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SUMMARY
The weightless planar 2R underactuated manipulators with passive last joint are considered
in this paper for investigating a feasible method to stabilize the system, which is a second-
order nonholonomic-constraint mechanical system with drifts. The characteristics including the
controllability of the linear approximation model, the minimum phase property, the Small Time
Local Controllability (STLC), the differential flatness, and the exactly nilpotentizable properties,
are analyzed. Unfortunately, these negative characteristics indicate that the simplest underactuated
mechanical system is difficult to design a stable closed-loop control system. In this paper, nilpotent
approximation and iterative steering methods are utilized to solve the problem. A globally effective
nilpotent approximation model is developed and the parameterized polynomial input is adopted to
stabilize the system to its non-singularity equilibrium configuration. In accordance with this scheme,
it is shown that designing a stable closed-loop control system for the underactuated mechanical
system can be ascribed to solving a set of nonlinear algebraic equations. If the nonlinear algebraic
equations are solvable, then the controller is asymptotically stable. Some numerical simulations
demonstrate the effectiveness of the presented approach.
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1. Introduction
The underactuated mechanical systems (UMSs) have been a class of important research objects in
robotics and nonlinear control theory in the last two decades. The UMSs are defined to be a class of
mechanical systems that the number of the independent inputs is less than the degrees of freedom
(DoFs) of the mechanism. According to this definition, many robot systems can be classified to this
class of systems, for instance the wheeled robots,1 hopping robots,2inverted pendulums,3Acrobots,4

spherical robots,5 the multi-fingers hands,6 etc. The UMSs with potential forces, for instance, the
inverted pendulums3and Acrobots,4 of which the tangent linearization at the equilibrium configuration
is controllable. However, the UMSs without weight or elastic forces, such as the horizontal
planar manipulators with free-swing passive joints, of which the linear approximate models are
not controllable,7 and generally show the second-order nonholonomic constraints systems.8 Thus
the UMSs without potential forces cannot be stabilized by any smooth time-invariant pure state
feedbacks,8 and attract some scholars.

Existing methods associated with the nonholonomic motion planning and control issues primarily
depend on two special properties, namely exactly nilpotentizable or differentially flat properties. For
instance, Murray et al.1,2 proposed the sinusoidal input methods for the chained form (a special
nilpotent form) systems. De Luca et al.9 proposed the dynamic feedback linearization methods for
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planar three links manipulator with a last passive joint, where the position of the center of percussion
(CP) of the passive links is used to be the location of the dynamic output. By selecting the Cartesian
position of the CP of the last passive link as the flat output, De Luca showed that the system is
linearizable by dynamic feedback. In ref. [10] they extended this method to stabilize a manipulator
system with two last passive joints. Analogous results can also be found in the literatures.11,12 In ref.
[12] Shiroma et al. extended the approach to stabilize the underactuated manipulators with n last
passive joints. It is noteworthy that, in these relevant researches, the UMSs have two inputs, at least.

For the weightless planar underactuated manipulator with single input, De Luca et al.7,10,13–15

pointed out that the linearization models of this class systems are not controllable, and even the
original systems do not satisfy the sufficient conditions of the Small Time Local Controllability
(STLC) theorem. They used the approximate nilpotentization16 and iterative steering paradigm17

approaches to stabilize the underactuated systems. For the same system under consideration, Arai
et al.18 proposed a time-scaling control method based on the bi-directional motion planning,
Hong et al.19 proposed an oscillatory inputs method based on the average theory, Alfredo Rosas-Flores
et al.20 adopted the sliding mode control, while Mahindrakar et al.21 suggested that the friction of the
passive joints can be used to stabilize the underactuated manipulator. In the relevant researches, the
approaches presented by the group of De Luca showed better theoretical foundation, and the approach
can be applied to other underactuated systems.22–25 Although the control scheme was suggested at first
by Lafferriere and Sussmann26 implicitly, the explicit algorithm for the underactuated manipulators
was proposed by De Luca et al.

In this paper, the stabilization of the planar 2R underactuated manipulators is considered. The main
contributions of the paper include the following: (1) the characteristics of the weightless planar 2R
underactuated manipulator are analyzed in detail; (2) the approximate nilpotentization algorithm for
affined nonlinear systems with drift has been presented, and the globally valid basis is used to construct
the accessible matrix for developing the globally valid approximate nilpotentization model; and (3)
a parameterized polynomial is applied to construct the iterative inputs, such that the stabilization of
the UMSs can be ascribed to solve a set of nonlinear algebraic equations. If the nonlinear algebraic
equations are solvable, then the closed-loop system will be asymptotically stable.

2. Dynamic Model
A horizontal planar underactuated manipulator considered in this paper is shown in Fig. 1. The first
joint hinged to base is actuated, while the second joint is passive. Let l1, l2 denote the lengths of the
two links, m1, m2 denote the masses of the two links respectively, lc1, lc2 denote the lengths between
the mass center of the link and the corresponding axis of the joints respectively, and θ1, θ2 be the
generalized coordinates of the system. Then the dynamic model of the system can be expressed as

m11θ̈1 + m12θ̈2 + h1 = τu, (1a)

m21θ̈1 + m22θ̈2 + h2 = 0, (1b)

where τu is the torque of the actuated joint, and

m11 = I1 + I2 + m1l
2
c1 + m2(l2

1 + l2
c2) + 2m2l1lc2 cos θ2, m12 = I2 + m2l

2
c2 + m2l1lc2 cos θ2,

m21 = m12, m22 = I2 + m2l
2
c2, h1 = −m2l1lc2 sin θ2(2θ̇1θ̇2 + θ̇2

2 ), h2 = m2l1lc2 sin θ2θ̇
2
1 .

