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Abstract

Detrimental effects of ultraviolet (UV) light on living organisms are well under-
stood, little is known about the effects of blue light irradiation. Although a recent
study revealed that blue light caused more harmful effects on insects than UV light
and blue light irradiation killed insect pests of various orders including Diptera, the
effects of blue light on physiology of insects are still largely unknown. Here we stud-
ied the effects of blue light irradiation on cuticular melanin in larval and the immune
response in adult stage of Bactrocera dorsalis.We also evaluated the effects of blue light
exposure in larval stage on various age and mass at metamorphosis and the medi-
atory role of cuticular melanin in carryover effects of larval stressors across metamor-
phosis. We found that larvae exposed to blue light decreased melanin contents in
their exoskeleton with smaller mass and delayed metamorphosis than insects reared
without blue light exposure. Across metamorphosis, lower melanotic encapsulation
response and higher susceptibility to Beauveria bassiana was detected in adults that
had been exposed to blue light at their larval stage, thereby constituting the first evi-
dence that blue light impaired adult immune function in B. dorsalis as a carryover ef-
fect of larval exposure.
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Introduction

Various methods used for the control of insect pest have a
variety of concepts behind their mode of action. Since the
negative effects of insecticide application are known and ac-
knowledged far and wide, environment-friendly insect pest
control strategies are gaining importance. Insects are known
to have a variety of biological responses to various wave-
lengths of the light spectrum (Tariq et al., 2015). Many insect
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control strategies utilize knowledge of light-dependent behav-
ior of pest insects. Nocturnal insect are attracted towards light
(including UV and visible light), which provides the basis for
electric insect killers. UV-emitting insect traps effectively at-
tract insects and prevent their entry to greenhouses. This
environment-friendly insect pest-control method is being
used as a tool in integrated pest management (IPM) programs
(Johansen et al., 2011; Ben-Yakir et al., 2013). A plethora of lit-
erature reports the negative impact of Ultraviolet (UV) radi-
ation on the biology of pest insects (Tariq et al., 2015). After
penetrating cells, UV light induces the production of reactive
oxygen species that cause damage to nucleic acids, membrane
of lipids, and proteins (Jurkiewicz & Buettner, 1994; Vile &
Tyrrell, 1995). A recent study revealed that blue light (400–
500 nm) induced more harmful effects than UV light to insect
pests of various orders including Diptera (Hori et al., 2014)
suggesting that blue light can also be used in IPM programs.
However, for insect pest control through blue light, its effects
on insect physiology must be understood, though such infor-
mation is largely lacking.

Animals protect themselves from harmful effect of UV ra-
diation through the deposition of melanin, which is a photo
protective compound (Ortonne, 2002). In animals, melanin
perform key roles in immune system, camouflage, wound
healing and cuticle hardening (Roulin, 2014). Phenoloxidase
(PO) enzyme, a part of the pro-PO cascade, is produced by he-
mocytes, and is responsible for the production and regulation
of melanin in insects (Sugumaran, 2002). A recent study re-
vealed that UV light impaired adult immune function of dam-
selfly as a carryover effect of larval exposure, the exposed
larvae invested more in cuticular melanin, which caused
immunosuppression in adult flies (Debecker et al., 2015).
However, it is still unknown whether insects protect them-
selves from blue light exposure through the deposition of mel-
anin or there is any effect of blue light irradiation on immune
function of insects.

Different studies showed that larval stressors can bridge
metamorphosis and can severely affect adult fitness-related
traits (Pechenik et al., 1998; Pechenik, 2006; Campero et al.,
2008a). As previous studies documented that blue light is
more harmful to insects than UV light (Hori et al., 2014), we
propose that blue light exposure may have effect on cuticular
melanin synthesis and subsequently cause immunosuppres-
sion in Bactrocera dorsalis. Larval stressors can also change
adult traits with or without affecting metamorphic traits
(Marjan De Block, 2005; Allen et al., 2010). However, the effect
of blue light exposure at larval stage, on metamorphic traits
and adult fitness is poorly understood.

