arguments for setting this statistical range will be emphasized in the
following discussions.

Figure 5 displays contours of R11 and q11 as functions of x and y for three wall-normal
positions (z′+ = z+ = 15.4, 119.4, 359.3). At first glance, these contours are reasonably
smooth and symmetric, indicating that the statistical results are well converged. At
z+ = 15.4, streak patterns occur nearby the centre points for both R11 and q11, which are
imprints of the quasi-streamwise vortices and low-speed streaks populated in this region.
When z+ increase from 119.4 to 359.3, both R11 and q11 display a self-similar increase
in size, supporting the famous attached eddy hypothesis. Distinctive characteristics for
R11 and q11 are also observed: while R11 remains a sharp peak at the central point, q11
shows two flat peaks, filling a large portion of the area in the plots. At the edge of the
wall-normal range considered (z+ = 359.3), bulks of the two q11 peaks still remain in the
calculation range although they appear to be truncated at the boundaries to some extent.
A much larger statistical range is needed if one attempts to cover the whole pattern for
q11 in the x–y plane at z+ = 359.3, which poses a severe challenge for both the number
of sampling DNS fields and the computing resources. The statistical range employed in
this work is based on the comprehensive considerations on the computation efficiency we
can bear and the reconstruction accuracy we have expected. In fact, most of the results in
this work will focus on the regions below the logarithmic layer, particularly for z+ < 120,
where the correlation peaks for R11 is satisfyingly covered in the calculation range. More
importantly, the resulting reconstruction accuracy in this region is good enough to promote
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Figure 5. Contours of R+
11(x, y, z; z′) (the first row) and q+

11(x, y, z; z′) (the second row). From left to right,
the contours correspond to z+ = z′+ = 15.4, z+ = z′+ = 119.4 and z+ = z′+ = 359.3, respectively.

the FLSE method and to draw some revealing conclusions as we can see in the following
discussions.

Once Rjm and qim for i, j,m = 1, 2, 3 are obtained, the vortex model function
ϕij(x, y, z; z) can be solved based on (4.18) or (4.19). Considering the number of
computation nodes involved is quite large (approximately 2.5 million) in this case, an
FFT implementation scheme is employed based on the processing procedures shown in
Appendix C. To avoid the interruptions at boundaries, both R11 and q11 are weighted by
a Hanning window before the FFT operation. Weighting a signal by a Hanning window
procedure will force the input signal to decay to zero at boundaries, which benefits the
numerical stability. Testing on the Hanning window and the regularization parameter will
be introduced in the following subsection.

5.2. The regularization parameter and the Hanning window
The performance of FLSE is determined by the inducing model functions. Figure 6
shows ϕ13(x, y, z; z) in the x–y plane, which reflects the in-plane inducing effect of the
individual wall-normal vortex on the streamwise velocity component. Figure 6 displays
the results from three calculation cases: two cases passing the typical processing routines
with s = 0.82 × 10−6μmax and s = 0.82 × 10−4μmax respectively, and one case skipping
Hanning window weighting before FFT with s = 0.82 × 10−4μmax. Herein, μmax is the
maximum eigenvalue for all the realizations of Aα,β . To make it clear, only a small region
with a streamwise range of ±150 and a spanwise range of ±75 is displayed. It shows that
while figures 6(a,d) and 6(b,e) show similar contours, the contour maps of figure 6(c, f )
suffer from numerical issues and present spurious patterns. It indicates that the Hanning
window is necessary for the FFT implementation of FLSE in order to obtain credible
results. In figure 6(a,d) or figure 6(b,e), ϕ13 shows two streamwise-extending streaks at
z+ = 15.4, which reflects the basic flow feature in this region. At z+ = 119.4, the streak
patterns shrink along the streamwise direction and form a velocity distribution resembling
an intense swirl in the x–y plane. The wall-normal variation of the inducing model function
gives signs of adaption to local flow features, which is vital for the success of V2V
reconstruction. By comparing figures 6(a,d) and 6(b,e), it can be found that adjusting the
value of s works as a dilation or erosion effect on the ϕ13 pattern. Larger s helps to obtain
smoother and more symmetrical contour patterns, which implies a good convergence. For a
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Figure 6. Value of ϕ+
13(x, y, z; z′) as a function of x+ and y+ for z+ = z′+ = 15.4 (the first row) and

z+ = z′+ = 119.4 (the second row). The left, middle and right columns correspond to three calculation
cases: (a,d) calculated by a typical routine with s = 0.82 × 10−6μmax; (b,e) calculated by a typical routine
with s = 0.82 × 10−4μmax; (c, f ) calculated by a routine neglecting the window-weighting procedure with
s = 0.82 × 10−4μmax.

very large s, the equation system of (4.19) will result in a solution very close to qim, which
shows a quite flat pattern in the x–y plane as shown in figure 5. At last, although ϕ13 from
case 1 and case 2 shows a clear difference in magnitude, the corresponding reconstructed
velocity fields are quite similar. Quantitative examination shows that the averaged CC
between the reconstructed velocity fields based on the two parameters is approximately
0.995 for two wall-normal positions considered, which validates the robust performance
of FLSE.

To quantitatively investigate the influence of s in the reconstruction accuracy, a series
of s ranging from s = 0.82 × 10−7μmax to 0.82 × 10−1μmax (logarithmically spaced)
are trialled. The minimum s employed in this test is very close to the lower limit for
keeping numerical stability. The solved inducing model functions from (4.19) are used
to reconstruct a large DNS field (as detailed by table 1) based on (4.12). The CCs between
reconstructed velocity fields and original velocity fields at three wall-normal positions are
displayed in figure 7 as functions of s. The results show that smaller s corresponds to
higher reconstruction accuracy, although the results for s/μmax < 10−3 are quite close.
The best performance of FLSE achieves a CC of larger than 0.9 for all the three velocity
components in figures 7(a) and 7(b), which indicates that the reconstructed velocity field
is very similar to the real one. For figure 7(c), the reconstruction accuracy is lower since
it corresponds to the edge of the reconstructed domain, and only the vortices below this
position are considered in the reconstruction. Based on the discussions for figures 6 and
7, this work will adopt s = 0.82 × 10−4μmax in the following analysis, which corresponds
to a good performance in both convergence and accuracy. It is worthy to point out that the
reconstruction results for s/μmax < 10−3 are quite close to each other, and thus prescribing
any other s in this range brings no substantial change in the following results of this work.

5.3. Comparing with the Biot–Savart law
The Biot–Savart (BS) law provides an explicit formula for reconstructing velocity fields
based on vorticity fields. According to Batchelor (1967), the BS law returns the exact
velocity fields only if the vorticity has zero normal component at each point of the
integration boundary. For wall turbulence, we numerically examined the performance
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Figure 7. Correlation coefficients for reconstructed/original velocity fields at z+ = 15.4, 119.4, 359.3 (a-c,
respectively) as functions of the regularization parameter.

of the BS law in the vorticity-to-velocity reconstruction, and found its performance
is excellent even at the buffer layer (z+ = 15.4): the correlation coefficient between
reconstructed and DNS velocity fields is larger than 0.99. This means that the classical
BS law works well for the vorticity-to-velocity reconstruction of wall turbulence.

Based on the inherent correlation between vorticity and vortex, the BS law could be
employed to reconstruct the velocity field directly based on the vortex field. Several
investigators (Perry & Marusic 1995; Marusic 2001; de Silva et al. 2016a) have employed
the BS law to reconstruct wall-bounded turbulence based on the random arrangement of
typical vortex tubes. The BS law with respect to the vortex-based reconstruction can be
expressed as

u(r) = μ

4π

∫∫∫
Ω

Λ(r′)× (r − r′)
|r − r′|3 dΩ. (5.3)

In (5.3), r′ is the running position vector for the volume integration and r is the reference
position vector; | · | represents the magnitude of the vector quantity in the middle; μ is
an artificial multiplier. For vorticity-to-velocity reconstruction, the multiplier equals one
by theory. However, for current V2V reconstruction, the multiplier should be adjusted to
make the magnitude of reconstructed velocity comparable to the real velocity magnitude.
Pirozzoli et al. (2010) employed a multiplier of two when dealing with this issue, which
was derived based on the situation of a rigidity rotation. In this work, the multiplier
is determined by minimizing the mean squares of the deviations between reconstructed
results and original DNS results at given wall-normal positions.

For convenience in numerical implementation, (5.3) is reformed as

ui(r) =
∫∫∫

Ω

Pij(r − r′)Λj(r′) dΩ = Pij ∗Λj. (5.4)

Herein, ∗ indicates a 3-D convolution operation, different from the 2-D convolution in
(4.12). And the convolution kernel function Pij

[Pij] = μ

4π(x2 + y2 + z2)
3/2 + ε

⎡
⎣ 0 z −y

−z 0 x
y −x 0

⎤
⎦ (5.5)

where ε is a small parameter, added to avoid the singularity at the origin. In this work,
we prescribe ε+ = 10−8, which makes Pij(0, 0, 0) = 0 and brings only a tiny change
on the values of Pij at other positions. The convolutional kernel function of the BS law
(Pij) resembles the inducing model function ϕij in FLSE. Differently, the BS law employs
a fixed and isotropic model function while FLSE adopts a data-driven inducing model,
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Figure 8. Instantaneous u+ fields from z+ = 15.4 (the first row) and z+ = 119.4 (the second row). (a,d)
Original DNS data, (b,e) reconstructed u+ based on the BS law, (c, f ) reconstructed u+ based on FLSE.

which incorporates the statistical imprints of flows. For implementation, Pij is truncated
and discretized on the same grid as ϕij.