Let u = θ̈1 be a new input, the partial feedback linearization27 of system (1) can be expressed by

θ̈1 = u, (2a)

θ̈2 = −m−1
22 m21θ̈1 − m−1

22 h2. (2b)

The state space equations can be written as

ẋ = f(x) + g(x)u, (3)
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Fig. 1. The model of planar 2R underactuated manipulator.

where x = [θ1 θ2 θ̇1 θ̇2]T ∈ R4 is considered, and the smooth vector fields are expressed as follows:
f(x) = [θ̇1 θ̇2 0 −H sin θ2θ̇

2
1 ]T, g(x) = [0 0 1 −(1 + H cos θ2)]T, where H = m2l1lc2

/
(I2 + m2l

2
c2).

3. System Analysis

3.1. The controllability of the linear approximation model
For a given equilibrium point x = [ θ∗

1 θ∗
2 0 0 ], the linear approximation of system (3) is

ẋ = f̃x + g̃u, (4)

where f̃ = 0 ∈ R4×4, g̃ = [ 0 0 1 −(1 + H ) ]T. Obviously rank[ g̃ f̃g̃ f̃2g̃ f̃3g̃ ] = 1 �= 4, hence
approximation system (4) is not controllable.

3.2. The property of the non-minimum phase
The minimum-phase or non-minimum-phase nature of a system is an input–output characteristic that
depends on the selected outputs.27 As to the 2R manipulator considered in this paper, the nature
outputs can be defined to be y = θi , i = 1, 2, or y = [ θ1 θ2 ]T. System (3) with defining an output
can be expressed by the following input–output system:

ẋ = f(x) + g(x)u

y = y(x). (5)

For the single output y = θ1, Eq. (2a) is the linearized part of the input–output system, while
Eq. (2b) becomes the Internal Dynamics of the system. When the linearized part is controlled to
its equilibrium ÿ = ẏ = 0, the internal dynamics is defined to be the Zero Dynamics, i.e. θ̈2 = 0,
which indicates that the motion of the passive joint of the underactuated manipulator is θ2(t) =
θ2(0) + θ̇2(0)t . If θ̇2(0) �= 0, the zero dynamics is unstable. If the zero dynamics is unstable, then the
system is defined to be the non-minimum-phase system.

If the output is selected as y = θ2, to investigate the same problem, the first-order time-derivative
of the output can be written as

ẏ = ∂y

∂x
(x)ẋ = Lf y(x) + Lgy(x)u, (6)

where Lf y(x) = (∂y
/
∂x)(x)f(x) denotes the Lie derivative of y along the smooth vector field f(x),

and Lgy(x) is defined analogously. A simple calculation reveals Lf y(x) = θ̇2 and Lgy(x) = 0. The
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second-order derivative of output y is expressed by

ÿ = ∂Lf y

∂x
(x)ẋ = L2

f y(x) + LgLf y(x)u, (7)

where L2
f y(x) = H sin θ2θ̇

2
1 and LgLf y(x) = 1 + H cos θ2. If 1 + H cos θ2 �= 0, select feedback

u = θ̈1 = − L2
f y

LgLf y
(x) = − H sin θ2θ̇

2
1

1 + H cos θ2
(8)

such that ÿ = ẏ = 0; then the zero dynamics is expressed by

θ̈1 = − H sin θ2

1 + H cos θ2
θ̇2

1 . (9)

When ÿ = ẏ = 0, θ2 is constant. If θ2 �= ±kπ, k = 0, 1, 2, . . ., and θ2 �= arccos(−1
/
H ), the

solution of Eq. (11) can be written to

θ1(t) = θ1(0) + 1

H ∗ log(1 + θ̇1(0)H ∗t), (10)

where H ∗ = H sin θ2
/

(1 + H cos θ2). When θ̇1(0)H ∗ > 0, θ1(t)|t→∞ → ∞, whereas θ̇1(0)H ∗ < 0,(
log(1 + θ̇1(0)H ∗t)

)∣∣
t≥− 1

θ̇1(0)H∗
= 0. Obviously, zero dynamics (9) is unstable, thus system (5) with

output y = θ2 is non-minimum phase.
When the output is selected to be y = [ θ1 θ2 ]T, the explicit relationship between the input and

the output is given by Eq. (2), the maximal relation degree r = 2 < n = 4. The strict less relation
indicates that system (5) with output y = [ θ1 θ2 ]T cannot be linearized by any feedback, thus the
relevant internal dynamics, zero dynamics, minimum phase, or non-minimum phase do not exist.

3.3. The small-time local controllability
To investigate the controllability of a general affine system (5), the only systematic way to this end
so far is to use the famous STLC theorem proposed by Sussmann.28 The STLC is just a sufficient
condition. Define [f, g] to be the Lie bracket generated by f,g, and referring to Eq. (3), part of Lie
brackets generated by f,g can be calculated as

g0 = f(x) = [
θ̇1 θ̇2 0 −H sin θ2θ̇

2
1

]T
,

g1 = g(x) = [
0 0 1 −(1 + H cos θ2)

]T
,

g2 = [f, g] (x) = [−1 1 + Hcosθ2 0 H (θ̇2 + 2θ̇1) sin θ2
]T

,

g3 = [f, [f, g]] (x) = [
0 −2H sin θ2(θ̇1 + θ̇2) 0 H cos θ2(θ̇1 + θ̇2)2 + H 2θ̇2

1 cos (2θ2)
]T

,

g4 = [g, [f, g]] (x) = [
0 0 0 −2H 2 sin θ2 cos θ2

]T
,

g5 = [f, [g, [f, g]]] (x) = [
0 2H 2 sin θ2 cos θ2 0 −2H 2θ̇2 cos(2θ2)

]T
.