In this study, we evaluated the effect of blue light exposure
on cuticular melanin at larval stage and adult immune re-
sponse of B. dorsalis. In addition, we investigated the effects
of blue light exposure at larval stage on age and mass at meta-
morphosis and the mediatory role of cuticular melanin in
carryover effects of larval stressors across metamorphosis.
The immune response in the adults was evaluated by using
melanotic encapsulation technique, which is commonly used
to measure immuno-competence in invertebrates (Rantala &
Roff, 2005) and by the quantification of hemocytes and PO ac-
tivity. It is known that natural pathogens trigger immune re-
sponse more robustly than artificial challenge (Adamo,
2004), and can be used to evaluate the efficiency of insect im-
mune system (Neyen et al., 2014). Thus, adult immune status
was directly measured through survival after exposure to a
natural pathogen, Beauvaria bassiana (Bals.). Beauveria bassiana

(Bals.) has been extensively explored against fruit fly (Ekesi
et al., 2002; Dimbi et al., 2003; Daniel & Wyss, 2009;
Cossentine et al., 2010) as a potent entomopathogen. We as-
sessed the immune performance of adult flies through conidial
exposure to B. bassiana.

Materials and methods

Insect cultures

The second-instar larvae of B. dorsalis were obtained from
the colony reared in our laboratory according to the methods
described by Zheng et al. (2012). Larvae were transferred to
liquid-based artificial diet (Chang et al., 2006) at 25–26°C
with 12:12 h light: dark photoperiod and 60–65% RH. The lar-
vae used in this experiment were synchronous and were ran-
domly attributed between treatments (blue light and control),
which minimized the effect of size difference and initial instar
collection on test results.

Experimental design

A blue light emitting diode (LED) arrays (light emission
surface: 150 × 150 mm; 360 LEDs were equally arranged on a
panel; LED type: w3-mm plastic mould; Langtuo Biological
Technology Co. Ltd., Hangzhou, China) that emits radiation
in the range of 400–500 nm (center wavelength: 460 nm) was
used as the source to irradiate larvae. The distance between
the light source and the larvae was 50 cm; the emitted energy
of 460 nm was at an intensity of 0.12 W m−2 measured by a
radiometer (AR823; Digital Lux Meter Co. Ltd., China). Each
larvae was confined in a small Petri dish (5 cm diameter) con-
taining 0.5 gram of liquid diet (Hanife, 2008). Duringmeasure-
ments, the distance between the light source and the
radiometer sensor was approximately the same as it was be-
tween the light source and insects in the incubator.

The insects were irradiated inside Petri dishes coveredwith
glass lids. The same glass lid was used to determine the inten-
sity of the light prior to insect radiation. Insectswere irradiated
inside incubator. The light source was connected with digital
timer switches (HTS-AT10, Han-Seung, Daegu, Korea) to
allow the treatment of insects for the exact periods of time.
The Petri dishes containing larvae were placed directly
under the light source during irradiation.

At the start of exposure period, 240 larvae were equally di-
vided into four groups (A, B, C and D). After exposure the
group A larvae were used for life history parameters, melanin
quantification, encapsulation response, PO activity and hemo-
cyte number counts, and the group B larvae were used at their
adult stage for conidial exposure to B. bassiana, while the
group C and D larvae were kept without exposure, and
were used as controls along with the group A and B larvae.
The final sample sizes for each response variable are shown
in the figures.

The second-instar larvae were randomly assigned to blue
light treatments and were individually exposed to radiations
for 7 days with the duration of 7 hours per day. The tempera-
ture and relative humidity (RH) of the irradiated area was set
at 25–26°C and 60–65%, respectively. The control larvae were
kept in incubator without exposure. After irradiation, larvae
were allowed to continue their life cycles. The late third-instar
larvae were allowed to pupate in Petri dishes containing
humid sand.
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Life history

Prior to use in experiments and at the end of last exposure
period, the larvae were weighted to about 12.5 mg using an
electronic balance (Sartorius BSA124S, Germany). The indi-
vidual larval growth rates were calculated by the following
formula (Stoks et al., 2012): (the final wet mass – the initial
wet mass)/number of days.