The reconstructed u fields based on both the BS law and FLSE are displayed in figure 8.
The u field displayed in the figure covers an area of 2δ × δ in the streamwise–spanwise
plane, which is four times as large as the calculation domain of ϕij. Results show that
FLSE performs surprisingly well in both the near-wall region and the logarithmic region.
The turbulent motions with scales ranging from the spacing of low-speed streaks to
the boundary thickness are well recovered. As emphasized in the foregoing discussion,
vortices are very sparse in space, and the vortex field contains almost as less information
as a scalar field, which poses great challenges for the reconstruction. The success in
recovering velocity fields based on vortex structure should be owing to the inherent
coherence of vortex structures which could be well modelled as empirical functions as ϕij.
The BS law performs as well as FLSE for the logarithmic region but fails to reconstruct the
low-speed streaks in the near-wall region. The comparatively poor performance of the BS
law in the near-wall region is expected since the distributions of vortices and vorticities are
quite different below the buffer layer, as shown in figure 2. The discussion reminds us that
the BS law cannot be employed below the logarithmic region for the V2V reconstruction.

Quantitative comparisons between the performances of FLSE and the BS law are
provided in figure 9. Figure 9(a) shows the CCs for reconstructed/original u, v,w as
functions of z. The most attractive point indicated from this plot is the good performance of
FLSE for z+ < 100. In this region, the CCs from FLSE remain a steady variation above 0.9
while the CCs from the BS law encounter a dramatic drop for u, v,w. In the logarithmic
layer, both FLSE and the BS law perform well, achieving CCs of larger than 0.9 for
u, v,w. The BS law performs slightly better than LSE for z+ > 150, which supports the
application of the BS law in the logarithmic layer (Perry & Marusic 1995; Marusic 2001;
de Silva et al. 2016a) and makes the BS law very competitive in this region considering
its simplicity in implementation. The imperfect performance of FLSE for z+ > 150 is
attributed to the limited calculation domain for ϕij, which will be further analysed in the
following scale-specific assessment. Finally, the performances of both methods deteriorate
at the upper boundary of the reconstruction domain, consistent with the results of figure 7.

922 A18-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.516


Vortex-to-velocity reconstruction

0 50 100 150 200 250 300 350
0.65

0.70

0.75

0.80

0.85

0.90

0.95

(a)

0

0.4

0.8

1.2

1.6

2.0

2.4

(b)

10–3 10–2

k+
x k+

x

10–1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ag

n
it

u
d
e 

o
f 

C
C

S

CC

1.0

(c)

10–3 10–2 10–1

k+
xz+

10–3 10–2 10–1

–5

0

5

10

P
h
as

e 
an

g
le

 o
f 

C
C

S
k+ x 
φ

+ uu

15

20

25

30

35

(d )

u
v

w

u
v

w

BS law FLSE

FLSE

FLSE

BS law

BS law

Original, z+ = 15.4

BS law, z+ = 15.4

BS law, z+ = 15.4

FLSE, z+ = 15.4

FLSE, z+ = 15.4

Original, z+ = 119.4

BS law, z+ = 119.4

FLSE, z+ = 119.4

BS law, z+ = 119.4

FLSE, z+ = 119.4

BS law, z+ = 15.4

FLSE, z+ = 15.4

BS law, z+ = 119.4

FLSE, z+ = 119.4

Figure 9. Quantitative comparisons between the reconstruction results of FLSE and the BS law. (a)
Correlation coefficients for reconstructed/original fields as functions of z+; (b) premultiplied streamwise energy
spectra of u+ from the original DNS data and the reconstructed results as functions of k+

x ; (c) magnitudes of
streamwise CCS for reconstructed/original u+; (d) phase angles of streamwise CCS for reconstructed/original
u+.

The premultiplied spectra shown in figure 9(b) provide scale-by-scale comparisons
between the reconstructed results and original DNS data. Only the streamwise spectra
for the u component (denoted as φuu) are taken as examples in this discussion. At z+ =
15.4, the spectra from the BS law show a plateau at k+

x =1.5 × 10−3 ∼ 2 × 10−2 (k+
x

is the streamwise wavenumber), which is obviously different from the prominent peak
pattern of the real spectra. The spectra from FLSE show slightly lower energy for all
the wavenumbers, but the shape of the spectral curve resembles the real spectra. At
z+ = 119.4, the spectra from FLSE are very close to the real spectra except for the very
low wavenumbers, where the spectra from both FLSE and the BS law are lower than the
real spectra. For high wavenumbers, the spectra from FLSE tend to be lower than the real
spectra while the spectra from the BS law tend to be higher to more extent. The results
show that FLSE performs better in recovering the energy spectra.

Generally, two signals sharing the same spectra might be quite different since the
spectra are integral quantities, which are robust to local events. To further evaluate
the reconstruction, the CCS between reconstructed and original u along the streamwise
direction is calculated. As introduced in § 2.3, the magnitude and phase angle of the
CCS indicate the scale-by-scale correlation degree and scale-by-scale phase deviation
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between two input signals, respectively. The CCS offers a strict evaluating indicator
for the performance of FLSE in reconstructing turbulent motions with different scales.
One particular scale deserving more attention is the streamwise length of the calculation
domain for ϕij (denoted as Lx), which corresponds to k+

x ≈ 5 × 10−3.
The magnitudes and phase angles of CCS are displayed in figure 9(c,d). A lot of

information can be drawn from these two plots. Firstly, the overall performance and the
effective scale range for FLSE are focused. Figure 9(c) shows that for both z+ = 15.4 and
z+ = 119.4 the magnitudes of the CCS for FLSE-reconstructed/original u remain larger
than 0.9 for the scale range of k+

x < 2 × 10−2, which corresponds to a bulk of the total
energy. The good performance for FLSE is also observed from the phase angles of the
CCS, which fluctuate in a small range of ±5° for the whole wavenumber range considered.
The most striking point is that FLSE performs well even for the largest scale considered,
which is eight times as large as Lx. Another interesting point is that, for the most part,
the CCS magnitude decreases with the increase of the wavenumber, which indicates that
the large-scale motions are easier to reconstruct than the small-scale fluctuations. This
trend is expected since the large structures are composed of large numbers of independent
vortex tubes. While the individual vortex tubes suffer from strong random fluctuations,
their joint inducing effects are more robust due to the offset effect of independent random
fluctuations.

On the other hand, figure 9(c,d) also allows a further comparison between FLSE and
the BS law. For the results of z+ = 15.4, the advantages of FLSE are observed from both
figures 9(c) and 9(d). FLSE achieves a larger CCS magnitude and smaller CCS angles
for almost all wavenumbers. For the results of z+ = 119.4, the BS law has slightly better
performance for k+

x < 10−2, which corresponds to a length scale of approximately 0.5Lx.
A similar demarcation with k+

x ≈ 10−2 is also observed in the performance of FLSE in
figure 9(d). For k+

x > 10−2, the phase angle for the CCS fluctuates around zero; yet for
k+

x < 10−2 the phase angle deviates from zero to a negative or positive number. The
explanation is clear since the governing equations for ϕij are limited in the calculation
domain. The intention of minimizing the reconstruction deviations is not enforced for the
scales larger than Lx.

These results constitute an all-round assessment of the reconstruction performance of
FLSE and the BS law, which benefits the application of both methods. Mostly, FLSE
achieves better reconstruction accuracy, particularly for the buffer layer.

5.4. Full energy spectra of FLSE-reconstructed TBL
Figure 10 provides the full pre-multiplied spectra for original velocity fields and the
FLSE-reconstructed ones, varying with the wall-normal position. The pre-multiplied
streamwise spectra kxφuu, kxφvv, kxφww are shown as functions of z and λx in the first row,
and the pre-multiplied spanwise spectra ky�uu, ky�vv, ky�ww are displayed as functions
of z and λy in the second row. Herein, λx and λy denote the streamwise and spanwise
wavelength, respectively; and they are linked to the corresponding wavenumber kx and ky
by λx = 2π/kx and λy = 2π/ky. The energy spectra shown here are very consistent with
the results of several investigators such as Hutchins & Marusic (2007) for kxφuu, Wang
et al. (2017, 2018) for ky�uu. The spectra from FLSE agree well with the original spectra
for the bulk of the total energy. The performance for buffer layer (z+ < 80) is excellent,
recovering a satisfying energy distribution for almost the whole scale range considered.
The success in the buffer layer is attributed to the relatively smaller inducing range of
vortices in this region, which is completely covered in the calculation domain for ϕij as
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Figure 10. Contour maps showing the variation of premultiplied spectra for u+, v+,w+ with wall-normal
position. The first row: the premultiplied streamwise spectra k+

x φ
+
uu, k+

x φ
+
vv, k+

x φ
+
ww as functions of z+ and

k+
x ; the second row: the premultiplied spanwise spectra k+

y �
+
uu, k+

y �
+
vv, k+

y �
+
ww as functions of z+ and k+

y .
Contour lines show 1/6 to 5/6 of the maximum premultiplied energy, with an increment of 1/6. The shaded and
solid contour lines show the results of original DNS data while the dashed contour lines show the results of
reconstructed velocity fields based on FLSE.

shown in figure 5. For z+ > 80, deviations between reconstructed spectra and the original
spectra are observed for the large scales. Generally, the reconstructed spectra for φvv, φww
are more accurate than those of φuu, which is consistent with the fact that u corresponds to
comparatively larger coherence scales. A larger calculation domain of ϕij will account for
the structures with larger scales embedded in the logarithmic layer but also significantly
burden the calculation resources, which is outside the scope of the work. All in all, the
result of FLSE is satisfying for the scale range covered in the current calculation domain.