(11)

It is obvious that the vector fields satisfy [g1, g2, g4, g5] ∈ R4 for all equilibriums x∗ =
[ θ∗

1 θ∗
2 0 0 ]T with θ∗

2 �= ±kπ
/

2, k = 0, 1, . . ., thus system (3) is globally accessible except for
a few of intrinsic singular configurations. The vector field g4 = [g, [f, g]](x) has degrees δ(g4) =
δ0(g4) + δ1(g4) = 1 + 2, thus it is a bad bracket.28 Whereas the bad bracket g4 cannot be expressed
by the linear combinations of the good brackets28 of g1, g2 with less degrees, therefore system (3)
does not satisfy the second condition of the STLC theorem. As stated above, the STLC theorem
is only a sufficient condition; violating the sufficient condition cannot conclude that system (3) is
uncontrollable. In fact Alessandro et al.10 pointed out that the underactuated 2R manipulator with
first actuated joint is controllable (while the inverse case is not.8)
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For conclusive result of the STLC for system (3), a necessary condition of STLC for single input
system was given in ref. [30]. Refer to expression (11), the Lie brackets with degrees greater than three
are generated by multiple vectors of f and single vector g, and contain the generalized speed θ̇i , i = 1, 2
and the generalized coordinates θi , i = 1, 2. For ∀x∗ = [ θ∗

1 θ∗
2 0 0 ]Twith θ∗

2 �= ±kπ
/

2,k = 0, 1, . . .,
one can verify that dim (χ(x∗)) = 2 < n = 4 while dim span {g1, g2, g4, g5} = 4 = n. Because of
violating the necessary condition, system (3) is not STLC at any equilibrium ∀x∗ = [ θ∗

1 θ∗
2 0 0 ]T

with θ∗
2 �= ±kπ

/
2, k = 0, 1, . . ..

3.4. The property of differential flatness
Differential flatness is an appealing property of some special affine nonlinear systems. If a system
is differentially flat, the dynamic feedback linearization or backstepping method can be used to
stabilize the original system (5). For the weightless planar underactuated manipulators, if the control
inputs satisfy u ∈ Rn, n ≥ 2, and the serial passive links are hinged to their CP, then the Cartesian
coordinates of CP of the last passive link can be selected to be the flat output. If we can find a
flat output for a system, then the system is differentially flat. The differential flatness and feedback
linearization are equivalent for single input system.29,30 As shown in Section 3.2., system (3) has
relative degrees r = 2 < n = 4, which indicates system (3) is not linearizable by any feedback, thus
the single input system (3) is not differential flat.

For strictly proving a system is not flat, the ruled-manifold criterion31 provides a simple necessary
condition. The criterion means that eliminating u from ẋ = f(x, u) yields a set of equations F(x, ẋ) =
0, which holds the following property: for all (x, p) that satisfy F(x, p) = 0, there exist a ∈ Rn and
a �= 0 such that ∀λ ∈ R, F(x, p + λa) = 0. F(x, p) = 0 is thus a ruled manifold containing straight
lines of direction a.

As to the object considered in this paper, referring to Eq. (2), if one eliminates u = θ̈1 from the
equation, then it follows that

q = θ̇2, q̇ = −H sin θ2θ̇
2
1 . (12)

Substituting
(
θ̇2, q̇, θ̇1

)
for

(
θ̇2 + λa1, q̇ + λa2, θ̇1 + λa3

)
into Eq. (12) yields q = (

θ̇2 + λa1
)
,

(q̇ + λa2) = −H sin θ2
(
θ̇1 + λa3

)2
. It is obvious that above equations hold for all λ ∈ R if and

only if (a1, a2, a3) = (0, 0, 0), which means
(
θ̇2, q̇, θ̇1

)
does not define a ruled sub-manifold for any

(θ2, q, θ1). Hence system (2) is not flat.

3.5. The property of exact nilpotentization
Nilpotent or exactly nilpotentizable by feedback transformation is another appealing property of
some nonlinear affine system, especially for nonholonomic systems.32 For the nilpotent or exactly
nilpotentizable systems, there are some feasible motion planning and control methods such as in refs.
[1], [2], [16], [22–24], and [33–36]. A general affine system (5) is nilpotent if there exists an integer
k such that all Lie products with the length greater than k generated by smooth vector fields f, g are
zero. k is called the order of nilpotency. If the original system is not nilpotent but it can be exactly
nilpotentizable by invertible feedback transformations, then the motion planning and control problem
can be dealt with by a similar procedure of the nilpotent systems. Due to the special Lie algebra
structure, the motion planning of the nilpotent affine systems can be solved by applying explicit
quadratures.

The general issue of finding a nilpotent basis for a distribution has been studied by Hermes et al.34

They presented a set of necessary conditions for the existence of a local nilpotent basis and gave
two sets of sufficient conditions. However, the necessary condition is only used in this paper, and the
necessary condition is presented for more general systems.

ẋ = f(x) +
k∑

i=1

gi(x)ui. (13)

Let V denote the real vector space of the real analytic vector fields on Rn. 	k(x) =
span {g1(x), . . . , gk(x)} locally defines a k− dimensional distribution. Consider system (3), part of Lie
products are shown by Eq. (11), of which the distribution {g0, g1, g2, g3, g4, g5} spans R4 at all points
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except θ∗
2 = ±kπ

/
2, k = 0, 1, . . ., whereas an invariant of distribution {g0, g1, g2, g3, g4, g5}, g3 = 0,

is satisfied if and only if θ̇1 = θ̇2 = 0. This contradiction implies distribution {g0, g1, g2, g3, g4, g5}
could not admit a nilpotent basis. System (3) is not nilpotent. By applying the necessary condition of
exact nilpotentization presented in ref. [34], it is obvious that the system is not exactly nilpotentizable
by feedback transformation.