The developmental time of larvae was defined as the num-
ber of days to reach the final-instar (Debecker et al., 2015). After
eclosion and before immune challenge, the adults were
weighted. Four larvae died during the larval stage, two adults
did not emerge successfully and two adults showed deforma-
tions, and were not further analyzed.

Melanin quantification

Melanin present in the final-instar’s exuviaewasmeasured.
The exuviae of successfully emerged flies were collected, the
melanin extraction protocol described by Zhou et al. (2012)
was used. The extraction ofmelaninwas carried out by adding
1 MNaOH/10%DMSO in each individual exuvia, the volume
for each exuvia was adjusted (extraction volume in
μl = 200 × exuvial mass in mg) as described by Debecker et al.
(2015). The samples were incubated at 80°C for 2 h so that mel-
anin can dissolve in solvent followed by centrifugation at
12,000 g for 15 min. Each sample (20 µl) was loaded onto a
384-well plate with three replications and absorbance was
read at 380 nm using microplate spectrophotometer
(XMark™, BIO-RAD). Synthetic melanin (Sigma-Aldrich,
St. Louis, MO, USA) Cat. No. M8631) was dissolved in 1 M
NaOH/10% DMSO to prepare concentration gradients (0–
500 µg ml−1) for making a standard curve (range of 1–100 µg
ml−1). Exuvial melanin was measured by extrapolating with
standard curve from synthetic melanin. The cuticular melanin
content was calculated as the amount of melanin in the ex-
uviae (in μg) per mg larval wet mass.

Encapsulation assay

Encapsulation rate followed bymelanization is an effective
innate immune response against parasites. This innate im-
mune response of insects can be triggered by inserting a
nylon filament (inert antigen) (Rantala et al., 2000; Therry
et al., 2014) in the thorax of the insect. The ability of immune
system to encapsulate artificial object (nylon filament) is corre-
lated with the ability to encapsulate parasites (Smilanich et al.,
2009). After the adult exoskeleton was hardened a nylon fila-
ment (mean length of insert ± SE: 1.00 ± 0.02 mm, diameter:
0.20 mm; rubbed with fine sandpaper) was inserted into the
thorax of flies to quantify the encapsulation rate (Nagel et al.,
2011). Adults were kept for 24 h in the same conditions, and
then encapsulated filaments were removed and stored at
−20°C until the quantification of the deposited melanin. The
adult flies were also frozen at−80°C for the analysis of PO ac-
tivity and the hemocyte number. To quantify the melanin de-
posited on filaments, we used the same protocol used for the
extraction of melanin of the exuviae. The melanin deposited
on the filaments was desorbed in fixed volume of 50 µl of
NaOH/10% DMSO, and the fixed sample was loaded onto a
384-well plate with two replications (2 × 20 µl). Absorbance
was read at 380 nm using microplate spectrophotometer
(XMark™, BIO-RAD, USA). The degree of melanization
could be affected by the length difference of the inserted

filaments, so encapsulation rate was expressed as the amount
of melanin per unit length (μg mm−1) of the inserted filament.
The filaments were photographed under microscope
(Olympus B × 51, Tokyo, Japan), and the length wasmeasured
using Image J. software (US National Institutes of Health,
Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/).