Energy spectra are among the primary considerations in modelling works of
wall-bounded turbulence. To cover the whole scale range of energy spectra, Perry
& Marusic (1995) suggested that three types of vortices need to be involved in the
vortex model: two types of detached eddies accounting for the largest energy-containing
motions and small-scale inertial motions, respectively, and one type of the attached eddy
accounting for the self-similar motions in middle scales. As for the representation of the
attached eddies, controversy appears. Earlier investigators treated the attached eddies or
detached eddies as hierarchies of vortex tubes with Λ or Ω shapes (Perry & Chong 1982)
or vortex clusters (del Álamo et al. 2006) while recent works tend to recognize them by
a pattern of velocities, such as the connected sets of points by Lozano-Durán & Jiménez
(2014) and the iso-surface of u by Lee et al. (2014) and Yoon et al. (2020). Recently, there
are also some efforts to extract the contribution of attached eddies from the streamwise
spectra of u (Baars & Marusic 2020a,b; Hu, Yang & Zheng 2020).
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Results of figure 10 show that the bulk range of energy spectra can be covered in the
induced motions of the vortex fields. Certainly, the contribution of attached eddies could
also be attributed to the joint inducing effects of vortex groups. While the vortices with
random sizes and strength characterize the local turbulence, the large-scale component of
the vortex field explains the large-scale coherent structures (Gad-el-Hak & Bandyopadhyay
1994). The large-scale component of the vortex field might be attributable to the clustered
organization of CFSEs (del Álamo et al. 2006; Kang et al. 2007). Up to present, the
modelling works based on random CFSEs are mostly limited to the inertial range for
isotropic turbulence (Townsend 1951; Corrsin 1962; Lundgren 1982; Pullin & Saffman
1993). Of particular note is the strained-spiral vortex model proposed by Lundgren (1982),
which derives the Kolmogorov spectra based on the randomly oriented collections of
non-axisymmetric and strained vortex models. For wall turbulence, the non-isotropy nature
and the large-scale coherence hinder the extension of these models. The CFSE-based
modelling works should incorporate both the random geometries for individual vortex
tubes and the large-scale clustering trend of vortex groups. Perhaps a combination of
the attached eddy model with randomly placed vortex tubes could be attempted in future
works.

Another topic related to the energy spectra is the inner–outer interaction in
wall-bounded turbulence. A lot of investigations (Hutchins & Marusic 2007; Marusic
et al. 2010; Mathis, Hutchins & Marusic 2011) have shown that large-scale motions in the
logarithmic layer have modulation and superposition effects on the velocity fluctuation in
the near-wall region. And only the superposition effect contributes to the energy of the
near-wall region, accounting for the increasing trend of inner peaks with the increase of
the Reynolds number. The superposition effect could be understood as the inducing effect
of the vortices at the logarithmic layer, and FLSE allows us to have an insight into this
aspect.

In order to separate the inducing effects of vortices from different wall-normal positions
on a reference plane, a V2V reconstruction based on height-filtered vortices is performed.
Specifically, only the vortices located at a given height range z ∈ [zc −�(zc), zc +
�(zc)] are considered in the reconstruction of u at the reference plane (e.g. z+

ref =15.4),
and the result is denoted as u(x, y, zref ; zc). Herein, zc is the central position for the
wall-normal range of the vortices participating in the reconstruction; �(zc) denotes the
half-span, which is set as twice the local interval of the original wall-normal grid. The
pre-multiplied streamwise spectra for u(x, y, zref ; zc) are calculated, which are represented
by kxφuu(kx, zref ; zc). Contours of kxzcφuu(kx, zref ; zc)/(2�(zc)) are shown as functions
of kx and zc in logarithmic coordinates in figure 11(a), where the multiplier zc is added to
balance the squeezing effect of logarithmic coordinates. Basically, this contour map shows
the contribution of vortices at different wall-normal positions to the streamwise spectra
of u at the reference plane of z+

ref =15.4, which are called the contribution spectra for
φuu regarding the reference plane of z+

ref =15.4. Similarly, the contribution spectra for the
streamwise spectra of v,w regarding the reference plane of z+

ref =15.4, and the contribution
spectra for the streamwise spectra of u,v,w regarding the reference plane of z+

ref =119.4 are
also calculated and displayed in the first and second rows of figure 11, respectively.

Figure 11 is revealing in several aspects. Firstly, it shows that, compared with
figures 11(b) and 11(c), the contribution spectra for φuu in figure 11(a) are flatter
along the zc direction, which indicates the u component is more sensitive to the
vortices below or above the reference positions. The sensitivity of u to vortices may be
correlated to the lift-up mechanics caused by streamwise vortices, which tends to produce
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Figure 11. Contour maps showing the contribution of vortices at z+
c to φ+

uu, φ+
vv , φ+

ww (a– f, respectively) at
the reference plane of z+

ref =15.4 (the first row) and z+
ref =119.4 (the second row), as marked by the red dashed

lines. The contours show the local energy contribution premultiplied by k+
x z+

c and normalized by the maximum
values.

low-speed structures in the near-wall region (Schoppa & Hussain 2002). In figure 11(a),
the contribution from z+

c > 100 can be observed at λx > 900 for φuu, supporting the
well-documented superposition effect of large-scale structures on near-wall fluctuations.
In figures 11(b) and 11(c), the energy-contributing regions for φvv and φww regarding the
reference plane of z+

ref =15.4 are limited below z+
c < 100 and z+

c < 50, respectively. For the
contribution spectra regarding the reference plane of z+

ref =119.4 (the second row), while
the energy-contributing regions for φuu and φvv cover the bulk of the whole wall-normal
range considered, the energy-contributing region for φww remains local. In previous
investigations (Woodcock & Marusic 2015), the special behaviour of the w component was
also noticed in the scaling law of 〈w2〉, which remains constant in the logarithmic region
while both 〈u2〉 and 〈v2〉 show a logarithmic variation with the wall-normal position. The
special behaviour of the w component is owing to the bounding effect of the wall, which
weakens the inducing effects of vortices on the w component. In fact, the wall-bounding
effect was incorporated as the boundary condition in the theoretical works of Perry &
Marusic (1995) and Woodcock & Marusic (2015), which yielded the correct scaling law
for 〈u2〉, 〈v2〉, 〈w2〉. Figure 11( f ) provides some evidence for this condition.

5.5. High-order moments of FLSE-reconstructed TBL
The energy spectra discussed above only involve the second-order moments of velocities.
The higher-order moments offer further indicators to distinguish the reconstructed velocity
fields and original DNS velocity fields. This subsection focuses on higher-order moments,
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Figure 12. Various moments for u+, v+,w+ as functions of wall-normal positions. (a) Fluctuation energy,
(b) skewness, (c) flatness, (d) 〈u+w+〉 and its wall-normal/streamwise flux quantity (〈u+w+2〉 and 〈u+2w+〉).

including the skewness and flatness for the three velocity components. The skewness
and flatness factors for u (denoted as Su and Fu) are defined as 〈u3〉/〈u2〉3/2 and
〈u4〉/〈u2〉2, respectively. While the skewness factor reflects the asymmetry degree of
fluctuating signals, the flatness factor is more correlated to the peaky signals associated
with the intermittent turbulence events. Gad-el-Hak & Bandyopadhyay (1994) suggested
that the third moment retains the sign information and is more revealing in inferring the
characteristics of coherent structures; 〈u3〉 could also be explained as the streamwise flux
for the streamwise turbulent energy, and such an explanation is also suitable for 〈v3〉
or 〈w3〉. Besides the moments of individual velocity components, the correlation term
〈uw〉 (the kinematic Reynolds shear stress with an opposite sign) and its streamwise or
wall-normal flux (i.e. 〈u2w〉, 〈uw2〉) (Bandyopadhyay & Watson 1988) are also analysed,
considering that they are important terms in the energy balance equation (Bradshaw 1967)
or the transportation equations of the shear stress in wall turbulence.

All these statistical quantities from original DNS data and the reconstructed results are
shown in figure 12. It shows that the second-order moments from FLSE are lower than the
original DNS results, which is consistent with the observations on the energy spectra in
figures 9 and 10. As for the skewness and flatness of u (figure 12b,c), the results from FLSE
present distinctive behaviours at the near-wall region compared with the DNS results.
For the skewness of u, the FLSE results from 15 < z+ < 100 are mostly positive, which
are on the opposite of the corresponding DNS results. For the flatness of u, the FLSE
results from 15 < z+ < 50 stay above or very close to three, while the corresponding
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DNS results are always smaller than three. Generally, a positive skewness indicates that
the extreme events corresponding to a large fluctuation magnitude are more likely positive,
and vice versa. A flatness of three is the behaviour of a standard Gaussian distribution,
and larger or smaller flatness corresponds to a super-Gaussian or sub-Gaussian behaviour,
respectively. It can be inferred from the deviations that the reconstructed u tends to be
flatter and contains weak negative fluctuations compared with the original field. In the
logarithmic region, the deviations for both skewness and flatness are reduced: both results
show a negative skewness and sub-Gaussian behaviour for flatness. Different from the
results of u, the skewness and flatness of v,w from FLSE agree well with the original DNS
data for the whole wall-normal range considered, which further validates that u poses the
most significant challenge for the accurate reconstruction.