4. Nilpotent Approximations
The negative results of the characteristics for weightless planar 2R underactuated manipulator
indicate that there does not exist a straightforward approach of synthesizing the control laws for
the sake of stabilizing the second-order nonholonomic system.8 Existing methods associated with
nonholonomic motion planning and control issues are primarily considered the exactly nilpotentizable
or differentially flat systems. For nonholonomic systems that do not hold these properties, the
approximate steering techniques are also a valuable approach towards the solution. In recent years,
the utilization of the nilpotent approximations for solving the nonholonomic motion planning and
control issues have been given a lot of attention by Oriolo,23 Vendittelli,24,25,35 De Luca,7,10,13–15

Bellaı̈che,33 Sussmann,36 and Hermes et al.32,34 As pointed out by Oriolo et al. in ref. [23], the nilpotent
approximation is a higher order approximation with increased adherence to the original dynamics,
especially useful for tangent linearization without retaining the controllability as in the nonholonomic
systems. At the same time, closed-form integration of the approximate model under parameterized
inputs allows to design the steering controls. These merits brought by nilpotent approximation interest
us to investigate its application in the control of second-order nonholonomic constraints mechanical
systems.

Hermes et al.16,32 and Bellaı̈che et al.33 had studied the algorithms for nilpotent approximation.
In this section, we use the results proposed in ref. [33] and refined in ref. [35] by Vendittelli et al.,
to develop the nilpotent approximation model for system (5). Similar to the work given by De Luca
et al. in refs. [7], [13], and [14] in which the procedure was very summarized and a non-global basis
was selected to construct the accessible matrix so that the motion planning has to be separated to
multi-phases, alignment phase, contraction phase, and if needed, transition phase, and the special
cyclic open-loop control command is also far from intuition.

The nilpotent approximation algorithm presented by Bellaı̈che33 is applicable for driftless system.
We extend this result to drift system (3). Let g0(x) = f(x) and u0 = 1, then system (13) can be
expressed as the following driftless system:

ẋ =
k∑

i=0

gi(x)ui, (14)

where u ∈ Rk+1 is a new vector of the control input. Suppose system (14) satisfies the Lie Algebra
Rank Condition (LARC),36 i.e. the system is locally accessible. Fix a point x0 ∈ Rn and let Ls(x0) be
the vector space generated by the values at x0 of the Lie brackets of the smooth vector fields gi (x),
i = 0, 1, 2, . . . , k, with length ≤ s, s = 1, 2, . . .. The input vector fields are brackets with length one.
The accessibility of system (14) guarantees that there exists the smallest integer r = r(x0) such that
dim {Lr (x0)} = n. The integer r(x0) is called the degree of nonholonomy of system (14) at x0. Let
ns(x0) = dim {Ls(x0)}, s = 1, 2, . . . , r , and define the growth vector of the distribution 	s = Ls(x0)
at x0 to be (n1(x0), n2(x0), . . . , nr (x0)).

According to the definition of the function’s order presented in ref. [35], the input vector fields
g0(x), g1 (x) , · · · , gk (x) have order ≥ −1.

The order of functions and vector fields expressed in privileged coordinates35 can be computed in
an algebraic way, i.e.:

1. The order of monomial z
α1
1 . . . zαn

n is equal to its weighted degree;
2. The order of a function h(z) at z = 0 (the image of x0) is the least-weighted degree of the monomials

actually appearing in the Taylor expansion of h(z) at z = 0;
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3. The order of a vector field g(z) = ∑n
j=1 gj (z)∂zj

at z = 0 is the least-weighted degree of
the monomials actually appearing in the Taylor expansion of g(z) at z = 0, i.e. g(z) ∼∑

α,j βα,j zα1
1 · · · zαn

n ∂zj ;

with considering the term βα,j z
α1
1 . . . zαn

n ∂zj
as a monomial and assigning to ∂zj

the weight −wj .
Consider system (14) and an approximation point x0 ∈ Rn, the algorithm35 for computing a set

of privileged coordinates and a nilpotent approximation at x0 is recalled here, and the procedure for
computing the nilpotent approximation model of system (3) is going step by step:

1. Compute the growth vector (n1(x0), n2(x0), . . . , nr (x0)) and the weights w1, . . . , wn at x0.
Refer to the Lie products expressed by (11), dim span {g1, g2, g4, g5} = 4 = n at all points x ∈ R4

except the intrinsic singular point θ2 = ±kπ
/

2, k = 0, 1, . . .. In this paper the intrinsic singular
points in configuration space of system (3) are not considered. The length of g5 = [f, [g, [f, g]]]
is the least-length of Lie bracket such that distribution 	4 spans the full state space R4. Thus the
degree of nonholonomy of system (3) is r = 4. The growth vector is (n1, n2, n3, n4) = (1, 2, 3, 4).
The weights are (w1, w2, w3, w4) = (1, 2, 3, 4).