Quantification of hemocytes

To quantify the hemocytes, hemolymph was extracted
from adult flies by perfusing in 120 µl ice-cold cacodylate buf-
fer (0.01 M Na-Coc and 0.005 M CaCl2) as described by
Campero et al. (2008b). A total of 20 µl of each hemolymph
sample was placed into a well of multi-well microscopic
slide, stained with 5 µl ethidium bromide (2.5 mM), and incu-
bated at 4°C for 2 h. Afterwards, three images of eachwell was
captured using fluorescence microscope (Olympus B × 51,
Tokyo, Japan) at magnification of 400×. Hemocytes were
counted by Image Pro-Plus software (Image Pro-Plus 6.0;
Media Cybernetics, Silver Spring, MD, USA). The average of
the three counts was taken to represent the value of each test
sample. The hemocyte number was expressed as the total
count per mg of adult wet mass.

PO assay

The PO activity was measured by spectrophotometric
assay (Shi & Sun, 2010). The remaining volume of hemolymph
sample (100 µl) was centrifuged at 15,000 g for 10 min at 4°C,
After centrifugation, 30 µl of the supernatant was mixed with
110 µl milli-Qwater, 30 µl phosphate buffered saline (PBS buf-
fer:250 ml distilled water, 2 g NaCl, 50 mg KCl, 360 mg
Na2HPO4, 360 mg K2HPO4, and pH 7.2) and 30 µl L-Dopa
(Acros Organic, Morris Plains, NJ, USA, 4 mg ml−1 ultrapure
water) as a substrate, and was kept at 30°C for 90 min, the ab-
sorbance was measured at 490 nm every 20 s in duplicate
using SpectraMax reader (Molecular Devices Corp.,
California, USA). The enzyme activity was determined as
the slope of the linear part of the reaction curve and expressed
in enzyme units (U), one unit represents 1 mM dopachrome
formed per min per mg adult wet mass.

Immune efficiency assessment through conidial exposure

The immune competency of adult flies (that had been pre-
viously exposed to blue light at their larval stage) was further
evaluated through conidial exposure to B. bassiana. The adults
were treated with LC50 [3.12 × 10−6 conidia ml−1 (De La Rosa
et al., 2002)] of B. bassiana.One-day old adult flies from group B
and D were treated with B. bassiana. The entomopathogenic
fungus B. bassiana strain Bb24 originally isolated from a spe-
cies of fruit fly was purchased from China General
Microbiological Culture Collection Center Beijing, and was
used for the experiment. The fungal strains were cultured on
Sabouraud dextrose agar medium, in sterilized test tubes and
Petri dishes and incubated for 15 days at 27 ± 1°C, 80 ± 5% RH
and 14 h photophase. The conidiawere harvested after 15 days
and stored at 4°C. Before performing the bioassays, the viabil-
ity of the conidia was confirmed as described by Lane et al.
(1988). The 55 successfully emerged flies from group B and
Dwere sprayedwith 0.5 ml of a suspension of the fungal strain
containing 3.12 × 10−6 conidia ml−1 for 30 s, which is theMean
Lethal Concentration (LC50) for fruit flies as reported by De La
Rosa et al. (2002). The treated flies were placed on absorbent
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paper towels to absorb excess fungal suspension. Adult flies of
each group were kept in plastic flasks and maintained under
25–26°Cwith 12:12 h light: dark photoperiod and 60–65% RH.
Sterilewater and foodwere provided to flies daily as described
by Zheng et al. (2012). Flies survival was scored on daily basis
for 10 days post-inoculation. The Kaplan–Meier survival test
was used to calculate the survival rates.

Statistical analysis

The effects of blue light exposure on different response
variables were tested by running ANOVA using R software
(R CoreTeam, 2013). Data for development time and encapsu-
lation ratewere log-transformed and square root-transformed,
respectively, and the growth rate and hemocyte number were
log(x + 1)-transformed. The effects of blue light on mass at
adult emergence could be well explained by the difference in
cuticular mass between treated and un-treated flies. ANOVA
was run on the sum of the masses (mass at emergence and cu-
ticular mass). Survival statistics were performed using log
rank analysis and the Gehan–Breslow–Wilcoxon test using
GraphPad Prism v. 5.0 (GraphPad Software, USA).