The skewness and flatness factors have also been considered in the attached eddy model.
The model predicts that the flatness of u, is invariably larger than three (Woodcock
& Marusic 2015), which is different from the well-accepted experimental result of 2.8
(Fernholz & Finleyt 1996; Stanislas et al. 2008). To build on this aspect, de Silva et al.
(2016b) introduced the spatial exclusion effect in attached eddy model and found that the
improved attached eddy model gives a correct prediction on the flatness of u. It validates
the importance of the spatial exclusion effect in deriving accurate predictions. The current
work reconstructs the velocity fields based on the original vortex fields, which embodies
the spatial exclusion effects. The reconstruction results retain the correct behaviour for the
flatness of u in the logarithmic layer but not in the near-wall region. This indicates that,
besides incorporating the spatial exclusion effect, further reform of the ideal vortex model
is needed in order to explain the flatness in the near-wall region.

In figure 12(d), the reconstructed results retain the same signs with the corresponding
DNS results for all the three quantities, which is promising considering that the sign of
〈uw2〉 could be related to the wall-ward or outward motion induced by dominant vortex
structures (Bandyopadhyay & Watson 1988). On the other hand, significant deviations are
noticed from the results of 〈u2w〉 at the buffer region. This means that the reconstructed
turbulence contains weaker streamwise flux of 〈uw〉, which might be correlated with
the relatively weaker low-speed structures observed in the reconstructed results. The
reconstructed 〈uw〉 has a steeper slope above z+ = 50, resulting in a slightly lower
magnitude at the logarithmic region. The discount amount for 〈uw〉 might be attributable
to the very large structures, which are not covered in the domain of the current calculation.
Finally, of all the three quantities, the reconstructed results for 〈uw2〉 is most satisfying, it
is remarkably consistent with the DNS results.

In order to reveal the reason that FLSE fails to recover the higher-order moments in
the near-wall region, the inducing model employed by FLSE needs to be reconsidered.
FLSE expressed the inducing effects of vortices as linear operators, which implies that
the inducing effects of two vortices with opposite orientations can be modelled by one
function with adjustable signs or multipliers. However, the real situation might be more
complex, sometimes beyond the capacity of the linear operators. To support this argument,
figure 13 shows the conditionally averaged u field around a given positive streamwise
vortex at z+ = 37.8, which is calculated by 〈u(r +�r)Λp

x(r)〉r,t. Herein, the superscript p
indicates a positive-pass filter, which retains positive values of the input field and sets the
negative values as zeros. The wall-normal position for the conditional average corresponds
to the largest deviation of Su in figure 12(b). As we can see, the u field around a positive
vortex shows an asymmetric pattern. In this contour map, the upper side of the central
vortex corresponds to negative u with a larger magnitude compared with that from the
lower side, which is consistent with the fact that a positive streamwise vortex is distributed
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Figure 13. Conditionally averaged u+ field around a given positive streamwise vortex at z+ = 37.8. (a)
Contour map of the conditionally averaged u+ field, (b) the conditionally averaged u+ as a function of y+
along a line extracted from the contour map, as marked by the red dash-dot line.

below a low-speed streak in this coordinate system. In the implementation of FLSE, the
inducing effects of a positive streamwise vortex and a negative streamwise vortex are
averaged in one correlation function (as shown in figure 5), which results in a symmetric
pattern for inducing models. Such an averaging operation will reduce the intensity of
low-speed streaks in reconstructed fields and result in a smaller skewness magnitude
and a larger flatness, and also a smaller streamwise flux for 〈uw〉, which reasonably
explains the deviations of the FLSE results displayed by figure 12. To deal with this issue,
the reconstruction scheme might be improved by distinguishing the inducing effects of
vortices with different signs, which is expected to be the topic of future work.

5.6. The influence of the λ+ci threshold on the reconstructed results

Recalling the analysis in § 3 of this article, a threshold of λ+ci was prescribed to isolate
the typical tube-like vortex structures from the vortex fields. Moreover, the correlated
discussions about the geometrical properties were mostly limited to these isolated tube-like
vortices. In contrast, in the numerical tests of §§ 5.3–5.5, the velocity fields were
reconstructed based on the whole vortex fields (Λ), without any threshold. Thus, we need
to perform an additional numerical test involving the influence of the threshold issue, with
the purpose of bridging the divide between the discussions about the isolated vortex tubes
and the V2V reconstruction results in §§ 5.3–5.5.

To show the isolated vortices for prescribed thresholds, figure 14 provides the contour
maps for the vortex strength (λ+ci) at two wall-normal positions. Two sets of contour lines
for λ+ci=0.05 and λ+ci=0.1 are highlighted by the solid lines with different colours. As we
can see, the λ+ci field presents a visually fragmented pattern. Most of the isolated vortices
have a thickness of less than 50 wall units. Comparatively, λ+ci=0.1 recognizes stronger
and finer vortex cores, which covers only a small portion of the total area. The iso-surfaces
of λ+ci=0.1 were used to display the vortex tubes in figure 2. It is close to the threshold of
λ+ci=0.08 employed by Jodai & Elsinga (2016), also for the vortex visualization purposes.
On the other hand, for the sake of extracting the vortex properties, such as the radius or
circulation, investigators tended to use smaller thresholds in order to count in the low-swirl
regions surrounding the vortex cores. For example, Ganapathisubramani et al. (2006)
and Gao et al. (2011) adopted a threshold of approximately 0.035 in their investigations,
close to λ+ci=0.05 shown in the contour maps. Outside the solid lines, weak vortices with
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Figure 14. The contour maps of the vortex strength (λ+ci) in the streamwise–spanwise plane at z+ = 15.4
(a) and z+ = 119.4 (b). Two sets of contour lines for λ+ci=0.05 and λ+ci=0.1 are highlighted by white and red
lines, respectively.

λ+ci < 0.05 can also be observed in the contour maps. These weak vortices are usually
disregarded in experimental investigations because they are vulnerable to measurement
uncertainties. However, their roles in the V2V reconstruction might be non-negligible
since they cover a large portion of the total area and have larger scales.

Based on these discussions, we will trial three specially filtered vortex fields in the V2V
reconstructions: (a) the weak vortex fields ΛW , obtained by retaining the vortex vectors
satisfying λ+ci < 0.05 and setting all the other vortex vectors as zeros; (b) the strong vortex
fields ΛS1, acquired by filtering the original vortex fields based on the criterion λ+ci ≥
0.05; and (c) the strong vortex fields ΛS2, acquired by filtering original vortex fields based
on λ+ci ≥ 0.1. The original vortex fields without any filtering process are denoted as ΛO.
Obviously, the above definitions yield that ΛO = ΛW + ΛS1.

In the following numerical tests, the velocity fields are separately reconstructed based
on ΛW , ΛS1 or ΛS2 using the same method with the previous reconstruction for ΛO.
Specifically, a convolution operation is performed on these vortex fields, and the kernel
functions are the inducing model functions (ϕij) calculated in § 5.2. The reconstruction
formula could be found in (4.12), where the input vortex fields should be replaced
accordingly. To make it convenient for the following discussions, the reconstructed
streamwise velocity components based on ΛO, ΛW , ΛS1 and ΛS2 are represented by uO,rec,
uW,rec, uS1,rec and uS2,rec, respectively. The original streamwise velocity component from
the DNS data is represented by uDNS. Based on the linear property of the reconstruction,
we can derive uO,rec = uW,rec + uS1,rec from ΛO = ΛW + ΛS1. The linear reconstruction
also implies that uW,rec, uS1,rec and uS2,rec reflect the separate contributions of ΛW , ΛS1
and ΛS2 in the ΛO-based reconstruction results (uO,rec).

Table 2 collected some statistical information about ΛW , ΛS1, ΛS2 and their
reconstruction results. The third column of this table provides the volume fractions
corresponding to different vortex fields, defined by the ratio of the volumes occupied by the
selected vortices (with non-zero magnitudes) to the total volume considered. The fourth
and fifth columns give the mean squares of the reconstructed u, i.e. 〈uM,rec

2〉, 〈uS1,rec
2〉

and 〈uS2,rec
2〉 (collectively denoted as 〈u·,rec

2〉) at z+ = 15.4 and z+ = 119.4, respectively.
The last two columns provide the correlation coefficients between the reconstructed u and
uDNS at the same wall-normal positions.

Among the three kinds of vortex field, ΛW owns the largest volume factions, occupying
nearly half of the total volume. The correlation coefficient between uW,rec and uDNS at
z+ = 15.4 is as large as 0.83, which is the largest among these results. But at z+ = 119.4,
the corresponding correlation coefficient decreases to 0.77, much lower than that of ΛS1.
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Volume
fraction of 〈u+2·,rec〉 Correlation coefficient

Vortex field Threshold the vortices z+ = 15.4 z+ = 119.4 z+ = 15.4 z+ = 119.4

ΛW λ+ci < 0.05 45.2 % 0.958 0.440 0.830 0.772
ΛS1 λ+ci ≥ 0.05 18.6 % 3.80 2.00 0.826 0.861
ΛS2 λ+ci ≥ 0.1 5.08 % 1.67 0.764 0.672 0.724

Table 2. Statistical information about different vortex fields and their reconstruction results.
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Figure 15. Spectral analysis on uW,rec, uS1,rec and uS2,rec. (a) The premultiplied energy spectra for uW,rec,
uS1,rec and uS2,rec; (b) the magnitude of streamwise CCS between uDNS and u·,rec (including uW,rec, uS1,rec and
uS2,rec).