2. Choose vector fields γ1(x0), . . . , γn(x0) such that their values at x0 form a basis of Lr (x0)
with dim (Lr (x0)) = n and such that γns−1+1(x), . . . , γns

(x) ∈ Ls(x), s = 1, . . . , r for any x in a
neighborhood of x0, with n0 = 0. Construct accessible matrix A = [γ1(x0), · · · , γn(x0) ] ∈ Rn×n.
For system (3), the vector fields g1, g2, g4, g5 are selected as the basis for R4. We noticed that this
basis is valid for ∀x0 = [ θ10 θ20 θ̇10 θ̇20 ]T except the singular point. In ref. [10] De Luca adopted
the vector fields g0, g1, g2, g3 as the basis that is not valid at points with θ̇10 = θ̇20 = 0. This causes
that the motion planning for the 2R underactuated manipulator has to be separated to multi-phases.
As we will show in Section 5, the new selection can avoid this bother. The accessible matrix can
be given by

A = [
g1 g2 g4 g5

]
(x0)

=

⎡
⎢⎣

0 −1 0 0
0 1 + Hc20 0 2H 2s20c20

1 0 0 0
− (1 + Hc20) H (θ̇20 + 2θ̇10)s20 −2H 2s20c20 −2H 2θ̇20 cos (2θ20)

⎤
⎥⎦ ,

where s20 = sin θ20, c20 = cos θ20.
3. From the original coordinates x, compute local coordinates y as y = A−1(x − x0).

Since

A−1 =

⎡
⎢⎢⎣

0 0 1 0
−1 0 0 0
ζ θ̇20 cos(2θ20)

−2H 2(s2c2)2
1+Hc20

−2H 2s20c20

−1
2H 2s20c20

1+Hc20
2H 2s20c20

1
2H 2s20c20

0 0

⎤
⎥⎥⎦ ,

where ζ = H (θ̇20+2θ̇10)(s20)2c20+(1+Hc20)θ̇20 cos(2θ20)
−2H 2(s20c20)2 , one gets that

y1 = θ̇1 − θ̇10,

y2 = −(θ1 − θ10),

y3 = ζ (θ1 − θ10) − θ̇20 cos(2θ20)

2H 2 (s20c20)2 (θ2 − θ20) − 1 + Hc20

2H 2s20c20
(θ̇1 − θ̇10) − 1

2H 2s20c20
(θ̇2 − θ̇20),

y4 = 1 + Hc20

2H 2s20c20
(θ1 − θ10) + 1

2H 2s20c20
(θ2 − θ20) .

(15)
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For all equilibriums xe = [ θ10 θ20 0 0 ]T with θ20 �= ± kπ
2 , k = 0, 1, 2, . . ., the local coordinates

(15) can be rewritten as

y1 = θ̇1,

y2 = − (θ1 − θ10) ,

y3 = − 1 + Hc20

2H 2s20c20
θ̇1 − 1

2H 2s20c20
θ̇2,

y4 = 1 + Hc20

2H 2s20c20
(θ1 − θ10) + 1

2H 2s20c20
(θ2 − θ20) .

(16)

4. Build the privileged coordinates z1, . . . , zn around x0 via the recursive formula33,35

zj = yj +
wj −1∑
k=2

hk(y1, . . . , yj−1), j = 1, . . . , n, (17)

where

hk(y1, . . . , yj−1) = −
∑

|α|=k
w(α)<wj

βjγ
α1
1 · · · γ αj−1

j−1

⎛
⎝yj +

k−1∑
p=2

hp

⎞
⎠ (x0) , (18)

with βj = ∏j−1
i=1

(
y

αi

i

/
αi!

)
, |α| = ∑n

i=1 αi , w (α) = ∑n
i=1 wiαi , where αi, i = 1, 2, . . . , n, are

positive integers. Obviously, the monomials in
∑

hk have weight ≥ 2 and < wj . Thus the
polynomial

∑
hk occurs in the privileged coordinates zj if and only if weight wj ≥ 3.

Let x0 = xe, we interest the local privileged coordinates at equilibrium. Refer to Eqs. (16) and
(17), the first two privileged coordinates can be computed as

z1 = y1, z2 = y2.

According to Eq. (17), we have the privileged coordinate z3 = y3 + h2(y1, y2)(xe), where

h2(y1, y2)(xe) = −
∑

α1+α2=2
w1α1+w2α2<w3=3

β3
(
γ

α1
1 γ

α2
2

)
y3(xe). (19)

Since w1 = 1, w2 = 2, and α1, α2 are positive, the unique solution satisfying the in equations{
α1 + α2 = 2
α1 + 2α2 < 3 is (α1, α2) = (2, 0). Substituting (α1, α2) = (2, 0) into Eq. (18), one can find the

second-order Lie derivate
(
γ 2

1

)
y3(xe) = 0, thus h2(y1, y2)(xe) = 0. This indicates z3 = y3.

According to Eq. (17), the fourth privileged coordinate is given by

z4 = y4 + h2(y1, y2, y3) + h3(y1, y2, y3), (20)

where

h2(y1, y2, y3)(xe) = −
∑

α1+α2+α3=2
w1α1+w2α2+w3α3<w4=4

β4
(
γ

α1
1 γ

α2
2 γ

α3
3

)
y4(xe). (21)

Since w1 = 1, w2 = 2, w3 = 3, and α1, α2, α3 are positive, the solutions of the in equations

{
α1 + α2 + α3 = 2
α1 + 2α2 + 3α3 < 4
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are (α1, α2, α3) = (1, 1, 0) or (2, 0, 0). However, the second-order Lie derivative (γ1γ2) y4(xe) =(
γ 2

1

)
y4(xe) = 0, thus h2(y1, y2, y3)(xe) = 0. In Eq. (20), the third term

h3(y1, y2, y3)(xe) = −
∑

α1+α2+α3=3
w1α1+w2α2+w3α3<w4=4

β4
(
γ

α1
1 γ

α2
2 γ

α3
3

)
y4(xe). (22)