Results

Blue light exposure did not affect significantly larval
growth rate (ANOVA, F1,114 = 1.56, P = 0.12, fig. 1A).
However, blue light-irradiated animals showed longer

development time (F1,114 = 9.4, P = 0.0001, fig. 1B) and lower
mass at emergence (F1,107 = 6.18, P = 0.0001, fig. 1C) as com-
paredwith animals rearedwithout blue light exposure. The re-
sults revealed that blue light significantly inhibited larval
cuticular melanin. The blue light-exposed larvae incorporated
lowermelanin in their cuticle (F1,110 = 15.4, P = 0.0001, fig. 2A),
and at adult stage they showed reduced encapsulation of
nylon filaments (F1,107 = 30.8, P = 0.0001, fig. 2B). The adults
that emerged from blue light-exposed larvae showed lower
PO activity (F1,110 = 21.03, P = 0.0001, fig. 2C) however, no sig-
nificant change in hemocyte number was detected
(F1,110 = 1.23, P = 0.21, fig. 2D) as compared with the control
animals.

The immune competency of blue light-treated and non-
treated flies was further measured at larval stage through
conidial exposure of B. bassiana. Survival assays showed a sig-
nificant (P = 0.0001) increase in susceptibility of blue light-
exposed insects to B. bassiana over control individuals (fig. 3).

Discussion

Hori et al. (2014) showed for the first time that blue light in-
duced more harmful effects than UV light to insects, and blue
light irradiation killed insect pests of various orders including
Diptera. However, the effects of blue light on the physiology of
insects are still largely unknown. In the present study we
found that blue light irradiation inhibited cuticular melanin
in the larvae of B. dorsalis, and exposed-larvae showed longer

Fig. 1. Mean larval growth rate (A), larval development time (B), and adult mass at emergence (C) as a function of larval blue light exposure
in the B. dorsalis. Given numbers are observed means ± SE.
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development time, with a lower mass at emergence. The
carryover effects of larval blue light exposure were observed
in the adult stage in terms of reduced melanotic encapsula-
tion response, and lower PO activity, while no significant

change was detected in hemocytes numbers. The blue light
exposure resulted in lower encapsulation response and high-
er susceptibility of adult flies to B. bassiana clearly suggesting
that blue light impaired the adult immune function of
B. dorsalis.

Melanin performs several key functions in insects includ-
ing immune responses (Ortonne, 2002; Roulin, 2014;
Debecker et al., 2015). The biosynthesis of melanin was inhib-
ited in melanoma cells that were irradiated with blue light
(Ohara et al., 2004). Moreover, a recent study revealed that
blue light exposure decreased the viability of epithelial cells
and ultimately lower melanin content (Chiarelli-Neto et al.,
2014). Our results showed that blue light-exposed larvae in-
corporated lower melanin in their exoskeletons suggesting
the effect of blue light on cell vitality (Chiarelli-Neto et al.,
2014), inhibition of DNA synthesis, and cell division (Ohara
et al., 2004). Debecker et al. (2015) reported that UV exposed-
larvae of damsel fly invested more in melanin synthesis
which caused impair immune function of adult flies. We
found that exposure of B. dorsalis larvae to blue light also im-
paired adult immune function but the mode of impairment
was different from that with UV. Unlike UV, blue light inhib-
ited larval cuticularmelanin and impaired immune function at
adult stage. Several studies reported the associations between
cuticularmelanization and immune function (Robb et al., 2003;
Hagen et al., 2006; Prokkola et al., 2013) but they are largely un-
known in the context of blue light exposure.

PO enzyme regulates the formation of melanin in insects
(Sugumaran, 2002). Reduced PO activity was detected in
adult flies that had been exposed to blue light at their
larval stage; the low PO activity may be cause of reduced
cuticular melanin. In insects, melanization is an innate

Fig. 2. Larval cuticularmelanin content (A), adult encapsulation rate (B), adult PO activity (C), and adult hemocyte number (D) as a function
of larval blue light exposure in the B. dorsalis. Given numbers are observed means ± SE.