In contrast to ΛW , the volume fraction for ΛS2 is only approximately 5 %, the lowest
among the three vortex fields. The shortcoming in volume faction causes the lowest
reconstruction correlation coefficients for ΛS2. Compared with ΛW , the advantage of
ΛS2 for the V2V reconstruction is in the vortex strength. Stronger vortices induce larger
fluctuation magnitudes, which explains why 〈uS2,rec

2〉 is much larger than 〈uM,rec
2〉; ΛS1

has a volume fraction three times larger than that of ΛS2 and contains more strong vortices,

which make it achieve larger 〈u+
S1,rec

2〉 and correlation coefficients at the same time. The
data in the table also reflect the trend that the reconstruction accuracy drops with the
increase of the filtering threshold.

Figure 15(a) shows the premultiplied energy spectra for uW,rec, uS1,rec and uS2,rec. At first
glance, we can see the integral energy of uS1,rec is much larger than that of uW,rec or uS2,rec,
consistent with the 〈u·,rec

2〉 data shown in table 2. Both the spectra of uS1,rec and uS2,rec
present obvious peaks at k+

x ≈ 10−2 and k+
x ≈ 6 × 10−3, for z+ = 15.4 and z+ = 119.4,

respectively. But for the spectra of uW,rec, the curve shows a plateau at k+
x < 7 × 10−3.

The distribution of the spectra for uW,rec indicates that it spares a larger proportion of the
total energy for small wavenumbers. Particularly for the results at z+ = 15.4, the curve
for uW,rec is above that of uS2,rec at k+

x < 2 × 10−3. However, for the spectra of larger
wavenumbers, the contribution from ΛW is much lower compared with ΛS1 and ΛS2.

The magnitude of the streamwise CCS between uDNS and the corresponding
reconstructed result (uW,rec, uS1,rec or uS2,rec) is displayed in figure 15(b). As mentioned in
§ 2, the CCS magnitude provides the scale-by-scale correlation degree between two input
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velocity fields. As shown by figure 15(b), the CCS magnitude for uS1,rec stays above 0.8 for
k+

x < 3 × 10−2 and the corresponding curve shows a decreasing trend with the increase
of wavenumbers. The CCS magnitude for uS2,rec is obviously lower than that of uS1,rec
for all the wavenumbers considered, presenting a decreasing trend similar to the curve for
uS1,rec. Comparatively, the curves for uW,rec decrease faster than those of uS1,rec or uS2,rec.
At z+ = 15.4, the curve for uW,rec stays above 0.9 for k+

x < 10−3, achieving the largest
CCS magnitude. However, for k+

x > 3 × 10−2, the curve for uW,rec drops below that of
uS2,rec, which is the lowest.

To summarize, ΛS1 contributes significantly to the bulk energy spectra and the
corresponding CCS magnitudes maintain high levels for a wide wavenumber range; ΛW
mainly builds on the low-wavenumber spectra, and its contribution is more prominent in
the near-wall region. This indicates that the large-scale velocity structures could be formed
by the joint inducing effects of the clusters containing both weak vortices and stronger
vortices. The advantage of ΛW for smaller wavenumbers might be attributable to the larger
volume fraction, which means more vortex vectors participating in the reconstructions.

Besides ΛW and ΛS1, the performance of ΛS2 deserves more attention because the
vortex tubes corresponding to ΛS2 have been highlighted for the geometrical property in
§ 3 of this work. The above tests show that the spectrum of uS2,rec is much lower than that
of uS1,rec and the corresponding CCS magnitudes for most wavenumbers are approximately
0.7, which is not satisfying. It is important to keep in mind that the above tests emphasized
the separate contributions of ΛW , ΛS1 and ΛS2 to the total (ΛO-based) reconstruction.
Specifically, the inducing model functions used in the above reconstructions were obtained
in § 5.2 for the purpose of ΛO-based reconstruction. Therefore, the above results cannot
reflect the utmost ability of ΛS2 in independently reconstructing the original velocity
fields. To determine this, we need to recalculate the inducing model functions based on
the correlation functions of ΛS2 and uDNS.

Based on these considerations, we will refine the reconstruction based on ΛS2 via
the standard FLSE. Firstly, the correlation function of Rjm = 〈ΛS2,jΛS2,m〉 and qim =
〈ΛS2,iuDNS,m〉 are statistically calculated. Then, equations (4.13) are solved by using
the FFT scheme, which returns new inducing model functions ϕS2,ij. The regularization
parameter s is prescribed as the same value as that used in § 5.2. At last, the reconstructed
velocity fields are obtained by (4.12). To make a distinction with the former reconstructed
result (uS2,rec), we denote the newly reconstructed u (via the standard FLSE) as uS2,FLSE.

Figures 16(a) and 16(b) shows the contour maps for uS2,FLSE at z+ = 15.4 and z+ =
119.4. These maps can be compared with the contour maps of uDNS shown in figure 8. To
facilitate the comparison, we overlay the contour maps in figure 16(a,b) with the contour
lines of uDNS = 0. As can be seen from the maps, while the low-speed streak in uS2,FLSE
is weaker than that of uDNS (in figure 8), the larger flow patterns are reasonably consistent.
Comparatively, uS2,FLSE for z+ = 119.4 is more consistent with uDNS. The premultiplied
spectra for uS2,FLSE and uDNS are shown in figure 16(c). At z+ = 119.4, the curve for
uS2,FLSE is close to that of uDNS nearby the peak position (k+

x = 3 × 10−3 ∼ 4 × 10−3),
which corresponds to a length scale of 1.3δ ∼ 1.7δ. This implies that the large-scale
motions in the logarithmic region could be approximately explained as the inducing
effects of the strong vortices. For smaller wavenumbers of k+

x < 2 × 10−3, the deviations
between the spectra of uS2,FLSE and uDNS become larger. This might be attributable to the
limited calculation domain for solving the inducing functions, as we discussed in § 5.1. At
z+ = 15.4, the maximum magnitude of the spectrum of uS2,FLSE is approximately 30 %
lower than that of uDNS. The worse performance in the near-wall region could be caused
by the viscous diffusion effect, which makes the vortex distribution not as concentrated
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Figure 16. The reconstructed results based on ΛS2 via the refined reconstruction strategy. (a–b) The contour
maps of uS2,FLSE at z+ = 15.4 and z+ = 119.4, respectively. To provide a reference, the contour lines of
uDNS = 0 are also shown by the white dashed lines. (c) The premultiplied energy spectra for uS2,FLSE and
uDNS. (d) The magnitude of streamwise CCS between uS2,FLSE and uDNS.

as that in the logarithmic region. Thus, a smaller threshold should be adopted to count
in more regions around the vortex centres. Comparing the spectra shown in figures 16(c)
and 15(a), we can see that the refined reconstruction scheme significantly improves the
spectrum magnitude. The magnitude of streamwise CCS between uS2,FLSE and uDNS is
provided in figure 16(d). The improvement brought by the refined reconstruction strategy
can also be found by comparing the curves in figure 16(d) with those in figure 15(b). For
the wavenumber range of k+

x <10−2 (λ+x > 0.52δ+), the curves in figure 16(d) stay at the
level of 0.75–0.8. The results are mostly encouraging since these vortices participating
in the reconstruction only occupy 5 % of the volume considered. It demonstrates that the
strong tube-like vortices are theoretically important for explaining the large-scale motions
in TBL.

6. Concluding remarks

Vortices are frequently viewed as the building blocks of turbulence. The current
investigation contributed to the topic of how to use these building blocks to construct
a wall-turbulence flow. For investigation convenience, the vortex was defined by a
combination of the swirl strength and the real eigenvector of the velocity gradient tensor.
The alignment of vortex iso-surface and vortex orientation was quantitatively analysed by
using the differential geometry, which supports the current vortex definition. FLSE was
proposed to accomplish the V2V reconstruction. The new method was comprehensively
compared with the classical BS law from the respect of correlation coefficients, the energy
spectra and the complex coherence spectra for reconstructed/original velocity fields.
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For the most part, the new method performed better than the BS law, especially for the
buffer region.

The reconstruction method was employed to investigate the inducing effects of vortices
in TBL, which yielded several revealing implications. Firstly, the bulk of the energy
spectra can be covered by the induced motions of vortices. The superposition effect of
large-scale motions from the logarithmic region on the near-wall fluctuations can also be
interpreted as the vortex-inducing effects. Comparatively, the energy spectra of u are more
vulnerable to the inducing effects of vortices below or above the reference plane. The
energy contribution region for the w spectra is limited at the neighbouring region of the
reference height, which is attributable to the bounding effect of the wall.

Secondly, the high-order moments of u are highly correlated with the asymmetric
inducing effects of a vortex with a positive/negative sign, which is beyond the capacity of a
linear reconstruction scheme (FLSE). In the implementation of FLSE, the inducing effects
of positive vortices and negative vortices were averaged in one correlation function, which
resulted in a symmetric pattern for inducing models. It is expected that the reconstruction
method might be further improved by using nonlinear inducing models and distinguishing
the inducing effects of vortices with opposite orientations.