Similarly, since w1 = 1, w2 = 2, w3 = 3 and α1, α2, α3 are positive, the unique solution of the in
equations

{
α1 + α2 + α3 = 3
α1 + 2α2 + 3α3 < 4

is (α1, α2, α3) = (3, 0, 0). The third-order Lie derivative
(
γ 3

1

)
y4(xe) = 0, thus h3(y1, y2, y3)(xe) =

0, the privileged coordinates z4 hold z4 = y4.
The detailed computations given above show that the local coordinates yj happen to be the
privileged coordinate zj . This can also be confirmed by computing the order of the local coordinates
yj ,j = 1, . . . , 4. By definition 1, one can verify that the order of yj exactly equals to wj , j =
1, . . . , 4. For the purpose of clarity, the privileged coordinates are given by

z1 = θ̇1,

z2 = − (θ1 − θ10) ,

z3 = − 1 + Hc20

2H 2s20c20
θ̇1 − 1

2H 2s20c20
θ̇2,

z4 = 1 + Hc20

2H 2s20c20
(θ1 − θ10) + 1

2H 2s20c20
(θ2 − θ20) .

(23)

5. Express the dynamics of the original system in privileged coordinates ż = ∑m
i=1 gi(z)ui .

Referring to Eqs. (3) and (23), one obtains ż1 = u1, ż2 = −z1, ż3 = 1
2Hc20

z2
1, and ż4 = −z3. Then

the dynamics in privileged coordinates can be concisely expressed as

ż =

⎡
⎢⎣

0
−z1

z2
1

/
(2Hc20)
−z3

⎤
⎥⎦ +

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ u1. (24)

6. Expand the vector fields gi(z) in Taylor series at z = 0 and express them in terms of vector fields that
are homogeneous with respect to the weighted degree gi(z) = g(−1)

i (z) + g(0)
i (z) + g(1)

i (z) + . . .. Let
ĝi(z) = g(−1)

i (z), where g(−1)
i (z) is the principal component of gi(z). The nilpotent approximation

system of system (14) can be defined as

żi =
k∑

j=0

ĝjiuj , i = 1, . . . , v, (25)

żs =
k∑

j=0

ĝjs (z1, . . . , zs−1) uj , s = v + 1, . . . , n, (26)

where v is the dimension of distribution 	 = span {g0, . . . , gk} (xe). For i = 1, . . . , v, it is
straightforward that ĝ0i , . . . , ĝki are constants. For s = v + 1, . . . , n, ĝjs (z1, . . . , zs−1) are
polynomial functions of homogeneous degree ws − 1.
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By the approximating procedure given above, one can find that the nilpotent approximation of
system (24) is itself, i.e.

ż = ĝ0(z) + ĝ1(z)u1 =

⎡
⎢⎣

0
−z1

z2
1

/
(2Hc20)
−z3

⎤
⎥⎦ +

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ u1. (27)

It is easy to show that the Lie products of the approximation system are

ĝ1 = [
1 0 0 0

]T
,

[
ĝ0, ĝ1

] = [
0 1 z1

/
(Hc20) 0

]T
,

[
ĝ0,

[
ĝ0, ĝ1

]] = [
0 0 0 z1

/
(Hc20)

]T
,

[
ĝ1,

[
ĝ0, ĝ1

]] = [
0 0 −1

/
(Hc20) 0

]T
,

[
ĝ0,

[
ĝ1,

[
ĝ0, ĝ1

]]] = [
0 0 0 1

/
(Hc20)

]T
.

The vector fields ĝ1, [ĝ0, ĝ1], [ĝ1, [ĝ0, ĝ1]], [ĝ0, [ĝ1, [ĝ0, ĝ1]]] span the full state space R4, thus
the approximate system (27) is accessible. By further calculations it is shown that the Lie products
with length greater than 4 are zero, hence the approximate system (27) is nilpotent of order 4. As
shown in Eq. (27), the nilpotent approximation shows a triangular polynomial structure. Therefore,
if we apply a parameterized input, the nilpotent system (27) can be integrated as the closed form
as presented in the next section. For an exactly nilpotentizable system, the motion planning is
solved accurately by this method. For the nilpotent approximate system, this leads to an iterative
steering procedure7,10–13,23–25,37 because of the errors between the original system and the nilpotent
approximate system.

5. Designing the Controller
Similar to the method presented in the works of De Luca et al.,7,10,13–15 we also investigate the feasible
control method for weightless planar 2R underactuated manipulator by iterative steering. However,
a multi-phases steering scheme was presented in ref. [7]. The method proposed in this paper does
not need separate the motion to different phases, the stability of the controller is guaranteed by the
existence of the solution of a set of nonlinear algebra equations.

Due to the triangular structure of system (27), a parameterized polynomial is used to synthesize the
closed-loop controller. By simple inspection, the control must satisfy four sets of boundary conditions,
namely

θ̈1(0) = θ̈1(1) = 0, θ̇1(0) = θ̇1(1) = 0, θ̈2(0) = θ̈2(1) = 0, θ̇2(0) = θ̇2(1) = 0. (28)

To stabilize the system to a target configuration, the configuration errors must contract after every
cyclic of the input, viz.

ei = θid − θi(1) = ηi (θid − θi(0)) , i = 1, 2, (29)

where ηi ∈ (0, 1) is the ratio of contraction of the position errors. To simplify the formulations, at
start of every cyclic the time reset to zero is considered in (29). Due to the four sets of boundary
conditions (28) and the contraction condition of errors (29), let us select a five-order polynomial as
the cyclic input

u1 (τ ) = θ̈1 (τ ) = a1τ + a2τ
2 + a3τ

3 + a4τ
4 + a5τ

5, (30)

where ai, i = 1, . . . , 5 are free coefficients, and τ = t
T

∈ [0, 1].