Fig. 3. Insects exposed to blue light at their larval stage are more
susceptible to B. bassiana infections. Adults of B. dorsalis were
challenged with B. bassiana (strain Bb24). Graph represents
percent survival as calculated by the Kaplan–Meier method. The
log rank analysis and Gehan–Breslow–Wilcoxon Test indicated
that the survival of blue light exposed insects was significantly
different than control flies (P < 0.0001).
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immune response against pathogens in terms of encapsulation
(Balasubramanian et al., 2009), and POactivity is a key immune
function parameter (Siva-Jothy et al., 2005; González-Santoyo
& Córdoba-Aguilar, 2012). Lower cuticular melanin and PO
activity recorded in this study might explain the reduced en-
capsulation response and higher mortality against B. bassiana
in blue light-exposed insects. Furthermore, blue light exposure
strongly inhibited melatonin biosynthesis (Bonmati-Carrion
et al., 2014),which regulates awide rangeof physiological func-
tions including immune system (Carrillo-Vico et al., 2013) this
inhibitory effect couldwell explain the impaired immune func-
tion in blue light-exposed animals.

Generally, negative correlation between cuticular color-
ation and immuno-competence has been observed (Robb
et al., 2003; Hagen et al., 2006). Our mechanistic observations
regarding the carryover effects of blue light-exposed larvae
on adult immune function are therefore considered to be gen-
eral, widespread and may express important cost of blue light
exposure in an insect. While in vitro experiments showed that
blue light inhibited melanin contents (Ohara et al., 2002; Ohara
et al., 2004; Chiarelli-Neto et al., 2014), our study reveals for the
first time, this effect in vivo in an insect.

Blue light exposure affected age and mass at metamor-
phosis, the delayed metamorphosis with smaller mass nega-
tively affected the fitness of adult damselflies (Thompson
et al., 2011; Stoks & Cordoba-Aguilar, 2012). Blue light irradi-
ation cause stress and can be lethal for insect pests of various
orders including Diptera (Hori et al., 2014). To reduce the det-
rimental effects, the organism may prolong its developmental
time (Zhang et al., 2011). We found that blue light-exposed lar-
vae had longer development time and a lower mass at meta-
morphosis. The prolonged developmental time could be a
strategy to reduce the harmful effects of radiations. The pro-
longed development time was observed in B. dorsalis after
the inhibition of PO activity occurred (Bai et al., 2014) indicat-
ing the lowered PO activity may prolong development time in
blue light-exposed larvae. Blue light had no significant effect
on larval growth rate which seems to be in conflict with de-
layed metamorphosis at a smaller mass. Based on the growth
rates of the larvae measured during the 7-day of blue light ex-
posure, the growth rate does not seem to be affected during the
exposure period but some days later after the exposure.

In life history study, the theory was that larval stressors
could be carried over to the adult stage through age and
mass at metamorphosis (Rowe & Ludwig, 1991; Abrams
et al., 1996; Relyea, 2007), although it was not upheld in current
study, but there was little evidence in our study that described
the mediatory role of the developmental time and mass at
metamorphosis to the carryover effects of irradiated-larvae
for the adult stage.

In conclusion, our study provides the first evidence that
blue light exposure inhibits cuticular melanin, PO activity
and impaired immune function in an insect. Furthermore, re-
search revealed that blue light-exposed larvae had the carry-
over effects in adult stage, in terms of developmental time
and mass at metamorphosis. It was documented that stressors
such as temperature (Prokkola et al., 2013), food shortage (Lee
et al., 2008), crowding (Hagen et al., 2006) and drought (Talloen
et al., 2004) can affect cuticular melanin. Our results highlight
that, for future consideration, melanin serving as amediator of
larval carryover effects for adult stage may provide better in-
sight that how larval stressors shape adult fitness (Pechenik,
2006; Stoks & Cordoba-Aguilar, 2012; O’Connor et al., 2014),
which is still largely enigmatic to date.
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