Thirdly, the strong vortices and weak vortex components play different roles in the V2V
reconstruction. While the strong vortex components contribute to the bulk scale range
of the spectra, the weak vortex components mainly contribute to the low-wavenumber
spectra. A refined reconstruction based on the strongest vortices (occupying 5 % of the
total volume) returned a velocity field sharing a high correlation degree with the DNS
field. The main flow features of TBL, including both the near-wall streaks and large-scale
motions, can be explained by the inducing effects of strong tube-like vortices.

It should be recalled that the FFT implementation of FLSE only works for the flows
which have homogeneous directions. The canonical turbulent channel flow and the TBL
in a limited streamwise range present homogeneous in the wall-parallel planes, which
are suitable for using the FFT method. For general 3-D flow fields, the reconstruction
calculation could be quite expensive if the FFT method cannot be employed. Another thing
that needs to be addressed is the definition of the vortex field. Although § 3 provided some
support for this definition, the question about the optimal definition for vortex regarding
the V2V reconstruction remains open, which might be further investigated in future work.
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Appendix A. Principal directions of local curvatures

Following the conventions in this article, the vortex magnitude field is designated by λci(r).
Focus on the neighbourhood of a given point r0, and let δr = r − r0 denote the relative
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position vector regarding r0 (|δr| = |r − r0| � 1). According to Taylor’s theorem, λci(r)
could be approximated as a quadrant form, as

λci(r) = λci(r0)+ δrTG + 1
2δr

THδr + o(δr2), (A1)

where G = ∇λci = [∂λci(r0)/∂x, ∂λci(r0)/∂y, ∂λci(r0)/∂z]T denotes the gradient of
λci(r), and

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2λci(r0)

∂x2
∂2λci(r0)

∂x∂y
∂2λci(r0)

∂x∂z
∂2λci(r0)

∂x∂y
∂2λci(r0)

∂y2
∂2λci(r0)

∂y∂z
∂2λci(r0)

∂x∂z
∂2λci(r0)

∂y∂z
∂2λci(r0)

∂z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (A2)

which is the so-called Hessian matrix.
The principal directions for local curvatures should be searched in the tangent plane of

local vortex surface. Thus we impose a constrain that δr should be a vector in the tangent
plane of the local vortex surface, which means

GTδr = 0. (A3)

Any δr satisfying (A3) can be expressed as

δr = α1e1 + α2e2 = [e1, e2][α1, α2]T = Eα, (A4)

where e1, e2 are two orthogonal unit vectors satisfying

GTe1 = GTe2 = 0, (A5)

and α could be any real vector indicating a direction in the tangent plane.
Under this constrain of (A3) and employing the representation of (A4), it can be derived

that
λci(r) = λci(r0)+ 1

2αTETHEα + o(δr2). (A6)

Now consider the variation of λci along one direction in the tangent plane of the vortex
surface, which can be achieved from (A6) by linearly changing α, i.e. α = α0t. Herein, α0
is a given unit direction vector and t is a variable parameter. Obviously, λci varies with t
as a parabolic curve. The principal directions correspond to the directions with the largest
and smallest curvatures for λci(t), which is equivalent to the eigenvalue problem of ETHE .
Let v1 and v2 denote the eigenvectors for ETHE , corresponding to two eigenvalues of
μ1, μ2(μ1 > μ2), respectively. Then, the first and second principal directions for the local
curvatures at r0 should be δr1 = Ev1 and δr2 = Ev2.

Appendix B. Deducing (4.4) from (4.3)

For simplicity, rewrite the deviation D in the form of inner product, i.e.

D =
∫∫∫

Ω

(ûi − ui)(ûi − ui) dΩ/
∫∫∫

Ω

dΩ = (ûi − ui, ûi − ui), (B1)

where (·, ·) represents the inner product of the two terms separated by the comma. The
repeated index i of the two bracketed terms implies an automatic summation, following
Einstein’s summation convention.
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To find Lij which results in the minimum 〈D〉, give a small variation (δ) on Lij and
investigate the corresponding variation of 〈D〉. Thus we have

δ〈D〉 = δ〈(ûi − ui, ûi − ui)〉 = 2〈(ûi − ui, δûi)〉. (B2)

Note that the implicit position vector is r for ûi, ui, δûi. According to the calculus of
variations, the minimum of 〈D〉 corresponds to a balanced position, where for any possible
variation of Lij, the corresponding variation of 〈D〉 should be zero, i.e.

δ〈D〉 = 2〈(ûi − ui, δûi)〉 = 0 for any possible δûi = δ(Lij)Λj. (B3)

Now, let δûi = δLijΛj = Λm(r′)δ(r − r′′)δin, where δ(r − r′′) is the 3-D Dirac delta
function and δin is the three-order Kronecker delta. r′, r′′ could be any reference position
vectors and m, n are indices varying from one to three. The specific definitions for
δ(r − r′′) and δin could be indicated by

( f (r), δ(r − r′′)) =
∫∫∫

Ω

f (r)δ(r − r′′) dΩ = f (r′′), (B4)

where f (r) could be any 3-D continuous function, and

δin =
{

0 if i /= n

1 if i = n
. (B5)

The prescription for the form of δûi is based on two considerations. First, the form should
facilitate an effective simplification for the form of δ〈D〉. Second, the form should have
sufficient variations by adjusting the involved indices or parameters, in order to obtain
enough equations for the unknown Lij. Here,
δûi = δLijΛj = Λm(r′)δ(r − r′′)δin implies a possible variation for Lij, which results in

a variation of 〈D〉 as

δ〈D〉 = 2〈(ûi − ui,Λm(r′)δ(r − r′′)δin)〉 = 0. (B6)

Simplifying this equation by using (B4) and (B5) gives

〈(ûi − ui,Λm(r′)δ(r − r′′)δin)〉 = 〈(ûn(r′′)− un(r′′))Λm(r′)〉 = 0. (B7)

In the following equations, r′′ is neglected for simplicity. Considering that ûn = LnjΛj, we
have

〈(LnjΛj − un)Λm(r′)〉 = 〈LnjΛjΛm(r′)〉 − 〈unΛm(r′)〉 = 0. (B8)

According to the linear property of Lnj, finally we get

Lnj〈ΛjΛm(r′)〉 = 〈unΛm(r′)〉. (B9)

Equation (B9) is equivalent to (4.4) in the article by replacing the free index n with i. What
is noteworthy is that the equation holds for all possible Λm(r′), m = 1, 2, 3; r′ ∈ Ω , a
number which is large enough to determine Lnj.
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Appendix C. A procedure card for the FFT implementation of FLSE

I. Calculate Rjm and qim by

Rjm(xa, yb, z′′
c′′ ; z′

c′) = 〈Λj(xa, yb, z′′
c′′)Λm(0, 0, z′

c′)〉, (C1)

qim(xa, yb, zc; z′
c′) = 〈ui(xa, yb, zc)Λm(0, 0, z′

c′)〉. (C2)

II. Perform 2-D windowed FFT on Rjm and qim, i.e.

R̃jm(kα, kβ, z′′
c′′ ; z′

c′) = FFT2D{Rjm(xa, yb, z′′
c′′ ; z′

c′)}, (C3)

q̃im(kα, kβ, zc; z′
c′) = FFT2D{qim(xa, yb, zc; z′

c′)}. (C4)

III. Arrange R̃jm(kα, kβ, z′′
c′′ ; z′

c′) and q̃im(kα, kβ, zc; z′
c′) into matrix Aα,β and vector

bi,α,β,c, such as

Aα,β |c′+(m−1)×Nz,c′′+(j−1)×Nz = R̃jm(kα, kβ, z′′
c′′ ; z′

c′), (C5)

bi,α,β,c|c′+(m−1)×Nz = q̃im(kα, kβ, zc; z′
c′); (C6)

note that the vertical line indicates extracting the element from the left matrix or
vector according to the prescribed index on the right-lower corner.

IV. For any i, α, β, c, solve (Aα,β + sδ̃(kα, kβ)I)ϕi,α,β,c = bi,α,β,c, where

δ̃(kα, kβ) = FFT2D{δ(xa, yb)}, (C7)

and

δ(xa, yb) =
{

1 if xa = 0, yb = 0

0 otherwise
. (C8)

V. Collect all the solution ϕi,α,β,c to get ϕ̃ij(kα, kβ, zc; z′′
c′′), i.e.

ϕ̃ij(kα, kβ, zc; z′′
c′′) = ϕi,α,β,c|c′′+(j−1)×Nz. (C9)

VI. Perform 2-D inverse FFT on ϕ̃ij(kα, kβ, zc; z′′
c′′) and return ϕij(xa, yb, zc; z′′

c′′), i.e.

ϕij(xa, yb, zc; z′′
c′′) = IFFT2D{ϕ̃ij(kα, kβ, zc; z′′

c′′)}. (C10)

REFERENCES

ADRIAN, R.J. 1994 Stochastic estimation of conditional structure: a review. Flow Turbul. Combust. 53 (3),
291–303.