https://doi.org/10.1017/S0263574714001714 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001714


594 Characteristics analysis and stabilization of a planar 2R underactuated manipulator

From the boundary condition θ̈1(0) = θ̈1(1) = 0, one obtains a5 = − (a1 + a2 + a3 + a4),
therefore the input becomes

u1 (τ ) = θ̈1 (τ ) = a1τ + a2τ
2 + a3τ

3 + a4τ
4 − (a1 + a2 + a3 + a4) τ 5. (31)

Refer to Eq. (27), and by considering (31), we have

z1 = θ̇1 =
∫ τ

0
u1(σ )dσ = 1

2
a1τ

2 + 1

3
a2τ

3 + 1

4
a3τ

4 + 1

5
a4τ

5 − 1

6
(a1 + a2 + a3 + a4) τ 6. (32)

Equation (32) should agree with the boundary condition θ̇1(0) = θ̇1(1) = 0, viz.

a4 = − (
10a1 + 5a2 + 5

/
2a3

)
.

Therefore, Eq. (31) has the form

u1 (τ ) = a1τ + a2τ
2 + a3τ

3 − (10a1 + 5a2 + 5
/

2a3)τ 4 + (
9a1 + 4a2 + 3

/
2a3

)
τ 5, (33)

then Eq. (32) becomes

z1 = a1

(
1

2
τ 2 − 2τ 5 + 3

2
τ 6

)
+ a2

(
1

3
τ 3 − τ 5 + 2

3
τ 6

)
+ a3

(
1

4
τ 4 − 1

2
τ 5 + 1

4
τ 6

)
. (34)

From Eqs. (23), (27), and (34) we obtain

z2 = −
∫ 1

0
z1(τ )dτ = − 1

21
a1 − 1

84
a2 − 1

420
a3 = − (θ1(1) − θ10) . (35)

From Eq. (27), we also have

z3 = 1

2Hc20

∫ τ

0
(z1(σ ))2dσ = 1

2Hc20

∫ τ

0

(∫ σ

0
u(ρ)dρ

)2

dσ. (36)

By considering the boundary condition θ̇2(0) = θ̇2(1) = 0, from Eq. (36) one gets

b1a
2
1 + b2a

2
2 + b3a

2
3 + b4a1a2 + b5a1a3 + b6a2a3 = 0. (37)

Once more, from Eq. (27), we have

z4 = −
∫ 1

0
z3(τ )dτ = D, (38)

where D = 1
2Hc20

(
c1a

2
1 + c2a

2
2 + c3a

2
3 + c4a1a2 + c5a1a3 + c6a2a3

)
. In Eqs. (37) and (38), the

coefficients bi, i = 1, . . . , 6 and ci, i = 1, . . . , 6 are constants, which are listed in the Appendix.
It is obvious that Eqs. (34) and (37) guarantee input (33) to satisfy the speed boundary conditions
θ̇1(0) = θ̇1(1) = 0 and θ̇2(0) = θ̇2(1) = 0, which means the system is periodically stable. From the
fourth equation of (24) and Eq. (38), the following equation can be obtained:

ψ1 (θ1(1) − θ10) + ψ2 (θ2(1) − θ20) = D, (39)

where ψ1 = 1+Hc20
2H 2s20c20

, ψ2 = 1
2H 2s20c20

.
The error contraction condition for θ1 can be deduced from Eqs. (35) and (29),

ξ1 (a1, a2, a3) = (1 − η1)e1, (40)

where e1 = θ1d − θ1(0), ξ1 (a1, a2, a3) = 1
21a1 + 1

84a2 + 1
420a3.
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The error contraction condition for θ2 can be deduced from Eqs. (29) and (39):

ξ2 (a1, a2, a3) = ψ2(1 − η2)e2 + ψ1ξ1, (41)

where e2 = θ2d − θ2(0), ξ2 (a1, a2, a3) = D.
Up to now, the parameterized polynomial cyclic command (33) can be defined by Eqs. (37),

(40), and (41), of which Eq. (37) is induced by speed boundary θ̇2(1) = 0 while the latter two
are contraction conditions of the position errors of the two joints. To simplify the formulations of
stabilization conditions (37), (40), and (41), we solve a2 from Eq. (40), and then we have

a2 = − (d1a1 + d3a3 + d4) , (42)

where d1 = 4, d3 = 1
5 , d4 = −84(1 − η1)e1. Substituting (42) into (37), one gets

p11a
2
1 + p12a

2
3 + p13a1a3 + p14a1 + p15a3 + p16 = 0. (43)

Substituting (42) into (41), it follows that

p21a
2
1 + p22a

2
3 + p23a1a3 + p24a1 + p25a3 + p26 = 0. (44)

In Eqs. (43) and (44), coefficients p1i , i = 1, . . . , 6 and p2i , i = 1, . . . , 6 are constants, which are
listed in the Appendix. Newton-Raphson method37 can be used to solve the nonlinear algebraic Eqs.
(43) and (44). If the solution is obtainable, the cyclic input (33) defined by (42)–(44) can stabilize
system (3) from any initial configuration to final configuration except a few of singular points.

It is worth mentioning that the presented controller could be utilized to track a continuous path by
point-to-point (PTP) control approach if the given path does not contain any singular configurations
(i.e. θ∗

2 �= ±kπ
/

2). However, the presented stabilization approach is hard to be applied to track given
trajectories due to the long settling time of the controller, and this is also shown in the next section.

6. Numerical Simulations
To test the feasibility of the cyclic input (33) with the stabilizable conditions (42)–(44), the position
stabilization is simulated numerically in this section. We define ei = θid − θi(t), i = 1, 2; then three
different initial conditions are considered for testing the validity of the controller:

1. e1 · e2 < 0, i.e. the initial position errors of the two joints have different sign;
2. e1 < 0, e2 < 0, the initial position errors are negative;
3. e1 > 0, e2 > 0, the initial position errors are positive.

Typically, the simulation results correspond to the three cases illustrated in Figs. 2–4, respectively.
Fig. 5(a) and (b) show the data of initial 0–2 s from Fig. 2(b) and (c) respectively. The period of
the cyclic input is T = 1 s in the simulations. One can find the speeds and the accelerations of the
joints satisfying the boundary conditions (28) from Fig. 5. Referring to Figs. 2–4, we notice that the
first case has relatively better convergence rate than the others. This phenomenon can be explained
by the dynamics coupling Eq. (2b), which indicates that the active joint and the passive joint always
have the accelerations with contrary directions. Thus if the initial position errors of the two joints
have different signs, the system is easier to be stabilized to final position relative to the others cases.
Apparently, in Figs. 3 and 4, the input has to steer the errors to a state that is coincident with the first
case during the initial moment, whereafter converge to zero.

7. Conclusions
We show that the weightless planar 2R underactuated manipulator with first active joint has the
following properties: the linear approximation model is not controllable, non-minimum phase, not
STLC, not differential flat, and not exactly nilpotentizable. These negative characteristics considerably
complicate the controller synthesis issues. Similar to the works presented by De Luca and his
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Fig. 2. Position control with initial position error relationship, e1 · e2 < 0: (a) position errors; (b) joints speed;
(c) joints accelerations; (d) joint torque.
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Fig. 3. Position control with initial position errors, e1 < 0, e2 < 0.

coworkers, we adopt the nilpotent approximation and iterative steering scheme to stabilize the second-
order nonholonomic underactuated 2R manipulator. However, as distinguished from the relevant
approaches, it is shown in the present paper that using a set of global valid basis to construct
the accessible matrix and whereafter to deduce the nilpotent approximation model can remarkably
simplify the motion planning for the sake of stabilizing the underactuated manipulator. On the other
hand, it is shown that the synthesis of a stabilizable controller by parameterized polynomial input
is ascribed to solve a set of nonlinear algebraic equations. If the nonlinear algebraic equations are
solvable, the controller is asymptotically stable. Thus the control strategy presented in the paper
shows more generality and can be applied to stabilize other UMSs without controllable linearization.
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Fig. 4. Position control with initial position errors, e1 > 0, e2 > 0.
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Fig. 5. Joints speed and acceleration during 0–2 s from Fig. 2: (a) joints speed with 0–2 s data from Fig. 2(b);
(b) joints acceleration with 0–2 s data from Fig. 2(c).
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Appendix
The coefficients in Eq. (37) are given by:

b1 = 1

20
+ 4

11
+ 9

52
−1

4
+1

6
−1

2
,

b2 = 1

63
+ 1

11
+ 4

117
− 2

27
+ 1

45
− 1

9
,

b3 = 1

144
+ 1

44
+ 1

208
− 1

40
+ 1

88
− 1

48
,

b4 = 1

18
+ 4

27
+ 1

10
− 1

8
+ 4

11
− 1

4
+ 2

27
− 2

9
+ 2

13
,

b5 = 1

28
− 1

10
+ 3

44
− 1

16
+ 2

11
− 1

8
+ 1

36
− 1

12
+ 3

52
,

b6 = 1

48
− 1

20
+ 1

33
− 1

27
+ 1

11
− 1

18
+ 1

60
− 1

24
+ 1

39
.

The coefficients in Eq. (38) can be given as follows:

c1 = 1

120
+ 4

132
+ 9

728
− 1

36
+ 1

60
− 1

26
,

c2 = 1

504
+ 1

132
+ 4

1638
− 1

135
+ 1

495
− 1

117
,

c3 = 1

1440
+ 1

528
+ 1

2912
− 1

440
+ 1

1056
− 1

624
,

c4 = 1

126
− 2

135
+ 1

110
− 1

72
+ 1

33
− 1

26
+ 1

135
− 2

117
+ 1

91
,

c5 = 1

224
− 1

110
+ 1

176
− 1

144
+ 1

66
− 1

104
+ 1

360
− 1

156
+ 1

728
,

c6 = 1

432
− 1

220
+ 1

396
− 1

270
+ 1

132
− 1

234
+ 1

660
− 1

312
+ 1

546
.

The coefficients in Eq. (43) are given by:

p11 = b2d
2
1 − b4d1 + b1,

p12 = b2d
2
3 − b4d3 + b3,

p13 = 2b2d1d3 − b4d1 − b4d3 + b5,

p14 = 2b2d1d4 − b4d4,

p15 = 2b2d1d3 − b4d4,

p16 = b2d
2
4 ,
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The coefficients in Eq. (44) can be given as follows:

p21 = c2d
2
1 − c4d1 + c1,

p22 = c2d
2
3 − c4d3 + c3,

p23 = 2c2d1d3 − c4d1 − c4d3 + c5,

p24 = 2c2d1d4 − c4d4,

p25 = 2c2d1d3 − c4d4,

p26 = c2d
2
4 − ψ2

ψ3
(1 − η2) e2 − ψ2

ψ3
(1 − η1) e1,

where ψ3 = 1
2Hc20

.
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