ADRIAN, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
ADRIAN, R.J., MEINHART, C.D. & TOMKINS, C.D. 2000 Vortex organization in the outer region of the

turbulent boundary layer. J. Fluid Mech. 422, 1–54.
DEL ÁLAMO, J.C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R.D. 2006 Self-similar vortex clusters in the

turbulent logarithmic region. J. Fluid Mech. 561, 329–358.
BAARS, W.J., HUTCHINS, N. & MARUSIC, I. 2016 Spectral stochastic estimation of high-Reynolds-number

wall-bounded turbulence for a refined inner-outer interaction model. Phys. Rev. Fluids 1, 054406.
BAARS, W.J. & MARUSIC, I. 2020a Data-driven decomposition of the streamwise turbulence kinetic energy

in boundary layers. Part 1. Energy spectra. J. Fluid Mech. 882, A25.
BAARS, W.J. & MARUSIC, I. 2020b Data-driven decomposition of the streamwise turbulence kinetic energy

in boundary layers. Part 2. Integrated energy and A1. J. Fluid Mech. 882, A26.

922 A18-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.516


Vortex-to-velocity reconstruction

BANDYOPADHYAY, P. 1980 Large structure with a characteristic upstream interface in turbulent boundary
layers. Phys. Fluids 23 (11), 2326–2327.

BANDYOPADHYAY, P.R. 1989 Effect of abrupt pressure gradients on the structure of turbulent boundary layers.
In Proceedings of the 10th Australasian Fluid Mechanics Conference (ed. A.E. Perry et al.), vol. 1, pp.
1.1–1.4. University of Melbourne.

BANDYOPADHYAY, P.R. 2020 Vortex bursting near a free surface. J. Fluid Mech. 888, A27.
BANDYOPADHYAY, P.R. & HELLUM, A.M. 2014 Modeling how shark and dolphin skin patterns control

transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms. Sci. Rep.
4 (1), 6650.

BANDYOPADHYAY, P.R. & WATSON, R.D. 1988 Structure of rough-wall turbulent boundary layers. Phys.
Fluids 31 (7), 1877–1883.

BATCHELOR, G.K. 1967 An Introduction to Fluid Mechanics. Cambridge University Press.
BERK, T. & GANAPATHISUBRAMANI, B. 2019 Effects of vortex-induced velocity on the development of a

synthetic jet issuing into a turbulent boundary layer. J. Fluid Mech. 870, 651–679.
BERNARD, P.S. 2013 Vortex dynamics in transitional and turbulent boundary layers. AIAA J. 51 (8),

1828–1842.
BERNARD, P.S., THOMAS, J.M. & HANDLER, R.A. 1993 Vortex dynamics and the production of Reynolds

stress. J. Fluid Mech. 253, 385–419.
BORRELL, G., SILLERO, J.A. & JIMÉNEZ, J. 2013 A code for direct numerical simulation of turbulent

boundary layers at high Reynolds numbers in BG/P supercomputers. Comput. Fluids 80, 37–43.
BRADSHAW, P. 1967 The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29 (4), 625–645.
CAPRACE, D.-G., WINCKELMANS, G. & CHATELAIN, P. 2020 An immersed lifting and dragging line model

for the vortex particle-mesh method. Theor. Comput. Fluid Dyn. 34 (1–2), 21–48.
CHAKRABORTY, P., BALACHANDAR, S. & ADRIAN, R.J. 2005 On the relationships between local vortex

identification schemes. J. Fluid Mech. 535 (4), 189–214.
CHEN, X. & SREENIVASAN, K.R. 2021 Reynolds number scaling of the peak turbulence intensity in wall

flows. J. Fluid Mech. 908, R3.
CHONG, M.S., PERRY, A.E. & CANTWELL, B.J. 1990 A general classification of three-dimensional flow

fields. Phys. Fluids 2 (5), 765–777.
CHRISTENSEN, K.T. & ADRIAN, R.J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence.

J. Fluid Mech. 431, 433–443.
CORRSIN, S. 1962 Turbulent dissipation fluctuations. Phys. Fluids 5 (10), 1301.
DAS, S.K., TANAHASHI, M., SHOJI, K. & MIYAUCHI, T. 2006 Statistical properties of coherent fine

eddies in wall-bounded turbulent flows by direct numerical simulation. Theor. Comput. Fluid Dyn. 20 (2),
55–71.

DENG, S., PAN, C., WANG, J. & HE, G. 2018 On the spatial organization of hairpin packets in a turbulent
boundary layer at low-to-moderate Reynolds number. J. Fluid Mech. 844, 635–668.

EINSTEIN, H.A. & LI, H. 1958 The viscous sublayer along a smooth boundary. Trans. Am. Soc. Civil Engrs
123, 293–313.

FERNHOLZ, H.H. & FINLEYT, P.J. 1996 The incompressible zero-pressure-gradient turbulent boundary layer:
an assessment of the data. Prog. Aerosp. Sci. 32 (4), 245–311.

GAD-EL-HAK, M. & BANDYOPADHYAY, P.R. 1994 Reynolds number effects in wall-bounded turbulent flows.
Appl. Mech. Rev. 47 (8), 307–365.

GANAPATHISUBRAMANI, B., LONGMIRE, E.K. & MARUSIC, I. 2003 Characteristics of vortex packets in
turbulent boundary layers. J. Fluid Mech. 478, 35–46.

GANAPATHISUBRAMANI, B., LONGMIRE, E.K. & MARUSIC, I. 2006 Experimental investigation of vortex
properties in a turbulent boundary layer. Phys. Fluids 18 (5), 1–464.

GAO, Q., ORTIZ-DUEÑAS, C. & LONGMIRE, E.K. 2007 Circulation signature of vortical structures in
turbulent boundary layers. In 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast,
Australia.

GAO, Q., ORTIZ-DUEÑAS, C. & LONGMIRE, E.K. 2011 Analysis of vortex populations in turbulent
wall-bounded flows. J. Fluid Mech. 678 (8), 87–123.

GAO, Y. & LIU, C. 2018 Rortex and comparison with eigenvalue-based vortex identification criteria. Phys.
Fluids 30, 085107.

GENTLE, J.E. 1998 Numerical Linear Algebra for Applications in Statistics. Springer.
HAMA, F. 1954 Boundary layer characteristics for smooth and rough surfaces. In Trans. 1954 Annual Meeting

of the Society of Naval Architects and Marine Engineers. SNAME.

922 A18-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.516


C. Wang, Q. Gao, B. Wang, C. Pan and J. Wang

HAMBLETON, W.T., HUTCHINS, N. & MARUSIC, I. 2006 Simultaneous orthogonal-plane particle
image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560 (560),
53–64.

HEAD, M.R. & BANDYOPADHYAY, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech.
107 (107), 297–338.

HERPIN, S., STANISLAS, M., JEAN, M.F. & COUDERT, S. 2013 Influence of the Reynolds number on the
vortical structures in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 716 (2), 5–50.

HU, R., YANG, X.I.A. & ZHENG, X. 2020 Wall-attached and wall-detached eddies in wall-bounded turbulent
flows. J. Fluid Mech. 885, A30.

HUNT, J.C.R., WRAY, A.A. & MOIN, P. 1988 Eddies, streams, and convergence zones in turbulent flows.
Report No. CTR-S88, pp. 193–208. Center for Turbulence Research.

HUTCHINS, N., HAMBLETON, W.T. & MARUSIC, I. 2005 Inclined cross-stream stereo particle image
velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 21–54.

HUTCHINS, N. & MARUSIC, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc.
Lond. A 365 (1852), 647–664.

JEONG, J.J.J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 332 (1), 339–363.
JIMÉNEZ, J. & PINELLI, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389 (389),

335–359.
JIMÉNEZ, J., WRAY, A.A., SAFFMAN, P.G. & ROGALLO, R.S. 1993 The structure of intense vorticity in

isotropic turbulence. J. Fluid Mech. 255, 65–90.
JODAI, Y. & ELSINGA, G.E. 2016 Experimental observation of hairpin auto-generation events in a turbulent

boundary layer. J. Fluid Mech. 795, 611–633.
KANG, S.J., TANAHASHI, M. & MIYAUCHI, T. 2007 Dynamics of fine scale eddy clusters in turbulent

channel flows. J. Turbul. 8, N52.
KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNSTADLER, P.W. 1967 The structure of turbulent

boundary layers. J. Fluid Mech. 30 (4), 741–773.
KOUMOUTSAKOS, P. & LEONARD, A. 1995 High-resolution simulations of the flow around an impulsively

started cylinder using vortex methods. J. Fluid Mech. 296 (1), 1–38.
KRESS, R. 2014 Tikhonov Regularization, pp. 323–349. Springer.
KUO, A.Y.-S. & CORRSIN, S. 1972 Experiment on the geometry of the fine-structure regions in fully turbulent

fluid. J. Fluid Mech. 56 (3), 447–479.
LEE, J., LEE, J., CHOI, J. & SUNG, H. 2014 Spatial organization of large- and very-large-scale motions in a

turbulent channel flow. J. Fluid Mech. 749, 818–840.
LEE, J.-H. & SUNG, H.J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients.

J. Fluid Mech. 639, 101–131.
LEONARD, A. 1985 Computing three-dimensional incompressible flows with vortex elements. Annu. Rev.

Fluid Mech. 17 (1), 523–559.
LOZANO-DURÁN, A. & JIMÉNEZ, J. 2014 Time-resolved evolution of coherent structures in turbulent

channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.
LUND, T.S., WU, X. & SQUIRES, K.D. 1998 Generation of turbulent inflow data for spatially-developing

boundary layer simulations. J. Comput. Phys. 140 (2), 233–258.
LUNDGREN, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25 (12),

2193–2203.
MARUSIC, I. 2001 On the role of large-scale structures in wall turbulence. Phys. Fluids 13 (13), 735–743.
MARUSIC, I. & ADRIAN, R.J. 2012 The eddies and scales of wall turbulence. In Turbulence (ed. K.R.

Sreenivasan, P.A. Davidson & Y. Kaneda), pp. 176–220. Cambridge University Press.
MARUSIC, I., BAARS, W.J. & HUTCHINS, N. 2017 Scaling of the streamwise turbulence intensity in the

context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2, 100502.
MARUSIC, I., MATHIS, R. & HUTCHINS, N. 2010 Predictive model for wall-bounded turbulent flow. Science

329 (5988), 193–196.
MARUSIC, I. & MONTY, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech.

51, 49–74.
MARUSIC, I. & PERRY, A.E. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 2.

Further experimental support. J. Fluid Mech. 298 (298), 389–407.
MATHIS, R., HUTCHINS, N. & MARUSIC, I. 2011 A predictive inner–outer model for streamwise turbulence

statistics in wall-bounded flows. J. Fluid Mech. 681, 537–566.
MONKEWITZ, P.A., CHAUHAN, K.A. & NAGIB, H.M. 2007 Self-consistent high-Reynolds-number

asymptotics for zero-pressure-gradient turbulent boundary layers. Phys. Fluids 19 (11), 319–316.

922 A18-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.516


Vortex-to-velocity reconstruction

NATRAJAN, V.K., WU, Y. & CHRISTENSEN, K.T. 2007 Spatial signatures of retrograde spanwise vortices in
wall turbulence. J. Fluid Mech. 574, 155–167.

ONG, L. & WALLACE, J.M. 1998 Joint probability density analysis of the structure and dynamics of the
vorticity field of a turbulent boundary layer. J. Fluid Mech. 367 (367), 291–328.

PANTON, R.L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4),
341–383.

PERRY, A.E. & CHONG, M.S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217.
PERRY, A.E. & CHONG, M.S. 1987 A description of eddying motions and flow patterns using critical-point

concepts. Annu. Rev. Fluid Mech. 19 (1), 125–155.
PERRY, A.E., HENBEST, S. & CHONG, M.S. 1986 A theoretical and experimental study of wall turbulence.

J. Fluid Mech. 165(165), 163–199.
PERRY, A.E. & MARUSIC, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1.

Extension of the attached eddy hypothesis. J. Fluid Mech. 298 (298), 361–388.
PIROZZOLI, S., BERNARDINI, M. & GRASSO, F. 2010 On the dynamical relevance of coherent vortical

structures in turbulent boundary layers. J. Fluid Mech. 648, 325–349.
PULLIN, D.I. & SAFFMAN, P.G. 1993 On the Lundgren–Townsend model of turbulent fine scales. Phys. Fluids

5 (1), 126–145.
RAMIREZ, D., VIA, J. & SANTAMARIA, I. 2008 A generalization of the magnitude squared coherence

spectrum for more than two signals: definition, properties and estimation. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, Nevada, USA.

SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech.
453, 57–108.

SILLERO, J.A., JIMÉNEZ, J. & MOSER, R.D. 2013 One-point statistics for turbulent wall-bounded flows at
Reynolds numbers up to δ+≈2000. Phys. Fluids 25 (10), 105102.

SILLERO, J.A., JIMÉNEZ, J. & MOSER, R.D. 2014 Two-point statistics for turbulent boundary layers and
channels at Reynolds numbers up to δ+≈2000. Phys. Fluids 26 (10), 105109.

DE SILVA, C.M., HUTCHINS, N. & MARUSIC, I. 2016a Uniform momentum zones in turbulent boundary
layers. J. Fluid Mech. 786, 309–331.

DE SILVA, C.M., KEVIN, A.K., BAIDYA, R., HUTCHINS, N. & MARUSIC, I. 2018 Large coherence of
spanwise velocity in turbulent boundary layers. J. Fluid Mech. 847, 161–185.

DE SILVA, C.M., WOODCOCK, J.D., HUTCHINS, N. & MARUSIC, I. 2016b Influence of spatial exclusion on
the statistical behavior of attached eddies. Phys. Rev. Fluids 1, 022401.

SIMENS, M.P., JIMÉNEZ, J., HOYAS, S. & MIZUNO, Y. 2009 A high-resolution code for turbulent boundary
layers. J. Comput. Phys. 228 (11), 4218–4231.

STANISLAS, M., PERRET, L. & FOUCAUT, J.M. 2008 Vortical structures in the turbulent boundary layer: a
possible route to a universal representation. J. Fluid Mech. 602, 327–382.

STOICA, P. & MOSES, R. 2005 Spectral Analysis of Signals. Prentice Hall.
SYNGE, J.L. & LIN, C.C. 1943 On a statistical model of isotropic turbulence. Trans. R. Soc. Can. 37, 45.
TANAHASHI, M., KANG, S.J., MIYAMOTO, T., SHIOKAWA, S. & MIYAUCHI, T. 2004 Scaling law of fine

scale eddies in turbulent channel flows up to Reτ = 800. Intl J. Heat Fluid Flow 25 (3), 331–340.
TENNEKES, H. 1968 Simple model for the small-scale structure of turbulence. Phys. Fluids 11 (3), 669–671.
THEODORSEN, T. 1952 Mechanism of turbulence. In Proceedings of the Midwestern Conference on Fluid

Mechanics, Ohio State University.
TIAN, S., GAO, Y., DONG, X. & LIU, C. 2018 Definitions of vortex vector and vortex. J. Fluid Mech.

849, 312–339.
TINNEY, C.E., COIFFET, F., DELVILLE, J., HALL, A.M., JORDAN, P. & GLAUSER, M.N. 2006 On spectral

linear stochastic estimation. Exp. Fluids 41 (5), 763–775.
TOWNSEND, A.A. 1951 On the fine-scale structure of turbulence. Proc. R. Soc. Lond. 208 (1095), 534–542.
TOWNSEND, A.A. 1956 The structure of turbulent shear flow. Q. J. R. Meteorol. Soc. 83 (357), 411–412.
WANG, C., GAO, Q., WANG, J., WANG, B. & PAN, C. 2019 Experimental study on dominant vortex structures

in near-wall region of turbulent boundary layer based on tomographic particle image velocimetry. J. Fluid
Mech. 874, 426–454.

WANG, W., PAN, C., GAO, Q. & WANG, J. 2018 Wall-normal variation of spanwise streak spacing in turbulent
boundary layer with low-to-moderate Reynolds number. Entropy 21 (1), 24.

WANG, W., PAN, C. & WANG, J. 2021 Energy transfer structures associated with large-scale motions in a
turbulent boundary layer. J. Fluid Mech. 906, A14.

WANG, H.P., WANG, S.Z. & HE, G.W. 2017 The spanwise spectra in wall-bounded turbulence. Acta Mech.
Sinica 34 (3), 452–461.

922 A18-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.516


C. Wang, Q. Gao, B. Wang, C. Pan and J. Wang

WOODCOCK, J.D. & MARUSIC, I. 2015 The statistical behaviour of attached eddies. Phys. Fluids 27 (1),
97–120.

WU, Y. & CHRISTENSEN, K.T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech.
568, 55–76.

XIONG, S. & YANG, Y. 2019 Identifying the tangle of vortex tubes in homogeneous isotropic turbulence.
J. Fluid Mech. 874, 952–978.

YANG, X.I.A., MARUSIC, I. & MENEVEAU, C. 2016 Moment generating functions and scaling laws in the
inertial layer of turbulent wall-bounded flows. J. Fluid Mech. 791, R2.

YOON, M., HWANG, J., YANG, J. & SUNG, H.J. 2020 Wall-attached structures of streamwise velocity
fluctuations in an adverse-pressure-gradient turbulent boundary layer. J. Fluid Mech. 885, A12.

ZHOU, J. 1997 Self-sustaining formation of packets of hairpin vortices in a turbulent wall layer. PhD thesis,
University of Illinois.

ZHOU, J., ADRIAN, R.J., BALACHANDAR, S. & KENDALL, T.M. 1999 Mechanisms for generating coherent
packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.

ZHU, L. & XI, L. 2019 Vortex axis tracking by iterative propagation (VATIP): a method for analysing
three-dimensional turbulent structures. J. Fluid Mech. 866, 169–215.

922 A18-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.516

	1 Introduction
	2 The DNS data and processing techniques
	2.1 The DNS data
	2.2 The vortex identification
	2.3 The correlation coefficient and the complex coherence spectrum

	3 The geometrical property of the vortex field
	4 The V2V reconstruction
	4.1 The general theory for the V2V reconstruction
	4.2 FLSE for wall-bounded turbulence
	4.3 Discretization and implementation for FLSE
	4.4 Issues and considerations for numerical implementation

	5 Numerical validation and application of FLSE
	5.1 The correlation functions: Rjm and qim
	5.2 The regularization parameter and the Hanning window
	5.3 Comparing with the Biot--Savart law
	5.4 Full energy spectra of FLSE-reconstructed TBL
	5.5 High-order moments of FLSE-reconstructed TBL
	5.6 The influence of the ci +  threshold on the reconstructed results

	6 Concluding remarks
	A Appendix A. Principal directions of local curvatures
	B Appendix B. Deducing ([eqn10]4.4) from ([eqn9]4.3)
	C Appendix C. A procedure card for the FFT implementation of FLSE
	References

